linux/drivers/gpu/drm/i915/gvt/gtt.c
<<
>>
Prefs
   1/*
   2 * GTT virtualization
   3 *
   4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice (including the next
  14 * paragraph) shall be included in all copies or substantial portions of the
  15 * Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  23 * SOFTWARE.
  24 *
  25 * Authors:
  26 *    Zhi Wang <zhi.a.wang@intel.com>
  27 *    Zhenyu Wang <zhenyuw@linux.intel.com>
  28 *    Xiao Zheng <xiao.zheng@intel.com>
  29 *
  30 * Contributors:
  31 *    Min He <min.he@intel.com>
  32 *    Bing Niu <bing.niu@intel.com>
  33 *
  34 */
  35
  36#include "i915_drv.h"
  37#include "gvt.h"
  38#include "i915_pvinfo.h"
  39#include "trace.h"
  40
  41static bool enable_out_of_sync = false;
  42static int preallocated_oos_pages = 8192;
  43
  44/*
  45 * validate a gm address and related range size,
  46 * translate it to host gm address
  47 */
  48bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
  49{
  50        if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
  51                        && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
  52                gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
  53                                addr, size);
  54                return false;
  55        }
  56        return true;
  57}
  58
  59/* translate a guest gmadr to host gmadr */
  60int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
  61{
  62        if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
  63                 "invalid guest gmadr %llx\n", g_addr))
  64                return -EACCES;
  65
  66        if (vgpu_gmadr_is_aperture(vgpu, g_addr))
  67                *h_addr = vgpu_aperture_gmadr_base(vgpu)
  68                          + (g_addr - vgpu_aperture_offset(vgpu));
  69        else
  70                *h_addr = vgpu_hidden_gmadr_base(vgpu)
  71                          + (g_addr - vgpu_hidden_offset(vgpu));
  72        return 0;
  73}
  74
  75/* translate a host gmadr to guest gmadr */
  76int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
  77{
  78        if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
  79                 "invalid host gmadr %llx\n", h_addr))
  80                return -EACCES;
  81
  82        if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
  83                *g_addr = vgpu_aperture_gmadr_base(vgpu)
  84                        + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
  85        else
  86                *g_addr = vgpu_hidden_gmadr_base(vgpu)
  87                        + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
  88        return 0;
  89}
  90
  91int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
  92                             unsigned long *h_index)
  93{
  94        u64 h_addr;
  95        int ret;
  96
  97        ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
  98                                       &h_addr);
  99        if (ret)
 100                return ret;
 101
 102        *h_index = h_addr >> GTT_PAGE_SHIFT;
 103        return 0;
 104}
 105
 106int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
 107                             unsigned long *g_index)
 108{
 109        u64 g_addr;
 110        int ret;
 111
 112        ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
 113                                       &g_addr);
 114        if (ret)
 115                return ret;
 116
 117        *g_index = g_addr >> GTT_PAGE_SHIFT;
 118        return 0;
 119}
 120
 121#define gtt_type_is_entry(type) \
 122        (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
 123         && type != GTT_TYPE_PPGTT_PTE_ENTRY \
 124         && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
 125
 126#define gtt_type_is_pt(type) \
 127        (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
 128
 129#define gtt_type_is_pte_pt(type) \
 130        (type == GTT_TYPE_PPGTT_PTE_PT)
 131
 132#define gtt_type_is_root_pointer(type) \
 133        (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
 134
 135#define gtt_init_entry(e, t, p, v) do { \
 136        (e)->type = t; \
 137        (e)->pdev = p; \
 138        memcpy(&(e)->val64, &v, sizeof(v)); \
 139} while (0)
 140
 141/*
 142 * Mappings between GTT_TYPE* enumerations.
 143 * Following information can be found according to the given type:
 144 * - type of next level page table
 145 * - type of entry inside this level page table
 146 * - type of entry with PSE set
 147 *
 148 * If the given type doesn't have such a kind of information,
 149 * e.g. give a l4 root entry type, then request to get its PSE type,
 150 * give a PTE page table type, then request to get its next level page
 151 * table type, as we know l4 root entry doesn't have a PSE bit,
 152 * and a PTE page table doesn't have a next level page table type,
 153 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
 154 * page table.
 155 */
 156
 157struct gtt_type_table_entry {
 158        int entry_type;
 159        int next_pt_type;
 160        int pse_entry_type;
 161};
 162
 163#define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
 164        [type] = { \
 165                .entry_type = e_type, \
 166                .next_pt_type = npt_type, \
 167                .pse_entry_type = pse_type, \
 168        }
 169
 170static struct gtt_type_table_entry gtt_type_table[] = {
 171        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
 172                        GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
 173                        GTT_TYPE_PPGTT_PML4_PT,
 174                        GTT_TYPE_INVALID),
 175        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
 176                        GTT_TYPE_PPGTT_PML4_ENTRY,
 177                        GTT_TYPE_PPGTT_PDP_PT,
 178                        GTT_TYPE_INVALID),
 179        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
 180                        GTT_TYPE_PPGTT_PML4_ENTRY,
 181                        GTT_TYPE_PPGTT_PDP_PT,
 182                        GTT_TYPE_INVALID),
 183        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
 184                        GTT_TYPE_PPGTT_PDP_ENTRY,
 185                        GTT_TYPE_PPGTT_PDE_PT,
 186                        GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 187        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
 188                        GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
 189                        GTT_TYPE_PPGTT_PDE_PT,
 190                        GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 191        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
 192                        GTT_TYPE_PPGTT_PDP_ENTRY,
 193                        GTT_TYPE_PPGTT_PDE_PT,
 194                        GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 195        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
 196                        GTT_TYPE_PPGTT_PDE_ENTRY,
 197                        GTT_TYPE_PPGTT_PTE_PT,
 198                        GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 199        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
 200                        GTT_TYPE_PPGTT_PDE_ENTRY,
 201                        GTT_TYPE_PPGTT_PTE_PT,
 202                        GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 203        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
 204                        GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 205                        GTT_TYPE_INVALID,
 206                        GTT_TYPE_INVALID),
 207        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 208                        GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 209                        GTT_TYPE_INVALID,
 210                        GTT_TYPE_INVALID),
 211        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
 212                        GTT_TYPE_PPGTT_PDE_ENTRY,
 213                        GTT_TYPE_INVALID,
 214                        GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 215        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
 216                        GTT_TYPE_PPGTT_PDP_ENTRY,
 217                        GTT_TYPE_INVALID,
 218                        GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 219        GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
 220                        GTT_TYPE_GGTT_PTE,
 221                        GTT_TYPE_INVALID,
 222                        GTT_TYPE_INVALID),
 223};
 224
 225static inline int get_next_pt_type(int type)
 226{
 227        return gtt_type_table[type].next_pt_type;
 228}
 229
 230static inline int get_entry_type(int type)
 231{
 232        return gtt_type_table[type].entry_type;
 233}
 234
 235static inline int get_pse_type(int type)
 236{
 237        return gtt_type_table[type].pse_entry_type;
 238}
 239
 240static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
 241{
 242        void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
 243
 244        return readq(addr);
 245}
 246
 247static void write_pte64(struct drm_i915_private *dev_priv,
 248                unsigned long index, u64 pte)
 249{
 250        void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
 251
 252        writeq(pte, addr);
 253
 254        I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
 255        POSTING_READ(GFX_FLSH_CNTL_GEN6);
 256}
 257
 258static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
 259                struct intel_gvt_gtt_entry *e,
 260                unsigned long index, bool hypervisor_access, unsigned long gpa,
 261                struct intel_vgpu *vgpu)
 262{
 263        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
 264        int ret;
 265
 266        if (WARN_ON(info->gtt_entry_size != 8))
 267                return e;
 268
 269        if (hypervisor_access) {
 270                ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
 271                                (index << info->gtt_entry_size_shift),
 272                                &e->val64, 8);
 273                WARN_ON(ret);
 274        } else if (!pt) {
 275                e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
 276        } else {
 277                e->val64 = *((u64 *)pt + index);
 278        }
 279        return e;
 280}
 281
 282static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
 283                struct intel_gvt_gtt_entry *e,
 284                unsigned long index, bool hypervisor_access, unsigned long gpa,
 285                struct intel_vgpu *vgpu)
 286{
 287        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
 288        int ret;
 289
 290        if (WARN_ON(info->gtt_entry_size != 8))
 291                return e;
 292
 293        if (hypervisor_access) {
 294                ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
 295                                (index << info->gtt_entry_size_shift),
 296                                &e->val64, 8);
 297                WARN_ON(ret);
 298        } else if (!pt) {
 299                write_pte64(vgpu->gvt->dev_priv, index, e->val64);
 300        } else {
 301                *((u64 *)pt + index) = e->val64;
 302        }
 303        return e;
 304}
 305
 306#define GTT_HAW 46
 307
 308#define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
 309#define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
 310#define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
 311
 312static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
 313{
 314        unsigned long pfn;
 315
 316        if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
 317                pfn = (e->val64 & ADDR_1G_MASK) >> 12;
 318        else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
 319                pfn = (e->val64 & ADDR_2M_MASK) >> 12;
 320        else
 321                pfn = (e->val64 & ADDR_4K_MASK) >> 12;
 322        return pfn;
 323}
 324
 325static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
 326{
 327        if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
 328                e->val64 &= ~ADDR_1G_MASK;
 329                pfn &= (ADDR_1G_MASK >> 12);
 330        } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
 331                e->val64 &= ~ADDR_2M_MASK;
 332                pfn &= (ADDR_2M_MASK >> 12);
 333        } else {
 334                e->val64 &= ~ADDR_4K_MASK;
 335                pfn &= (ADDR_4K_MASK >> 12);
 336        }
 337
 338        e->val64 |= (pfn << 12);
 339}
 340
 341static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
 342{
 343        /* Entry doesn't have PSE bit. */
 344        if (get_pse_type(e->type) == GTT_TYPE_INVALID)
 345                return false;
 346
 347        e->type = get_entry_type(e->type);
 348        if (!(e->val64 & (1 << 7)))
 349                return false;
 350
 351        e->type = get_pse_type(e->type);
 352        return true;
 353}
 354
 355static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
 356{
 357        /*
 358         * i915 writes PDP root pointer registers without present bit,
 359         * it also works, so we need to treat root pointer entry
 360         * specifically.
 361         */
 362        if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
 363                        || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
 364                return (e->val64 != 0);
 365        else
 366                return (e->val64 & (1 << 0));
 367}
 368
 369static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
 370{
 371        e->val64 &= ~(1 << 0);
 372}
 373
 374/*
 375 * Per-platform GMA routines.
 376 */
 377static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
 378{
 379        unsigned long x = (gma >> GTT_PAGE_SHIFT);
 380
 381        trace_gma_index(__func__, gma, x);
 382        return x;
 383}
 384
 385#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
 386static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
 387{ \
 388        unsigned long x = (exp); \
 389        trace_gma_index(__func__, gma, x); \
 390        return x; \
 391}
 392
 393DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
 394DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
 395DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
 396DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
 397DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
 398
 399static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
 400        .get_entry = gtt_get_entry64,
 401        .set_entry = gtt_set_entry64,
 402        .clear_present = gtt_entry_clear_present,
 403        .test_present = gen8_gtt_test_present,
 404        .test_pse = gen8_gtt_test_pse,
 405        .get_pfn = gen8_gtt_get_pfn,
 406        .set_pfn = gen8_gtt_set_pfn,
 407};
 408
 409static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
 410        .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
 411        .gma_to_pte_index = gen8_gma_to_pte_index,
 412        .gma_to_pde_index = gen8_gma_to_pde_index,
 413        .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
 414        .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
 415        .gma_to_pml4_index = gen8_gma_to_pml4_index,
 416};
 417
 418static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
 419                struct intel_gvt_gtt_entry *m)
 420{
 421        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 422        unsigned long gfn, mfn;
 423
 424        *m = *p;
 425
 426        if (!ops->test_present(p))
 427                return 0;
 428
 429        gfn = ops->get_pfn(p);
 430
 431        mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
 432        if (mfn == INTEL_GVT_INVALID_ADDR) {
 433                gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
 434                return -ENXIO;
 435        }
 436
 437        ops->set_pfn(m, mfn);
 438        return 0;
 439}
 440
 441/*
 442 * MM helpers.
 443 */
 444struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
 445                void *page_table, struct intel_gvt_gtt_entry *e,
 446                unsigned long index)
 447{
 448        struct intel_gvt *gvt = mm->vgpu->gvt;
 449        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 450
 451        e->type = mm->page_table_entry_type;
 452
 453        ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
 454        ops->test_pse(e);
 455        return e;
 456}
 457
 458struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
 459                void *page_table, struct intel_gvt_gtt_entry *e,
 460                unsigned long index)
 461{
 462        struct intel_gvt *gvt = mm->vgpu->gvt;
 463        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 464
 465        return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
 466}
 467
 468/*
 469 * PPGTT shadow page table helpers.
 470 */
 471static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
 472                struct intel_vgpu_ppgtt_spt *spt,
 473                void *page_table, int type,
 474                struct intel_gvt_gtt_entry *e, unsigned long index,
 475                bool guest)
 476{
 477        struct intel_gvt *gvt = spt->vgpu->gvt;
 478        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 479
 480        e->type = get_entry_type(type);
 481
 482        if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
 483                return e;
 484
 485        ops->get_entry(page_table, e, index, guest,
 486                        spt->guest_page.gfn << GTT_PAGE_SHIFT,
 487                        spt->vgpu);
 488        ops->test_pse(e);
 489        return e;
 490}
 491
 492static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
 493                struct intel_vgpu_ppgtt_spt *spt,
 494                void *page_table, int type,
 495                struct intel_gvt_gtt_entry *e, unsigned long index,
 496                bool guest)
 497{
 498        struct intel_gvt *gvt = spt->vgpu->gvt;
 499        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 500
 501        if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
 502                return e;
 503
 504        return ops->set_entry(page_table, e, index, guest,
 505                        spt->guest_page.gfn << GTT_PAGE_SHIFT,
 506                        spt->vgpu);
 507}
 508
 509#define ppgtt_get_guest_entry(spt, e, index) \
 510        ppgtt_spt_get_entry(spt, NULL, \
 511                spt->guest_page_type, e, index, true)
 512
 513#define ppgtt_set_guest_entry(spt, e, index) \
 514        ppgtt_spt_set_entry(spt, NULL, \
 515                spt->guest_page_type, e, index, true)
 516
 517#define ppgtt_get_shadow_entry(spt, e, index) \
 518        ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
 519                spt->shadow_page.type, e, index, false)
 520
 521#define ppgtt_set_shadow_entry(spt, e, index) \
 522        ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
 523                spt->shadow_page.type, e, index, false)
 524
 525/**
 526 * intel_vgpu_init_guest_page - init a guest page data structure
 527 * @vgpu: a vGPU
 528 * @p: a guest page data structure
 529 * @gfn: guest memory page frame number
 530 * @handler: function will be called when target guest memory page has
 531 * been modified.
 532 *
 533 * This function is called when user wants to track a guest memory page.
 534 *
 535 * Returns:
 536 * Zero on success, negative error code if failed.
 537 */
 538int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
 539                struct intel_vgpu_guest_page *p,
 540                unsigned long gfn,
 541                int (*handler)(void *, u64, void *, int),
 542                void *data)
 543{
 544        INIT_HLIST_NODE(&p->node);
 545
 546        p->writeprotection = false;
 547        p->gfn = gfn;
 548        p->handler = handler;
 549        p->data = data;
 550        p->oos_page = NULL;
 551        p->write_cnt = 0;
 552
 553        hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
 554        return 0;
 555}
 556
 557static int detach_oos_page(struct intel_vgpu *vgpu,
 558                struct intel_vgpu_oos_page *oos_page);
 559
 560/**
 561 * intel_vgpu_clean_guest_page - release the resource owned by guest page data
 562 * structure
 563 * @vgpu: a vGPU
 564 * @p: a tracked guest page
 565 *
 566 * This function is called when user tries to stop tracking a guest memory
 567 * page.
 568 */
 569void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
 570                struct intel_vgpu_guest_page *p)
 571{
 572        if (!hlist_unhashed(&p->node))
 573                hash_del(&p->node);
 574
 575        if (p->oos_page)
 576                detach_oos_page(vgpu, p->oos_page);
 577
 578        if (p->writeprotection)
 579                intel_gvt_hypervisor_unset_wp_page(vgpu, p);
 580}
 581
 582/**
 583 * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
 584 * @vgpu: a vGPU
 585 * @gfn: guest memory page frame number
 586 *
 587 * This function is called when emulation logic wants to know if a trapped GFN
 588 * is a tracked guest page.
 589 *
 590 * Returns:
 591 * Pointer to guest page data structure, NULL if failed.
 592 */
 593struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
 594                struct intel_vgpu *vgpu, unsigned long gfn)
 595{
 596        struct intel_vgpu_guest_page *p;
 597
 598        hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
 599                p, node, gfn) {
 600                if (p->gfn == gfn)
 601                        return p;
 602        }
 603        return NULL;
 604}
 605
 606static inline int init_shadow_page(struct intel_vgpu *vgpu,
 607                struct intel_vgpu_shadow_page *p, int type)
 608{
 609        struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
 610        dma_addr_t daddr;
 611
 612        daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
 613        if (dma_mapping_error(kdev, daddr)) {
 614                gvt_vgpu_err("fail to map dma addr\n");
 615                return -EINVAL;
 616        }
 617
 618        p->vaddr = page_address(p->page);
 619        p->type = type;
 620
 621        INIT_HLIST_NODE(&p->node);
 622
 623        p->mfn = daddr >> GTT_PAGE_SHIFT;
 624        hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
 625        return 0;
 626}
 627
 628static inline void clean_shadow_page(struct intel_vgpu *vgpu,
 629                struct intel_vgpu_shadow_page *p)
 630{
 631        struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
 632
 633        dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
 634                        PCI_DMA_BIDIRECTIONAL);
 635
 636        if (!hlist_unhashed(&p->node))
 637                hash_del(&p->node);
 638}
 639
 640static inline struct intel_vgpu_shadow_page *find_shadow_page(
 641                struct intel_vgpu *vgpu, unsigned long mfn)
 642{
 643        struct intel_vgpu_shadow_page *p;
 644
 645        hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
 646                p, node, mfn) {
 647                if (p->mfn == mfn)
 648                        return p;
 649        }
 650        return NULL;
 651}
 652
 653#define guest_page_to_ppgtt_spt(ptr) \
 654        container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
 655
 656#define shadow_page_to_ppgtt_spt(ptr) \
 657        container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
 658
 659static void *alloc_spt(gfp_t gfp_mask)
 660{
 661        struct intel_vgpu_ppgtt_spt *spt;
 662
 663        spt = kzalloc(sizeof(*spt), gfp_mask);
 664        if (!spt)
 665                return NULL;
 666
 667        spt->shadow_page.page = alloc_page(gfp_mask);
 668        if (!spt->shadow_page.page) {
 669                kfree(spt);
 670                return NULL;
 671        }
 672        return spt;
 673}
 674
 675static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
 676{
 677        __free_page(spt->shadow_page.page);
 678        kfree(spt);
 679}
 680
 681static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
 682{
 683        trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
 684
 685        clean_shadow_page(spt->vgpu, &spt->shadow_page);
 686        intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
 687        list_del_init(&spt->post_shadow_list);
 688
 689        free_spt(spt);
 690}
 691
 692static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
 693{
 694        struct hlist_node *n;
 695        struct intel_vgpu_shadow_page *sp;
 696        int i;
 697
 698        hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
 699                ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
 700}
 701
 702static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
 703                u64 pa, void *p_data, int bytes);
 704
 705static int ppgtt_write_protection_handler(void *gp, u64 pa,
 706                void *p_data, int bytes)
 707{
 708        struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
 709        int ret;
 710
 711        if (bytes != 4 && bytes != 8)
 712                return -EINVAL;
 713
 714        if (!gpt->writeprotection)
 715                return -EINVAL;
 716
 717        ret = ppgtt_handle_guest_write_page_table_bytes(gp,
 718                pa, p_data, bytes);
 719        if (ret)
 720                return ret;
 721        return ret;
 722}
 723
 724static int reclaim_one_mm(struct intel_gvt *gvt);
 725
 726static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
 727                struct intel_vgpu *vgpu, int type, unsigned long gfn)
 728{
 729        struct intel_vgpu_ppgtt_spt *spt = NULL;
 730        int ret;
 731
 732retry:
 733        spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
 734        if (!spt) {
 735                if (reclaim_one_mm(vgpu->gvt))
 736                        goto retry;
 737
 738                gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
 739                return ERR_PTR(-ENOMEM);
 740        }
 741
 742        spt->vgpu = vgpu;
 743        spt->guest_page_type = type;
 744        atomic_set(&spt->refcount, 1);
 745        INIT_LIST_HEAD(&spt->post_shadow_list);
 746
 747        /*
 748         * TODO: guest page type may be different with shadow page type,
 749         *       when we support PSE page in future.
 750         */
 751        ret = init_shadow_page(vgpu, &spt->shadow_page, type);
 752        if (ret) {
 753                gvt_vgpu_err("fail to initialize shadow page for spt\n");
 754                goto err;
 755        }
 756
 757        ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
 758                        gfn, ppgtt_write_protection_handler, NULL);
 759        if (ret) {
 760                gvt_vgpu_err("fail to initialize guest page for spt\n");
 761                goto err;
 762        }
 763
 764        trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
 765        return spt;
 766err:
 767        ppgtt_free_shadow_page(spt);
 768        return ERR_PTR(ret);
 769}
 770
 771static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
 772                struct intel_vgpu *vgpu, unsigned long mfn)
 773{
 774        struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
 775
 776        if (p)
 777                return shadow_page_to_ppgtt_spt(p);
 778
 779        gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
 780        return NULL;
 781}
 782
 783#define pt_entry_size_shift(spt) \
 784        ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
 785
 786#define pt_entries(spt) \
 787        (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
 788
 789#define for_each_present_guest_entry(spt, e, i) \
 790        for (i = 0; i < pt_entries(spt); i++) \
 791        if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
 792                ppgtt_get_guest_entry(spt, e, i)))
 793
 794#define for_each_present_shadow_entry(spt, e, i) \
 795        for (i = 0; i < pt_entries(spt); i++) \
 796        if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
 797                ppgtt_get_shadow_entry(spt, e, i)))
 798
 799static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
 800{
 801        int v = atomic_read(&spt->refcount);
 802
 803        trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
 804
 805        atomic_inc(&spt->refcount);
 806}
 807
 808static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
 809
 810static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
 811                struct intel_gvt_gtt_entry *e)
 812{
 813        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 814        struct intel_vgpu_ppgtt_spt *s;
 815        intel_gvt_gtt_type_t cur_pt_type;
 816
 817        if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
 818                return -EINVAL;
 819
 820        if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
 821                && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
 822                cur_pt_type = get_next_pt_type(e->type) + 1;
 823                if (ops->get_pfn(e) ==
 824                        vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
 825                        return 0;
 826        }
 827        s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
 828        if (!s) {
 829                gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
 830                                ops->get_pfn(e));
 831                return -ENXIO;
 832        }
 833        return ppgtt_invalidate_shadow_page(s);
 834}
 835
 836static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
 837{
 838        struct intel_vgpu *vgpu = spt->vgpu;
 839        struct intel_gvt_gtt_entry e;
 840        unsigned long index;
 841        int ret;
 842        int v = atomic_read(&spt->refcount);
 843
 844        trace_spt_change(spt->vgpu->id, "die", spt,
 845                        spt->guest_page.gfn, spt->shadow_page.type);
 846
 847        trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
 848
 849        if (atomic_dec_return(&spt->refcount) > 0)
 850                return 0;
 851
 852        if (gtt_type_is_pte_pt(spt->shadow_page.type))
 853                goto release;
 854
 855        for_each_present_shadow_entry(spt, &e, index) {
 856                if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
 857                        gvt_vgpu_err("GVT doesn't support pse bit for now\n");
 858                        return -EINVAL;
 859                }
 860                ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
 861                                spt->vgpu, &e);
 862                if (ret)
 863                        goto fail;
 864        }
 865release:
 866        trace_spt_change(spt->vgpu->id, "release", spt,
 867                        spt->guest_page.gfn, spt->shadow_page.type);
 868        ppgtt_free_shadow_page(spt);
 869        return 0;
 870fail:
 871        gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
 872                        spt, e.val64, e.type);
 873        return ret;
 874}
 875
 876static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
 877
 878static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
 879                struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
 880{
 881        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 882        struct intel_vgpu_ppgtt_spt *s = NULL;
 883        struct intel_vgpu_guest_page *g;
 884        int ret;
 885
 886        if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
 887                ret = -EINVAL;
 888                goto fail;
 889        }
 890
 891        g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
 892        if (g) {
 893                s = guest_page_to_ppgtt_spt(g);
 894                ppgtt_get_shadow_page(s);
 895        } else {
 896                int type = get_next_pt_type(we->type);
 897
 898                s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
 899                if (IS_ERR(s)) {
 900                        ret = PTR_ERR(s);
 901                        goto fail;
 902                }
 903
 904                ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
 905                if (ret)
 906                        goto fail;
 907
 908                ret = ppgtt_populate_shadow_page(s);
 909                if (ret)
 910                        goto fail;
 911
 912                trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
 913                        s->shadow_page.type);
 914        }
 915        return s;
 916fail:
 917        gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
 918                        s, we->val64, we->type);
 919        return ERR_PTR(ret);
 920}
 921
 922static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
 923                struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
 924{
 925        struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
 926
 927        se->type = ge->type;
 928        se->val64 = ge->val64;
 929
 930        ops->set_pfn(se, s->shadow_page.mfn);
 931}
 932
 933static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
 934{
 935        struct intel_vgpu *vgpu = spt->vgpu;
 936        struct intel_vgpu_ppgtt_spt *s;
 937        struct intel_gvt_gtt_entry se, ge;
 938        unsigned long i;
 939        int ret;
 940
 941        trace_spt_change(spt->vgpu->id, "born", spt,
 942                        spt->guest_page.gfn, spt->shadow_page.type);
 943
 944        if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
 945                for_each_present_guest_entry(spt, &ge, i) {
 946                        ret = gtt_entry_p2m(vgpu, &ge, &se);
 947                        if (ret)
 948                                goto fail;
 949                        ppgtt_set_shadow_entry(spt, &se, i);
 950                }
 951                return 0;
 952        }
 953
 954        for_each_present_guest_entry(spt, &ge, i) {
 955                if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
 956                        gvt_vgpu_err("GVT doesn't support pse bit now\n");
 957                        ret = -EINVAL;
 958                        goto fail;
 959                }
 960
 961                s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
 962                if (IS_ERR(s)) {
 963                        ret = PTR_ERR(s);
 964                        goto fail;
 965                }
 966                ppgtt_get_shadow_entry(spt, &se, i);
 967                ppgtt_generate_shadow_entry(&se, s, &ge);
 968                ppgtt_set_shadow_entry(spt, &se, i);
 969        }
 970        return 0;
 971fail:
 972        gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
 973                        spt, ge.val64, ge.type);
 974        return ret;
 975}
 976
 977static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
 978                unsigned long index)
 979{
 980        struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
 981        struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
 982        struct intel_vgpu *vgpu = spt->vgpu;
 983        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 984        struct intel_gvt_gtt_entry e;
 985        int ret;
 986
 987        ppgtt_get_shadow_entry(spt, &e, index);
 988
 989        trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
 990                         index);
 991
 992        if (!ops->test_present(&e))
 993                return 0;
 994
 995        if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
 996                return 0;
 997
 998        if (gtt_type_is_pt(get_next_pt_type(e.type))) {
 999                struct intel_vgpu_ppgtt_spt *s =
1000                        ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
1001                if (!s) {
1002                        gvt_vgpu_err("fail to find guest page\n");
1003                        ret = -ENXIO;
1004                        goto fail;
1005                }
1006                ret = ppgtt_invalidate_shadow_page(s);
1007                if (ret)
1008                        goto fail;
1009        }
1010        ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
1011        ppgtt_set_shadow_entry(spt, &e, index);
1012        return 0;
1013fail:
1014        gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1015                        spt, e.val64, e.type);
1016        return ret;
1017}
1018
1019static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1020                struct intel_gvt_gtt_entry *we, unsigned long index)
1021{
1022        struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1023        struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1024        struct intel_vgpu *vgpu = spt->vgpu;
1025        struct intel_gvt_gtt_entry m;
1026        struct intel_vgpu_ppgtt_spt *s;
1027        int ret;
1028
1029        trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1030                we->val64, index);
1031
1032        if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1033                s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1034                if (IS_ERR(s)) {
1035                        ret = PTR_ERR(s);
1036                        goto fail;
1037                }
1038                ppgtt_get_shadow_entry(spt, &m, index);
1039                ppgtt_generate_shadow_entry(&m, s, we);
1040                ppgtt_set_shadow_entry(spt, &m, index);
1041        } else {
1042                ret = gtt_entry_p2m(vgpu, we, &m);
1043                if (ret)
1044                        goto fail;
1045                ppgtt_set_shadow_entry(spt, &m, index);
1046        }
1047        return 0;
1048fail:
1049        gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1050                spt, we->val64, we->type);
1051        return ret;
1052}
1053
1054static int sync_oos_page(struct intel_vgpu *vgpu,
1055                struct intel_vgpu_oos_page *oos_page)
1056{
1057        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1058        struct intel_gvt *gvt = vgpu->gvt;
1059        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1060        struct intel_vgpu_ppgtt_spt *spt =
1061                guest_page_to_ppgtt_spt(oos_page->guest_page);
1062        struct intel_gvt_gtt_entry old, new, m;
1063        int index;
1064        int ret;
1065
1066        trace_oos_change(vgpu->id, "sync", oos_page->id,
1067                        oos_page->guest_page, spt->guest_page_type);
1068
1069        old.type = new.type = get_entry_type(spt->guest_page_type);
1070        old.val64 = new.val64 = 0;
1071
1072        for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1073                index++) {
1074                ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1075                ops->get_entry(NULL, &new, index, true,
1076                        oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1077
1078                if (old.val64 == new.val64
1079                        && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1080                        continue;
1081
1082                trace_oos_sync(vgpu->id, oos_page->id,
1083                                oos_page->guest_page, spt->guest_page_type,
1084                                new.val64, index);
1085
1086                ret = gtt_entry_p2m(vgpu, &new, &m);
1087                if (ret)
1088                        return ret;
1089
1090                ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1091                ppgtt_set_shadow_entry(spt, &m, index);
1092        }
1093
1094        oos_page->guest_page->write_cnt = 0;
1095        list_del_init(&spt->post_shadow_list);
1096        return 0;
1097}
1098
1099static int detach_oos_page(struct intel_vgpu *vgpu,
1100                struct intel_vgpu_oos_page *oos_page)
1101{
1102        struct intel_gvt *gvt = vgpu->gvt;
1103        struct intel_vgpu_ppgtt_spt *spt =
1104                guest_page_to_ppgtt_spt(oos_page->guest_page);
1105
1106        trace_oos_change(vgpu->id, "detach", oos_page->id,
1107                        oos_page->guest_page, spt->guest_page_type);
1108
1109        oos_page->guest_page->write_cnt = 0;
1110        oos_page->guest_page->oos_page = NULL;
1111        oos_page->guest_page = NULL;
1112
1113        list_del_init(&oos_page->vm_list);
1114        list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1115
1116        return 0;
1117}
1118
1119static int attach_oos_page(struct intel_vgpu *vgpu,
1120                struct intel_vgpu_oos_page *oos_page,
1121                struct intel_vgpu_guest_page *gpt)
1122{
1123        struct intel_gvt *gvt = vgpu->gvt;
1124        int ret;
1125
1126        ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1127                oos_page->mem, GTT_PAGE_SIZE);
1128        if (ret)
1129                return ret;
1130
1131        oos_page->guest_page = gpt;
1132        gpt->oos_page = oos_page;
1133
1134        list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1135
1136        trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1137                        gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1138        return 0;
1139}
1140
1141static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1142                struct intel_vgpu_guest_page *gpt)
1143{
1144        int ret;
1145
1146        ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1147        if (ret)
1148                return ret;
1149
1150        trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1151                        gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1152
1153        list_del_init(&gpt->oos_page->vm_list);
1154        return sync_oos_page(vgpu, gpt->oos_page);
1155}
1156
1157static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1158                struct intel_vgpu_guest_page *gpt)
1159{
1160        struct intel_gvt *gvt = vgpu->gvt;
1161        struct intel_gvt_gtt *gtt = &gvt->gtt;
1162        struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1163        int ret;
1164
1165        WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1166
1167        if (list_empty(&gtt->oos_page_free_list_head)) {
1168                oos_page = container_of(gtt->oos_page_use_list_head.next,
1169                        struct intel_vgpu_oos_page, list);
1170                ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1171                if (ret)
1172                        return ret;
1173                ret = detach_oos_page(vgpu, oos_page);
1174                if (ret)
1175                        return ret;
1176        } else
1177                oos_page = container_of(gtt->oos_page_free_list_head.next,
1178                        struct intel_vgpu_oos_page, list);
1179        return attach_oos_page(vgpu, oos_page, gpt);
1180}
1181
1182static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1183                struct intel_vgpu_guest_page *gpt)
1184{
1185        struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1186
1187        if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1188                return -EINVAL;
1189
1190        trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1191                        gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1192
1193        list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1194        return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1195}
1196
1197/**
1198 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1199 * @vgpu: a vGPU
1200 *
1201 * This function is called before submitting a guest workload to host,
1202 * to sync all the out-of-synced shadow for vGPU
1203 *
1204 * Returns:
1205 * Zero on success, negative error code if failed.
1206 */
1207int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1208{
1209        struct list_head *pos, *n;
1210        struct intel_vgpu_oos_page *oos_page;
1211        int ret;
1212
1213        if (!enable_out_of_sync)
1214                return 0;
1215
1216        list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1217                oos_page = container_of(pos,
1218                                struct intel_vgpu_oos_page, vm_list);
1219                ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1220                if (ret)
1221                        return ret;
1222        }
1223        return 0;
1224}
1225
1226/*
1227 * The heart of PPGTT shadow page table.
1228 */
1229static int ppgtt_handle_guest_write_page_table(
1230                struct intel_vgpu_guest_page *gpt,
1231                struct intel_gvt_gtt_entry *we, unsigned long index)
1232{
1233        struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1234        struct intel_vgpu *vgpu = spt->vgpu;
1235        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1236
1237        int ret;
1238        int new_present;
1239
1240        new_present = ops->test_present(we);
1241
1242        ret = ppgtt_handle_guest_entry_removal(gpt, index);
1243        if (ret)
1244                goto fail;
1245
1246        if (new_present) {
1247                ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1248                if (ret)
1249                        goto fail;
1250        }
1251        return 0;
1252fail:
1253        gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1254                        spt, we->val64, we->type);
1255        return ret;
1256}
1257
1258static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1259{
1260        return enable_out_of_sync
1261                && gtt_type_is_pte_pt(
1262                        guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1263                && gpt->write_cnt >= 2;
1264}
1265
1266static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1267                unsigned long index)
1268{
1269        set_bit(index, spt->post_shadow_bitmap);
1270        if (!list_empty(&spt->post_shadow_list))
1271                return;
1272
1273        list_add_tail(&spt->post_shadow_list,
1274                        &spt->vgpu->gtt.post_shadow_list_head);
1275}
1276
1277/**
1278 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1279 * @vgpu: a vGPU
1280 *
1281 * This function is called before submitting a guest workload to host,
1282 * to flush all the post shadows for a vGPU.
1283 *
1284 * Returns:
1285 * Zero on success, negative error code if failed.
1286 */
1287int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1288{
1289        struct list_head *pos, *n;
1290        struct intel_vgpu_ppgtt_spt *spt;
1291        struct intel_gvt_gtt_entry ge;
1292        unsigned long index;
1293        int ret;
1294
1295        list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1296                spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1297                                post_shadow_list);
1298
1299                for_each_set_bit(index, spt->post_shadow_bitmap,
1300                                GTT_ENTRY_NUM_IN_ONE_PAGE) {
1301                        ppgtt_get_guest_entry(spt, &ge, index);
1302
1303                        ret = ppgtt_handle_guest_write_page_table(
1304                                        &spt->guest_page, &ge, index);
1305                        if (ret)
1306                                return ret;
1307                        clear_bit(index, spt->post_shadow_bitmap);
1308                }
1309                list_del_init(&spt->post_shadow_list);
1310        }
1311        return 0;
1312}
1313
1314static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1315                u64 pa, void *p_data, int bytes)
1316{
1317        struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1318        struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1319        struct intel_vgpu *vgpu = spt->vgpu;
1320        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1321        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1322        struct intel_gvt_gtt_entry we;
1323        unsigned long index;
1324        int ret;
1325
1326        index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1327
1328        ppgtt_get_guest_entry(spt, &we, index);
1329
1330        ops->test_pse(&we);
1331
1332        if (bytes == info->gtt_entry_size) {
1333                ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1334                if (ret)
1335                        return ret;
1336        } else {
1337                if (!test_bit(index, spt->post_shadow_bitmap)) {
1338                        ret = ppgtt_handle_guest_entry_removal(gpt, index);
1339                        if (ret)
1340                                return ret;
1341                }
1342
1343                ppgtt_set_post_shadow(spt, index);
1344        }
1345
1346        if (!enable_out_of_sync)
1347                return 0;
1348
1349        gpt->write_cnt++;
1350
1351        if (gpt->oos_page)
1352                ops->set_entry(gpt->oos_page->mem, &we, index,
1353                                false, 0, vgpu);
1354
1355        if (can_do_out_of_sync(gpt)) {
1356                if (!gpt->oos_page)
1357                        ppgtt_allocate_oos_page(vgpu, gpt);
1358
1359                ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1360                if (ret < 0)
1361                        return ret;
1362        }
1363        return 0;
1364}
1365
1366/*
1367 * mm page table allocation policy for bdw+
1368 *  - for ggtt, only virtual page table will be allocated.
1369 *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1370 */
1371static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1372{
1373        struct intel_vgpu *vgpu = mm->vgpu;
1374        struct intel_gvt *gvt = vgpu->gvt;
1375        const struct intel_gvt_device_info *info = &gvt->device_info;
1376        void *mem;
1377
1378        if (mm->type == INTEL_GVT_MM_PPGTT) {
1379                mm->page_table_entry_cnt = 4;
1380                mm->page_table_entry_size = mm->page_table_entry_cnt *
1381                        info->gtt_entry_size;
1382                mem = kzalloc(mm->has_shadow_page_table ?
1383                        mm->page_table_entry_size * 2
1384                                : mm->page_table_entry_size, GFP_KERNEL);
1385                if (!mem)
1386                        return -ENOMEM;
1387                mm->virtual_page_table = mem;
1388                if (!mm->has_shadow_page_table)
1389                        return 0;
1390                mm->shadow_page_table = mem + mm->page_table_entry_size;
1391        } else if (mm->type == INTEL_GVT_MM_GGTT) {
1392                mm->page_table_entry_cnt =
1393                        (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1394                mm->page_table_entry_size = mm->page_table_entry_cnt *
1395                        info->gtt_entry_size;
1396                mem = vzalloc(mm->page_table_entry_size);
1397                if (!mem)
1398                        return -ENOMEM;
1399                mm->virtual_page_table = mem;
1400        }
1401        return 0;
1402}
1403
1404static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1405{
1406        if (mm->type == INTEL_GVT_MM_PPGTT) {
1407                kfree(mm->virtual_page_table);
1408        } else if (mm->type == INTEL_GVT_MM_GGTT) {
1409                if (mm->virtual_page_table)
1410                        vfree(mm->virtual_page_table);
1411        }
1412        mm->virtual_page_table = mm->shadow_page_table = NULL;
1413}
1414
1415static void invalidate_mm(struct intel_vgpu_mm *mm)
1416{
1417        struct intel_vgpu *vgpu = mm->vgpu;
1418        struct intel_gvt *gvt = vgpu->gvt;
1419        struct intel_gvt_gtt *gtt = &gvt->gtt;
1420        struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1421        struct intel_gvt_gtt_entry se;
1422        int i;
1423
1424        if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1425                return;
1426
1427        for (i = 0; i < mm->page_table_entry_cnt; i++) {
1428                ppgtt_get_shadow_root_entry(mm, &se, i);
1429                if (!ops->test_present(&se))
1430                        continue;
1431                ppgtt_invalidate_shadow_page_by_shadow_entry(
1432                                vgpu, &se);
1433                se.val64 = 0;
1434                ppgtt_set_shadow_root_entry(mm, &se, i);
1435
1436                trace_gpt_change(vgpu->id, "destroy root pointer",
1437                                NULL, se.type, se.val64, i);
1438        }
1439        mm->shadowed = false;
1440}
1441
1442/**
1443 * intel_vgpu_destroy_mm - destroy a mm object
1444 * @mm: a kref object
1445 *
1446 * This function is used to destroy a mm object for vGPU
1447 *
1448 */
1449void intel_vgpu_destroy_mm(struct kref *mm_ref)
1450{
1451        struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1452        struct intel_vgpu *vgpu = mm->vgpu;
1453        struct intel_gvt *gvt = vgpu->gvt;
1454        struct intel_gvt_gtt *gtt = &gvt->gtt;
1455
1456        if (!mm->initialized)
1457                goto out;
1458
1459        list_del(&mm->list);
1460        list_del(&mm->lru_list);
1461
1462        if (mm->has_shadow_page_table)
1463                invalidate_mm(mm);
1464
1465        gtt->mm_free_page_table(mm);
1466out:
1467        kfree(mm);
1468}
1469
1470static int shadow_mm(struct intel_vgpu_mm *mm)
1471{
1472        struct intel_vgpu *vgpu = mm->vgpu;
1473        struct intel_gvt *gvt = vgpu->gvt;
1474        struct intel_gvt_gtt *gtt = &gvt->gtt;
1475        struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1476        struct intel_vgpu_ppgtt_spt *spt;
1477        struct intel_gvt_gtt_entry ge, se;
1478        int i;
1479        int ret;
1480
1481        if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1482                return 0;
1483
1484        mm->shadowed = true;
1485
1486        for (i = 0; i < mm->page_table_entry_cnt; i++) {
1487                ppgtt_get_guest_root_entry(mm, &ge, i);
1488                if (!ops->test_present(&ge))
1489                        continue;
1490
1491                trace_gpt_change(vgpu->id, __func__, NULL,
1492                                ge.type, ge.val64, i);
1493
1494                spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1495                if (IS_ERR(spt)) {
1496                        gvt_vgpu_err("fail to populate guest root pointer\n");
1497                        ret = PTR_ERR(spt);
1498                        goto fail;
1499                }
1500                ppgtt_generate_shadow_entry(&se, spt, &ge);
1501                ppgtt_set_shadow_root_entry(mm, &se, i);
1502
1503                trace_gpt_change(vgpu->id, "populate root pointer",
1504                                NULL, se.type, se.val64, i);
1505        }
1506        return 0;
1507fail:
1508        invalidate_mm(mm);
1509        return ret;
1510}
1511
1512/**
1513 * intel_vgpu_create_mm - create a mm object for a vGPU
1514 * @vgpu: a vGPU
1515 * @mm_type: mm object type, should be PPGTT or GGTT
1516 * @virtual_page_table: page table root pointers. Could be NULL if user wants
1517 *      to populate shadow later.
1518 * @page_table_level: describe the page table level of the mm object
1519 * @pde_base_index: pde root pointer base in GGTT MMIO.
1520 *
1521 * This function is used to create a mm object for a vGPU.
1522 *
1523 * Returns:
1524 * Zero on success, negative error code in pointer if failed.
1525 */
1526struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1527                int mm_type, void *virtual_page_table, int page_table_level,
1528                u32 pde_base_index)
1529{
1530        struct intel_gvt *gvt = vgpu->gvt;
1531        struct intel_gvt_gtt *gtt = &gvt->gtt;
1532        struct intel_vgpu_mm *mm;
1533        int ret;
1534
1535        mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1536        if (!mm) {
1537                ret = -ENOMEM;
1538                goto fail;
1539        }
1540
1541        mm->type = mm_type;
1542
1543        if (page_table_level == 1)
1544                mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1545        else if (page_table_level == 3)
1546                mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1547        else if (page_table_level == 4)
1548                mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1549        else {
1550                WARN_ON(1);
1551                ret = -EINVAL;
1552                goto fail;
1553        }
1554
1555        mm->page_table_level = page_table_level;
1556        mm->pde_base_index = pde_base_index;
1557
1558        mm->vgpu = vgpu;
1559        mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1560
1561        kref_init(&mm->ref);
1562        atomic_set(&mm->pincount, 0);
1563        INIT_LIST_HEAD(&mm->list);
1564        INIT_LIST_HEAD(&mm->lru_list);
1565        list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1566
1567        ret = gtt->mm_alloc_page_table(mm);
1568        if (ret) {
1569                gvt_vgpu_err("fail to allocate page table for mm\n");
1570                goto fail;
1571        }
1572
1573        mm->initialized = true;
1574
1575        if (virtual_page_table)
1576                memcpy(mm->virtual_page_table, virtual_page_table,
1577                                mm->page_table_entry_size);
1578
1579        if (mm->has_shadow_page_table) {
1580                ret = shadow_mm(mm);
1581                if (ret)
1582                        goto fail;
1583                list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1584        }
1585        return mm;
1586fail:
1587        gvt_vgpu_err("fail to create mm\n");
1588        if (mm)
1589                intel_gvt_mm_unreference(mm);
1590        return ERR_PTR(ret);
1591}
1592
1593/**
1594 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1595 * @mm: a vGPU mm object
1596 *
1597 * This function is called when user doesn't want to use a vGPU mm object
1598 */
1599void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1600{
1601        if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1602                return;
1603
1604        atomic_dec(&mm->pincount);
1605}
1606
1607/**
1608 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1609 * @vgpu: a vGPU
1610 *
1611 * This function is called when user wants to use a vGPU mm object. If this
1612 * mm object hasn't been shadowed yet, the shadow will be populated at this
1613 * time.
1614 *
1615 * Returns:
1616 * Zero on success, negative error code if failed.
1617 */
1618int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1619{
1620        int ret;
1621
1622        if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1623                return 0;
1624
1625        atomic_inc(&mm->pincount);
1626
1627        if (!mm->shadowed) {
1628                ret = shadow_mm(mm);
1629                if (ret)
1630                        return ret;
1631        }
1632
1633        list_del_init(&mm->lru_list);
1634        list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1635        return 0;
1636}
1637
1638static int reclaim_one_mm(struct intel_gvt *gvt)
1639{
1640        struct intel_vgpu_mm *mm;
1641        struct list_head *pos, *n;
1642
1643        list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1644                mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1645
1646                if (mm->type != INTEL_GVT_MM_PPGTT)
1647                        continue;
1648                if (atomic_read(&mm->pincount))
1649                        continue;
1650
1651                list_del_init(&mm->lru_list);
1652                invalidate_mm(mm);
1653                return 1;
1654        }
1655        return 0;
1656}
1657
1658/*
1659 * GMA translation APIs.
1660 */
1661static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1662                struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1663{
1664        struct intel_vgpu *vgpu = mm->vgpu;
1665        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1666        struct intel_vgpu_ppgtt_spt *s;
1667
1668        if (WARN_ON(!mm->has_shadow_page_table))
1669                return -EINVAL;
1670
1671        s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1672        if (!s)
1673                return -ENXIO;
1674
1675        if (!guest)
1676                ppgtt_get_shadow_entry(s, e, index);
1677        else
1678                ppgtt_get_guest_entry(s, e, index);
1679        return 0;
1680}
1681
1682/**
1683 * intel_vgpu_gma_to_gpa - translate a gma to GPA
1684 * @mm: mm object. could be a PPGTT or GGTT mm object
1685 * @gma: graphics memory address in this mm object
1686 *
1687 * This function is used to translate a graphics memory address in specific
1688 * graphics memory space to guest physical address.
1689 *
1690 * Returns:
1691 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1692 */
1693unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1694{
1695        struct intel_vgpu *vgpu = mm->vgpu;
1696        struct intel_gvt *gvt = vgpu->gvt;
1697        struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1698        struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1699        unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1700        unsigned long gma_index[4];
1701        struct intel_gvt_gtt_entry e;
1702        int i, index;
1703        int ret;
1704
1705        if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1706                return INTEL_GVT_INVALID_ADDR;
1707
1708        if (mm->type == INTEL_GVT_MM_GGTT) {
1709                if (!vgpu_gmadr_is_valid(vgpu, gma))
1710                        goto err;
1711
1712                ggtt_get_guest_entry(mm, &e,
1713                        gma_ops->gma_to_ggtt_pte_index(gma));
1714                gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1715                        + (gma & ~GTT_PAGE_MASK);
1716
1717                trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1718                return gpa;
1719        }
1720
1721        switch (mm->page_table_level) {
1722        case 4:
1723                ppgtt_get_shadow_root_entry(mm, &e, 0);
1724                gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1725                gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1726                gma_index[2] = gma_ops->gma_to_pde_index(gma);
1727                gma_index[3] = gma_ops->gma_to_pte_index(gma);
1728                index = 4;
1729                break;
1730        case 3:
1731                ppgtt_get_shadow_root_entry(mm, &e,
1732                                gma_ops->gma_to_l3_pdp_index(gma));
1733                gma_index[0] = gma_ops->gma_to_pde_index(gma);
1734                gma_index[1] = gma_ops->gma_to_pte_index(gma);
1735                index = 2;
1736                break;
1737        case 2:
1738                ppgtt_get_shadow_root_entry(mm, &e,
1739                                gma_ops->gma_to_pde_index(gma));
1740                gma_index[0] = gma_ops->gma_to_pte_index(gma);
1741                index = 1;
1742                break;
1743        default:
1744                WARN_ON(1);
1745                goto err;
1746        }
1747
1748        /* walk into the shadow page table and get gpa from guest entry */
1749        for (i = 0; i < index; i++) {
1750                ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1751                        (i == index - 1));
1752                if (ret)
1753                        goto err;
1754        }
1755
1756        gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1757                + (gma & ~GTT_PAGE_MASK);
1758
1759        trace_gma_translate(vgpu->id, "ppgtt", 0,
1760                        mm->page_table_level, gma, gpa);
1761        return gpa;
1762err:
1763        gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1764        return INTEL_GVT_INVALID_ADDR;
1765}
1766
1767static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1768        unsigned int off, void *p_data, unsigned int bytes)
1769{
1770        struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1771        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1772        unsigned long index = off >> info->gtt_entry_size_shift;
1773        struct intel_gvt_gtt_entry e;
1774
1775        if (bytes != 4 && bytes != 8)
1776                return -EINVAL;
1777
1778        ggtt_get_guest_entry(ggtt_mm, &e, index);
1779        memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1780                        bytes);
1781        return 0;
1782}
1783
1784/**
1785 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1786 * @vgpu: a vGPU
1787 * @off: register offset
1788 * @p_data: data will be returned to guest
1789 * @bytes: data length
1790 *
1791 * This function is used to emulate the GTT MMIO register read
1792 *
1793 * Returns:
1794 * Zero on success, error code if failed.
1795 */
1796int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1797        void *p_data, unsigned int bytes)
1798{
1799        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1800        int ret;
1801
1802        if (bytes != 4 && bytes != 8)
1803                return -EINVAL;
1804
1805        off -= info->gtt_start_offset;
1806        ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1807        return ret;
1808}
1809
1810static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1811        void *p_data, unsigned int bytes)
1812{
1813        struct intel_gvt *gvt = vgpu->gvt;
1814        const struct intel_gvt_device_info *info = &gvt->device_info;
1815        struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1816        struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1817        unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1818        unsigned long gma;
1819        struct intel_gvt_gtt_entry e, m;
1820        int ret;
1821
1822        if (bytes != 4 && bytes != 8)
1823                return -EINVAL;
1824
1825        gma = g_gtt_index << GTT_PAGE_SHIFT;
1826
1827        /* the VM may configure the whole GM space when ballooning is used */
1828        if (!vgpu_gmadr_is_valid(vgpu, gma))
1829                return 0;
1830
1831        ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1832
1833        memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1834                        bytes);
1835
1836        if (ops->test_present(&e)) {
1837                ret = gtt_entry_p2m(vgpu, &e, &m);
1838                if (ret) {
1839                        gvt_vgpu_err("fail to translate guest gtt entry\n");
1840                        /* guest driver may read/write the entry when partial
1841                         * update the entry in this situation p2m will fail
1842                         * settting the shadow entry to point to a scratch page
1843                         */
1844                        ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1845                }
1846        } else {
1847                m = e;
1848                ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1849        }
1850
1851        ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1852        ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1853        return 0;
1854}
1855
1856/*
1857 * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1858 * @vgpu: a vGPU
1859 * @off: register offset
1860 * @p_data: data from guest write
1861 * @bytes: data length
1862 *
1863 * This function is used to emulate the GTT MMIO register write
1864 *
1865 * Returns:
1866 * Zero on success, error code if failed.
1867 */
1868int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1869        void *p_data, unsigned int bytes)
1870{
1871        const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1872        int ret;
1873
1874        if (bytes != 4 && bytes != 8)
1875                return -EINVAL;
1876
1877        off -= info->gtt_start_offset;
1878        ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1879        return ret;
1880}
1881
1882static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1883                intel_gvt_gtt_type_t type)
1884{
1885        struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1886        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1887        int page_entry_num = GTT_PAGE_SIZE >>
1888                                vgpu->gvt->device_info.gtt_entry_size_shift;
1889        void *scratch_pt;
1890        int i;
1891        struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1892        dma_addr_t daddr;
1893
1894        if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1895                return -EINVAL;
1896
1897        scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1898        if (!scratch_pt) {
1899                gvt_vgpu_err("fail to allocate scratch page\n");
1900                return -ENOMEM;
1901        }
1902
1903        daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1904                        4096, PCI_DMA_BIDIRECTIONAL);
1905        if (dma_mapping_error(dev, daddr)) {
1906                gvt_vgpu_err("fail to dmamap scratch_pt\n");
1907                __free_page(virt_to_page(scratch_pt));
1908                return -ENOMEM;
1909        }
1910        gtt->scratch_pt[type].page_mfn =
1911                (unsigned long)(daddr >> GTT_PAGE_SHIFT);
1912        gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1913        gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1914                        vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1915
1916        /* Build the tree by full filled the scratch pt with the entries which
1917         * point to the next level scratch pt or scratch page. The
1918         * scratch_pt[type] indicate the scratch pt/scratch page used by the
1919         * 'type' pt.
1920         * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1921         * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1922         * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1923         */
1924        if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1925                struct intel_gvt_gtt_entry se;
1926
1927                memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1928                se.type = get_entry_type(type - 1);
1929                ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1930
1931                /* The entry parameters like present/writeable/cache type
1932                 * set to the same as i915's scratch page tree.
1933                 */
1934                se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1935                if (type == GTT_TYPE_PPGTT_PDE_PT)
1936                        se.val64 |= PPAT_CACHED_INDEX;
1937
1938                for (i = 0; i < page_entry_num; i++)
1939                        ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1940        }
1941
1942        return 0;
1943}
1944
1945static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1946{
1947        int i;
1948        struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1949        dma_addr_t daddr;
1950
1951        for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1952                if (vgpu->gtt.scratch_pt[i].page != NULL) {
1953                        daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1954                                        GTT_PAGE_SHIFT);
1955                        dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1956                        __free_page(vgpu->gtt.scratch_pt[i].page);
1957                        vgpu->gtt.scratch_pt[i].page = NULL;
1958                        vgpu->gtt.scratch_pt[i].page_mfn = 0;
1959                }
1960        }
1961
1962        return 0;
1963}
1964
1965static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1966{
1967        int i, ret;
1968
1969        for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1970                ret = alloc_scratch_pages(vgpu, i);
1971                if (ret)
1972                        goto err;
1973        }
1974
1975        return 0;
1976
1977err:
1978        release_scratch_page_tree(vgpu);
1979        return ret;
1980}
1981
1982/**
1983 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1984 * @vgpu: a vGPU
1985 *
1986 * This function is used to initialize per-vGPU graphics memory virtualization
1987 * components.
1988 *
1989 * Returns:
1990 * Zero on success, error code if failed.
1991 */
1992int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1993{
1994        struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1995        struct intel_vgpu_mm *ggtt_mm;
1996
1997        hash_init(gtt->guest_page_hash_table);
1998        hash_init(gtt->shadow_page_hash_table);
1999
2000        INIT_LIST_HEAD(&gtt->mm_list_head);
2001        INIT_LIST_HEAD(&gtt->oos_page_list_head);
2002        INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2003
2004        intel_vgpu_reset_ggtt(vgpu);
2005
2006        ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2007                        NULL, 1, 0);
2008        if (IS_ERR(ggtt_mm)) {
2009                gvt_vgpu_err("fail to create mm for ggtt.\n");
2010                return PTR_ERR(ggtt_mm);
2011        }
2012
2013        gtt->ggtt_mm = ggtt_mm;
2014
2015        return create_scratch_page_tree(vgpu);
2016}
2017
2018static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2019{
2020        struct list_head *pos, *n;
2021        struct intel_vgpu_mm *mm;
2022
2023        list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2024                mm = container_of(pos, struct intel_vgpu_mm, list);
2025                if (mm->type == type) {
2026                        vgpu->gvt->gtt.mm_free_page_table(mm);
2027                        list_del(&mm->list);
2028                        list_del(&mm->lru_list);
2029                        kfree(mm);
2030                }
2031        }
2032}
2033
2034/**
2035 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2036 * @vgpu: a vGPU
2037 *
2038 * This function is used to clean up per-vGPU graphics memory virtualization
2039 * components.
2040 *
2041 * Returns:
2042 * Zero on success, error code if failed.
2043 */
2044void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2045{
2046        ppgtt_free_all_shadow_page(vgpu);
2047        release_scratch_page_tree(vgpu);
2048
2049        intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2050        intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2051}
2052
2053static void clean_spt_oos(struct intel_gvt *gvt)
2054{
2055        struct intel_gvt_gtt *gtt = &gvt->gtt;
2056        struct list_head *pos, *n;
2057        struct intel_vgpu_oos_page *oos_page;
2058
2059        WARN(!list_empty(&gtt->oos_page_use_list_head),
2060                "someone is still using oos page\n");
2061
2062        list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2063                oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2064                list_del(&oos_page->list);
2065                kfree(oos_page);
2066        }
2067}
2068
2069static int setup_spt_oos(struct intel_gvt *gvt)
2070{
2071        struct intel_gvt_gtt *gtt = &gvt->gtt;
2072        struct intel_vgpu_oos_page *oos_page;
2073        int i;
2074        int ret;
2075
2076        INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2077        INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2078
2079        for (i = 0; i < preallocated_oos_pages; i++) {
2080                oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2081                if (!oos_page) {
2082                        ret = -ENOMEM;
2083                        goto fail;
2084                }
2085
2086                INIT_LIST_HEAD(&oos_page->list);
2087                INIT_LIST_HEAD(&oos_page->vm_list);
2088                oos_page->id = i;
2089                list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2090        }
2091
2092        gvt_dbg_mm("%d oos pages preallocated\n", i);
2093
2094        return 0;
2095fail:
2096        clean_spt_oos(gvt);
2097        return ret;
2098}
2099
2100/**
2101 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2102 * @vgpu: a vGPU
2103 * @page_table_level: PPGTT page table level
2104 * @root_entry: PPGTT page table root pointers
2105 *
2106 * This function is used to find a PPGTT mm object from mm object pool
2107 *
2108 * Returns:
2109 * pointer to mm object on success, NULL if failed.
2110 */
2111struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2112                int page_table_level, void *root_entry)
2113{
2114        struct list_head *pos;
2115        struct intel_vgpu_mm *mm;
2116        u64 *src, *dst;
2117
2118        list_for_each(pos, &vgpu->gtt.mm_list_head) {
2119                mm = container_of(pos, struct intel_vgpu_mm, list);
2120                if (mm->type != INTEL_GVT_MM_PPGTT)
2121                        continue;
2122
2123                if (mm->page_table_level != page_table_level)
2124                        continue;
2125
2126                src = root_entry;
2127                dst = mm->virtual_page_table;
2128
2129                if (page_table_level == 3) {
2130                        if (src[0] == dst[0]
2131                                        && src[1] == dst[1]
2132                                        && src[2] == dst[2]
2133                                        && src[3] == dst[3])
2134                                return mm;
2135                } else {
2136                        if (src[0] == dst[0])
2137                                return mm;
2138                }
2139        }
2140        return NULL;
2141}
2142
2143/**
2144 * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2145 * g2v notification
2146 * @vgpu: a vGPU
2147 * @page_table_level: PPGTT page table level
2148 *
2149 * This function is used to create a PPGTT mm object from a guest to GVT-g
2150 * notification.
2151 *
2152 * Returns:
2153 * Zero on success, negative error code if failed.
2154 */
2155int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2156                int page_table_level)
2157{
2158        u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2159        struct intel_vgpu_mm *mm;
2160
2161        if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2162                return -EINVAL;
2163
2164        mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2165        if (mm) {
2166                intel_gvt_mm_reference(mm);
2167        } else {
2168                mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2169                                pdp, page_table_level, 0);
2170                if (IS_ERR(mm)) {
2171                        gvt_vgpu_err("fail to create mm\n");
2172                        return PTR_ERR(mm);
2173                }
2174        }
2175        return 0;
2176}
2177
2178/**
2179 * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2180 * g2v notification
2181 * @vgpu: a vGPU
2182 * @page_table_level: PPGTT page table level
2183 *
2184 * This function is used to create a PPGTT mm object from a guest to GVT-g
2185 * notification.
2186 *
2187 * Returns:
2188 * Zero on success, negative error code if failed.
2189 */
2190int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2191                int page_table_level)
2192{
2193        u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2194        struct intel_vgpu_mm *mm;
2195
2196        if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2197                return -EINVAL;
2198
2199        mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2200        if (!mm) {
2201                gvt_vgpu_err("fail to find ppgtt instance.\n");
2202                return -EINVAL;
2203        }
2204        intel_gvt_mm_unreference(mm);
2205        return 0;
2206}
2207
2208/**
2209 * intel_gvt_init_gtt - initialize mm components of a GVT device
2210 * @gvt: GVT device
2211 *
2212 * This function is called at the initialization stage, to initialize
2213 * the mm components of a GVT device.
2214 *
2215 * Returns:
2216 * zero on success, negative error code if failed.
2217 */
2218int intel_gvt_init_gtt(struct intel_gvt *gvt)
2219{
2220        int ret;
2221        void *page;
2222        struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2223        dma_addr_t daddr;
2224
2225        gvt_dbg_core("init gtt\n");
2226
2227        if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2228                || IS_KABYLAKE(gvt->dev_priv)) {
2229                gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2230                gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2231                gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2232                gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2233        } else {
2234                return -ENODEV;
2235        }
2236
2237        page = (void *)get_zeroed_page(GFP_KERNEL);
2238        if (!page) {
2239                gvt_err("fail to allocate scratch ggtt page\n");
2240                return -ENOMEM;
2241        }
2242
2243        daddr = dma_map_page(dev, virt_to_page(page), 0,
2244                        4096, PCI_DMA_BIDIRECTIONAL);
2245        if (dma_mapping_error(dev, daddr)) {
2246                gvt_err("fail to dmamap scratch ggtt page\n");
2247                __free_page(virt_to_page(page));
2248                return -ENOMEM;
2249        }
2250        gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2251        gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2252
2253        if (enable_out_of_sync) {
2254                ret = setup_spt_oos(gvt);
2255                if (ret) {
2256                        gvt_err("fail to initialize SPT oos\n");
2257                        return ret;
2258                }
2259        }
2260        INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2261        return 0;
2262}
2263
2264/**
2265 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2266 * @gvt: GVT device
2267 *
2268 * This function is called at the driver unloading stage, to clean up the
2269 * the mm components of a GVT device.
2270 *
2271 */
2272void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2273{
2274        struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2275        dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2276                                        GTT_PAGE_SHIFT);
2277
2278        dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2279
2280        __free_page(gvt->gtt.scratch_ggtt_page);
2281
2282        if (enable_out_of_sync)
2283                clean_spt_oos(gvt);
2284}
2285
2286/**
2287 * intel_vgpu_reset_ggtt - reset the GGTT entry
2288 * @vgpu: a vGPU
2289 *
2290 * This function is called at the vGPU create stage
2291 * to reset all the GGTT entries.
2292 *
2293 */
2294void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2295{
2296        struct intel_gvt *gvt = vgpu->gvt;
2297        struct drm_i915_private *dev_priv = gvt->dev_priv;
2298        struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2299        u32 index;
2300        u32 offset;
2301        u32 num_entries;
2302        struct intel_gvt_gtt_entry e;
2303
2304        intel_runtime_pm_get(dev_priv);
2305
2306        memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2307        e.type = GTT_TYPE_GGTT_PTE;
2308        ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2309        e.val64 |= _PAGE_PRESENT;
2310
2311        index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2312        num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2313        for (offset = 0; offset < num_entries; offset++)
2314                ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2315
2316        index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2317        num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2318        for (offset = 0; offset < num_entries; offset++)
2319                ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2320
2321        intel_runtime_pm_put(dev_priv);
2322}
2323
2324/**
2325 * intel_vgpu_reset_gtt - reset the all GTT related status
2326 * @vgpu: a vGPU
2327 * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
2328 *
2329 * This function is called from vfio core to reset reset all
2330 * GTT related status, including GGTT, PPGTT, scratch page.
2331 *
2332 */
2333void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
2334{
2335        int i;
2336
2337        ppgtt_free_all_shadow_page(vgpu);
2338
2339        /* Shadow pages are only created when there is no page
2340         * table tracking data, so remove page tracking data after
2341         * removing the shadow pages.
2342         */
2343        intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2344
2345        if (!dmlr)
2346                return;
2347
2348        intel_vgpu_reset_ggtt(vgpu);
2349
2350        /* clear scratch page for security */
2351        for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2352                if (vgpu->gtt.scratch_pt[i].page != NULL)
2353                        memset(page_address(vgpu->gtt.scratch_pt[i].page),
2354                                0, PAGE_SIZE);
2355        }
2356}
2357