linux/drivers/edac/skx_edac.c
<<
>>
Prefs
   1/*
   2 * EDAC driver for Intel(R) Xeon(R) Skylake processors
   3 * Copyright (c) 2016, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/pci.h>
  18#include <linux/pci_ids.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/edac.h>
  22#include <linux/mmzone.h>
  23#include <linux/smp.h>
  24#include <linux/bitmap.h>
  25#include <linux/math64.h>
  26#include <linux/mod_devicetable.h>
  27#include <asm/cpu_device_id.h>
  28#include <asm/intel-family.h>
  29#include <asm/processor.h>
  30#include <asm/mce.h>
  31
  32#include "edac_module.h"
  33
  34#define SKX_REVISION    " Ver: 1.0 "
  35
  36/*
  37 * Debug macros
  38 */
  39#define skx_printk(level, fmt, arg...)                  \
  40        edac_printk(level, "skx", fmt, ##arg)
  41
  42#define skx_mc_printk(mci, level, fmt, arg...)          \
  43        edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
  44
  45/*
  46 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  47 */
  48#define GET_BITFIELD(v, lo, hi) \
  49        (((v) & GENMASK_ULL((hi), (lo))) >> (lo))
  50
  51static LIST_HEAD(skx_edac_list);
  52
  53static u64 skx_tolm, skx_tohm;
  54
  55#define NUM_IMC                 2       /* memory controllers per socket */
  56#define NUM_CHANNELS            3       /* channels per memory controller */
  57#define NUM_DIMMS               2       /* Max DIMMS per channel */
  58
  59#define MASK26  0x3FFFFFF               /* Mask for 2^26 */
  60#define MASK29  0x1FFFFFFF              /* Mask for 2^29 */
  61
  62/*
  63 * Each cpu socket contains some pci devices that provide global
  64 * information, and also some that are local to each of the two
  65 * memory controllers on the die.
  66 */
  67struct skx_dev {
  68        struct list_head        list;
  69        u8                      bus[4];
  70        struct pci_dev  *sad_all;
  71        struct pci_dev  *util_all;
  72        u32     mcroute;
  73        struct skx_imc {
  74                struct mem_ctl_info *mci;
  75                u8      mc;     /* system wide mc# */
  76                u8      lmc;    /* socket relative mc# */
  77                u8      src_id, node_id;
  78                struct skx_channel {
  79                        struct pci_dev *cdev;
  80                        struct skx_dimm {
  81                                u8      close_pg;
  82                                u8      bank_xor_enable;
  83                                u8      fine_grain_bank;
  84                                u8      rowbits;
  85                                u8      colbits;
  86                        } dimms[NUM_DIMMS];
  87                } chan[NUM_CHANNELS];
  88        } imc[NUM_IMC];
  89};
  90static int skx_num_sockets;
  91
  92struct skx_pvt {
  93        struct skx_imc  *imc;
  94};
  95
  96struct decoded_addr {
  97        struct skx_dev *dev;
  98        u64     addr;
  99        int     socket;
 100        int     imc;
 101        int     channel;
 102        u64     chan_addr;
 103        int     sktways;
 104        int     chanways;
 105        int     dimm;
 106        int     rank;
 107        int     channel_rank;
 108        u64     rank_address;
 109        int     row;
 110        int     column;
 111        int     bank_address;
 112        int     bank_group;
 113};
 114
 115static struct skx_dev *get_skx_dev(u8 bus, u8 idx)
 116{
 117        struct skx_dev *d;
 118
 119        list_for_each_entry(d, &skx_edac_list, list) {
 120                if (d->bus[idx] == bus)
 121                        return d;
 122        }
 123
 124        return NULL;
 125}
 126
 127enum munittype {
 128        CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
 129};
 130
 131struct munit {
 132        u16     did;
 133        u16     devfn[NUM_IMC];
 134        u8      busidx;
 135        u8      per_socket;
 136        enum munittype mtype;
 137};
 138
 139/*
 140 * List of PCI device ids that we need together with some device
 141 * number and function numbers to tell which memory controller the
 142 * device belongs to.
 143 */
 144static const struct munit skx_all_munits[] = {
 145        { 0x2054, { }, 1, 1, SAD_ALL },
 146        { 0x2055, { }, 1, 1, UTIL_ALL },
 147        { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
 148        { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
 149        { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
 150        { 0x208e, { }, 1, 0, SAD },
 151        { }
 152};
 153
 154/*
 155 * We use the per-socket device 0x2016 to count how many sockets are present,
 156 * and to detemine which PCI buses are associated with each socket. Allocate
 157 * and build the full list of all the skx_dev structures that we need here.
 158 */
 159static int get_all_bus_mappings(void)
 160{
 161        struct pci_dev *pdev, *prev;
 162        struct skx_dev *d;
 163        u32 reg;
 164        int ndev = 0;
 165
 166        prev = NULL;
 167        for (;;) {
 168                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
 169                if (!pdev)
 170                        break;
 171                ndev++;
 172                d = kzalloc(sizeof(*d), GFP_KERNEL);
 173                if (!d) {
 174                        pci_dev_put(pdev);
 175                        return -ENOMEM;
 176                }
 177                pci_read_config_dword(pdev, 0xCC, &reg);
 178                d->bus[0] =  GET_BITFIELD(reg, 0, 7);
 179                d->bus[1] =  GET_BITFIELD(reg, 8, 15);
 180                d->bus[2] =  GET_BITFIELD(reg, 16, 23);
 181                d->bus[3] =  GET_BITFIELD(reg, 24, 31);
 182                edac_dbg(2, "busses: %x, %x, %x, %x\n",
 183                         d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
 184                list_add_tail(&d->list, &skx_edac_list);
 185                skx_num_sockets++;
 186                prev = pdev;
 187        }
 188
 189        return ndev;
 190}
 191
 192static int get_all_munits(const struct munit *m)
 193{
 194        struct pci_dev *pdev, *prev;
 195        struct skx_dev *d;
 196        u32 reg;
 197        int i = 0, ndev = 0;
 198
 199        prev = NULL;
 200        for (;;) {
 201                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
 202                if (!pdev)
 203                        break;
 204                ndev++;
 205                if (m->per_socket == NUM_IMC) {
 206                        for (i = 0; i < NUM_IMC; i++)
 207                                if (m->devfn[i] == pdev->devfn)
 208                                        break;
 209                        if (i == NUM_IMC)
 210                                goto fail;
 211                }
 212                d = get_skx_dev(pdev->bus->number, m->busidx);
 213                if (!d)
 214                        goto fail;
 215
 216                /* Be sure that the device is enabled */
 217                if (unlikely(pci_enable_device(pdev) < 0)) {
 218                        skx_printk(KERN_ERR,
 219                                "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
 220                        goto fail;
 221                }
 222
 223                switch (m->mtype) {
 224                case CHAN0: case CHAN1: case CHAN2:
 225                        pci_dev_get(pdev);
 226                        d->imc[i].chan[m->mtype].cdev = pdev;
 227                        break;
 228                case SAD_ALL:
 229                        pci_dev_get(pdev);
 230                        d->sad_all = pdev;
 231                        break;
 232                case UTIL_ALL:
 233                        pci_dev_get(pdev);
 234                        d->util_all = pdev;
 235                        break;
 236                case SAD:
 237                        /*
 238                         * one of these devices per core, including cores
 239                         * that don't exist on this SKU. Ignore any that
 240                         * read a route table of zero, make sure all the
 241                         * non-zero values match.
 242                         */
 243                        pci_read_config_dword(pdev, 0xB4, &reg);
 244                        if (reg != 0) {
 245                                if (d->mcroute == 0)
 246                                        d->mcroute = reg;
 247                                else if (d->mcroute != reg) {
 248                                        skx_printk(KERN_ERR,
 249                                                "mcroute mismatch\n");
 250                                        goto fail;
 251                                }
 252                        }
 253                        ndev--;
 254                        break;
 255                }
 256
 257                prev = pdev;
 258        }
 259
 260        return ndev;
 261fail:
 262        pci_dev_put(pdev);
 263        return -ENODEV;
 264}
 265
 266static const struct x86_cpu_id skx_cpuids[] = {
 267        { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
 268        { }
 269};
 270MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
 271
 272static u8 get_src_id(struct skx_dev *d)
 273{
 274        u32 reg;
 275
 276        pci_read_config_dword(d->util_all, 0xF0, &reg);
 277
 278        return GET_BITFIELD(reg, 12, 14);
 279}
 280
 281static u8 skx_get_node_id(struct skx_dev *d)
 282{
 283        u32 reg;
 284
 285        pci_read_config_dword(d->util_all, 0xF4, &reg);
 286
 287        return GET_BITFIELD(reg, 0, 2);
 288}
 289
 290static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
 291                         int maxval, char *name)
 292{
 293        u32 val = GET_BITFIELD(reg, lobit, hibit);
 294
 295        if (val < minval || val > maxval) {
 296                edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
 297                return -EINVAL;
 298        }
 299        return val + add;
 300}
 301
 302#define IS_DIMM_PRESENT(mtr)            GET_BITFIELD((mtr), 15, 15)
 303
 304#define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks")
 305#define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
 306#define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
 307
 308static int get_width(u32 mtr)
 309{
 310        switch (GET_BITFIELD(mtr, 8, 9)) {
 311        case 0:
 312                return DEV_X4;
 313        case 1:
 314                return DEV_X8;
 315        case 2:
 316                return DEV_X16;
 317        }
 318        return DEV_UNKNOWN;
 319}
 320
 321static int skx_get_hi_lo(void)
 322{
 323        struct pci_dev *pdev;
 324        u32 reg;
 325
 326        pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
 327        if (!pdev) {
 328                edac_dbg(0, "Can't get tolm/tohm\n");
 329                return -ENODEV;
 330        }
 331
 332        pci_read_config_dword(pdev, 0xD0, &reg);
 333        skx_tolm = reg;
 334        pci_read_config_dword(pdev, 0xD4, &reg);
 335        skx_tohm = reg;
 336        pci_read_config_dword(pdev, 0xD8, &reg);
 337        skx_tohm |= (u64)reg << 32;
 338
 339        pci_dev_put(pdev);
 340        edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
 341
 342        return 0;
 343}
 344
 345static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
 346                         struct skx_imc *imc, int chan, int dimmno)
 347{
 348        int  banks = 16, ranks, rows, cols, npages;
 349        u64 size;
 350
 351        if (!IS_DIMM_PRESENT(mtr))
 352                return 0;
 353        ranks = numrank(mtr);
 354        rows = numrow(mtr);
 355        cols = numcol(mtr);
 356
 357        /*
 358         * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
 359         */
 360        size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
 361        npages = MiB_TO_PAGES(size);
 362
 363        edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
 364                 imc->mc, chan, dimmno, size, npages,
 365                 banks, ranks, rows, cols);
 366
 367        imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
 368        imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
 369        imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
 370        imc->chan[chan].dimms[dimmno].rowbits = rows;
 371        imc->chan[chan].dimms[dimmno].colbits = cols;
 372
 373        dimm->nr_pages = npages;
 374        dimm->grain = 32;
 375        dimm->dtype = get_width(mtr);
 376        dimm->mtype = MEM_DDR4;
 377        dimm->edac_mode = EDAC_SECDED; /* likely better than this */
 378        snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
 379                 imc->src_id, imc->lmc, chan, dimmno);
 380
 381        return 1;
 382}
 383
 384#define SKX_GET_MTMTR(dev, reg) \
 385        pci_read_config_dword((dev), 0x87c, &reg)
 386
 387static bool skx_check_ecc(struct pci_dev *pdev)
 388{
 389        u32 mtmtr;
 390
 391        SKX_GET_MTMTR(pdev, mtmtr);
 392
 393        return !!GET_BITFIELD(mtmtr, 2, 2);
 394}
 395
 396static int skx_get_dimm_config(struct mem_ctl_info *mci)
 397{
 398        struct skx_pvt *pvt = mci->pvt_info;
 399        struct skx_imc *imc = pvt->imc;
 400        struct dimm_info *dimm;
 401        int i, j;
 402        u32 mtr, amap;
 403        int ndimms;
 404
 405        for (i = 0; i < NUM_CHANNELS; i++) {
 406                ndimms = 0;
 407                pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
 408                for (j = 0; j < NUM_DIMMS; j++) {
 409                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
 410                                             mci->n_layers, i, j, 0);
 411                        pci_read_config_dword(imc->chan[i].cdev,
 412                                        0x80 + 4*j, &mtr);
 413                        ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
 414                }
 415                if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
 416                        skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
 417                        return -ENODEV;
 418                }
 419        }
 420
 421        return 0;
 422}
 423
 424static void skx_unregister_mci(struct skx_imc *imc)
 425{
 426        struct mem_ctl_info *mci = imc->mci;
 427
 428        if (!mci)
 429                return;
 430
 431        edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
 432
 433        /* Remove MC sysfs nodes */
 434        edac_mc_del_mc(mci->pdev);
 435
 436        edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
 437        kfree(mci->ctl_name);
 438        edac_mc_free(mci);
 439}
 440
 441static int skx_register_mci(struct skx_imc *imc)
 442{
 443        struct mem_ctl_info *mci;
 444        struct edac_mc_layer layers[2];
 445        struct pci_dev *pdev = imc->chan[0].cdev;
 446        struct skx_pvt *pvt;
 447        int rc;
 448
 449        /* allocate a new MC control structure */
 450        layers[0].type = EDAC_MC_LAYER_CHANNEL;
 451        layers[0].size = NUM_CHANNELS;
 452        layers[0].is_virt_csrow = false;
 453        layers[1].type = EDAC_MC_LAYER_SLOT;
 454        layers[1].size = NUM_DIMMS;
 455        layers[1].is_virt_csrow = true;
 456        mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
 457                            sizeof(struct skx_pvt));
 458
 459        if (unlikely(!mci))
 460                return -ENOMEM;
 461
 462        edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
 463
 464        /* Associate skx_dev and mci for future usage */
 465        imc->mci = mci;
 466        pvt = mci->pvt_info;
 467        pvt->imc = imc;
 468
 469        mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
 470                                  imc->node_id, imc->lmc);
 471        mci->mtype_cap = MEM_FLAG_DDR4;
 472        mci->edac_ctl_cap = EDAC_FLAG_NONE;
 473        mci->edac_cap = EDAC_FLAG_NONE;
 474        mci->mod_name = "skx_edac.c";
 475        mci->dev_name = pci_name(imc->chan[0].cdev);
 476        mci->mod_ver = SKX_REVISION;
 477        mci->ctl_page_to_phys = NULL;
 478
 479        rc = skx_get_dimm_config(mci);
 480        if (rc < 0)
 481                goto fail;
 482
 483        /* record ptr to the generic device */
 484        mci->pdev = &pdev->dev;
 485
 486        /* add this new MC control structure to EDAC's list of MCs */
 487        if (unlikely(edac_mc_add_mc(mci))) {
 488                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
 489                rc = -EINVAL;
 490                goto fail;
 491        }
 492
 493        return 0;
 494
 495fail:
 496        kfree(mci->ctl_name);
 497        edac_mc_free(mci);
 498        imc->mci = NULL;
 499        return rc;
 500}
 501
 502#define SKX_MAX_SAD 24
 503
 504#define SKX_GET_SAD(d, i, reg)  \
 505        pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
 506#define SKX_GET_ILV(d, i, reg)  \
 507        pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
 508
 509#define SKX_SAD_MOD3MODE(sad)   GET_BITFIELD((sad), 30, 31)
 510#define SKX_SAD_MOD3(sad)       GET_BITFIELD((sad), 27, 27)
 511#define SKX_SAD_LIMIT(sad)      (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
 512#define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
 513#define SKX_SAD_ATTR(sad)       GET_BITFIELD((sad), 3, 4)
 514#define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
 515#define SKX_SAD_ENABLE(sad)     GET_BITFIELD((sad), 0, 0)
 516
 517#define SKX_ILV_REMOTE(tgt)     (((tgt) & 8) == 0)
 518#define SKX_ILV_TARGET(tgt)     ((tgt) & 7)
 519
 520static bool skx_sad_decode(struct decoded_addr *res)
 521{
 522        struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
 523        u64 addr = res->addr;
 524        int i, idx, tgt, lchan, shift;
 525        u32 sad, ilv;
 526        u64 limit, prev_limit;
 527        int remote = 0;
 528
 529        /* Simple sanity check for I/O space or out of range */
 530        if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
 531                edac_dbg(0, "Address %llx out of range\n", addr);
 532                return false;
 533        }
 534
 535restart:
 536        prev_limit = 0;
 537        for (i = 0; i < SKX_MAX_SAD; i++) {
 538                SKX_GET_SAD(d, i, sad);
 539                limit = SKX_SAD_LIMIT(sad);
 540                if (SKX_SAD_ENABLE(sad)) {
 541                        if (addr >= prev_limit && addr <= limit)
 542                                goto sad_found;
 543                }
 544                prev_limit = limit + 1;
 545        }
 546        edac_dbg(0, "No SAD entry for %llx\n", addr);
 547        return false;
 548
 549sad_found:
 550        SKX_GET_ILV(d, i, ilv);
 551
 552        switch (SKX_SAD_INTERLEAVE(sad)) {
 553        case 0:
 554                idx = GET_BITFIELD(addr, 6, 8);
 555                break;
 556        case 1:
 557                idx = GET_BITFIELD(addr, 8, 10);
 558                break;
 559        case 2:
 560                idx = GET_BITFIELD(addr, 12, 14);
 561                break;
 562        case 3:
 563                idx = GET_BITFIELD(addr, 30, 32);
 564                break;
 565        }
 566
 567        tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
 568
 569        /* If point to another node, find it and start over */
 570        if (SKX_ILV_REMOTE(tgt)) {
 571                if (remote) {
 572                        edac_dbg(0, "Double remote!\n");
 573                        return false;
 574                }
 575                remote = 1;
 576                list_for_each_entry(d, &skx_edac_list, list) {
 577                        if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
 578                                goto restart;
 579                }
 580                edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
 581                return false;
 582        }
 583
 584        if (SKX_SAD_MOD3(sad) == 0)
 585                lchan = SKX_ILV_TARGET(tgt);
 586        else {
 587                switch (SKX_SAD_MOD3MODE(sad)) {
 588                case 0:
 589                        shift = 6;
 590                        break;
 591                case 1:
 592                        shift = 8;
 593                        break;
 594                case 2:
 595                        shift = 12;
 596                        break;
 597                default:
 598                        edac_dbg(0, "illegal mod3mode\n");
 599                        return false;
 600                }
 601                switch (SKX_SAD_MOD3ASMOD2(sad)) {
 602                case 0:
 603                        lchan = (addr >> shift) % 3;
 604                        break;
 605                case 1:
 606                        lchan = (addr >> shift) % 2;
 607                        break;
 608                case 2:
 609                        lchan = (addr >> shift) % 2;
 610                        lchan = (lchan << 1) | ~lchan;
 611                        break;
 612                case 3:
 613                        lchan = ((addr >> shift) % 2) << 1;
 614                        break;
 615                }
 616                lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
 617        }
 618
 619        res->dev = d;
 620        res->socket = d->imc[0].src_id;
 621        res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
 622        res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
 623
 624        edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
 625                 res->addr, res->socket, res->imc, res->channel);
 626        return true;
 627}
 628
 629#define SKX_MAX_TAD 8
 630
 631#define SKX_GET_TADBASE(d, mc, i, reg)                  \
 632        pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
 633#define SKX_GET_TADWAYNESS(d, mc, i, reg)               \
 634        pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
 635#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)      \
 636        pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
 637
 638#define SKX_TAD_BASE(b)         ((u64)GET_BITFIELD((b), 12, 31) << 26)
 639#define SKX_TAD_SKT_GRAN(b)     GET_BITFIELD((b), 4, 5)
 640#define SKX_TAD_CHN_GRAN(b)     GET_BITFIELD((b), 6, 7)
 641#define SKX_TAD_LIMIT(b)        (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
 642#define SKX_TAD_OFFSET(b)       ((u64)GET_BITFIELD((b), 4, 23) << 26)
 643#define SKX_TAD_SKTWAYS(b)      (1 << GET_BITFIELD((b), 10, 11))
 644#define SKX_TAD_CHNWAYS(b)      (GET_BITFIELD((b), 8, 9) + 1)
 645
 646/* which bit used for both socket and channel interleave */
 647static int skx_granularity[] = { 6, 8, 12, 30 };
 648
 649static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
 650{
 651        addr >>= shift;
 652        addr /= ways;
 653        addr <<= shift;
 654
 655        return addr | (lowbits & ((1ull << shift) - 1));
 656}
 657
 658static bool skx_tad_decode(struct decoded_addr *res)
 659{
 660        int i;
 661        u32 base, wayness, chnilvoffset;
 662        int skt_interleave_bit, chn_interleave_bit;
 663        u64 channel_addr;
 664
 665        for (i = 0; i < SKX_MAX_TAD; i++) {
 666                SKX_GET_TADBASE(res->dev, res->imc, i, base);
 667                SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
 668                if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
 669                        goto tad_found;
 670        }
 671        edac_dbg(0, "No TAD entry for %llx\n", res->addr);
 672        return false;
 673
 674tad_found:
 675        res->sktways = SKX_TAD_SKTWAYS(wayness);
 676        res->chanways = SKX_TAD_CHNWAYS(wayness);
 677        skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
 678        chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
 679
 680        SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
 681        channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
 682
 683        if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
 684                /* Must handle channel first, then socket */
 685                channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
 686                                                 res->chanways, channel_addr);
 687                channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
 688                                                 res->sktways, channel_addr);
 689        } else {
 690                /* Handle socket then channel. Preserve low bits from original address */
 691                channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
 692                                                 res->sktways, res->addr);
 693                channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
 694                                                 res->chanways, res->addr);
 695        }
 696
 697        res->chan_addr = channel_addr;
 698
 699        edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
 700                 res->addr, res->chan_addr, res->sktways, res->chanways);
 701        return true;
 702}
 703
 704#define SKX_MAX_RIR 4
 705
 706#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)           \
 707        pci_read_config_dword((d)->imc[mc].chan[ch].cdev,       \
 708                              0x108 + 4 * (i), &reg)
 709#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)          \
 710        pci_read_config_dword((d)->imc[mc].chan[ch].cdev,       \
 711                              0x120 + 16 * idx + 4 * (i), &reg)
 712
 713#define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
 714#define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
 715#define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
 716#define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
 717#define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
 718
 719static bool skx_rir_decode(struct decoded_addr *res)
 720{
 721        int i, idx, chan_rank;
 722        int shift;
 723        u32 rirway, rirlv;
 724        u64 rank_addr, prev_limit = 0, limit;
 725
 726        if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
 727                shift = 6;
 728        else
 729                shift = 13;
 730
 731        for (i = 0; i < SKX_MAX_RIR; i++) {
 732                SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
 733                limit = SKX_RIR_LIMIT(rirway);
 734                if (SKX_RIR_VALID(rirway)) {
 735                        if (prev_limit <= res->chan_addr &&
 736                            res->chan_addr <= limit)
 737                                goto rir_found;
 738                }
 739                prev_limit = limit;
 740        }
 741        edac_dbg(0, "No RIR entry for %llx\n", res->addr);
 742        return false;
 743
 744rir_found:
 745        rank_addr = res->chan_addr >> shift;
 746        rank_addr /= SKX_RIR_WAYS(rirway);
 747        rank_addr <<= shift;
 748        rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
 749
 750        res->rank_address = rank_addr;
 751        idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
 752
 753        SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
 754        res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
 755        chan_rank = SKX_RIR_CHAN_RANK(rirlv);
 756        res->channel_rank = chan_rank;
 757        res->dimm = chan_rank / 4;
 758        res->rank = chan_rank % 4;
 759
 760        edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
 761                 res->addr, res->dimm, res->rank,
 762                 res->channel_rank, res->rank_address);
 763        return true;
 764}
 765
 766static u8 skx_close_row[] = {
 767        15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
 768};
 769static u8 skx_close_column[] = {
 770        3, 4, 5, 14, 19, 23, 24, 25, 26, 27
 771};
 772static u8 skx_open_row[] = {
 773        14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
 774};
 775static u8 skx_open_column[] = {
 776        3, 4, 5, 6, 7, 8, 9, 10, 11, 12
 777};
 778static u8 skx_open_fine_column[] = {
 779        3, 4, 5, 7, 8, 9, 10, 11, 12, 13
 780};
 781
 782static int skx_bits(u64 addr, int nbits, u8 *bits)
 783{
 784        int i, res = 0;
 785
 786        for (i = 0; i < nbits; i++)
 787                res |= ((addr >> bits[i]) & 1) << i;
 788        return res;
 789}
 790
 791static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
 792{
 793        int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
 794
 795        if (do_xor)
 796                ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
 797
 798        return ret;
 799}
 800
 801static bool skx_mad_decode(struct decoded_addr *r)
 802{
 803        struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
 804        int bg0 = dimm->fine_grain_bank ? 6 : 13;
 805
 806        if (dimm->close_pg) {
 807                r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
 808                r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
 809                r->column |= 0x400; /* C10 is autoprecharge, always set */
 810                r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
 811                r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
 812        } else {
 813                r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
 814                if (dimm->fine_grain_bank)
 815                        r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
 816                else
 817                        r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
 818                r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
 819                r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
 820        }
 821        r->row &= (1u << dimm->rowbits) - 1;
 822
 823        edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
 824                 r->addr, r->row, r->column, r->bank_address,
 825                 r->bank_group);
 826        return true;
 827}
 828
 829static bool skx_decode(struct decoded_addr *res)
 830{
 831
 832        return skx_sad_decode(res) && skx_tad_decode(res) &&
 833                skx_rir_decode(res) && skx_mad_decode(res);
 834}
 835
 836#ifdef CONFIG_EDAC_DEBUG
 837/*
 838 * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
 839 * Write an address to this file to exercise the address decode
 840 * logic in this driver.
 841 */
 842static struct dentry *skx_test;
 843static u64 skx_fake_addr;
 844
 845static int debugfs_u64_set(void *data, u64 val)
 846{
 847        struct decoded_addr res;
 848
 849        res.addr = val;
 850        skx_decode(&res);
 851
 852        return 0;
 853}
 854
 855DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
 856
 857static struct dentry *mydebugfs_create(const char *name, umode_t mode,
 858                                       struct dentry *parent, u64 *value)
 859{
 860        return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
 861}
 862
 863static void setup_skx_debug(void)
 864{
 865        skx_test = debugfs_create_dir("skx_edac_test", NULL);
 866        mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
 867}
 868
 869static void teardown_skx_debug(void)
 870{
 871        debugfs_remove_recursive(skx_test);
 872}
 873#else
 874static void setup_skx_debug(void)
 875{
 876}
 877
 878static void teardown_skx_debug(void)
 879{
 880}
 881#endif /*CONFIG_EDAC_DEBUG*/
 882
 883static void skx_mce_output_error(struct mem_ctl_info *mci,
 884                                 const struct mce *m,
 885                                 struct decoded_addr *res)
 886{
 887        enum hw_event_mc_err_type tp_event;
 888        char *type, *optype, msg[256];
 889        bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
 890        bool overflow = GET_BITFIELD(m->status, 62, 62);
 891        bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
 892        bool recoverable;
 893        u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
 894        u32 mscod = GET_BITFIELD(m->status, 16, 31);
 895        u32 errcode = GET_BITFIELD(m->status, 0, 15);
 896        u32 optypenum = GET_BITFIELD(m->status, 4, 6);
 897
 898        recoverable = GET_BITFIELD(m->status, 56, 56);
 899
 900        if (uncorrected_error) {
 901                if (ripv) {
 902                        type = "FATAL";
 903                        tp_event = HW_EVENT_ERR_FATAL;
 904                } else {
 905                        type = "NON_FATAL";
 906                        tp_event = HW_EVENT_ERR_UNCORRECTED;
 907                }
 908        } else {
 909                type = "CORRECTED";
 910                tp_event = HW_EVENT_ERR_CORRECTED;
 911        }
 912
 913        /*
 914         * According with Table 15-9 of the Intel Architecture spec vol 3A,
 915         * memory errors should fit in this mask:
 916         *      000f 0000 1mmm cccc (binary)
 917         * where:
 918         *      f = Correction Report Filtering Bit. If 1, subsequent errors
 919         *          won't be shown
 920         *      mmm = error type
 921         *      cccc = channel
 922         * If the mask doesn't match, report an error to the parsing logic
 923         */
 924        if (!((errcode & 0xef80) == 0x80)) {
 925                optype = "Can't parse: it is not a mem";
 926        } else {
 927                switch (optypenum) {
 928                case 0:
 929                        optype = "generic undef request error";
 930                        break;
 931                case 1:
 932                        optype = "memory read error";
 933                        break;
 934                case 2:
 935                        optype = "memory write error";
 936                        break;
 937                case 3:
 938                        optype = "addr/cmd error";
 939                        break;
 940                case 4:
 941                        optype = "memory scrubbing error";
 942                        break;
 943                default:
 944                        optype = "reserved";
 945                        break;
 946                }
 947        }
 948
 949        snprintf(msg, sizeof(msg),
 950                 "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
 951                 overflow ? " OVERFLOW" : "",
 952                 (uncorrected_error && recoverable) ? " recoverable" : "",
 953                 mscod, errcode,
 954                 res->socket, res->imc, res->rank,
 955                 res->bank_group, res->bank_address, res->row, res->column);
 956
 957        edac_dbg(0, "%s\n", msg);
 958
 959        /* Call the helper to output message */
 960        edac_mc_handle_error(tp_event, mci, core_err_cnt,
 961                             m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
 962                             res->channel, res->dimm, -1,
 963                             optype, msg);
 964}
 965
 966static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
 967                               void *data)
 968{
 969        struct mce *mce = (struct mce *)data;
 970        struct decoded_addr res;
 971        struct mem_ctl_info *mci;
 972        char *type;
 973
 974        if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
 975                return NOTIFY_DONE;
 976
 977        /* ignore unless this is memory related with an address */
 978        if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
 979                return NOTIFY_DONE;
 980
 981        res.addr = mce->addr;
 982        if (!skx_decode(&res))
 983                return NOTIFY_DONE;
 984        mci = res.dev->imc[res.imc].mci;
 985
 986        if (mce->mcgstatus & MCG_STATUS_MCIP)
 987                type = "Exception";
 988        else
 989                type = "Event";
 990
 991        skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
 992
 993        skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
 994                          "Bank %d: %016Lx\n", mce->extcpu, type,
 995                          mce->mcgstatus, mce->bank, mce->status);
 996        skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
 997        skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
 998        skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
 999
1000        skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
1001                          "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
1002                          mce->time, mce->socketid, mce->apicid);
1003
1004        skx_mce_output_error(mci, mce, &res);
1005
1006        return NOTIFY_DONE;
1007}
1008
1009static struct notifier_block skx_mce_dec = {
1010        .notifier_call  = skx_mce_check_error,
1011        .priority       = MCE_PRIO_EDAC,
1012};
1013
1014static void skx_remove(void)
1015{
1016        int i, j;
1017        struct skx_dev *d, *tmp;
1018
1019        edac_dbg(0, "\n");
1020
1021        list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
1022                list_del(&d->list);
1023                for (i = 0; i < NUM_IMC; i++) {
1024                        skx_unregister_mci(&d->imc[i]);
1025                        for (j = 0; j < NUM_CHANNELS; j++)
1026                                pci_dev_put(d->imc[i].chan[j].cdev);
1027                }
1028                pci_dev_put(d->util_all);
1029                pci_dev_put(d->sad_all);
1030
1031                kfree(d);
1032        }
1033}
1034
1035/*
1036 * skx_init:
1037 *      make sure we are running on the correct cpu model
1038 *      search for all the devices we need
1039 *      check which DIMMs are present.
1040 */
1041static int __init skx_init(void)
1042{
1043        const struct x86_cpu_id *id;
1044        const struct munit *m;
1045        int rc = 0, i;
1046        u8 mc = 0, src_id, node_id;
1047        struct skx_dev *d;
1048
1049        edac_dbg(2, "\n");
1050
1051        id = x86_match_cpu(skx_cpuids);
1052        if (!id)
1053                return -ENODEV;
1054
1055        rc = skx_get_hi_lo();
1056        if (rc)
1057                return rc;
1058
1059        rc = get_all_bus_mappings();
1060        if (rc < 0)
1061                goto fail;
1062        if (rc == 0) {
1063                edac_dbg(2, "No memory controllers found\n");
1064                return -ENODEV;
1065        }
1066
1067        for (m = skx_all_munits; m->did; m++) {
1068                rc = get_all_munits(m);
1069                if (rc < 0)
1070                        goto fail;
1071                if (rc != m->per_socket * skx_num_sockets) {
1072                        edac_dbg(2, "Expected %d, got %d of %x\n",
1073                                 m->per_socket * skx_num_sockets, rc, m->did);
1074                        rc = -ENODEV;
1075                        goto fail;
1076                }
1077        }
1078
1079        list_for_each_entry(d, &skx_edac_list, list) {
1080                src_id = get_src_id(d);
1081                node_id = skx_get_node_id(d);
1082                edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
1083                for (i = 0; i < NUM_IMC; i++) {
1084                        d->imc[i].mc = mc++;
1085                        d->imc[i].lmc = i;
1086                        d->imc[i].src_id = src_id;
1087                        d->imc[i].node_id = node_id;
1088                        rc = skx_register_mci(&d->imc[i]);
1089                        if (rc < 0)
1090                                goto fail;
1091                }
1092        }
1093
1094        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1095        opstate_init();
1096
1097        setup_skx_debug();
1098
1099        mce_register_decode_chain(&skx_mce_dec);
1100
1101        return 0;
1102fail:
1103        skx_remove();
1104        return rc;
1105}
1106
1107static void __exit skx_exit(void)
1108{
1109        edac_dbg(2, "\n");
1110        mce_unregister_decode_chain(&skx_mce_dec);
1111        skx_remove();
1112        teardown_skx_debug();
1113}
1114
1115module_init(skx_init);
1116module_exit(skx_exit);
1117
1118module_param(edac_op_state, int, 0444);
1119MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1120
1121MODULE_LICENSE("GPL v2");
1122MODULE_AUTHOR("Tony Luck");
1123MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
1124