linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include <drm/drm_plane_helper.h>
  30#include "i915_drv.h"
  31#include "intel_drv.h"
  32#include "../../../platform/x86/intel_ips.h"
  33#include <linux/module.h>
  34#include <drm/drm_atomic_helper.h>
  35
  36/**
  37 * DOC: RC6
  38 *
  39 * RC6 is a special power stage which allows the GPU to enter an very
  40 * low-voltage mode when idle, using down to 0V while at this stage.  This
  41 * stage is entered automatically when the GPU is idle when RC6 support is
  42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  43 *
  44 * There are different RC6 modes available in Intel GPU, which differentiate
  45 * among each other with the latency required to enter and leave RC6 and
  46 * voltage consumed by the GPU in different states.
  47 *
  48 * The combination of the following flags define which states GPU is allowed
  49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  50 * RC6pp is deepest RC6. Their support by hardware varies according to the
  51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  52 * which brings the most power savings; deeper states save more power, but
  53 * require higher latency to switch to and wake up.
  54 */
  55#define INTEL_RC6_ENABLE                        (1<<0)
  56#define INTEL_RC6p_ENABLE                       (1<<1)
  57#define INTEL_RC6pp_ENABLE                      (1<<2)
  58
  59static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  60{
  61        /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
  62        I915_WRITE(CHICKEN_PAR1_1,
  63                   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  64
  65        I915_WRITE(GEN8_CONFIG0,
  66                   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
  67
  68        /* WaEnableChickenDCPR:skl,bxt,kbl,glk */
  69        I915_WRITE(GEN8_CHICKEN_DCPR_1,
  70                   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  71
  72        /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
  73        /* WaFbcWakeMemOn:skl,bxt,kbl,glk */
  74        I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  75                   DISP_FBC_WM_DIS |
  76                   DISP_FBC_MEMORY_WAKE);
  77
  78        /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
  79        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  80                   ILK_DPFC_DISABLE_DUMMY0);
  81}
  82
  83static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  84{
  85        gen9_init_clock_gating(dev_priv);
  86
  87        /* WaDisableSDEUnitClockGating:bxt */
  88        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  89                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  90
  91        /*
  92         * FIXME:
  93         * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  94         */
  95        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  96                   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  97
  98        /*
  99         * Wa: Backlight PWM may stop in the asserted state, causing backlight
 100         * to stay fully on.
 101         */
 102        I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 103                   PWM1_GATING_DIS | PWM2_GATING_DIS);
 104}
 105
 106static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
 107{
 108        gen9_init_clock_gating(dev_priv);
 109
 110        /*
 111         * WaDisablePWMClockGating:glk
 112         * Backlight PWM may stop in the asserted state, causing backlight
 113         * to stay fully on.
 114         */
 115        I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 116                   PWM1_GATING_DIS | PWM2_GATING_DIS);
 117
 118        /* WaDDIIOTimeout:glk */
 119        if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
 120                u32 val = I915_READ(CHICKEN_MISC_2);
 121                val &= ~(GLK_CL0_PWR_DOWN |
 122                         GLK_CL1_PWR_DOWN |
 123                         GLK_CL2_PWR_DOWN);
 124                I915_WRITE(CHICKEN_MISC_2, val);
 125        }
 126
 127}
 128
 129static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
 130{
 131        u32 tmp;
 132
 133        tmp = I915_READ(CLKCFG);
 134
 135        switch (tmp & CLKCFG_FSB_MASK) {
 136        case CLKCFG_FSB_533:
 137                dev_priv->fsb_freq = 533; /* 133*4 */
 138                break;
 139        case CLKCFG_FSB_800:
 140                dev_priv->fsb_freq = 800; /* 200*4 */
 141                break;
 142        case CLKCFG_FSB_667:
 143                dev_priv->fsb_freq =  667; /* 167*4 */
 144                break;
 145        case CLKCFG_FSB_400:
 146                dev_priv->fsb_freq = 400; /* 100*4 */
 147                break;
 148        }
 149
 150        switch (tmp & CLKCFG_MEM_MASK) {
 151        case CLKCFG_MEM_533:
 152                dev_priv->mem_freq = 533;
 153                break;
 154        case CLKCFG_MEM_667:
 155                dev_priv->mem_freq = 667;
 156                break;
 157        case CLKCFG_MEM_800:
 158                dev_priv->mem_freq = 800;
 159                break;
 160        }
 161
 162        /* detect pineview DDR3 setting */
 163        tmp = I915_READ(CSHRDDR3CTL);
 164        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 165}
 166
 167static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
 168{
 169        u16 ddrpll, csipll;
 170
 171        ddrpll = I915_READ16(DDRMPLL1);
 172        csipll = I915_READ16(CSIPLL0);
 173
 174        switch (ddrpll & 0xff) {
 175        case 0xc:
 176                dev_priv->mem_freq = 800;
 177                break;
 178        case 0x10:
 179                dev_priv->mem_freq = 1066;
 180                break;
 181        case 0x14:
 182                dev_priv->mem_freq = 1333;
 183                break;
 184        case 0x18:
 185                dev_priv->mem_freq = 1600;
 186                break;
 187        default:
 188                DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 189                                 ddrpll & 0xff);
 190                dev_priv->mem_freq = 0;
 191                break;
 192        }
 193
 194        dev_priv->ips.r_t = dev_priv->mem_freq;
 195
 196        switch (csipll & 0x3ff) {
 197        case 0x00c:
 198                dev_priv->fsb_freq = 3200;
 199                break;
 200        case 0x00e:
 201                dev_priv->fsb_freq = 3733;
 202                break;
 203        case 0x010:
 204                dev_priv->fsb_freq = 4266;
 205                break;
 206        case 0x012:
 207                dev_priv->fsb_freq = 4800;
 208                break;
 209        case 0x014:
 210                dev_priv->fsb_freq = 5333;
 211                break;
 212        case 0x016:
 213                dev_priv->fsb_freq = 5866;
 214                break;
 215        case 0x018:
 216                dev_priv->fsb_freq = 6400;
 217                break;
 218        default:
 219                DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 220                                 csipll & 0x3ff);
 221                dev_priv->fsb_freq = 0;
 222                break;
 223        }
 224
 225        if (dev_priv->fsb_freq == 3200) {
 226                dev_priv->ips.c_m = 0;
 227        } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 228                dev_priv->ips.c_m = 1;
 229        } else {
 230                dev_priv->ips.c_m = 2;
 231        }
 232}
 233
 234static const struct cxsr_latency cxsr_latency_table[] = {
 235        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 236        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 237        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 238        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 239        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 240
 241        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 242        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 243        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 244        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 245        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 246
 247        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 248        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 249        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 250        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 251        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 252
 253        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 254        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 255        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 256        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 257        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 258
 259        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 260        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 261        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 262        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 263        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 264
 265        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 266        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 267        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 268        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 269        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 270};
 271
 272static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
 273                                                         bool is_ddr3,
 274                                                         int fsb,
 275                                                         int mem)
 276{
 277        const struct cxsr_latency *latency;
 278        int i;
 279
 280        if (fsb == 0 || mem == 0)
 281                return NULL;
 282
 283        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 284                latency = &cxsr_latency_table[i];
 285                if (is_desktop == latency->is_desktop &&
 286                    is_ddr3 == latency->is_ddr3 &&
 287                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 288                        return latency;
 289        }
 290
 291        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 292
 293        return NULL;
 294}
 295
 296static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 297{
 298        u32 val;
 299
 300        mutex_lock(&dev_priv->rps.hw_lock);
 301
 302        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 303        if (enable)
 304                val &= ~FORCE_DDR_HIGH_FREQ;
 305        else
 306                val |= FORCE_DDR_HIGH_FREQ;
 307        val &= ~FORCE_DDR_LOW_FREQ;
 308        val |= FORCE_DDR_FREQ_REQ_ACK;
 309        vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 310
 311        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 312                      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 313                DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
 314
 315        mutex_unlock(&dev_priv->rps.hw_lock);
 316}
 317
 318static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 319{
 320        u32 val;
 321
 322        mutex_lock(&dev_priv->rps.hw_lock);
 323
 324        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 325        if (enable)
 326                val |= DSP_MAXFIFO_PM5_ENABLE;
 327        else
 328                val &= ~DSP_MAXFIFO_PM5_ENABLE;
 329        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 330
 331        mutex_unlock(&dev_priv->rps.hw_lock);
 332}
 333
 334#define FW_WM(value, plane) \
 335        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 336
 337static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 338{
 339        bool was_enabled;
 340        u32 val;
 341
 342        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 343                was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
 344                I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 345                POSTING_READ(FW_BLC_SELF_VLV);
 346        } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
 347                was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 348                I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 349                POSTING_READ(FW_BLC_SELF);
 350        } else if (IS_PINEVIEW(dev_priv)) {
 351                val = I915_READ(DSPFW3);
 352                was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
 353                if (enable)
 354                        val |= PINEVIEW_SELF_REFRESH_EN;
 355                else
 356                        val &= ~PINEVIEW_SELF_REFRESH_EN;
 357                I915_WRITE(DSPFW3, val);
 358                POSTING_READ(DSPFW3);
 359        } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
 360                was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 361                val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 362                               _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 363                I915_WRITE(FW_BLC_SELF, val);
 364                POSTING_READ(FW_BLC_SELF);
 365        } else if (IS_I915GM(dev_priv)) {
 366                /*
 367                 * FIXME can't find a bit like this for 915G, and
 368                 * and yet it does have the related watermark in
 369                 * FW_BLC_SELF. What's going on?
 370                 */
 371                was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
 372                val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 373                               _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 374                I915_WRITE(INSTPM, val);
 375                POSTING_READ(INSTPM);
 376        } else {
 377                return false;
 378        }
 379
 380        trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
 381
 382        DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
 383                      enableddisabled(enable),
 384                      enableddisabled(was_enabled));
 385
 386        return was_enabled;
 387}
 388
 389bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 390{
 391        bool ret;
 392
 393        mutex_lock(&dev_priv->wm.wm_mutex);
 394        ret = _intel_set_memory_cxsr(dev_priv, enable);
 395        dev_priv->wm.vlv.cxsr = enable;
 396        mutex_unlock(&dev_priv->wm.wm_mutex);
 397
 398        return ret;
 399}
 400
 401/*
 402 * Latency for FIFO fetches is dependent on several factors:
 403 *   - memory configuration (speed, channels)
 404 *   - chipset
 405 *   - current MCH state
 406 * It can be fairly high in some situations, so here we assume a fairly
 407 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 408 * set this value too high, the FIFO will fetch frequently to stay full)
 409 * and power consumption (set it too low to save power and we might see
 410 * FIFO underruns and display "flicker").
 411 *
 412 * A value of 5us seems to be a good balance; safe for very low end
 413 * platforms but not overly aggressive on lower latency configs.
 414 */
 415static const int pessimal_latency_ns = 5000;
 416
 417#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 418        ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 419
 420static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
 421{
 422        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 423        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 424        struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
 425        enum pipe pipe = crtc->pipe;
 426        int sprite0_start, sprite1_start;
 427
 428        switch (pipe) {
 429                uint32_t dsparb, dsparb2, dsparb3;
 430        case PIPE_A:
 431                dsparb = I915_READ(DSPARB);
 432                dsparb2 = I915_READ(DSPARB2);
 433                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 434                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 435                break;
 436        case PIPE_B:
 437                dsparb = I915_READ(DSPARB);
 438                dsparb2 = I915_READ(DSPARB2);
 439                sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 440                sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 441                break;
 442        case PIPE_C:
 443                dsparb2 = I915_READ(DSPARB2);
 444                dsparb3 = I915_READ(DSPARB3);
 445                sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 446                sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 447                break;
 448        default:
 449                MISSING_CASE(pipe);
 450                return;
 451        }
 452
 453        fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
 454        fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
 455        fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
 456        fifo_state->plane[PLANE_CURSOR] = 63;
 457
 458        DRM_DEBUG_KMS("Pipe %c FIFO size: %d/%d/%d/%d\n",
 459                      pipe_name(pipe),
 460                      fifo_state->plane[PLANE_PRIMARY],
 461                      fifo_state->plane[PLANE_SPRITE0],
 462                      fifo_state->plane[PLANE_SPRITE1],
 463                      fifo_state->plane[PLANE_CURSOR]);
 464}
 465
 466static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 467{
 468        uint32_t dsparb = I915_READ(DSPARB);
 469        int size;
 470
 471        size = dsparb & 0x7f;
 472        if (plane)
 473                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 474
 475        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 476                      plane ? "B" : "A", size);
 477
 478        return size;
 479}
 480
 481static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 482{
 483        uint32_t dsparb = I915_READ(DSPARB);
 484        int size;
 485
 486        size = dsparb & 0x1ff;
 487        if (plane)
 488                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 489        size >>= 1; /* Convert to cachelines */
 490
 491        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 492                      plane ? "B" : "A", size);
 493
 494        return size;
 495}
 496
 497static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
 498{
 499        uint32_t dsparb = I915_READ(DSPARB);
 500        int size;
 501
 502        size = dsparb & 0x7f;
 503        size >>= 2; /* Convert to cachelines */
 504
 505        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 506                      plane ? "B" : "A",
 507                      size);
 508
 509        return size;
 510}
 511
 512/* Pineview has different values for various configs */
 513static const struct intel_watermark_params pineview_display_wm = {
 514        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 515        .max_wm = PINEVIEW_MAX_WM,
 516        .default_wm = PINEVIEW_DFT_WM,
 517        .guard_size = PINEVIEW_GUARD_WM,
 518        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 519};
 520static const struct intel_watermark_params pineview_display_hplloff_wm = {
 521        .fifo_size = PINEVIEW_DISPLAY_FIFO,
 522        .max_wm = PINEVIEW_MAX_WM,
 523        .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 524        .guard_size = PINEVIEW_GUARD_WM,
 525        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 526};
 527static const struct intel_watermark_params pineview_cursor_wm = {
 528        .fifo_size = PINEVIEW_CURSOR_FIFO,
 529        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 530        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 531        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 532        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 533};
 534static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 535        .fifo_size = PINEVIEW_CURSOR_FIFO,
 536        .max_wm = PINEVIEW_CURSOR_MAX_WM,
 537        .default_wm = PINEVIEW_CURSOR_DFT_WM,
 538        .guard_size = PINEVIEW_CURSOR_GUARD_WM,
 539        .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 540};
 541static const struct intel_watermark_params g4x_wm_info = {
 542        .fifo_size = G4X_FIFO_SIZE,
 543        .max_wm = G4X_MAX_WM,
 544        .default_wm = G4X_MAX_WM,
 545        .guard_size = 2,
 546        .cacheline_size = G4X_FIFO_LINE_SIZE,
 547};
 548static const struct intel_watermark_params g4x_cursor_wm_info = {
 549        .fifo_size = I965_CURSOR_FIFO,
 550        .max_wm = I965_CURSOR_MAX_WM,
 551        .default_wm = I965_CURSOR_DFT_WM,
 552        .guard_size = 2,
 553        .cacheline_size = G4X_FIFO_LINE_SIZE,
 554};
 555static const struct intel_watermark_params i965_cursor_wm_info = {
 556        .fifo_size = I965_CURSOR_FIFO,
 557        .max_wm = I965_CURSOR_MAX_WM,
 558        .default_wm = I965_CURSOR_DFT_WM,
 559        .guard_size = 2,
 560        .cacheline_size = I915_FIFO_LINE_SIZE,
 561};
 562static const struct intel_watermark_params i945_wm_info = {
 563        .fifo_size = I945_FIFO_SIZE,
 564        .max_wm = I915_MAX_WM,
 565        .default_wm = 1,
 566        .guard_size = 2,
 567        .cacheline_size = I915_FIFO_LINE_SIZE,
 568};
 569static const struct intel_watermark_params i915_wm_info = {
 570        .fifo_size = I915_FIFO_SIZE,
 571        .max_wm = I915_MAX_WM,
 572        .default_wm = 1,
 573        .guard_size = 2,
 574        .cacheline_size = I915_FIFO_LINE_SIZE,
 575};
 576static const struct intel_watermark_params i830_a_wm_info = {
 577        .fifo_size = I855GM_FIFO_SIZE,
 578        .max_wm = I915_MAX_WM,
 579        .default_wm = 1,
 580        .guard_size = 2,
 581        .cacheline_size = I830_FIFO_LINE_SIZE,
 582};
 583static const struct intel_watermark_params i830_bc_wm_info = {
 584        .fifo_size = I855GM_FIFO_SIZE,
 585        .max_wm = I915_MAX_WM/2,
 586        .default_wm = 1,
 587        .guard_size = 2,
 588        .cacheline_size = I830_FIFO_LINE_SIZE,
 589};
 590static const struct intel_watermark_params i845_wm_info = {
 591        .fifo_size = I830_FIFO_SIZE,
 592        .max_wm = I915_MAX_WM,
 593        .default_wm = 1,
 594        .guard_size = 2,
 595        .cacheline_size = I830_FIFO_LINE_SIZE,
 596};
 597
 598/**
 599 * intel_calculate_wm - calculate watermark level
 600 * @clock_in_khz: pixel clock
 601 * @wm: chip FIFO params
 602 * @cpp: bytes per pixel
 603 * @latency_ns: memory latency for the platform
 604 *
 605 * Calculate the watermark level (the level at which the display plane will
 606 * start fetching from memory again).  Each chip has a different display
 607 * FIFO size and allocation, so the caller needs to figure that out and pass
 608 * in the correct intel_watermark_params structure.
 609 *
 610 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 611 * on the pixel size.  When it reaches the watermark level, it'll start
 612 * fetching FIFO line sized based chunks from memory until the FIFO fills
 613 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 614 * will occur, and a display engine hang could result.
 615 */
 616static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 617                                        const struct intel_watermark_params *wm,
 618                                        int fifo_size, int cpp,
 619                                        unsigned long latency_ns)
 620{
 621        long entries_required, wm_size;
 622
 623        /*
 624         * Note: we need to make sure we don't overflow for various clock &
 625         * latency values.
 626         * clocks go from a few thousand to several hundred thousand.
 627         * latency is usually a few thousand
 628         */
 629        entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
 630                1000;
 631        entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 632
 633        DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 634
 635        wm_size = fifo_size - (entries_required + wm->guard_size);
 636
 637        DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 638
 639        /* Don't promote wm_size to unsigned... */
 640        if (wm_size > (long)wm->max_wm)
 641                wm_size = wm->max_wm;
 642        if (wm_size <= 0)
 643                wm_size = wm->default_wm;
 644
 645        /*
 646         * Bspec seems to indicate that the value shouldn't be lower than
 647         * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 648         * Lets go for 8 which is the burst size since certain platforms
 649         * already use a hardcoded 8 (which is what the spec says should be
 650         * done).
 651         */
 652        if (wm_size <= 8)
 653                wm_size = 8;
 654
 655        return wm_size;
 656}
 657
 658static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
 659                                   const struct intel_plane_state *plane_state)
 660{
 661        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
 662
 663        /* FIXME check the 'enable' instead */
 664        if (!crtc_state->base.active)
 665                return false;
 666
 667        /*
 668         * Treat cursor with fb as always visible since cursor updates
 669         * can happen faster than the vrefresh rate, and the current
 670         * watermark code doesn't handle that correctly. Cursor updates
 671         * which set/clear the fb or change the cursor size are going
 672         * to get throttled by intel_legacy_cursor_update() to work
 673         * around this problem with the watermark code.
 674         */
 675        if (plane->id == PLANE_CURSOR)
 676                return plane_state->base.fb != NULL;
 677        else
 678                return plane_state->base.visible;
 679}
 680
 681static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
 682{
 683        struct intel_crtc *crtc, *enabled = NULL;
 684
 685        for_each_intel_crtc(&dev_priv->drm, crtc) {
 686                if (intel_crtc_active(crtc)) {
 687                        if (enabled)
 688                                return NULL;
 689                        enabled = crtc;
 690                }
 691        }
 692
 693        return enabled;
 694}
 695
 696static void pineview_update_wm(struct intel_crtc *unused_crtc)
 697{
 698        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 699        struct intel_crtc *crtc;
 700        const struct cxsr_latency *latency;
 701        u32 reg;
 702        unsigned long wm;
 703
 704        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
 705                                         dev_priv->is_ddr3,
 706                                         dev_priv->fsb_freq,
 707                                         dev_priv->mem_freq);
 708        if (!latency) {
 709                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 710                intel_set_memory_cxsr(dev_priv, false);
 711                return;
 712        }
 713
 714        crtc = single_enabled_crtc(dev_priv);
 715        if (crtc) {
 716                const struct drm_display_mode *adjusted_mode =
 717                        &crtc->config->base.adjusted_mode;
 718                const struct drm_framebuffer *fb =
 719                        crtc->base.primary->state->fb;
 720                int cpp = fb->format->cpp[0];
 721                int clock = adjusted_mode->crtc_clock;
 722
 723                /* Display SR */
 724                wm = intel_calculate_wm(clock, &pineview_display_wm,
 725                                        pineview_display_wm.fifo_size,
 726                                        cpp, latency->display_sr);
 727                reg = I915_READ(DSPFW1);
 728                reg &= ~DSPFW_SR_MASK;
 729                reg |= FW_WM(wm, SR);
 730                I915_WRITE(DSPFW1, reg);
 731                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 732
 733                /* cursor SR */
 734                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
 735                                        pineview_display_wm.fifo_size,
 736                                        cpp, latency->cursor_sr);
 737                reg = I915_READ(DSPFW3);
 738                reg &= ~DSPFW_CURSOR_SR_MASK;
 739                reg |= FW_WM(wm, CURSOR_SR);
 740                I915_WRITE(DSPFW3, reg);
 741
 742                /* Display HPLL off SR */
 743                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
 744                                        pineview_display_hplloff_wm.fifo_size,
 745                                        cpp, latency->display_hpll_disable);
 746                reg = I915_READ(DSPFW3);
 747                reg &= ~DSPFW_HPLL_SR_MASK;
 748                reg |= FW_WM(wm, HPLL_SR);
 749                I915_WRITE(DSPFW3, reg);
 750
 751                /* cursor HPLL off SR */
 752                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
 753                                        pineview_display_hplloff_wm.fifo_size,
 754                                        cpp, latency->cursor_hpll_disable);
 755                reg = I915_READ(DSPFW3);
 756                reg &= ~DSPFW_HPLL_CURSOR_MASK;
 757                reg |= FW_WM(wm, HPLL_CURSOR);
 758                I915_WRITE(DSPFW3, reg);
 759                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 760
 761                intel_set_memory_cxsr(dev_priv, true);
 762        } else {
 763                intel_set_memory_cxsr(dev_priv, false);
 764        }
 765}
 766
 767static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
 768                            int plane,
 769                            const struct intel_watermark_params *display,
 770                            int display_latency_ns,
 771                            const struct intel_watermark_params *cursor,
 772                            int cursor_latency_ns,
 773                            int *plane_wm,
 774                            int *cursor_wm)
 775{
 776        struct intel_crtc *crtc;
 777        const struct drm_display_mode *adjusted_mode;
 778        const struct drm_framebuffer *fb;
 779        int htotal, hdisplay, clock, cpp;
 780        int line_time_us, line_count;
 781        int entries, tlb_miss;
 782
 783        crtc = intel_get_crtc_for_plane(dev_priv, plane);
 784        if (!intel_crtc_active(crtc)) {
 785                *cursor_wm = cursor->guard_size;
 786                *plane_wm = display->guard_size;
 787                return false;
 788        }
 789
 790        adjusted_mode = &crtc->config->base.adjusted_mode;
 791        fb = crtc->base.primary->state->fb;
 792        clock = adjusted_mode->crtc_clock;
 793        htotal = adjusted_mode->crtc_htotal;
 794        hdisplay = crtc->config->pipe_src_w;
 795        cpp = fb->format->cpp[0];
 796
 797        /* Use the small buffer method to calculate plane watermark */
 798        entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
 799        tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
 800        if (tlb_miss > 0)
 801                entries += tlb_miss;
 802        entries = DIV_ROUND_UP(entries, display->cacheline_size);
 803        *plane_wm = entries + display->guard_size;
 804        if (*plane_wm > (int)display->max_wm)
 805                *plane_wm = display->max_wm;
 806
 807        /* Use the large buffer method to calculate cursor watermark */
 808        line_time_us = max(htotal * 1000 / clock, 1);
 809        line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
 810        entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
 811        tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
 812        if (tlb_miss > 0)
 813                entries += tlb_miss;
 814        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 815        *cursor_wm = entries + cursor->guard_size;
 816        if (*cursor_wm > (int)cursor->max_wm)
 817                *cursor_wm = (int)cursor->max_wm;
 818
 819        return true;
 820}
 821
 822/*
 823 * Check the wm result.
 824 *
 825 * If any calculated watermark values is larger than the maximum value that
 826 * can be programmed into the associated watermark register, that watermark
 827 * must be disabled.
 828 */
 829static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
 830                           int display_wm, int cursor_wm,
 831                           const struct intel_watermark_params *display,
 832                           const struct intel_watermark_params *cursor)
 833{
 834        DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
 835                      display_wm, cursor_wm);
 836
 837        if (display_wm > display->max_wm) {
 838                DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
 839                              display_wm, display->max_wm);
 840                return false;
 841        }
 842
 843        if (cursor_wm > cursor->max_wm) {
 844                DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
 845                              cursor_wm, cursor->max_wm);
 846                return false;
 847        }
 848
 849        if (!(display_wm || cursor_wm)) {
 850                DRM_DEBUG_KMS("SR latency is 0, disabling\n");
 851                return false;
 852        }
 853
 854        return true;
 855}
 856
 857static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
 858                             int plane,
 859                             int latency_ns,
 860                             const struct intel_watermark_params *display,
 861                             const struct intel_watermark_params *cursor,
 862                             int *display_wm, int *cursor_wm)
 863{
 864        struct intel_crtc *crtc;
 865        const struct drm_display_mode *adjusted_mode;
 866        const struct drm_framebuffer *fb;
 867        int hdisplay, htotal, cpp, clock;
 868        unsigned long line_time_us;
 869        int line_count, line_size;
 870        int small, large;
 871        int entries;
 872
 873        if (!latency_ns) {
 874                *display_wm = *cursor_wm = 0;
 875                return false;
 876        }
 877
 878        crtc = intel_get_crtc_for_plane(dev_priv, plane);
 879        adjusted_mode = &crtc->config->base.adjusted_mode;
 880        fb = crtc->base.primary->state->fb;
 881        clock = adjusted_mode->crtc_clock;
 882        htotal = adjusted_mode->crtc_htotal;
 883        hdisplay = crtc->config->pipe_src_w;
 884        cpp = fb->format->cpp[0];
 885
 886        line_time_us = max(htotal * 1000 / clock, 1);
 887        line_count = (latency_ns / line_time_us + 1000) / 1000;
 888        line_size = hdisplay * cpp;
 889
 890        /* Use the minimum of the small and large buffer method for primary */
 891        small = ((clock * cpp / 1000) * latency_ns) / 1000;
 892        large = line_count * line_size;
 893
 894        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
 895        *display_wm = entries + display->guard_size;
 896
 897        /* calculate the self-refresh watermark for display cursor */
 898        entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
 899        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
 900        *cursor_wm = entries + cursor->guard_size;
 901
 902        return g4x_check_srwm(dev_priv,
 903                              *display_wm, *cursor_wm,
 904                              display, cursor);
 905}
 906
 907#define FW_WM_VLV(value, plane) \
 908        (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
 909
 910static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
 911                                const struct vlv_wm_values *wm)
 912{
 913        enum pipe pipe;
 914
 915        for_each_pipe(dev_priv, pipe) {
 916                trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
 917
 918                I915_WRITE(VLV_DDL(pipe),
 919                           (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
 920                           (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
 921                           (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
 922                           (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
 923        }
 924
 925        /*
 926         * Zero the (unused) WM1 watermarks, and also clear all the
 927         * high order bits so that there are no out of bounds values
 928         * present in the registers during the reprogramming.
 929         */
 930        I915_WRITE(DSPHOWM, 0);
 931        I915_WRITE(DSPHOWM1, 0);
 932        I915_WRITE(DSPFW4, 0);
 933        I915_WRITE(DSPFW5, 0);
 934        I915_WRITE(DSPFW6, 0);
 935
 936        I915_WRITE(DSPFW1,
 937                   FW_WM(wm->sr.plane, SR) |
 938                   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 939                   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 940                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 941        I915_WRITE(DSPFW2,
 942                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
 943                   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
 944                   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
 945        I915_WRITE(DSPFW3,
 946                   FW_WM(wm->sr.cursor, CURSOR_SR));
 947
 948        if (IS_CHERRYVIEW(dev_priv)) {
 949                I915_WRITE(DSPFW7_CHV,
 950                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
 951                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
 952                I915_WRITE(DSPFW8_CHV,
 953                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
 954                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
 955                I915_WRITE(DSPFW9_CHV,
 956                           FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
 957                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
 958                I915_WRITE(DSPHOWM,
 959                           FW_WM(wm->sr.plane >> 9, SR_HI) |
 960                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
 961                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
 962                           FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
 963                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
 964                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
 965                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
 966                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
 967                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
 968                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
 969        } else {
 970                I915_WRITE(DSPFW7,
 971                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
 972                           FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
 973                I915_WRITE(DSPHOWM,
 974                           FW_WM(wm->sr.plane >> 9, SR_HI) |
 975                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
 976                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
 977                           FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
 978                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
 979                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
 980                           FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
 981        }
 982
 983        POSTING_READ(DSPFW1);
 984}
 985
 986#undef FW_WM_VLV
 987
 988/* latency must be in 0.1us units. */
 989static unsigned int vlv_wm_method2(unsigned int pixel_rate,
 990                                   unsigned int pipe_htotal,
 991                                   unsigned int horiz_pixels,
 992                                   unsigned int cpp,
 993                                   unsigned int latency)
 994{
 995        unsigned int ret;
 996
 997        ret = (latency * pixel_rate) / (pipe_htotal * 10000);
 998        ret = (ret + 1) * horiz_pixels * cpp;
 999        ret = DIV_ROUND_UP(ret, 64);
1000
1001        return ret;
1002}
1003
1004static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1005{
1006        /* all latencies in usec */
1007        dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1008
1009        dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1010
1011        if (IS_CHERRYVIEW(dev_priv)) {
1012                dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1013                dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1014
1015                dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1016        }
1017}
1018
1019static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1020                                     const struct intel_plane_state *plane_state,
1021                                     int level)
1022{
1023        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1024        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1025        const struct drm_display_mode *adjusted_mode =
1026                &crtc_state->base.adjusted_mode;
1027        int clock, htotal, cpp, width, wm;
1028
1029        if (dev_priv->wm.pri_latency[level] == 0)
1030                return USHRT_MAX;
1031
1032        if (!plane_state->base.visible)
1033                return 0;
1034
1035        cpp = plane_state->base.fb->format->cpp[0];
1036        clock = adjusted_mode->crtc_clock;
1037        htotal = adjusted_mode->crtc_htotal;
1038        width = crtc_state->pipe_src_w;
1039        if (WARN_ON(htotal == 0))
1040                htotal = 1;
1041
1042        if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1043                /*
1044                 * FIXME the formula gives values that are
1045                 * too big for the cursor FIFO, and hence we
1046                 * would never be able to use cursors. For
1047                 * now just hardcode the watermark.
1048                 */
1049                wm = 63;
1050        } else {
1051                wm = vlv_wm_method2(clock, htotal, width, cpp,
1052                                    dev_priv->wm.pri_latency[level] * 10);
1053        }
1054
1055        return min_t(int, wm, USHRT_MAX);
1056}
1057
1058static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1059{
1060        return (active_planes & (BIT(PLANE_SPRITE0) |
1061                                 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1062}
1063
1064static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1065{
1066        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1067        const struct vlv_pipe_wm *raw =
1068                &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1069        struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1070        unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1071        int num_active_planes = hweight32(active_planes);
1072        const int fifo_size = 511;
1073        int fifo_extra, fifo_left = fifo_size;
1074        int sprite0_fifo_extra = 0;
1075        unsigned int total_rate;
1076        enum plane_id plane_id;
1077
1078        /*
1079         * When enabling sprite0 after sprite1 has already been enabled
1080         * we tend to get an underrun unless sprite0 already has some
1081         * FIFO space allcoated. Hence we always allocate at least one
1082         * cacheline for sprite0 whenever sprite1 is enabled.
1083         *
1084         * All other plane enable sequences appear immune to this problem.
1085         */
1086        if (vlv_need_sprite0_fifo_workaround(active_planes))
1087                sprite0_fifo_extra = 1;
1088
1089        total_rate = raw->plane[PLANE_PRIMARY] +
1090                raw->plane[PLANE_SPRITE0] +
1091                raw->plane[PLANE_SPRITE1] +
1092                sprite0_fifo_extra;
1093
1094        if (total_rate > fifo_size)
1095                return -EINVAL;
1096
1097        if (total_rate == 0)
1098                total_rate = 1;
1099
1100        for_each_plane_id_on_crtc(crtc, plane_id) {
1101                unsigned int rate;
1102
1103                if ((active_planes & BIT(plane_id)) == 0) {
1104                        fifo_state->plane[plane_id] = 0;
1105                        continue;
1106                }
1107
1108                rate = raw->plane[plane_id];
1109                fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1110                fifo_left -= fifo_state->plane[plane_id];
1111        }
1112
1113        fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1114        fifo_left -= sprite0_fifo_extra;
1115
1116        fifo_state->plane[PLANE_CURSOR] = 63;
1117
1118        fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1119
1120        /* spread the remainder evenly */
1121        for_each_plane_id_on_crtc(crtc, plane_id) {
1122                int plane_extra;
1123
1124                if (fifo_left == 0)
1125                        break;
1126
1127                if ((active_planes & BIT(plane_id)) == 0)
1128                        continue;
1129
1130                plane_extra = min(fifo_extra, fifo_left);
1131                fifo_state->plane[plane_id] += plane_extra;
1132                fifo_left -= plane_extra;
1133        }
1134
1135        WARN_ON(active_planes != 0 && fifo_left != 0);
1136
1137        /* give it all to the first plane if none are active */
1138        if (active_planes == 0) {
1139                WARN_ON(fifo_left != fifo_size);
1140                fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1141        }
1142
1143        return 0;
1144}
1145
1146static int vlv_num_wm_levels(struct drm_i915_private *dev_priv)
1147{
1148        return dev_priv->wm.max_level + 1;
1149}
1150
1151/* mark all levels starting from 'level' as invalid */
1152static void vlv_invalidate_wms(struct intel_crtc *crtc,
1153                               struct vlv_wm_state *wm_state, int level)
1154{
1155        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1156
1157        for (; level < vlv_num_wm_levels(dev_priv); level++) {
1158                enum plane_id plane_id;
1159
1160                for_each_plane_id_on_crtc(crtc, plane_id)
1161                        wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1162
1163                wm_state->sr[level].cursor = USHRT_MAX;
1164                wm_state->sr[level].plane = USHRT_MAX;
1165        }
1166}
1167
1168static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1169{
1170        if (wm > fifo_size)
1171                return USHRT_MAX;
1172        else
1173                return fifo_size - wm;
1174}
1175
1176/*
1177 * Starting from 'level' set all higher
1178 * levels to 'value' in the "raw" watermarks.
1179 */
1180static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1181                                 int level, enum plane_id plane_id, u16 value)
1182{
1183        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1184        int num_levels = vlv_num_wm_levels(dev_priv);
1185        bool dirty = false;
1186
1187        for (; level < num_levels; level++) {
1188                struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1189
1190                dirty |= raw->plane[plane_id] != value;
1191                raw->plane[plane_id] = value;
1192        }
1193
1194        return dirty;
1195}
1196
1197static bool vlv_plane_wm_compute(struct intel_crtc_state *crtc_state,
1198                                 const struct intel_plane_state *plane_state)
1199{
1200        struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1201        enum plane_id plane_id = plane->id;
1202        int num_levels = vlv_num_wm_levels(to_i915(plane->base.dev));
1203        int level;
1204        bool dirty = false;
1205
1206        if (!plane_state->base.visible) {
1207                dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1208                goto out;
1209        }
1210
1211        for (level = 0; level < num_levels; level++) {
1212                struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1213                int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1214                int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1215
1216                if (wm > max_wm)
1217                        break;
1218
1219                dirty |= raw->plane[plane_id] != wm;
1220                raw->plane[plane_id] = wm;
1221        }
1222
1223        /* mark all higher levels as invalid */
1224        dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1225
1226out:
1227        if (dirty)
1228                DRM_DEBUG_KMS("%s wms: [0]=%d,[1]=%d,[2]=%d\n",
1229                              plane->base.name,
1230                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1231                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1232                              crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1233
1234        return dirty;
1235}
1236
1237static bool vlv_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1238                                  enum plane_id plane_id, int level)
1239{
1240        const struct vlv_pipe_wm *raw =
1241                &crtc_state->wm.vlv.raw[level];
1242        const struct vlv_fifo_state *fifo_state =
1243                &crtc_state->wm.vlv.fifo_state;
1244
1245        return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1246}
1247
1248static bool vlv_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1249{
1250        return vlv_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1251                vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1252                vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1253                vlv_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1254}
1255
1256static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1257{
1258        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1259        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1260        struct intel_atomic_state *state =
1261                to_intel_atomic_state(crtc_state->base.state);
1262        struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1263        const struct vlv_fifo_state *fifo_state =
1264                &crtc_state->wm.vlv.fifo_state;
1265        int num_active_planes = hweight32(crtc_state->active_planes &
1266                                          ~BIT(PLANE_CURSOR));
1267        bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1268        struct intel_plane_state *plane_state;
1269        struct intel_plane *plane;
1270        enum plane_id plane_id;
1271        int level, ret, i;
1272        unsigned int dirty = 0;
1273
1274        for_each_intel_plane_in_state(state, plane, plane_state, i) {
1275                const struct intel_plane_state *old_plane_state =
1276                        to_intel_plane_state(plane->base.state);
1277
1278                if (plane_state->base.crtc != &crtc->base &&
1279                    old_plane_state->base.crtc != &crtc->base)
1280                        continue;
1281
1282                if (vlv_plane_wm_compute(crtc_state, plane_state))
1283                        dirty |= BIT(plane->id);
1284        }
1285
1286        /*
1287         * DSPARB registers may have been reset due to the
1288         * power well being turned off. Make sure we restore
1289         * them to a consistent state even if no primary/sprite
1290         * planes are initially active.
1291         */
1292        if (needs_modeset)
1293                crtc_state->fifo_changed = true;
1294
1295        if (!dirty)
1296                return 0;
1297
1298        /* cursor changes don't warrant a FIFO recompute */
1299        if (dirty & ~BIT(PLANE_CURSOR)) {
1300                const struct intel_crtc_state *old_crtc_state =
1301                        to_intel_crtc_state(crtc->base.state);
1302                const struct vlv_fifo_state *old_fifo_state =
1303                        &old_crtc_state->wm.vlv.fifo_state;
1304
1305                ret = vlv_compute_fifo(crtc_state);
1306                if (ret)
1307                        return ret;
1308
1309                if (needs_modeset ||
1310                    memcmp(old_fifo_state, fifo_state,
1311                           sizeof(*fifo_state)) != 0)
1312                        crtc_state->fifo_changed = true;
1313        }
1314
1315        /* initially allow all levels */
1316        wm_state->num_levels = vlv_num_wm_levels(dev_priv);
1317        /*
1318         * Note that enabling cxsr with no primary/sprite planes
1319         * enabled can wedge the pipe. Hence we only allow cxsr
1320         * with exactly one enabled primary/sprite plane.
1321         */
1322        wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1323
1324        for (level = 0; level < wm_state->num_levels; level++) {
1325                const struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1326                const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1327
1328                if (!vlv_crtc_wm_is_valid(crtc_state, level))
1329                        break;
1330
1331                for_each_plane_id_on_crtc(crtc, plane_id) {
1332                        wm_state->wm[level].plane[plane_id] =
1333                                vlv_invert_wm_value(raw->plane[plane_id],
1334                                                    fifo_state->plane[plane_id]);
1335                }
1336
1337                wm_state->sr[level].plane =
1338                        vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1339                                                 raw->plane[PLANE_SPRITE0],
1340                                                 raw->plane[PLANE_SPRITE1]),
1341                                            sr_fifo_size);
1342
1343                wm_state->sr[level].cursor =
1344                        vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1345                                            63);
1346        }
1347
1348        if (level == 0)
1349                return -EINVAL;
1350
1351        /* limit to only levels we can actually handle */
1352        wm_state->num_levels = level;
1353
1354        /* invalidate the higher levels */
1355        vlv_invalidate_wms(crtc, wm_state, level);
1356
1357        return 0;
1358}
1359
1360#define VLV_FIFO(plane, value) \
1361        (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1362
1363static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1364                                   struct intel_crtc_state *crtc_state)
1365{
1366        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1367        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1368        const struct vlv_fifo_state *fifo_state =
1369                &crtc_state->wm.vlv.fifo_state;
1370        int sprite0_start, sprite1_start, fifo_size;
1371
1372        if (!crtc_state->fifo_changed)
1373                return;
1374
1375        sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1376        sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1377        fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1378
1379        WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1380        WARN_ON(fifo_size != 511);
1381
1382        trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1383
1384        /*
1385         * uncore.lock serves a double purpose here. It allows us to
1386         * use the less expensive I915_{READ,WRITE}_FW() functions, and
1387         * it protects the DSPARB registers from getting clobbered by
1388         * parallel updates from multiple pipes.
1389         *
1390         * intel_pipe_update_start() has already disabled interrupts
1391         * for us, so a plain spin_lock() is sufficient here.
1392         */
1393        spin_lock(&dev_priv->uncore.lock);
1394
1395        switch (crtc->pipe) {
1396                uint32_t dsparb, dsparb2, dsparb3;
1397        case PIPE_A:
1398                dsparb = I915_READ_FW(DSPARB);
1399                dsparb2 = I915_READ_FW(DSPARB2);
1400
1401                dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1402                            VLV_FIFO(SPRITEB, 0xff));
1403                dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1404                           VLV_FIFO(SPRITEB, sprite1_start));
1405
1406                dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1407                             VLV_FIFO(SPRITEB_HI, 0x1));
1408                dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1409                           VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1410
1411                I915_WRITE_FW(DSPARB, dsparb);
1412                I915_WRITE_FW(DSPARB2, dsparb2);
1413                break;
1414        case PIPE_B:
1415                dsparb = I915_READ_FW(DSPARB);
1416                dsparb2 = I915_READ_FW(DSPARB2);
1417
1418                dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1419                            VLV_FIFO(SPRITED, 0xff));
1420                dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1421                           VLV_FIFO(SPRITED, sprite1_start));
1422
1423                dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1424                             VLV_FIFO(SPRITED_HI, 0xff));
1425                dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1426                           VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1427
1428                I915_WRITE_FW(DSPARB, dsparb);
1429                I915_WRITE_FW(DSPARB2, dsparb2);
1430                break;
1431        case PIPE_C:
1432                dsparb3 = I915_READ_FW(DSPARB3);
1433                dsparb2 = I915_READ_FW(DSPARB2);
1434
1435                dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1436                             VLV_FIFO(SPRITEF, 0xff));
1437                dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1438                            VLV_FIFO(SPRITEF, sprite1_start));
1439
1440                dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1441                             VLV_FIFO(SPRITEF_HI, 0xff));
1442                dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1443                           VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1444
1445                I915_WRITE_FW(DSPARB3, dsparb3);
1446                I915_WRITE_FW(DSPARB2, dsparb2);
1447                break;
1448        default:
1449                break;
1450        }
1451
1452        POSTING_READ_FW(DSPARB);
1453
1454        spin_unlock(&dev_priv->uncore.lock);
1455}
1456
1457#undef VLV_FIFO
1458
1459static int vlv_compute_intermediate_wm(struct drm_device *dev,
1460                                       struct intel_crtc *crtc,
1461                                       struct intel_crtc_state *crtc_state)
1462{
1463        struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
1464        const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
1465        const struct vlv_wm_state *active = &crtc->wm.active.vlv;
1466        int level;
1467
1468        intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1469        intermediate->cxsr = optimal->cxsr && active->cxsr &&
1470                !crtc_state->disable_cxsr;
1471
1472        for (level = 0; level < intermediate->num_levels; level++) {
1473                enum plane_id plane_id;
1474
1475                for_each_plane_id_on_crtc(crtc, plane_id) {
1476                        intermediate->wm[level].plane[plane_id] =
1477                                min(optimal->wm[level].plane[plane_id],
1478                                    active->wm[level].plane[plane_id]);
1479                }
1480
1481                intermediate->sr[level].plane = min(optimal->sr[level].plane,
1482                                                    active->sr[level].plane);
1483                intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
1484                                                     active->sr[level].cursor);
1485        }
1486
1487        vlv_invalidate_wms(crtc, intermediate, level);
1488
1489        /*
1490         * If our intermediate WM are identical to the final WM, then we can
1491         * omit the post-vblank programming; only update if it's different.
1492         */
1493        if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1494                crtc_state->wm.need_postvbl_update = true;
1495
1496        return 0;
1497}
1498
1499static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1500                         struct vlv_wm_values *wm)
1501{
1502        struct intel_crtc *crtc;
1503        int num_active_crtcs = 0;
1504
1505        wm->level = dev_priv->wm.max_level;
1506        wm->cxsr = true;
1507
1508        for_each_intel_crtc(&dev_priv->drm, crtc) {
1509                const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1510
1511                if (!crtc->active)
1512                        continue;
1513
1514                if (!wm_state->cxsr)
1515                        wm->cxsr = false;
1516
1517                num_active_crtcs++;
1518                wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1519        }
1520
1521        if (num_active_crtcs != 1)
1522                wm->cxsr = false;
1523
1524        if (num_active_crtcs > 1)
1525                wm->level = VLV_WM_LEVEL_PM2;
1526
1527        for_each_intel_crtc(&dev_priv->drm, crtc) {
1528                const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1529                enum pipe pipe = crtc->pipe;
1530
1531                wm->pipe[pipe] = wm_state->wm[wm->level];
1532                if (crtc->active && wm->cxsr)
1533                        wm->sr = wm_state->sr[wm->level];
1534
1535                wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
1536                wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
1537                wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
1538                wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1539        }
1540}
1541
1542static bool is_disabling(int old, int new, int threshold)
1543{
1544        return old >= threshold && new < threshold;
1545}
1546
1547static bool is_enabling(int old, int new, int threshold)
1548{
1549        return old < threshold && new >= threshold;
1550}
1551
1552static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1553{
1554        struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
1555        struct vlv_wm_values new_wm = {};
1556
1557        vlv_merge_wm(dev_priv, &new_wm);
1558
1559        if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1560                return;
1561
1562        if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1563                chv_set_memory_dvfs(dev_priv, false);
1564
1565        if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1566                chv_set_memory_pm5(dev_priv, false);
1567
1568        if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1569                _intel_set_memory_cxsr(dev_priv, false);
1570
1571        vlv_write_wm_values(dev_priv, &new_wm);
1572
1573        if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1574                _intel_set_memory_cxsr(dev_priv, true);
1575
1576        if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1577                chv_set_memory_pm5(dev_priv, true);
1578
1579        if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1580                chv_set_memory_dvfs(dev_priv, true);
1581
1582        *old_wm = new_wm;
1583}
1584
1585static void vlv_initial_watermarks(struct intel_atomic_state *state,
1586                                   struct intel_crtc_state *crtc_state)
1587{
1588        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1589        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1590
1591        mutex_lock(&dev_priv->wm.wm_mutex);
1592        crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
1593        vlv_program_watermarks(dev_priv);
1594        mutex_unlock(&dev_priv->wm.wm_mutex);
1595}
1596
1597static void vlv_optimize_watermarks(struct intel_atomic_state *state,
1598                                    struct intel_crtc_state *crtc_state)
1599{
1600        struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1601        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1602
1603        if (!crtc_state->wm.need_postvbl_update)
1604                return;
1605
1606        mutex_lock(&dev_priv->wm.wm_mutex);
1607        intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
1608        vlv_program_watermarks(dev_priv);
1609        mutex_unlock(&dev_priv->wm.wm_mutex);
1610}
1611
1612#define single_plane_enabled(mask) is_power_of_2(mask)
1613
1614static void g4x_update_wm(struct intel_crtc *crtc)
1615{
1616        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1617        static const int sr_latency_ns = 12000;
1618        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1619        int plane_sr, cursor_sr;
1620        unsigned int enabled = 0;
1621        bool cxsr_enabled;
1622
1623        if (g4x_compute_wm0(dev_priv, PIPE_A,
1624                            &g4x_wm_info, pessimal_latency_ns,
1625                            &g4x_cursor_wm_info, pessimal_latency_ns,
1626                            &planea_wm, &cursora_wm))
1627                enabled |= 1 << PIPE_A;
1628
1629        if (g4x_compute_wm0(dev_priv, PIPE_B,
1630                            &g4x_wm_info, pessimal_latency_ns,
1631                            &g4x_cursor_wm_info, pessimal_latency_ns,
1632                            &planeb_wm, &cursorb_wm))
1633                enabled |= 1 << PIPE_B;
1634
1635        if (single_plane_enabled(enabled) &&
1636            g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1637                             sr_latency_ns,
1638                             &g4x_wm_info,
1639                             &g4x_cursor_wm_info,
1640                             &plane_sr, &cursor_sr)) {
1641                cxsr_enabled = true;
1642        } else {
1643                cxsr_enabled = false;
1644                intel_set_memory_cxsr(dev_priv, false);
1645                plane_sr = cursor_sr = 0;
1646        }
1647
1648        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1649                      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1650                      planea_wm, cursora_wm,
1651                      planeb_wm, cursorb_wm,
1652                      plane_sr, cursor_sr);
1653
1654        I915_WRITE(DSPFW1,
1655                   FW_WM(plane_sr, SR) |
1656                   FW_WM(cursorb_wm, CURSORB) |
1657                   FW_WM(planeb_wm, PLANEB) |
1658                   FW_WM(planea_wm, PLANEA));
1659        I915_WRITE(DSPFW2,
1660                   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1661                   FW_WM(cursora_wm, CURSORA));
1662        /* HPLL off in SR has some issues on G4x... disable it */
1663        I915_WRITE(DSPFW3,
1664                   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1665                   FW_WM(cursor_sr, CURSOR_SR));
1666
1667        if (cxsr_enabled)
1668                intel_set_memory_cxsr(dev_priv, true);
1669}
1670
1671static void i965_update_wm(struct intel_crtc *unused_crtc)
1672{
1673        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1674        struct intel_crtc *crtc;
1675        int srwm = 1;
1676        int cursor_sr = 16;
1677        bool cxsr_enabled;
1678
1679        /* Calc sr entries for one plane configs */
1680        crtc = single_enabled_crtc(dev_priv);
1681        if (crtc) {
1682                /* self-refresh has much higher latency */
1683                static const int sr_latency_ns = 12000;
1684                const struct drm_display_mode *adjusted_mode =
1685                        &crtc->config->base.adjusted_mode;
1686                const struct drm_framebuffer *fb =
1687                        crtc->base.primary->state->fb;
1688                int clock = adjusted_mode->crtc_clock;
1689                int htotal = adjusted_mode->crtc_htotal;
1690                int hdisplay = crtc->config->pipe_src_w;
1691                int cpp = fb->format->cpp[0];
1692                unsigned long line_time_us;
1693                int entries;
1694
1695                line_time_us = max(htotal * 1000 / clock, 1);
1696
1697                /* Use ns/us then divide to preserve precision */
1698                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1699                        cpp * hdisplay;
1700                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1701                srwm = I965_FIFO_SIZE - entries;
1702                if (srwm < 0)
1703                        srwm = 1;
1704                srwm &= 0x1ff;
1705                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1706                              entries, srwm);
1707
1708                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1709                        cpp * crtc->base.cursor->state->crtc_w;
1710                entries = DIV_ROUND_UP(entries,
1711                                          i965_cursor_wm_info.cacheline_size);
1712                cursor_sr = i965_cursor_wm_info.fifo_size -
1713                        (entries + i965_cursor_wm_info.guard_size);
1714
1715                if (cursor_sr > i965_cursor_wm_info.max_wm)
1716                        cursor_sr = i965_cursor_wm_info.max_wm;
1717
1718                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1719                              "cursor %d\n", srwm, cursor_sr);
1720
1721                cxsr_enabled = true;
1722        } else {
1723                cxsr_enabled = false;
1724                /* Turn off self refresh if both pipes are enabled */
1725                intel_set_memory_cxsr(dev_priv, false);
1726        }
1727
1728        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1729                      srwm);
1730
1731        /* 965 has limitations... */
1732        I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1733                   FW_WM(8, CURSORB) |
1734                   FW_WM(8, PLANEB) |
1735                   FW_WM(8, PLANEA));
1736        I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1737                   FW_WM(8, PLANEC_OLD));
1738        /* update cursor SR watermark */
1739        I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1740
1741        if (cxsr_enabled)
1742                intel_set_memory_cxsr(dev_priv, true);
1743}
1744
1745#undef FW_WM
1746
1747static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1748{
1749        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1750        const struct intel_watermark_params *wm_info;
1751        uint32_t fwater_lo;
1752        uint32_t fwater_hi;
1753        int cwm, srwm = 1;
1754        int fifo_size;
1755        int planea_wm, planeb_wm;
1756        struct intel_crtc *crtc, *enabled = NULL;
1757
1758        if (IS_I945GM(dev_priv))
1759                wm_info = &i945_wm_info;
1760        else if (!IS_GEN2(dev_priv))
1761                wm_info = &i915_wm_info;
1762        else
1763                wm_info = &i830_a_wm_info;
1764
1765        fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1766        crtc = intel_get_crtc_for_plane(dev_priv, 0);
1767        if (intel_crtc_active(crtc)) {
1768                const struct drm_display_mode *adjusted_mode =
1769                        &crtc->config->base.adjusted_mode;
1770                const struct drm_framebuffer *fb =
1771                        crtc->base.primary->state->fb;
1772                int cpp;
1773
1774                if (IS_GEN2(dev_priv))
1775                        cpp = 4;
1776                else
1777                        cpp = fb->format->cpp[0];
1778
1779                planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1780                                               wm_info, fifo_size, cpp,
1781                                               pessimal_latency_ns);
1782                enabled = crtc;
1783        } else {
1784                planea_wm = fifo_size - wm_info->guard_size;
1785                if (planea_wm > (long)wm_info->max_wm)
1786                        planea_wm = wm_info->max_wm;
1787        }
1788
1789        if (IS_GEN2(dev_priv))
1790                wm_info = &i830_bc_wm_info;
1791
1792        fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1793        crtc = intel_get_crtc_for_plane(dev_priv, 1);
1794        if (intel_crtc_active(crtc)) {
1795                const struct drm_display_mode *adjusted_mode =
1796                        &crtc->config->base.adjusted_mode;
1797                const struct drm_framebuffer *fb =
1798                        crtc->base.primary->state->fb;
1799                int cpp;
1800
1801                if (IS_GEN2(dev_priv))
1802                        cpp = 4;
1803                else
1804                        cpp = fb->format->cpp[0];
1805
1806                planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1807                                               wm_info, fifo_size, cpp,
1808                                               pessimal_latency_ns);
1809                if (enabled == NULL)
1810                        enabled = crtc;
1811                else
1812                        enabled = NULL;
1813        } else {
1814                planeb_wm = fifo_size - wm_info->guard_size;
1815                if (planeb_wm > (long)wm_info->max_wm)
1816                        planeb_wm = wm_info->max_wm;
1817        }
1818
1819        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1820
1821        if (IS_I915GM(dev_priv) && enabled) {
1822                struct drm_i915_gem_object *obj;
1823
1824                obj = intel_fb_obj(enabled->base.primary->state->fb);
1825
1826                /* self-refresh seems busted with untiled */
1827                if (!i915_gem_object_is_tiled(obj))
1828                        enabled = NULL;
1829        }
1830
1831        /*
1832         * Overlay gets an aggressive default since video jitter is bad.
1833         */
1834        cwm = 2;
1835
1836        /* Play safe and disable self-refresh before adjusting watermarks. */
1837        intel_set_memory_cxsr(dev_priv, false);
1838
1839        /* Calc sr entries for one plane configs */
1840        if (HAS_FW_BLC(dev_priv) && enabled) {
1841                /* self-refresh has much higher latency */
1842                static const int sr_latency_ns = 6000;
1843                const struct drm_display_mode *adjusted_mode =
1844                        &enabled->config->base.adjusted_mode;
1845                const struct drm_framebuffer *fb =
1846                        enabled->base.primary->state->fb;
1847                int clock = adjusted_mode->crtc_clock;
1848                int htotal = adjusted_mode->crtc_htotal;
1849                int hdisplay = enabled->config->pipe_src_w;
1850                int cpp;
1851                unsigned long line_time_us;
1852                int entries;
1853
1854                if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1855                        cpp = 4;
1856                else
1857                        cpp = fb->format->cpp[0];
1858
1859                line_time_us = max(htotal * 1000 / clock, 1);
1860
1861                /* Use ns/us then divide to preserve precision */
1862                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1863                        cpp * hdisplay;
1864                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1865                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1866                srwm = wm_info->fifo_size - entries;
1867                if (srwm < 0)
1868                        srwm = 1;
1869
1870                if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1871                        I915_WRITE(FW_BLC_SELF,
1872                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1873                else
1874                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1875        }
1876
1877        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1878                      planea_wm, planeb_wm, cwm, srwm);
1879
1880        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1881        fwater_hi = (cwm & 0x1f);
1882
1883        /* Set request length to 8 cachelines per fetch */
1884        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1885        fwater_hi = fwater_hi | (1 << 8);
1886
1887        I915_WRITE(FW_BLC, fwater_lo);
1888        I915_WRITE(FW_BLC2, fwater_hi);
1889
1890        if (enabled)
1891                intel_set_memory_cxsr(dev_priv, true);
1892}
1893
1894static void i845_update_wm(struct intel_crtc *unused_crtc)
1895{
1896        struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1897        struct intel_crtc *crtc;
1898        const struct drm_display_mode *adjusted_mode;
1899        uint32_t fwater_lo;
1900        int planea_wm;
1901
1902        crtc = single_enabled_crtc(dev_priv);
1903        if (crtc == NULL)
1904                return;
1905
1906        adjusted_mode = &crtc->config->base.adjusted_mode;
1907        planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1908                                       &i845_wm_info,
1909                                       dev_priv->display.get_fifo_size(dev_priv, 0),
1910                                       4, pessimal_latency_ns);
1911        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1912        fwater_lo |= (3<<8) | planea_wm;
1913
1914        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1915
1916        I915_WRITE(FW_BLC, fwater_lo);
1917}
1918
1919/* latency must be in 0.1us units. */
1920static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1921{
1922        uint64_t ret;
1923
1924        if (WARN(latency == 0, "Latency value missing\n"))
1925                return UINT_MAX;
1926
1927        ret = (uint64_t) pixel_rate * cpp * latency;
1928        ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1929
1930        return ret;
1931}
1932
1933/* latency must be in 0.1us units. */
1934static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1935                               uint32_t horiz_pixels, uint8_t cpp,
1936                               uint32_t latency)
1937{
1938        uint32_t ret;
1939
1940        if (WARN(latency == 0, "Latency value missing\n"))
1941                return UINT_MAX;
1942        if (WARN_ON(!pipe_htotal))
1943                return UINT_MAX;
1944
1945        ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1946        ret = (ret + 1) * horiz_pixels * cpp;
1947        ret = DIV_ROUND_UP(ret, 64) + 2;
1948        return ret;
1949}
1950
1951static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1952                           uint8_t cpp)
1953{
1954        /*
1955         * Neither of these should be possible since this function shouldn't be
1956         * called if the CRTC is off or the plane is invisible.  But let's be
1957         * extra paranoid to avoid a potential divide-by-zero if we screw up
1958         * elsewhere in the driver.
1959         */
1960        if (WARN_ON(!cpp))
1961                return 0;
1962        if (WARN_ON(!horiz_pixels))
1963                return 0;
1964
1965        return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1966}
1967
1968struct ilk_wm_maximums {
1969        uint16_t pri;
1970        uint16_t spr;
1971        uint16_t cur;
1972        uint16_t fbc;
1973};
1974
1975/*
1976 * For both WM_PIPE and WM_LP.
1977 * mem_value must be in 0.1us units.
1978 */
1979static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1980                                   const struct intel_plane_state *pstate,
1981                                   uint32_t mem_value,
1982                                   bool is_lp)
1983{
1984        uint32_t method1, method2;
1985        int cpp;
1986
1987        if (!intel_wm_plane_visible(cstate, pstate))
1988                return 0;
1989
1990        cpp = pstate->base.fb->format->cpp[0];
1991
1992        method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1993
1994        if (!is_lp)
1995                return method1;
1996
1997        method2 = ilk_wm_method2(cstate->pixel_rate,
1998                                 cstate->base.adjusted_mode.crtc_htotal,
1999                                 drm_rect_width(&pstate->base.dst),
2000                                 cpp, mem_value);
2001
2002        return min(method1, method2);
2003}
2004
2005/*
2006 * For both WM_PIPE and WM_LP.
2007 * mem_value must be in 0.1us units.
2008 */
2009static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2010                                   const struct intel_plane_state *pstate,
2011                                   uint32_t mem_value)
2012{
2013        uint32_t method1, method2;
2014        int cpp;
2015
2016        if (!intel_wm_plane_visible(cstate, pstate))
2017                return 0;
2018
2019        cpp = pstate->base.fb->format->cpp[0];
2020
2021        method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2022        method2 = ilk_wm_method2(cstate->pixel_rate,
2023                                 cstate->base.adjusted_mode.crtc_htotal,
2024                                 drm_rect_width(&pstate->base.dst),
2025                                 cpp, mem_value);
2026        return min(method1, method2);
2027}
2028
2029/*
2030 * For both WM_PIPE and WM_LP.
2031 * mem_value must be in 0.1us units.
2032 */
2033static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2034                                   const struct intel_plane_state *pstate,
2035                                   uint32_t mem_value)
2036{
2037        int cpp;
2038
2039        if (!intel_wm_plane_visible(cstate, pstate))
2040                return 0;
2041
2042        cpp = pstate->base.fb->format->cpp[0];
2043
2044        return ilk_wm_method2(cstate->pixel_rate,
2045                              cstate->base.adjusted_mode.crtc_htotal,
2046                              pstate->base.crtc_w, cpp, mem_value);
2047}
2048
2049/* Only for WM_LP. */
2050static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2051                                   const struct intel_plane_state *pstate,
2052                                   uint32_t pri_val)
2053{
2054        int cpp;
2055
2056        if (!intel_wm_plane_visible(cstate, pstate))
2057                return 0;
2058
2059        cpp = pstate->base.fb->format->cpp[0];
2060
2061        return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2062}
2063
2064static unsigned int
2065ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2066{
2067        if (INTEL_GEN(dev_priv) >= 8)
2068                return 3072;
2069        else if (INTEL_GEN(dev_priv) >= 7)
2070                return 768;
2071        else
2072                return 512;
2073}
2074
2075static unsigned int
2076ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2077                     int level, bool is_sprite)
2078{
2079        if (INTEL_GEN(dev_priv) >= 8)
2080                /* BDW primary/sprite plane watermarks */
2081                return level == 0 ? 255 : 2047;
2082        else if (INTEL_GEN(dev_priv) >= 7)
2083                /* IVB/HSW primary/sprite plane watermarks */
2084                return level == 0 ? 127 : 1023;
2085        else if (!is_sprite)
2086                /* ILK/SNB primary plane watermarks */
2087                return level == 0 ? 127 : 511;
2088        else
2089                /* ILK/SNB sprite plane watermarks */
2090                return level == 0 ? 63 : 255;
2091}
2092
2093static unsigned int
2094ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2095{
2096        if (INTEL_GEN(dev_priv) >= 7)
2097                return level == 0 ? 63 : 255;
2098        else
2099                return level == 0 ? 31 : 63;
2100}
2101
2102static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2103{
2104        if (INTEL_GEN(dev_priv) >= 8)
2105                return 31;
2106        else
2107                return 15;
2108}
2109
2110/* Calculate the maximum primary/sprite plane watermark */
2111static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2112                                     int level,
2113                                     const struct intel_wm_config *config,
2114                                     enum intel_ddb_partitioning ddb_partitioning,
2115                                     bool is_sprite)
2116{
2117        struct drm_i915_private *dev_priv = to_i915(dev);
2118        unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2119
2120        /* if sprites aren't enabled, sprites get nothing */
2121        if (is_sprite && !config->sprites_enabled)
2122                return 0;
2123
2124        /* HSW allows LP1+ watermarks even with multiple pipes */
2125        if (level == 0 || config->num_pipes_active > 1) {
2126                fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2127
2128                /*
2129                 * For some reason the non self refresh
2130                 * FIFO size is only half of the self
2131                 * refresh FIFO size on ILK/SNB.
2132                 */
2133                if (INTEL_GEN(dev_priv) <= 6)
2134                        fifo_size /= 2;
2135        }
2136
2137        if (config->sprites_enabled) {
2138                /* level 0 is always calculated with 1:1 split */
2139                if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2140                        if (is_sprite)
2141                                fifo_size *= 5;
2142                        fifo_size /= 6;
2143                } else {
2144                        fifo_size /= 2;
2145                }
2146        }
2147
2148        /* clamp to max that the registers can hold */
2149        return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2150}
2151
2152/* Calculate the maximum cursor plane watermark */
2153static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2154                                      int level,
2155                                      const struct intel_wm_config *config)
2156{
2157        /* HSW LP1+ watermarks w/ multiple pipes */
2158        if (level > 0 && config->num_pipes_active > 1)
2159                return 64;
2160
2161        /* otherwise just report max that registers can hold */
2162        return ilk_cursor_wm_reg_max(to_i915(dev), level);
2163}
2164
2165static void ilk_compute_wm_maximums(const struct drm_device *dev,
2166                                    int level,
2167                                    const struct intel_wm_config *config,
2168                                    enum intel_ddb_partitioning ddb_partitioning,
2169                                    struct ilk_wm_maximums *max)
2170{
2171        max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2172        max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2173        max->cur = ilk_cursor_wm_max(dev, level, config);
2174        max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2175}
2176
2177static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2178                                        int level,
2179                                        struct ilk_wm_maximums *max)
2180{
2181        max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2182        max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2183        max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2184        max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2185}
2186
2187static bool ilk_validate_wm_level(int level,
2188                                  const struct ilk_wm_maximums *max,
2189                                  struct intel_wm_level *result)
2190{
2191        bool ret;
2192
2193        /* already determined to be invalid? */
2194        if (!result->enable)
2195                return false;
2196
2197        result->enable = result->pri_val <= max->pri &&
2198                         result->spr_val <= max->spr &&
2199                         result->cur_val <= max->cur;
2200
2201        ret = result->enable;
2202
2203        /*
2204         * HACK until we can pre-compute everything,
2205         * and thus fail gracefully if LP0 watermarks
2206         * are exceeded...
2207         */
2208        if (level == 0 && !result->enable) {
2209                if (result->pri_val > max->pri)
2210                        DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2211                                      level, result->pri_val, max->pri);
2212                if (result->spr_val > max->spr)
2213                        DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2214                                      level, result->spr_val, max->spr);
2215                if (result->cur_val > max->cur)
2216                        DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2217                                      level, result->cur_val, max->cur);
2218
2219                result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2220                result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2221                result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2222                result->enable = true;
2223        }
2224
2225        return ret;
2226}
2227
2228static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2229                                 const struct intel_crtc *intel_crtc,
2230                                 int level,
2231                                 struct intel_crtc_state *cstate,
2232                                 struct intel_plane_state *pristate,
2233                                 struct intel_plane_state *sprstate,
2234                                 struct intel_plane_state *curstate,
2235                                 struct intel_wm_level *result)
2236{
2237        uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2238        uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2239        uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2240
2241        /* WM1+ latency values stored in 0.5us units */
2242        if (level > 0) {
2243                pri_latency *= 5;
2244                spr_latency *= 5;
2245                cur_latency *= 5;
2246        }
2247
2248        if (pristate) {
2249                result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2250                                                     pri_latency, level);
2251                result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2252        }
2253
2254        if (sprstate)
2255                result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2256
2257        if (curstate)
2258                result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2259
2260        result->enable = true;
2261}
2262
2263static uint32_t
2264hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2265{
2266        const struct intel_atomic_state *intel_state =
2267                to_intel_atomic_state(cstate->base.state);
2268        const struct drm_display_mode *adjusted_mode =
2269                &cstate->base.adjusted_mode;
2270        u32 linetime, ips_linetime;
2271
2272        if (!cstate->base.active)
2273                return 0;
2274        if (WARN_ON(adjusted_mode->crtc_clock == 0))
2275                return 0;
2276        if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2277                return 0;
2278
2279        /* The WM are computed with base on how long it takes to fill a single
2280         * row at the given clock rate, multiplied by 8.
2281         * */
2282        linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2283                                     adjusted_mode->crtc_clock);
2284        ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2285                                         intel_state->cdclk.logical.cdclk);
2286
2287        return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2288               PIPE_WM_LINETIME_TIME(linetime);
2289}
2290
2291static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2292                                  uint16_t wm[8])
2293{
2294        if (IS_GEN9(dev_priv)) {
2295                uint32_t val;
2296                int ret, i;
2297                int level, max_level = ilk_wm_max_level(dev_priv);
2298
2299                /* read the first set of memory latencies[0:3] */
2300                val = 0; /* data0 to be programmed to 0 for first set */
2301                mutex_lock(&dev_priv->rps.hw_lock);
2302                ret = sandybridge_pcode_read(dev_priv,
2303                                             GEN9_PCODE_READ_MEM_LATENCY,
2304                                             &val);
2305                mutex_unlock(&dev_priv->rps.hw_lock);
2306
2307                if (ret) {
2308                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2309                        return;
2310                }
2311
2312                wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2313                wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2314                                GEN9_MEM_LATENCY_LEVEL_MASK;
2315                wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2316                                GEN9_MEM_LATENCY_LEVEL_MASK;
2317                wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2318                                GEN9_MEM_LATENCY_LEVEL_MASK;
2319
2320                /* read the second set of memory latencies[4:7] */
2321                val = 1; /* data0 to be programmed to 1 for second set */
2322                mutex_lock(&dev_priv->rps.hw_lock);
2323                ret = sandybridge_pcode_read(dev_priv,
2324                                             GEN9_PCODE_READ_MEM_LATENCY,
2325                                             &val);
2326                mutex_unlock(&dev_priv->rps.hw_lock);
2327                if (ret) {
2328                        DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2329                        return;
2330                }
2331
2332                wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2333                wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2334                                GEN9_MEM_LATENCY_LEVEL_MASK;
2335                wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2336                                GEN9_MEM_LATENCY_LEVEL_MASK;
2337                wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2338                                GEN9_MEM_LATENCY_LEVEL_MASK;
2339
2340                /*
2341                 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2342                 * need to be disabled. We make sure to sanitize the values out
2343                 * of the punit to satisfy this requirement.
2344                 */
2345                for (level = 1; level <= max_level; level++) {
2346                        if (wm[level] == 0) {
2347                                for (i = level + 1; i <= max_level; i++)
2348                                        wm[i] = 0;
2349                                break;
2350                        }
2351                }
2352
2353                /*
2354                 * WaWmMemoryReadLatency:skl,glk
2355                 *
2356                 * punit doesn't take into account the read latency so we need
2357                 * to add 2us to the various latency levels we retrieve from the
2358                 * punit when level 0 response data us 0us.
2359                 */
2360                if (wm[0] == 0) {
2361                        wm[0] += 2;
2362                        for (level = 1; level <= max_level; level++) {
2363                                if (wm[level] == 0)
2364                                        break;
2365                                wm[level] += 2;
2366                        }
2367                }
2368
2369        } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2370                uint64_t sskpd = I915_READ64(MCH_SSKPD);
2371
2372                wm[0] = (sskpd >> 56) & 0xFF;
2373                if (wm[0] == 0)
2374                        wm[0] = sskpd & 0xF;
2375                wm[1] = (sskpd >> 4) & 0xFF;
2376                wm[2] = (sskpd >> 12) & 0xFF;
2377                wm[3] = (sskpd >> 20) & 0x1FF;
2378                wm[4] = (sskpd >> 32) & 0x1FF;
2379        } else if (INTEL_GEN(dev_priv) >= 6) {
2380                uint32_t sskpd = I915_READ(MCH_SSKPD);
2381
2382                wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2383                wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2384                wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2385                wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2386        } else if (INTEL_GEN(dev_priv) >= 5) {
2387                uint32_t mltr = I915_READ(MLTR_ILK);
2388
2389                /* ILK primary LP0 latency is 700 ns */
2390                wm[0] = 7;
2391                wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2392                wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2393        }
2394}
2395
2396static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2397                                       uint16_t wm[5])
2398{
2399        /* ILK sprite LP0 latency is 1300 ns */
2400        if (IS_GEN5(dev_priv))
2401                wm[0] = 13;
2402}
2403
2404static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2405                                       uint16_t wm[5])
2406{
2407        /* ILK cursor LP0 latency is 1300 ns */
2408        if (IS_GEN5(dev_priv))
2409                wm[0] = 13;
2410
2411        /* WaDoubleCursorLP3Latency:ivb */
2412        if (IS_IVYBRIDGE(dev_priv))
2413                wm[3] *= 2;
2414}
2415
2416int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2417{
2418        /* how many WM levels are we expecting */
2419        if (INTEL_GEN(dev_priv) >= 9)
2420                return 7;
2421        else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2422                return 4;
2423        else if (INTEL_GEN(dev_priv) >= 6)
2424                return 3;
2425        else
2426                return 2;
2427}
2428
2429static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2430                                   const char *name,
2431                                   const uint16_t wm[8])
2432{
2433        int level, max_level = ilk_wm_max_level(dev_priv);
2434
2435        for (level = 0; level <= max_level; level++) {
2436                unsigned int latency = wm[level];
2437
2438                if (latency == 0) {
2439                        DRM_ERROR("%s WM%d latency not provided\n",
2440                                  name, level);
2441                        continue;
2442                }
2443
2444                /*
2445                 * - latencies are in us on gen9.
2446                 * - before then, WM1+ latency values are in 0.5us units
2447                 */
2448                if (IS_GEN9(dev_priv))
2449                        latency *= 10;
2450                else if (level > 0)
2451                        latency *= 5;
2452
2453                DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2454                              name, level, wm[level],
2455                              latency / 10, latency % 10);
2456        }
2457}
2458
2459static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2460                                    uint16_t wm[5], uint16_t min)
2461{
2462        int level, max_level = ilk_wm_max_level(dev_priv);
2463
2464        if (wm[0] >= min)
2465                return false;
2466
2467        wm[0] = max(wm[0], min);
2468        for (level = 1; level <= max_level; level++)
2469                wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2470
2471        return true;
2472}
2473
2474static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2475{
2476        bool changed;
2477
2478        /*
2479         * The BIOS provided WM memory latency values are often
2480         * inadequate for high resolution displays. Adjust them.
2481         */
2482        changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2483                ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2484                ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2485
2486        if (!changed)
2487                return;
2488
2489        DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2490        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2491        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2492        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2493}
2494
2495static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2496{
2497        intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2498
2499        memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2500               sizeof(dev_priv->wm.pri_latency));
2501        memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2502               sizeof(dev_priv->wm.pri_latency));
2503
2504        intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2505        intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2506
2507        intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2508        intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2509        intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2510
2511        if (IS_GEN6(dev_priv))
2512                snb_wm_latency_quirk(dev_priv);
2513}
2514
2515static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2516{
2517        intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2518        intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2519}
2520
2521static bool ilk_validate_pipe_wm(struct drm_device *dev,
2522                                 struct intel_pipe_wm *pipe_wm)
2523{
2524        /* LP0 watermark maximums depend on this pipe alone */
2525        const struct intel_wm_config config = {
2526                .num_pipes_active = 1,
2527                .sprites_enabled = pipe_wm->sprites_enabled,
2528                .sprites_scaled = pipe_wm->sprites_scaled,
2529        };
2530        struct ilk_wm_maximums max;
2531
2532        /* LP0 watermarks always use 1/2 DDB partitioning */
2533        ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2534
2535        /* At least LP0 must be valid */
2536        if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2537                DRM_DEBUG_KMS("LP0 watermark invalid\n");
2538                return false;
2539        }
2540
2541        return true;
2542}
2543
2544/* Compute new watermarks for the pipe */
2545static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2546{
2547        struct drm_atomic_state *state = cstate->base.state;
2548        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2549        struct intel_pipe_wm *pipe_wm;
2550        struct drm_device *dev = state->dev;
2551        const struct drm_i915_private *dev_priv = to_i915(dev);
2552        struct intel_plane *intel_plane;
2553        struct intel_plane_state *pristate = NULL;
2554        struct intel_plane_state *sprstate = NULL;
2555        struct intel_plane_state *curstate = NULL;
2556        int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2557        struct ilk_wm_maximums max;
2558
2559        pipe_wm = &cstate->wm.ilk.optimal;
2560
2561        for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2562                struct intel_plane_state *ps;
2563
2564                ps = intel_atomic_get_existing_plane_state(state,
2565                                                           intel_plane);
2566                if (!ps)
2567                        continue;
2568
2569                if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2570                        pristate = ps;
2571                else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2572                        sprstate = ps;
2573                else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2574                        curstate = ps;
2575        }
2576
2577        pipe_wm->pipe_enabled = cstate->base.active;
2578        if (sprstate) {
2579                pipe_wm->sprites_enabled = sprstate->base.visible;
2580                pipe_wm->sprites_scaled = sprstate->base.visible &&
2581                        (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2582                         drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2583        }
2584
2585        usable_level = max_level;
2586
2587        /* ILK/SNB: LP2+ watermarks only w/o sprites */
2588        if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2589                usable_level = 1;
2590
2591        /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2592        if (pipe_wm->sprites_scaled)
2593                usable_level = 0;
2594
2595        ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2596                             pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2597
2598        memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2599        pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2600
2601        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2602                pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2603
2604        if (!ilk_validate_pipe_wm(dev, pipe_wm))
2605                return -EINVAL;
2606
2607        ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2608
2609        for (level = 1; level <= max_level; level++) {
2610                struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2611
2612                ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2613                                     pristate, sprstate, curstate, wm);
2614
2615                /*
2616                 * Disable any watermark level that exceeds the
2617                 * register maximums since such watermarks are
2618                 * always invalid.
2619                 */
2620                if (level > usable_level)
2621                        continue;
2622
2623                if (ilk_validate_wm_level(level, &max, wm))
2624                        pipe_wm->wm[level] = *wm;
2625                else
2626                        usable_level = level;
2627        }
2628
2629        return 0;
2630}
2631
2632/*
2633 * Build a set of 'intermediate' watermark values that satisfy both the old
2634 * state and the new state.  These can be programmed to the hardware
2635 * immediately.
2636 */
2637static int ilk_compute_intermediate_wm(struct drm_device *dev,
2638                                       struct intel_crtc *intel_crtc,
2639                                       struct intel_crtc_state *newstate)
2640{
2641        struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2642        struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2643        int level, max_level = ilk_wm_max_level(to_i915(dev));
2644
2645        /*
2646         * Start with the final, target watermarks, then combine with the
2647         * currently active watermarks to get values that are safe both before
2648         * and after the vblank.
2649         */
2650        *a = newstate->wm.ilk.optimal;
2651        a->pipe_enabled |= b->pipe_enabled;
2652        a->sprites_enabled |= b->sprites_enabled;
2653        a->sprites_scaled |= b->sprites_scaled;
2654
2655        for (level = 0; level <= max_level; level++) {
2656                struct intel_wm_level *a_wm = &a->wm[level];
2657                const struct intel_wm_level *b_wm = &b->wm[level];
2658
2659                a_wm->enable &= b_wm->enable;
2660                a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2661                a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2662                a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2663                a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2664        }
2665
2666        /*
2667         * We need to make sure that these merged watermark values are
2668         * actually a valid configuration themselves.  If they're not,
2669         * there's no safe way to transition from the old state to
2670         * the new state, so we need to fail the atomic transaction.
2671         */
2672        if (!ilk_validate_pipe_wm(dev, a))
2673                return -EINVAL;
2674
2675        /*
2676         * If our intermediate WM are identical to the final WM, then we can
2677         * omit the post-vblank programming; only update if it's different.
2678         */
2679        if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
2680                newstate->wm.need_postvbl_update = true;
2681
2682        return 0;
2683}
2684
2685/*
2686 * Merge the watermarks from all active pipes for a specific level.
2687 */
2688static void ilk_merge_wm_level(struct drm_device *dev,
2689                               int level,
2690                               struct intel_wm_level *ret_wm)
2691{
2692        const struct intel_crtc *intel_crtc;
2693
2694        ret_wm->enable = true;
2695
2696        for_each_intel_crtc(dev, intel_crtc) {
2697                const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2698                const struct intel_wm_level *wm = &active->wm[level];
2699
2700                if (!active->pipe_enabled)
2701                        continue;
2702
2703                /*
2704                 * The watermark values may have been used in the past,
2705                 * so we must maintain them in the registers for some
2706                 * time even if the level is now disabled.
2707                 */
2708                if (!wm->enable)
2709                        ret_wm->enable = false;
2710
2711                ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2712                ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2713                ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2714                ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2715        }
2716}
2717
2718/*
2719 * Merge all low power watermarks for all active pipes.
2720 */
2721static void ilk_wm_merge(struct drm_device *dev,
2722                         const struct intel_wm_config *config,
2723                         const struct ilk_wm_maximums *max,
2724                         struct intel_pipe_wm *merged)
2725{
2726        struct drm_i915_private *dev_priv = to_i915(dev);
2727        int level, max_level = ilk_wm_max_level(dev_priv);
2728        int last_enabled_level = max_level;
2729
2730        /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2731        if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2732            config->num_pipes_active > 1)
2733                last_enabled_level = 0;
2734
2735        /* ILK: FBC WM must be disabled always */
2736        merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2737
2738        /* merge each WM1+ level */
2739        for (level = 1; level <= max_level; level++) {
2740                struct intel_wm_level *wm = &merged->wm[level];
2741
2742                ilk_merge_wm_level(dev, level, wm);
2743
2744                if (level > last_enabled_level)
2745                        wm->enable = false;
2746                else if (!ilk_validate_wm_level(level, max, wm))
2747                        /* make sure all following levels get disabled */
2748                        last_enabled_level = level - 1;
2749
2750                /*
2751                 * The spec says it is preferred to disable
2752                 * FBC WMs instead of disabling a WM level.
2753                 */
2754                if (wm->fbc_val > max->fbc) {
2755                        if (wm->enable)
2756                                merged->fbc_wm_enabled = false;
2757                        wm->fbc_val = 0;
2758                }
2759        }
2760
2761        /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2762        /*
2763         * FIXME this is racy. FBC might get enabled later.
2764         * What we should check here is whether FBC can be
2765         * enabled sometime later.
2766         */
2767        if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2768            intel_fbc_is_active(dev_priv)) {
2769                for (level = 2; level <= max_level; level++) {
2770                        struct intel_wm_level *wm = &merged->wm[level];
2771
2772                        wm->enable = false;
2773                }
2774        }
2775}
2776
2777static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2778{
2779        /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2780        return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2781}
2782
2783/* The value we need to program into the WM_LPx latency field */
2784static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2785{
2786        struct drm_i915_private *dev_priv = to_i915(dev);
2787
2788        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2789                return 2 * level;
2790        else
2791                return dev_priv->wm.pri_latency[level];
2792}
2793
2794static void ilk_compute_wm_results(struct drm_device *dev,
2795                                   const struct intel_pipe_wm *merged,
2796                                   enum intel_ddb_partitioning partitioning,
2797                                   struct ilk_wm_values *results)
2798{
2799        struct drm_i915_private *dev_priv = to_i915(dev);
2800        struct intel_crtc *intel_crtc;
2801        int level, wm_lp;
2802
2803        results->enable_fbc_wm = merged->fbc_wm_enabled;
2804        results->partitioning = partitioning;
2805
2806        /* LP1+ register values */
2807        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2808                const struct intel_wm_level *r;
2809
2810                level = ilk_wm_lp_to_level(wm_lp, merged);
2811
2812                r = &merged->wm[level];
2813
2814                /*
2815                 * Maintain the watermark values even if the level is
2816                 * disabled. Doing otherwise could cause underruns.
2817                 */
2818                results->wm_lp[wm_lp - 1] =
2819                        (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2820                        (r->pri_val << WM1_LP_SR_SHIFT) |
2821                        r->cur_val;
2822
2823                if (r->enable)
2824                        results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2825
2826                if (INTEL_GEN(dev_priv) >= 8)
2827                        results->wm_lp[wm_lp - 1] |=
2828                                r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2829                else
2830                        results->wm_lp[wm_lp - 1] |=
2831                                r->fbc_val << WM1_LP_FBC_SHIFT;
2832
2833                /*
2834                 * Always set WM1S_LP_EN when spr_val != 0, even if the
2835                 * level is disabled. Doing otherwise could cause underruns.
2836                 */
2837                if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2838                        WARN_ON(wm_lp != 1);
2839                        results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2840                } else
2841                        results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2842        }
2843
2844        /* LP0 register values */
2845        for_each_intel_crtc(dev, intel_crtc) {
2846                enum pipe pipe = intel_crtc->pipe;
2847                const struct intel_wm_level *r =
2848                        &intel_crtc->wm.active.ilk.wm[0];
2849
2850                if (WARN_ON(!r->enable))
2851                        continue;
2852
2853                results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2854
2855                results->wm_pipe[pipe] =
2856                        (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2857                        (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2858                        r->cur_val;
2859        }
2860}
2861
2862/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2863 * case both are at the same level. Prefer r1 in case they're the same. */
2864static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2865                                                  struct intel_pipe_wm *r1,
2866                                                  struct intel_pipe_wm *r2)
2867{
2868        int level, max_level = ilk_wm_max_level(to_i915(dev));
2869        int level1 = 0, level2 = 0;
2870
2871        for (level = 1; level <= max_level; level++) {
2872                if (r1->wm[level].enable)
2873                        level1 = level;
2874                if (r2->wm[level].enable)
2875                        level2 = level;
2876        }
2877
2878        if (level1 == level2) {
2879                if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2880                        return r2;
2881                else
2882                        return r1;
2883        } else if (level1 > level2) {
2884                return r1;
2885        } else {
2886                return r2;
2887        }
2888}
2889
2890/* dirty bits used to track which watermarks need changes */
2891#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2892#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2893#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2894#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2895#define WM_DIRTY_FBC (1 << 24)
2896#define WM_DIRTY_DDB (1 << 25)
2897
2898static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2899                                         const struct ilk_wm_values *old,
2900                                         const struct ilk_wm_values *new)
2901{
2902        unsigned int dirty = 0;
2903        enum pipe pipe;
2904        int wm_lp;
2905
2906        for_each_pipe(dev_priv, pipe) {
2907                if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2908                        dirty |= WM_DIRTY_LINETIME(pipe);
2909                        /* Must disable LP1+ watermarks too */
2910                        dirty |= WM_DIRTY_LP_ALL;
2911                }
2912
2913                if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2914                        dirty |= WM_DIRTY_PIPE(pipe);
2915                        /* Must disable LP1+ watermarks too */
2916                        dirty |= WM_DIRTY_LP_ALL;
2917                }
2918        }
2919
2920        if (old->enable_fbc_wm != new->enable_fbc_wm) {
2921                dirty |= WM_DIRTY_FBC;
2922                /* Must disable LP1+ watermarks too */
2923                dirty |= WM_DIRTY_LP_ALL;
2924        }
2925
2926        if (old->partitioning != new->partitioning) {
2927                dirty |= WM_DIRTY_DDB;
2928                /* Must disable LP1+ watermarks too */
2929                dirty |= WM_DIRTY_LP_ALL;
2930        }
2931
2932        /* LP1+ watermarks already deemed dirty, no need to continue */
2933        if (dirty & WM_DIRTY_LP_ALL)
2934                return dirty;
2935
2936        /* Find the lowest numbered LP1+ watermark in need of an update... */
2937        for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2938                if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2939                    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2940                        break;
2941        }
2942
2943        /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2944        for (; wm_lp <= 3; wm_lp++)
2945                dirty |= WM_DIRTY_LP(wm_lp);
2946
2947        return dirty;
2948}
2949
2950static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2951                               unsigned int dirty)
2952{
2953        struct ilk_wm_values *previous = &dev_priv->wm.hw;
2954        bool changed = false;
2955
2956        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2957                previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2958                I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2959                changed = true;
2960        }
2961        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2962                previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2963                I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2964                changed = true;
2965        }
2966        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2967                previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2968                I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2969                changed = true;
2970        }
2971
2972        /*
2973         * Don't touch WM1S_LP_EN here.
2974         * Doing so could cause underruns.
2975         */
2976
2977        return changed;
2978}
2979
2980/*
2981 * The spec says we shouldn't write when we don't need, because every write
2982 * causes WMs to be re-evaluated, expending some power.
2983 */
2984static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2985                                struct ilk_wm_values *results)
2986{
2987        struct ilk_wm_values *previous = &dev_priv->wm.hw;
2988        unsigned int dirty;
2989        uint32_t val;
2990
2991        dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2992        if (!dirty)
2993                return;
2994
2995        _ilk_disable_lp_wm(dev_priv, dirty);
2996
2997        if (dirty & WM_DIRTY_PIPE(PIPE_A))
2998                I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2999        if (dirty & WM_DIRTY_PIPE(PIPE_B))
3000                I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3001        if (dirty & WM_DIRTY_PIPE(PIPE_C))
3002                I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3003
3004        if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3005                I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3006        if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3007                I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3008        if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3009                I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3010
3011        if (dirty & WM_DIRTY_DDB) {
3012                if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3013                        val = I915_READ(WM_MISC);
3014                        if (results->partitioning == INTEL_DDB_PART_1_2)
3015                                val &= ~WM_MISC_DATA_PARTITION_5_6;
3016                        else
3017                                val |= WM_MISC_DATA_PARTITION_5_6;
3018                        I915_WRITE(WM_MISC, val);
3019                } else {
3020                        val = I915_READ(DISP_ARB_CTL2);
3021                        if (results->partitioning == INTEL_DDB_PART_1_2)
3022                                val &= ~DISP_DATA_PARTITION_5_6;
3023                        else
3024                                val |= DISP_DATA_PARTITION_5_6;
3025                        I915_WRITE(DISP_ARB_CTL2, val);
3026                }
3027        }
3028
3029        if (dirty & WM_DIRTY_FBC) {
3030                val = I915_READ(DISP_ARB_CTL);
3031                if (results->enable_fbc_wm)
3032                        val &= ~DISP_FBC_WM_DIS;
3033                else
3034                        val |= DISP_FBC_WM_DIS;
3035                I915_WRITE(DISP_ARB_CTL, val);
3036        }
3037
3038        if (dirty & WM_DIRTY_LP(1) &&
3039            previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3040                I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3041
3042        if (INTEL_GEN(dev_priv) >= 7) {
3043                if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3044                        I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3045                if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3046                        I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3047        }
3048
3049        if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3050                I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3051        if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3052                I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3053        if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3054                I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3055
3056        dev_priv->wm.hw = *results;
3057}
3058
3059bool ilk_disable_lp_wm(struct drm_device *dev)
3060{
3061        struct drm_i915_private *dev_priv = to_i915(dev);
3062
3063        return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3064}
3065
3066#define SKL_SAGV_BLOCK_TIME     30 /* µs */
3067
3068/*
3069 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3070 * so assume we'll always need it in order to avoid underruns.
3071 */
3072static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3073{
3074        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3075
3076        if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3077                return true;
3078
3079        return false;
3080}
3081
3082static bool
3083intel_has_sagv(struct drm_i915_private *dev_priv)
3084{
3085        if (IS_KABYLAKE(dev_priv))
3086                return true;
3087
3088        if (IS_SKYLAKE(dev_priv) &&
3089            dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3090                return true;
3091
3092        return false;
3093}
3094
3095/*
3096 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3097 * depending on power and performance requirements. The display engine access
3098 * to system memory is blocked during the adjustment time. Because of the
3099 * blocking time, having this enabled can cause full system hangs and/or pipe
3100 * underruns if we don't meet all of the following requirements:
3101 *
3102 *  - <= 1 pipe enabled
3103 *  - All planes can enable watermarks for latencies >= SAGV engine block time
3104 *  - We're not using an interlaced display configuration
3105 */
3106int
3107intel_enable_sagv(struct drm_i915_private *dev_priv)
3108{
3109        int ret;
3110
3111        if (!intel_has_sagv(dev_priv))
3112                return 0;
3113
3114        if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3115                return 0;
3116
3117        DRM_DEBUG_KMS("Enabling the SAGV\n");
3118        mutex_lock(&dev_priv->rps.hw_lock);
3119
3120        ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3121                                      GEN9_SAGV_ENABLE);
3122
3123        /* We don't need to wait for the SAGV when enabling */
3124        mutex_unlock(&dev_priv->rps.hw_lock);
3125
3126        /*
3127         * Some skl systems, pre-release machines in particular,
3128         * don't actually have an SAGV.
3129         */
3130        if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3131                DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3132                dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3133                return 0;
3134        } else if (ret < 0) {
3135                DRM_ERROR("Failed to enable the SAGV\n");
3136                return ret;
3137        }
3138
3139        dev_priv->sagv_status = I915_SAGV_ENABLED;
3140        return 0;
3141}
3142
3143int
3144intel_disable_sagv(struct drm_i915_private *dev_priv)
3145{
3146        int ret;
3147
3148        if (!intel_has_sagv(dev_priv))
3149                return 0;
3150
3151        if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3152                return 0;
3153
3154        DRM_DEBUG_KMS("Disabling the SAGV\n");
3155        mutex_lock(&dev_priv->rps.hw_lock);
3156
3157        /* bspec says to keep retrying for at least 1 ms */
3158        ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3159                                GEN9_SAGV_DISABLE,
3160                                GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3161                                1);
3162        mutex_unlock(&dev_priv->rps.hw_lock);
3163
3164        /*
3165         * Some skl systems, pre-release machines in particular,
3166         * don't actually have an SAGV.
3167         */
3168        if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3169                DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3170                dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3171                return 0;
3172        } else if (ret < 0) {
3173                DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3174                return ret;
3175        }
3176
3177        dev_priv->sagv_status = I915_SAGV_DISABLED;
3178        return 0;
3179}
3180
3181bool intel_can_enable_sagv(struct drm_atomic_state *state)
3182{
3183        struct drm_device *dev = state->dev;
3184        struct drm_i915_private *dev_priv = to_i915(dev);
3185        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3186        struct intel_crtc *crtc;
3187        struct intel_plane *plane;
3188        struct intel_crtc_state *cstate;
3189        enum pipe pipe;
3190        int level, latency;
3191
3192        if (!intel_has_sagv(dev_priv))
3193                return false;
3194
3195        /*
3196         * SKL workaround: bspec recommends we disable the SAGV when we have
3197         * more then one pipe enabled
3198         *
3199         * If there are no active CRTCs, no additional checks need be performed
3200         */
3201        if (hweight32(intel_state->active_crtcs) == 0)
3202                return true;
3203        else if (hweight32(intel_state->active_crtcs) > 1)
3204                return false;
3205
3206        /* Since we're now guaranteed to only have one active CRTC... */
3207        pipe = ffs(intel_state->active_crtcs) - 1;
3208        crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3209        cstate = to_intel_crtc_state(crtc->base.state);
3210
3211        if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3212                return false;
3213
3214        for_each_intel_plane_on_crtc(dev, crtc, plane) {
3215                struct skl_plane_wm *wm =
3216                        &cstate->wm.skl.optimal.planes[plane->id];
3217
3218                /* Skip this plane if it's not enabled */
3219                if (!wm->wm[0].plane_en)
3220                        continue;
3221
3222                /* Find the highest enabled wm level for this plane */
3223                for (level = ilk_wm_max_level(dev_priv);
3224                     !wm->wm[level].plane_en; --level)
3225                     { }
3226
3227                latency = dev_priv->wm.skl_latency[level];
3228
3229                if (skl_needs_memory_bw_wa(intel_state) &&
3230                    plane->base.state->fb->modifier ==
3231                    I915_FORMAT_MOD_X_TILED)
3232                        latency += 15;
3233
3234                /*
3235                 * If any of the planes on this pipe don't enable wm levels
3236                 * that incur memory latencies higher then 30µs we can't enable
3237                 * the SAGV
3238                 */
3239                if (latency < SKL_SAGV_BLOCK_TIME)
3240                        return false;
3241        }
3242
3243        return true;
3244}
3245
3246static void
3247skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3248                                   const struct intel_crtc_state *cstate,
3249                                   struct skl_ddb_entry *alloc, /* out */
3250                                   int *num_active /* out */)
3251{
3252        struct drm_atomic_state *state = cstate->base.state;
3253        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3254        struct drm_i915_private *dev_priv = to_i915(dev);
3255        struct drm_crtc *for_crtc = cstate->base.crtc;
3256        unsigned int pipe_size, ddb_size;
3257        int nth_active_pipe;
3258
3259        if (WARN_ON(!state) || !cstate->base.active) {
3260                alloc->start = 0;
3261                alloc->end = 0;
3262                *num_active = hweight32(dev_priv->active_crtcs);
3263                return;
3264        }
3265
3266        if (intel_state->active_pipe_changes)
3267                *num_active = hweight32(intel_state->active_crtcs);
3268        else
3269                *num_active = hweight32(dev_priv->active_crtcs);
3270
3271        ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3272        WARN_ON(ddb_size == 0);
3273
3274        ddb_size -= 4; /* 4 blocks for bypass path allocation */
3275
3276        /*
3277         * If the state doesn't change the active CRTC's, then there's
3278         * no need to recalculate; the existing pipe allocation limits
3279         * should remain unchanged.  Note that we're safe from racing
3280         * commits since any racing commit that changes the active CRTC
3281         * list would need to grab _all_ crtc locks, including the one
3282         * we currently hold.
3283         */
3284        if (!intel_state->active_pipe_changes) {
3285                /*
3286                 * alloc may be cleared by clear_intel_crtc_state,
3287                 * copy from old state to be sure
3288                 */
3289                *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3290                return;
3291        }
3292
3293        nth_active_pipe = hweight32(intel_state->active_crtcs &
3294                                    (drm_crtc_mask(for_crtc) - 1));
3295        pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3296        alloc->start = nth_active_pipe * ddb_size / *num_active;
3297        alloc->end = alloc->start + pipe_size;
3298}
3299
3300static unsigned int skl_cursor_allocation(int num_active)
3301{
3302        if (num_active == 1)
3303                return 32;
3304
3305        return 8;
3306}
3307
3308static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3309{
3310        entry->start = reg & 0x3ff;
3311        entry->end = (reg >> 16) & 0x3ff;
3312        if (entry->end)
3313                entry->end += 1;
3314}
3315
3316void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3317                          struct skl_ddb_allocation *ddb /* out */)
3318{
3319        struct intel_crtc *crtc;
3320
3321        memset(ddb, 0, sizeof(*ddb));
3322
3323        for_each_intel_crtc(&dev_priv->drm, crtc) {
3324                enum intel_display_power_domain power_domain;
3325                enum plane_id plane_id;
3326                enum pipe pipe = crtc->pipe;
3327
3328                power_domain = POWER_DOMAIN_PIPE(pipe);
3329                if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3330                        continue;
3331
3332                for_each_plane_id_on_crtc(crtc, plane_id) {
3333                        u32 val;
3334
3335                        if (plane_id != PLANE_CURSOR)
3336                                val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3337                        else
3338                                val = I915_READ(CUR_BUF_CFG(pipe));
3339
3340                        skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3341                }
3342
3343                intel_display_power_put(dev_priv, power_domain);
3344        }
3345}
3346
3347/*
3348 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3349 * The bspec defines downscale amount as:
3350 *
3351 * """
3352 * Horizontal down scale amount = maximum[1, Horizontal source size /
3353 *                                           Horizontal destination size]
3354 * Vertical down scale amount = maximum[1, Vertical source size /
3355 *                                         Vertical destination size]
3356 * Total down scale amount = Horizontal down scale amount *
3357 *                           Vertical down scale amount
3358 * """
3359 *
3360 * Return value is provided in 16.16 fixed point form to retain fractional part.
3361 * Caller should take care of dividing & rounding off the value.
3362 */
3363static uint32_t
3364skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3365                           const struct intel_plane_state *pstate)
3366{
3367        struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3368        uint32_t downscale_h, downscale_w;
3369        uint32_t src_w, src_h, dst_w, dst_h;
3370
3371        if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3372                return DRM_PLANE_HELPER_NO_SCALING;
3373
3374        /* n.b., src is 16.16 fixed point, dst is whole integer */
3375        if (plane->id == PLANE_CURSOR) {
3376                /*
3377                 * Cursors only support 0/180 degree rotation,
3378                 * hence no need to account for rotation here.
3379                 */
3380                src_w = pstate->base.src_w;
3381                src_h = pstate->base.src_h;
3382                dst_w = pstate->base.crtc_w;
3383                dst_h = pstate->base.crtc_h;
3384        } else {
3385                /*
3386                 * Src coordinates are already rotated by 270 degrees for
3387                 * the 90/270 degree plane rotation cases (to match the
3388                 * GTT mapping), hence no need to account for rotation here.
3389                 */
3390                src_w = drm_rect_width(&pstate->base.src);
3391                src_h = drm_rect_height(&pstate->base.src);
3392                dst_w = drm_rect_width(&pstate->base.dst);
3393                dst_h = drm_rect_height(&pstate->base.dst);
3394        }
3395
3396        downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3397        downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3398
3399        /* Provide result in 16.16 fixed point */
3400        return (uint64_t)downscale_w * downscale_h >> 16;
3401}
3402
3403static unsigned int
3404skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3405                             const struct drm_plane_state *pstate,
3406                             int y)
3407{
3408        struct intel_plane *plane = to_intel_plane(pstate->plane);
3409        struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3410        uint32_t down_scale_amount, data_rate;
3411        uint32_t width = 0, height = 0;
3412        struct drm_framebuffer *fb;
3413        u32 format;
3414
3415        if (!intel_pstate->base.visible)
3416                return 0;
3417
3418        fb = pstate->fb;
3419        format = fb->format->format;
3420
3421        if (plane->id == PLANE_CURSOR)
3422                return 0;
3423        if (y && format != DRM_FORMAT_NV12)
3424                return 0;
3425
3426        /*
3427         * Src coordinates are already rotated by 270 degrees for
3428         * the 90/270 degree plane rotation cases (to match the
3429         * GTT mapping), hence no need to account for rotation here.
3430         */
3431        width = drm_rect_width(&intel_pstate->base.src) >> 16;
3432        height = drm_rect_height(&intel_pstate->base.src) >> 16;
3433
3434        /* for planar format */
3435        if (format == DRM_FORMAT_NV12) {
3436                if (y)  /* y-plane data rate */
3437                        data_rate = width * height *
3438                                fb->format->cpp[0];
3439                else    /* uv-plane data rate */
3440                        data_rate = (width / 2) * (height / 2) *
3441                                fb->format->cpp[1];
3442        } else {
3443                /* for packed formats */
3444                data_rate = width * height * fb->format->cpp[0];
3445        }
3446
3447        down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
3448
3449        return (uint64_t)data_rate * down_scale_amount >> 16;
3450}
3451
3452/*
3453 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3454 * a 8192x4096@32bpp framebuffer:
3455 *   3 * 4096 * 8192  * 4 < 2^32
3456 */
3457static unsigned int
3458skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3459                                 unsigned *plane_data_rate,
3460                                 unsigned *plane_y_data_rate)
3461{
3462        struct drm_crtc_state *cstate = &intel_cstate->base;
3463        struct drm_atomic_state *state = cstate->state;
3464        struct drm_plane *plane;
3465        const struct drm_plane_state *pstate;
3466        unsigned int total_data_rate = 0;
3467
3468        if (WARN_ON(!state))
3469                return 0;
3470
3471        /* Calculate and cache data rate for each plane */
3472        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3473                enum plane_id plane_id = to_intel_plane(plane)->id;
3474                unsigned int rate;
3475
3476                /* packed/uv */
3477                rate = skl_plane_relative_data_rate(intel_cstate,
3478                                                    pstate, 0);
3479                plane_data_rate[plane_id] = rate;
3480
3481                total_data_rate += rate;
3482
3483                /* y-plane */
3484                rate = skl_plane_relative_data_rate(intel_cstate,
3485                                                    pstate, 1);
3486                plane_y_data_rate[plane_id] = rate;
3487
3488                total_data_rate += rate;
3489        }
3490
3491        return total_data_rate;
3492}
3493
3494static uint16_t
3495skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3496                  const int y)
3497{
3498        struct drm_framebuffer *fb = pstate->fb;
3499        struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3500        uint32_t src_w, src_h;
3501        uint32_t min_scanlines = 8;
3502        uint8_t plane_bpp;
3503
3504        if (WARN_ON(!fb))
3505                return 0;
3506
3507        /* For packed formats, no y-plane, return 0 */
3508        if (y && fb->format->format != DRM_FORMAT_NV12)
3509                return 0;
3510
3511        /* For Non Y-tile return 8-blocks */
3512        if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3513            fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3514                return 8;
3515
3516        /*
3517         * Src coordinates are already rotated by 270 degrees for
3518         * the 90/270 degree plane rotation cases (to match the
3519         * GTT mapping), hence no need to account for rotation here.
3520         */
3521        src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3522        src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3523
3524        /* Halve UV plane width and height for NV12 */
3525        if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3526                src_w /= 2;
3527                src_h /= 2;
3528        }
3529
3530        if (fb->format->format == DRM_FORMAT_NV12 && !y)
3531                plane_bpp = fb->format->cpp[1];
3532        else
3533                plane_bpp = fb->format->cpp[0];
3534
3535        if (drm_rotation_90_or_270(pstate->rotation)) {
3536                switch (plane_bpp) {
3537                case 1:
3538                        min_scanlines = 32;
3539                        break;
3540                case 2:
3541                        min_scanlines = 16;
3542                        break;
3543                case 4:
3544                        min_scanlines = 8;
3545                        break;
3546                case 8:
3547                        min_scanlines = 4;
3548                        break;
3549                default:
3550                        WARN(1, "Unsupported pixel depth %u for rotation",
3551                             plane_bpp);
3552                        min_scanlines = 32;
3553                }
3554        }
3555
3556        return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3557}
3558
3559static void
3560skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
3561                 uint16_t *minimum, uint16_t *y_minimum)
3562{
3563        const struct drm_plane_state *pstate;
3564        struct drm_plane *plane;
3565
3566        drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3567                enum plane_id plane_id = to_intel_plane(plane)->id;
3568
3569                if (plane_id == PLANE_CURSOR)
3570                        continue;
3571
3572                if (!pstate->visible)
3573                        continue;
3574
3575                minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
3576                y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3577        }
3578
3579        minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
3580}
3581
3582static int
3583skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3584                      struct skl_ddb_allocation *ddb /* out */)
3585{
3586        struct drm_atomic_state *state = cstate->base.state;
3587        struct drm_crtc *crtc = cstate->base.crtc;
3588        struct drm_device *dev = crtc->dev;
3589        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3590        enum pipe pipe = intel_crtc->pipe;
3591        struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3592        uint16_t alloc_size, start;
3593        uint16_t minimum[I915_MAX_PLANES] = {};
3594        uint16_t y_minimum[I915_MAX_PLANES] = {};
3595        unsigned int total_data_rate;
3596        enum plane_id plane_id;
3597        int num_active;
3598        unsigned plane_data_rate[I915_MAX_PLANES] = {};
3599        unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3600
3601        /* Clear the partitioning for disabled planes. */
3602        memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3603        memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3604
3605        if (WARN_ON(!state))
3606                return 0;
3607
3608        if (!cstate->base.active) {
3609                alloc->start = alloc->end = 0;
3610                return 0;
3611        }
3612
3613        skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3614        alloc_size = skl_ddb_entry_size(alloc);
3615        if (alloc_size == 0) {
3616                memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3617                return 0;
3618        }
3619
3620        skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3621
3622        /*
3623         * 1. Allocate the mininum required blocks for each active plane
3624         * and allocate the cursor, it doesn't require extra allocation
3625         * proportional to the data rate.
3626         */
3627
3628        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3629                alloc_size -= minimum[plane_id];
3630                alloc_size -= y_minimum[plane_id];
3631        }
3632
3633        ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
3634        ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3635
3636        /*
3637         * 2. Distribute the remaining space in proportion to the amount of
3638         * data each plane needs to fetch from memory.
3639         *
3640         * FIXME: we may not allocate every single block here.
3641         */
3642        total_data_rate = skl_get_total_relative_data_rate(cstate,
3643                                                           plane_data_rate,
3644                                                           plane_y_data_rate);
3645        if (total_data_rate == 0)
3646                return 0;
3647
3648        start = alloc->start;
3649        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3650                unsigned int data_rate, y_data_rate;
3651                uint16_t plane_blocks, y_plane_blocks = 0;
3652
3653                if (plane_id == PLANE_CURSOR)
3654                        continue;
3655
3656                data_rate = plane_data_rate[plane_id];
3657
3658                /*
3659                 * allocation for (packed formats) or (uv-plane part of planar format):
3660                 * promote the expression to 64 bits to avoid overflowing, the
3661                 * result is < available as data_rate / total_data_rate < 1
3662                 */
3663                plane_blocks = minimum[plane_id];
3664                plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3665                                        total_data_rate);
3666
3667                /* Leave disabled planes at (0,0) */
3668                if (data_rate) {
3669                        ddb->plane[pipe][plane_id].start = start;
3670                        ddb->plane[pipe][plane_id].end = start + plane_blocks;
3671                }
3672
3673                start += plane_blocks;
3674
3675                /*
3676                 * allocation for y_plane part of planar format:
3677                 */
3678                y_data_rate = plane_y_data_rate[plane_id];
3679
3680                y_plane_blocks = y_minimum[plane_id];
3681                y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3682                                        total_data_rate);
3683
3684                if (y_data_rate) {
3685                        ddb->y_plane[pipe][plane_id].start = start;
3686                        ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3687                }
3688
3689                start += y_plane_blocks;
3690        }
3691
3692        return 0;
3693}
3694
3695/*
3696 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3697 * for the read latency) and cpp should always be <= 8, so that
3698 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3699 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3700*/
3701static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
3702                                         uint32_t latency)
3703{
3704        uint32_t wm_intermediate_val;
3705        uint_fixed_16_16_t ret;
3706
3707        if (latency == 0)
3708                return FP_16_16_MAX;
3709
3710        wm_intermediate_val = latency * pixel_rate * cpp;
3711        ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3712        return ret;
3713}
3714
3715static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
3716                        uint32_t pipe_htotal,
3717                        uint32_t latency,
3718                        uint_fixed_16_16_t plane_blocks_per_line)
3719{
3720        uint32_t wm_intermediate_val;
3721        uint_fixed_16_16_t ret;
3722
3723        if (latency == 0)
3724                return FP_16_16_MAX;
3725
3726        wm_intermediate_val = latency * pixel_rate;
3727        wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
3728                                           pipe_htotal * 1000);
3729        ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3730        return ret;
3731}
3732
3733static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3734                                              struct intel_plane_state *pstate)
3735{
3736        uint64_t adjusted_pixel_rate;
3737        uint64_t downscale_amount;
3738        uint64_t pixel_rate;
3739
3740        /* Shouldn't reach here on disabled planes... */
3741        if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3742                return 0;
3743
3744        /*
3745         * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3746         * with additional adjustments for plane-specific scaling.
3747         */
3748        adjusted_pixel_rate = cstate->pixel_rate;
3749        downscale_amount = skl_plane_downscale_amount(cstate, pstate);
3750
3751        pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3752        WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3753
3754        return pixel_rate;
3755}
3756
3757static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3758                                struct intel_crtc_state *cstate,
3759                                struct intel_plane_state *intel_pstate,
3760                                uint16_t ddb_allocation,
3761                                int level,
3762                                uint16_t *out_blocks, /* out */
3763                                uint8_t *out_lines, /* out */
3764                                bool *enabled /* out */)
3765{
3766        struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
3767        struct drm_plane_state *pstate = &intel_pstate->base;
3768        struct drm_framebuffer *fb = pstate->fb;
3769        uint32_t latency = dev_priv->wm.skl_latency[level];
3770        uint_fixed_16_16_t method1, method2;
3771        uint_fixed_16_16_t plane_blocks_per_line;
3772        uint_fixed_16_16_t selected_result;
3773        uint32_t interm_pbpl;
3774        uint32_t plane_bytes_per_line;
3775        uint32_t res_blocks, res_lines;
3776        uint8_t cpp;
3777        uint32_t width = 0, height = 0;
3778        uint32_t plane_pixel_rate;
3779        uint_fixed_16_16_t y_tile_minimum;
3780        uint32_t y_min_scanlines;
3781        struct intel_atomic_state *state =
3782                to_intel_atomic_state(cstate->base.state);
3783        bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3784        bool y_tiled, x_tiled;
3785
3786        if (latency == 0 ||
3787            !intel_wm_plane_visible(cstate, intel_pstate)) {
3788                *enabled = false;
3789                return 0;
3790        }
3791
3792        y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3793                  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
3794        x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
3795
3796        /* Display WA #1141: kbl. */
3797        if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
3798                latency += 4;
3799
3800        if (apply_memory_bw_wa && x_tiled)
3801                latency += 15;
3802
3803        if (plane->id == PLANE_CURSOR) {
3804                width = intel_pstate->base.crtc_w;
3805                height = intel_pstate->base.crtc_h;
3806        } else {
3807                /*
3808                 * Src coordinates are already rotated by 270 degrees for
3809                 * the 90/270 degree plane rotation cases (to match the
3810                 * GTT mapping), hence no need to account for rotation here.
3811                 */
3812                width = drm_rect_width(&intel_pstate->base.src) >> 16;
3813                height = drm_rect_height(&intel_pstate->base.src) >> 16;
3814        }
3815
3816        cpp = fb->format->cpp[0];
3817        plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3818
3819        if (drm_rotation_90_or_270(pstate->rotation)) {
3820                int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3821                        fb->format->cpp[1] :
3822                        fb->format->cpp[0];
3823
3824                switch (cpp) {
3825                case 1:
3826                        y_min_scanlines = 16;
3827                        break;
3828                case 2:
3829                        y_min_scanlines = 8;
3830                        break;
3831                case 4:
3832                        y_min_scanlines = 4;
3833                        break;
3834                default:
3835                        MISSING_CASE(cpp);
3836                        return -EINVAL;
3837                }
3838        } else {
3839                y_min_scanlines = 4;
3840        }
3841
3842        if (apply_memory_bw_wa)
3843                y_min_scanlines *= 2;
3844
3845        plane_bytes_per_line = width * cpp;
3846        if (y_tiled) {
3847                interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
3848                                           y_min_scanlines, 512);
3849                plane_blocks_per_line =
3850                      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3851        } else if (x_tiled) {
3852                interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
3853                plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3854        } else {
3855                interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3856                plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3857        }
3858
3859        method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3860        method2 = skl_wm_method2(plane_pixel_rate,
3861                                 cstate->base.adjusted_mode.crtc_htotal,
3862                                 latency,
3863                                 plane_blocks_per_line);
3864
3865        y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
3866                                             plane_blocks_per_line);
3867
3868        if (y_tiled) {
3869                selected_result = max_fixed_16_16(method2, y_tile_minimum);
3870        } else {
3871                if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
3872                    (plane_bytes_per_line / 512 < 1))
3873                        selected_result = method2;
3874                else if ((ddb_allocation /
3875                        fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
3876                        selected_result = min_fixed_16_16(method1, method2);
3877                else
3878                        selected_result = method1;
3879        }
3880
3881        res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
3882        res_lines = DIV_ROUND_UP(selected_result.val,
3883                                 plane_blocks_per_line.val);
3884
3885        if (level >= 1 && level <= 7) {
3886                if (y_tiled) {
3887                        res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3888                        res_lines += y_min_scanlines;
3889                } else {
3890                        res_blocks++;
3891                }
3892        }
3893
3894        if (res_blocks >= ddb_allocation || res_lines > 31) {
3895                *enabled = false;
3896
3897                /*
3898                 * If there are no valid level 0 watermarks, then we can't
3899                 * support this display configuration.
3900                 */
3901                if (level) {
3902                        return 0;
3903                } else {
3904                        struct drm_plane *plane = pstate->plane;
3905
3906                        DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3907                        DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
3908                                      plane->base.id, plane->name,
3909                                      res_blocks, ddb_allocation, res_lines);
3910                        return -EINVAL;
3911                }
3912        }
3913
3914        *out_blocks = res_blocks;
3915        *out_lines = res_lines;
3916        *enabled = true;
3917
3918        return 0;
3919}
3920
3921static int
3922skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3923                     struct skl_ddb_allocation *ddb,
3924                     struct intel_crtc_state *cstate,
3925                     struct intel_plane *intel_plane,
3926                     int level,
3927                     struct skl_wm_level *result)
3928{
3929        struct drm_atomic_state *state = cstate->base.state;
3930        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3931        struct drm_plane *plane = &intel_plane->base;
3932        struct intel_plane_state *intel_pstate = NULL;
3933        uint16_t ddb_blocks;
3934        enum pipe pipe = intel_crtc->pipe;
3935        int ret;
3936
3937        if (state)
3938                intel_pstate =
3939                        intel_atomic_get_existing_plane_state(state,
3940                                                              intel_plane);
3941
3942        /*
3943         * Note: If we start supporting multiple pending atomic commits against
3944         * the same planes/CRTC's in the future, plane->state will no longer be
3945         * the correct pre-state to use for the calculations here and we'll
3946         * need to change where we get the 'unchanged' plane data from.
3947         *
3948         * For now this is fine because we only allow one queued commit against
3949         * a CRTC.  Even if the plane isn't modified by this transaction and we
3950         * don't have a plane lock, we still have the CRTC's lock, so we know
3951         * that no other transactions are racing with us to update it.
3952         */
3953        if (!intel_pstate)
3954                intel_pstate = to_intel_plane_state(plane->state);
3955
3956        WARN_ON(!intel_pstate->base.fb);
3957
3958        ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3959
3960        ret = skl_compute_plane_wm(dev_priv,
3961                                   cstate,
3962                                   intel_pstate,
3963                                   ddb_blocks,
3964                                   level,
3965                                   &result->plane_res_b,
3966                                   &result->plane_res_l,
3967                                   &result->plane_en);
3968        if (ret)
3969                return ret;
3970
3971        return 0;
3972}
3973
3974static uint32_t
3975skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3976{
3977        struct drm_atomic_state *state = cstate->base.state;
3978        struct drm_i915_private *dev_priv = to_i915(state->dev);
3979        uint32_t pixel_rate;
3980        uint32_t linetime_wm;
3981
3982        if (!cstate->base.active)
3983                return 0;
3984
3985        pixel_rate = cstate->pixel_rate;
3986
3987        if (WARN_ON(pixel_rate == 0))
3988                return 0;
3989
3990        linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
3991                                   1000, pixel_rate);
3992
3993        /* Display WA #1135: bxt. */
3994        if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
3995                linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
3996
3997        return linetime_wm;
3998}
3999
4000static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4001                                      struct skl_wm_level *trans_wm /* out */)
4002{
4003        if (!cstate->base.active)
4004                return;
4005
4006        /* Until we know more, just disable transition WMs */
4007        trans_wm->plane_en = false;
4008}
4009
4010static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4011                             struct skl_ddb_allocation *ddb,
4012                             struct skl_pipe_wm *pipe_wm)
4013{
4014        struct drm_device *dev = cstate->base.crtc->dev;
4015        const struct drm_i915_private *dev_priv = to_i915(dev);
4016        struct intel_plane *intel_plane;
4017        struct skl_plane_wm *wm;
4018        int level, max_level = ilk_wm_max_level(dev_priv);
4019        int ret;
4020
4021        /*
4022         * We'll only calculate watermarks for planes that are actually
4023         * enabled, so make sure all other planes are set as disabled.
4024         */
4025        memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4026
4027        for_each_intel_plane_mask(&dev_priv->drm,
4028                                  intel_plane,
4029                                  cstate->base.plane_mask) {
4030                wm = &pipe_wm->planes[intel_plane->id];
4031
4032                for (level = 0; level <= max_level; level++) {
4033                        ret = skl_compute_wm_level(dev_priv, ddb, cstate,
4034                                                   intel_plane, level,
4035                                                   &wm->wm[level]);
4036                        if (ret)
4037                                return ret;
4038                }
4039                skl_compute_transition_wm(cstate, &wm->trans_wm);
4040        }
4041        pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4042
4043        return 0;
4044}
4045
4046static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4047                                i915_reg_t reg,
4048                                const struct skl_ddb_entry *entry)
4049{
4050        if (entry->end)
4051                I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4052        else
4053                I915_WRITE(reg, 0);
4054}
4055
4056static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4057                               i915_reg_t reg,
4058                               const struct skl_wm_level *level)
4059{
4060        uint32_t val = 0;
4061
4062        if (level->plane_en) {
4063                val |= PLANE_WM_EN;
4064                val |= level->plane_res_b;
4065                val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4066        }
4067
4068        I915_WRITE(reg, val);
4069}
4070
4071static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4072                               const struct skl_plane_wm *wm,
4073                               const struct skl_ddb_allocation *ddb,
4074                               enum plane_id plane_id)
4075{
4076        struct drm_crtc *crtc = &intel_crtc->base;
4077        struct drm_device *dev = crtc->dev;
4078        struct drm_i915_private *dev_priv = to_i915(dev);
4079        int level, max_level = ilk_wm_max_level(dev_priv);
4080        enum pipe pipe = intel_crtc->pipe;
4081
4082        for (level = 0; level <= max_level; level++) {
4083                skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4084                                   &wm->wm[level]);
4085        }
4086        skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4087                           &wm->trans_wm);
4088
4089        skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4090                            &ddb->plane[pipe][plane_id]);
4091        skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4092                            &ddb->y_plane[pipe][plane_id]);
4093}
4094
4095static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4096                                const struct skl_plane_wm *wm,
4097                                const struct skl_ddb_allocation *ddb)
4098{
4099        struct drm_crtc *crtc = &intel_crtc->base;
4100        struct drm_device *dev = crtc->dev;
4101        struct drm_i915_private *dev_priv = to_i915(dev);
4102        int level, max_level = ilk_wm_max_level(dev_priv);
4103        enum pipe pipe = intel_crtc->pipe;
4104
4105        for (level = 0; level <= max_level; level++) {
4106                skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4107                                   &wm->wm[level]);
4108        }
4109        skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4110
4111        skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4112                            &ddb->plane[pipe][PLANE_CURSOR]);
4113}
4114
4115bool skl_wm_level_equals(const struct skl_wm_level *l1,
4116                         const struct skl_wm_level *l2)
4117{
4118        if (l1->plane_en != l2->plane_en)
4119                return false;
4120
4121        /* If both planes aren't enabled, the rest shouldn't matter */
4122        if (!l1->plane_en)
4123                return true;
4124
4125        return (l1->plane_res_l == l2->plane_res_l &&
4126                l1->plane_res_b == l2->plane_res_b);
4127}
4128
4129static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4130                                           const struct skl_ddb_entry *b)
4131{
4132        return a->start < b->end && b->start < a->end;
4133}
4134
4135bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
4136                                 const struct skl_ddb_entry *ddb,
4137                                 int ignore)
4138{
4139        int i;
4140
4141        for (i = 0; i < I915_MAX_PIPES; i++)
4142                if (i != ignore && entries[i] &&
4143                    skl_ddb_entries_overlap(ddb, entries[i]))
4144                        return true;
4145
4146        return false;
4147}
4148
4149static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4150                              const struct skl_pipe_wm *old_pipe_wm,
4151                              struct skl_pipe_wm *pipe_wm, /* out */
4152                              struct skl_ddb_allocation *ddb, /* out */
4153                              bool *changed /* out */)
4154{
4155        struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4156        int ret;
4157
4158        ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4159        if (ret)
4160                return ret;
4161
4162        if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4163                *changed = false;
4164        else
4165                *changed = true;
4166
4167        return 0;
4168}
4169
4170static uint32_t
4171pipes_modified(struct drm_atomic_state *state)
4172{
4173        struct drm_crtc *crtc;
4174        struct drm_crtc_state *cstate;
4175        uint32_t i, ret = 0;
4176
4177        for_each_new_crtc_in_state(state, crtc, cstate, i)
4178                ret |= drm_crtc_mask(crtc);
4179
4180        return ret;
4181}
4182
4183static int
4184skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4185{
4186        struct drm_atomic_state *state = cstate->base.state;
4187        struct drm_device *dev = state->dev;
4188        struct drm_crtc *crtc = cstate->base.crtc;
4189        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4190        struct drm_i915_private *dev_priv = to_i915(dev);
4191        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4192        struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4193        struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4194        struct drm_plane_state *plane_state;
4195        struct drm_plane *plane;
4196        enum pipe pipe = intel_crtc->pipe;
4197
4198        WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4199
4200        drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4201                enum plane_id plane_id = to_intel_plane(plane)->id;
4202
4203                if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4204                                        &new_ddb->plane[pipe][plane_id]) &&
4205                    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4206                                        &new_ddb->y_plane[pipe][plane_id]))
4207                        continue;
4208
4209                plane_state = drm_atomic_get_plane_state(state, plane);
4210                if (IS_ERR(plane_state))
4211                        return PTR_ERR(plane_state);
4212        }
4213
4214        return 0;
4215}
4216
4217static int
4218skl_compute_ddb(struct drm_atomic_state *state)
4219{
4220        struct drm_device *dev = state->dev;
4221        struct drm_i915_private *dev_priv = to_i915(dev);
4222        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4223        struct intel_crtc *intel_crtc;
4224        struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4225        uint32_t realloc_pipes = pipes_modified(state);
4226        int ret;
4227
4228        /*
4229         * If this is our first atomic update following hardware readout,
4230         * we can't trust the DDB that the BIOS programmed for us.  Let's
4231         * pretend that all pipes switched active status so that we'll
4232         * ensure a full DDB recompute.
4233         */
4234        if (dev_priv->wm.distrust_bios_wm) {
4235                ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4236                                       state->acquire_ctx);
4237                if (ret)
4238                        return ret;
4239
4240                intel_state->active_pipe_changes = ~0;
4241
4242                /*
4243                 * We usually only initialize intel_state->active_crtcs if we
4244                 * we're doing a modeset; make sure this field is always
4245                 * initialized during the sanitization process that happens
4246                 * on the first commit too.
4247                 */
4248                if (!intel_state->modeset)
4249                        intel_state->active_crtcs = dev_priv->active_crtcs;
4250        }
4251
4252        /*
4253         * If the modeset changes which CRTC's are active, we need to
4254         * recompute the DDB allocation for *all* active pipes, even
4255         * those that weren't otherwise being modified in any way by this
4256         * atomic commit.  Due to the shrinking of the per-pipe allocations
4257         * when new active CRTC's are added, it's possible for a pipe that
4258         * we were already using and aren't changing at all here to suddenly
4259         * become invalid if its DDB needs exceeds its new allocation.
4260         *
4261         * Note that if we wind up doing a full DDB recompute, we can't let
4262         * any other display updates race with this transaction, so we need
4263         * to grab the lock on *all* CRTC's.
4264         */
4265        if (intel_state->active_pipe_changes) {
4266                realloc_pipes = ~0;
4267                intel_state->wm_results.dirty_pipes = ~0;
4268        }
4269
4270        /*
4271         * We're not recomputing for the pipes not included in the commit, so
4272         * make sure we start with the current state.
4273         */
4274        memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4275
4276        for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4277                struct intel_crtc_state *cstate;
4278
4279                cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4280                if (IS_ERR(cstate))
4281                        return PTR_ERR(cstate);
4282
4283                ret = skl_allocate_pipe_ddb(cstate, ddb);
4284                if (ret)
4285                        return ret;
4286
4287                ret = skl_ddb_add_affected_planes(cstate);
4288                if (ret)
4289                        return ret;
4290        }
4291
4292        return 0;
4293}
4294
4295static void
4296skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4297                     struct skl_wm_values *src,
4298                     enum pipe pipe)
4299{
4300        memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4301               sizeof(dst->ddb.y_plane[pipe]));
4302        memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4303               sizeof(dst->ddb.plane[pipe]));
4304}
4305
4306static void
4307skl_print_wm_changes(const struct drm_atomic_state *state)
4308{
4309        const struct drm_device *dev = state->dev;
4310        const struct drm_i915_private *dev_priv = to_i915(dev);
4311        const struct intel_atomic_state *intel_state =
4312                to_intel_atomic_state(state);
4313        const struct drm_crtc *crtc;
4314        const struct drm_crtc_state *cstate;
4315        const struct intel_plane *intel_plane;
4316        const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4317        const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4318        int i;
4319
4320        for_each_new_crtc_in_state(state, crtc, cstate, i) {
4321                const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4322                enum pipe pipe = intel_crtc->pipe;
4323
4324                for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4325                        enum plane_id plane_id = intel_plane->id;
4326                        const struct skl_ddb_entry *old, *new;
4327
4328                        old = &old_ddb->plane[pipe][plane_id];
4329                        new = &new_ddb->plane[pipe][plane_id];
4330
4331                        if (skl_ddb_entry_equal(old, new))
4332                                continue;
4333
4334                        DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4335                                         intel_plane->base.base.id,
4336                                         intel_plane->base.name,
4337                                         old->start, old->end,
4338                                         new->start, new->end);
4339                }
4340        }
4341}
4342
4343static int
4344skl_compute_wm(struct drm_atomic_state *state)
4345{
4346        struct drm_crtc *crtc;
4347        struct drm_crtc_state *cstate;
4348        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4349        struct skl_wm_values *results = &intel_state->wm_results;
4350        struct drm_device *dev = state->dev;
4351        struct skl_pipe_wm *pipe_wm;
4352        bool changed = false;
4353        int ret, i;
4354
4355        /*
4356         * When we distrust bios wm we always need to recompute to set the
4357         * expected DDB allocations for each CRTC.
4358         */
4359        if (to_i915(dev)->wm.distrust_bios_wm)
4360                changed = true;
4361
4362        /*
4363         * If this transaction isn't actually touching any CRTC's, don't
4364         * bother with watermark calculation.  Note that if we pass this
4365         * test, we're guaranteed to hold at least one CRTC state mutex,
4366         * which means we can safely use values like dev_priv->active_crtcs
4367         * since any racing commits that want to update them would need to
4368         * hold _all_ CRTC state mutexes.
4369         */
4370        for_each_new_crtc_in_state(state, crtc, cstate, i)
4371                changed = true;
4372
4373        if (!changed)
4374                return 0;
4375
4376        /* Clear all dirty flags */
4377        results->dirty_pipes = 0;
4378
4379        ret = skl_compute_ddb(state);
4380        if (ret)
4381                return ret;
4382
4383        /*
4384         * Calculate WM's for all pipes that are part of this transaction.
4385         * Note that the DDB allocation above may have added more CRTC's that
4386         * weren't otherwise being modified (and set bits in dirty_pipes) if
4387         * pipe allocations had to change.
4388         *
4389         * FIXME:  Now that we're doing this in the atomic check phase, we
4390         * should allow skl_update_pipe_wm() to return failure in cases where
4391         * no suitable watermark values can be found.
4392         */
4393        for_each_new_crtc_in_state(state, crtc, cstate, i) {
4394                struct intel_crtc_state *intel_cstate =
4395                        to_intel_crtc_state(cstate);
4396                const struct skl_pipe_wm *old_pipe_wm =
4397                        &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4398
4399                pipe_wm = &intel_cstate->wm.skl.optimal;
4400                ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4401                                         &results->ddb, &changed);
4402                if (ret)
4403                        return ret;
4404
4405                if (changed)
4406                        results->dirty_pipes |= drm_crtc_mask(crtc);
4407
4408                if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4409                        /* This pipe's WM's did not change */
4410                        continue;
4411
4412                intel_cstate->update_wm_pre = true;
4413        }
4414
4415        skl_print_wm_changes(state);
4416
4417        return 0;
4418}
4419
4420static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4421                                      struct intel_crtc_state *cstate)
4422{
4423        struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4424        struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4425        struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4426        const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4427        enum pipe pipe = crtc->pipe;
4428        enum plane_id plane_id;
4429
4430        if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4431                return;
4432
4433        I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4434
4435        for_each_plane_id_on_crtc(crtc, plane_id) {
4436                if (plane_id != PLANE_CURSOR)
4437                        skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
4438                                           ddb, plane_id);
4439                else
4440                        skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
4441                                            ddb);
4442        }
4443}
4444
4445static void skl_initial_wm(struct intel_atomic_state *state,
4446                           struct intel_crtc_state *cstate)
4447{
4448        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4449        struct drm_device *dev = intel_crtc->base.dev;
4450        struct drm_i915_private *dev_priv = to_i915(dev);
4451        struct skl_wm_values *results = &state->wm_results;
4452        struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4453        enum pipe pipe = intel_crtc->pipe;
4454
4455        if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4456                return;
4457
4458        mutex_lock(&dev_priv->wm.wm_mutex);
4459
4460        if (cstate->base.active_changed)
4461                skl_atomic_update_crtc_wm(state, cstate);
4462
4463        skl_copy_wm_for_pipe(hw_vals, results, pipe);
4464
4465        mutex_unlock(&dev_priv->wm.wm_mutex);
4466}
4467
4468static void ilk_compute_wm_config(struct drm_device *dev,
4469                                  struct intel_wm_config *config)
4470{
4471        struct intel_crtc *crtc;
4472
4473        /* Compute the currently _active_ config */
4474        for_each_intel_crtc(dev, crtc) {
4475                const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4476
4477                if (!wm->pipe_enabled)
4478                        continue;
4479
4480                config->sprites_enabled |= wm->sprites_enabled;
4481                config->sprites_scaled |= wm->sprites_scaled;
4482                config->num_pipes_active++;
4483        }
4484}
4485
4486static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4487{
4488        struct drm_device *dev = &dev_priv->drm;
4489        struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4490        struct ilk_wm_maximums max;
4491        struct intel_wm_config config = {};
4492        struct ilk_wm_values results = {};
4493        enum intel_ddb_partitioning partitioning;
4494
4495        ilk_compute_wm_config(dev, &config);
4496
4497        ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4498        ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4499
4500        /* 5/6 split only in single pipe config on IVB+ */
4501        if (INTEL_GEN(dev_priv) >= 7 &&
4502            config.num_pipes_active == 1 && config.sprites_enabled) {
4503                ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4504                ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4505
4506                best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4507        } else {
4508                best_lp_wm = &lp_wm_1_2;
4509        }
4510
4511        partitioning = (best_lp_wm == &lp_wm_1_2) ?
4512                       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4513
4514        ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4515
4516        ilk_write_wm_values(dev_priv, &results);
4517}
4518
4519static void ilk_initial_watermarks(struct intel_atomic_state *state,
4520                                   struct intel_crtc_state *cstate)
4521{
4522        struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4523        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4524
4525        mutex_lock(&dev_priv->wm.wm_mutex);
4526        intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4527        ilk_program_watermarks(dev_priv);
4528        mutex_unlock(&dev_priv->wm.wm_mutex);
4529}
4530
4531static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4532                                    struct intel_crtc_state *cstate)
4533{
4534        struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4535        struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4536
4537        mutex_lock(&dev_priv->wm.wm_mutex);
4538        if (cstate->wm.need_postvbl_update) {
4539                intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4540                ilk_program_watermarks(dev_priv);
4541        }
4542        mutex_unlock(&dev_priv->wm.wm_mutex);
4543}
4544
4545static inline void skl_wm_level_from_reg_val(uint32_t val,
4546                                             struct skl_wm_level *level)
4547{
4548        level->plane_en = val & PLANE_WM_EN;
4549        level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4550        level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4551                PLANE_WM_LINES_MASK;
4552}
4553
4554void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4555                              struct skl_pipe_wm *out)
4556{
4557        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4558        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4559        enum pipe pipe = intel_crtc->pipe;
4560        int level, max_level;
4561        enum plane_id plane_id;
4562        uint32_t val;
4563
4564        max_level = ilk_wm_max_level(dev_priv);
4565
4566        for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4567                struct skl_plane_wm *wm = &out->planes[plane_id];
4568
4569                for (level = 0; level <= max_level; level++) {
4570                        if (plane_id != PLANE_CURSOR)
4571                                val = I915_READ(PLANE_WM(pipe, plane_id, level));
4572                        else
4573                                val = I915_READ(CUR_WM(pipe, level));
4574
4575                        skl_wm_level_from_reg_val(val, &wm->wm[level]);
4576                }
4577
4578                if (plane_id != PLANE_CURSOR)
4579                        val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4580                else
4581                        val = I915_READ(CUR_WM_TRANS(pipe));
4582
4583                skl_wm_level_from_reg_val(val, &wm->trans_wm);
4584        }
4585
4586        if (!intel_crtc->active)
4587                return;
4588
4589        out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4590}
4591
4592void skl_wm_get_hw_state(struct drm_device *dev)
4593{
4594        struct drm_i915_private *dev_priv = to_i915(dev);
4595        struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4596        struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4597        struct drm_crtc *crtc;
4598        struct intel_crtc *intel_crtc;
4599        struct intel_crtc_state *cstate;
4600
4601        skl_ddb_get_hw_state(dev_priv, ddb);
4602        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4603                intel_crtc = to_intel_crtc(crtc);
4604                cstate = to_intel_crtc_state(crtc->state);
4605
4606                skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
4607
4608                if (intel_crtc->active)
4609                        hw->dirty_pipes |= drm_crtc_mask(crtc);
4610        }
4611
4612        if (dev_priv->active_crtcs) {
4613                /* Fully recompute DDB on first atomic commit */
4614                dev_priv->wm.distrust_bios_wm = true;
4615        } else {
4616                /* Easy/common case; just sanitize DDB now if everything off */
4617                memset(ddb, 0, sizeof(*ddb));
4618        }
4619}
4620
4621static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4622{
4623        struct drm_device *dev = crtc->dev;
4624        struct drm_i915_private *dev_priv = to_i915(dev);
4625        struct ilk_wm_values *hw = &dev_priv->wm.hw;
4626        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4627        struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4628        struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4629        enum pipe pipe = intel_crtc->pipe;
4630        static const i915_reg_t wm0_pipe_reg[] = {
4631                [PIPE_A] = WM0_PIPEA_ILK,
4632                [PIPE_B] = WM0_PIPEB_ILK,
4633                [PIPE_C] = WM0_PIPEC_IVB,
4634        };
4635
4636        hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4637        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4638                hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4639
4640        memset(active, 0, sizeof(*active));
4641
4642        active->pipe_enabled = intel_crtc->active;
4643
4644        if (active->pipe_enabled) {
4645                u32 tmp = hw->wm_pipe[pipe];
4646
4647                /*
4648                 * For active pipes LP0 watermark is marked as
4649                 * enabled, and LP1+ watermaks as disabled since
4650                 * we can't really reverse compute them in case
4651                 * multiple pipes are active.
4652                 */
4653                active->wm[0].enable = true;
4654                active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4655                active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4656                active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4657                active->linetime = hw->wm_linetime[pipe];
4658        } else {
4659                int level, max_level = ilk_wm_max_level(dev_priv);
4660
4661                /*
4662                 * For inactive pipes, all watermark levels
4663                 * should be marked as enabled but zeroed,
4664                 * which is what we'd compute them to.
4665                 */
4666                for (level = 0; level <= max_level; level++)
4667                        active->wm[level].enable = true;
4668        }
4669
4670        intel_crtc->wm.active.ilk = *active;
4671}
4672
4673#define _FW_WM(value, plane) \
4674        (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4675#define _FW_WM_VLV(value, plane) \
4676        (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4677
4678static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4679                               struct vlv_wm_values *wm)
4680{
4681        enum pipe pipe;
4682        uint32_t tmp;
4683
4684        for_each_pipe(dev_priv, pipe) {
4685                tmp = I915_READ(VLV_DDL(pipe));
4686
4687                wm->ddl[pipe].plane[PLANE_PRIMARY] =
4688                        (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4689                wm->ddl[pipe].plane[PLANE_CURSOR] =
4690                        (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4691                wm->ddl[pipe].plane[PLANE_SPRITE0] =
4692                        (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4693                wm->ddl[pipe].plane[PLANE_SPRITE1] =
4694                        (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4695        }
4696
4697        tmp = I915_READ(DSPFW1);
4698        wm->sr.plane = _FW_WM(tmp, SR);
4699        wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
4700        wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
4701        wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4702
4703        tmp = I915_READ(DSPFW2);
4704        wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
4705        wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
4706        wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4707
4708        tmp = I915_READ(DSPFW3);
4709        wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4710
4711        if (IS_CHERRYVIEW(dev_priv)) {
4712                tmp = I915_READ(DSPFW7_CHV);
4713                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4714                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4715
4716                tmp = I915_READ(DSPFW8_CHV);
4717                wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
4718                wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4719
4720                tmp = I915_READ(DSPFW9_CHV);
4721                wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
4722                wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4723
4724                tmp = I915_READ(DSPHOWM);
4725                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4726                wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4727                wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4728                wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
4729                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4730                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4731                wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4732                wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4733                wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4734                wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4735        } else {
4736                tmp = I915_READ(DSPFW7);
4737                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4738                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4739
4740                tmp = I915_READ(DSPHOWM);
4741                wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4742                wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4743                wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4744                wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4745                wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4746                wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4747                wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4748        }
4749}
4750
4751#undef _FW_WM
4752#undef _FW_WM_VLV
4753
4754void vlv_wm_get_hw_state(struct drm_device *dev)
4755{
4756        struct drm_i915_private *dev_priv = to_i915(dev);
4757        struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4758        struct intel_crtc *crtc;
4759        u32 val;
4760
4761        vlv_read_wm_values(dev_priv, wm);
4762
4763        wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4764        wm->level = VLV_WM_LEVEL_PM2;
4765
4766        if (IS_CHERRYVIEW(dev_priv)) {
4767                mutex_lock(&dev_priv->rps.hw_lock);
4768
4769                val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4770                if (val & DSP_MAXFIFO_PM5_ENABLE)
4771                        wm->level = VLV_WM_LEVEL_PM5;
4772
4773                /*
4774                 * If DDR DVFS is disabled in the BIOS, Punit
4775                 * will never ack the request. So if that happens
4776                 * assume we don't have to enable/disable DDR DVFS
4777                 * dynamically. To test that just set the REQ_ACK
4778                 * bit to poke the Punit, but don't change the
4779                 * HIGH/LOW bits so that we don't actually change
4780                 * the current state.
4781                 */
4782                val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4783                val |= FORCE_DDR_FREQ_REQ_ACK;
4784                vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4785
4786                if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4787                              FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4788                        DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4789                                      "assuming DDR DVFS is disabled\n");
4790                        dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4791                } else {
4792                        val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4793                        if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4794                                wm->level = VLV_WM_LEVEL_DDR_DVFS;
4795                }
4796
4797                mutex_unlock(&dev_priv->rps.hw_lock);
4798        }
4799
4800        for_each_intel_crtc(dev, crtc) {
4801                struct intel_crtc_state *crtc_state =
4802                        to_intel_crtc_state(crtc->base.state);
4803                struct vlv_wm_state *active = &crtc->wm.active.vlv;
4804                const struct vlv_fifo_state *fifo_state =
4805                        &crtc_state->wm.vlv.fifo_state;
4806                enum pipe pipe = crtc->pipe;
4807                enum plane_id plane_id;
4808                int level;
4809
4810                vlv_get_fifo_size(crtc_state);
4811
4812                active->num_levels = wm->level + 1;
4813                active->cxsr = wm->cxsr;
4814
4815                for (level = 0; level < active->num_levels; level++) {
4816                        struct vlv_pipe_wm *raw =
4817                                &crtc_state->wm.vlv.raw[level];
4818
4819                        active->sr[level].plane = wm->sr.plane;
4820                        active->sr[level].cursor = wm->sr.cursor;
4821
4822                        for_each_plane_id_on_crtc(crtc, plane_id) {
4823                                active->wm[level].plane[plane_id] =
4824                                        wm->pipe[pipe].plane[plane_id];
4825
4826                                raw->plane[plane_id] =
4827                                        vlv_invert_wm_value(active->wm[level].plane[plane_id],
4828                                                            fifo_state->plane[plane_id]);
4829                        }
4830                }
4831
4832                for_each_plane_id_on_crtc(crtc, plane_id)
4833                        vlv_raw_plane_wm_set(crtc_state, level,
4834                                             plane_id, USHRT_MAX);
4835                vlv_invalidate_wms(crtc, active, level);
4836
4837                crtc_state->wm.vlv.optimal = *active;
4838                crtc_state->wm.vlv.intermediate = *active;
4839
4840                DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4841                              pipe_name(pipe),
4842                              wm->pipe[pipe].plane[PLANE_PRIMARY],
4843                              wm->pipe[pipe].plane[PLANE_CURSOR],
4844                              wm->pipe[pipe].plane[PLANE_SPRITE0],
4845                              wm->pipe[pipe].plane[PLANE_SPRITE1]);
4846        }
4847
4848        DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4849                      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4850}
4851
4852void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
4853{
4854        struct intel_plane *plane;
4855        struct intel_crtc *crtc;
4856
4857        mutex_lock(&dev_priv->wm.wm_mutex);
4858
4859        for_each_intel_plane(&dev_priv->drm, plane) {
4860                struct intel_crtc *crtc =
4861                        intel_get_crtc_for_pipe(dev_priv, plane->pipe);
4862                struct intel_crtc_state *crtc_state =
4863                        to_intel_crtc_state(crtc->base.state);
4864                struct intel_plane_state *plane_state =
4865                        to_intel_plane_state(plane->base.state);
4866                struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
4867                const struct vlv_fifo_state *fifo_state =
4868                        &crtc_state->wm.vlv.fifo_state;
4869                enum plane_id plane_id = plane->id;
4870                int level;
4871
4872                if (plane_state->base.visible)
4873                        continue;
4874
4875                for (level = 0; level < wm_state->num_levels; level++) {
4876                        struct vlv_pipe_wm *raw =
4877                                &crtc_state->wm.vlv.raw[level];
4878
4879                        raw->plane[plane_id] = 0;
4880
4881                        wm_state->wm[level].plane[plane_id] =
4882                                vlv_invert_wm_value(raw->plane[plane_id],
4883                                                    fifo_state->plane[plane_id]);
4884                }
4885        }
4886
4887        for_each_intel_crtc(&dev_priv->drm, crtc) {
4888                struct intel_crtc_state *crtc_state =
4889                        to_intel_crtc_state(crtc->base.state);
4890
4891                crtc_state->wm.vlv.intermediate =
4892                        crtc_state->wm.vlv.optimal;
4893                crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
4894        }
4895
4896        vlv_program_watermarks(dev_priv);
4897
4898        mutex_unlock(&dev_priv->wm.wm_mutex);
4899}
4900
4901void ilk_wm_get_hw_state(struct drm_device *dev)
4902{
4903        struct drm_i915_private *dev_priv = to_i915(dev);
4904        struct ilk_wm_values *hw = &dev_priv->wm.hw;
4905        struct drm_crtc *crtc;
4906
4907        for_each_crtc(dev, crtc)
4908                ilk_pipe_wm_get_hw_state(crtc);
4909
4910        hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4911        hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4912        hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4913
4914        hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4915        if (INTEL_GEN(dev_priv) >= 7) {
4916                hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4917                hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4918        }
4919
4920        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4921                hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4922                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4923        else if (IS_IVYBRIDGE(dev_priv))
4924                hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4925                        INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4926
4927        hw->enable_fbc_wm =
4928                !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4929}
4930
4931/**
4932 * intel_update_watermarks - update FIFO watermark values based on current modes
4933 *
4934 * Calculate watermark values for the various WM regs based on current mode
4935 * and plane configuration.
4936 *
4937 * There are several cases to deal with here:
4938 *   - normal (i.e. non-self-refresh)
4939 *   - self-refresh (SR) mode
4940 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4941 *   - lines are small relative to FIFO size (buffer can hold more than 2
4942 *     lines), so need to account for TLB latency
4943 *
4944 *   The normal calculation is:
4945 *     watermark = dotclock * bytes per pixel * latency
4946 *   where latency is platform & configuration dependent (we assume pessimal
4947 *   values here).
4948 *
4949 *   The SR calculation is:
4950 *     watermark = (trunc(latency/line time)+1) * surface width *
4951 *       bytes per pixel
4952 *   where
4953 *     line time = htotal / dotclock
4954 *     surface width = hdisplay for normal plane and 64 for cursor
4955 *   and latency is assumed to be high, as above.
4956 *
4957 * The final value programmed to the register should always be rounded up,
4958 * and include an extra 2 entries to account for clock crossings.
4959 *
4960 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4961 * to set the non-SR watermarks to 8.
4962 */
4963void intel_update_watermarks(struct intel_crtc *crtc)
4964{
4965        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4966
4967        if (dev_priv->display.update_wm)
4968                dev_priv->display.update_wm(crtc);
4969}
4970
4971/*
4972 * Lock protecting IPS related data structures
4973 */
4974DEFINE_SPINLOCK(mchdev_lock);
4975
4976/* Global for IPS driver to get at the current i915 device. Protected by
4977 * mchdev_lock. */
4978static struct drm_i915_private *i915_mch_dev;
4979
4980bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4981{
4982        u16 rgvswctl;
4983
4984        lockdep_assert_held(&mchdev_lock);
4985
4986        rgvswctl = I915_READ16(MEMSWCTL);
4987        if (rgvswctl & MEMCTL_CMD_STS) {
4988                DRM_DEBUG("gpu busy, RCS change rejected\n");
4989                return false; /* still busy with another command */
4990        }
4991
4992        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4993                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4994        I915_WRITE16(MEMSWCTL, rgvswctl);
4995        POSTING_READ16(MEMSWCTL);
4996
4997        rgvswctl |= MEMCTL_CMD_STS;
4998        I915_WRITE16(MEMSWCTL, rgvswctl);
4999
5000        return true;
5001}
5002
5003static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5004{
5005        u32 rgvmodectl;
5006        u8 fmax, fmin, fstart, vstart;
5007
5008        spin_lock_irq(&mchdev_lock);
5009
5010        rgvmodectl = I915_READ(MEMMODECTL);
5011
5012        /* Enable temp reporting */
5013        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5014        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5015
5016        /* 100ms RC evaluation intervals */
5017        I915_WRITE(RCUPEI, 100000);
5018        I915_WRITE(RCDNEI, 100000);
5019
5020        /* Set max/min thresholds to 90ms and 80ms respectively */
5021        I915_WRITE(RCBMAXAVG, 90000);
5022        I915_WRITE(RCBMINAVG, 80000);
5023
5024        I915_WRITE(MEMIHYST, 1);
5025
5026        /* Set up min, max, and cur for interrupt handling */
5027        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5028        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5029        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5030                MEMMODE_FSTART_SHIFT;
5031
5032        vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5033                PXVFREQ_PX_SHIFT;
5034
5035        dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5036        dev_priv->ips.fstart = fstart;
5037
5038        dev_priv->ips.max_delay = fstart;
5039        dev_priv->ips.min_delay = fmin;
5040        dev_priv->ips.cur_delay = fstart;
5041
5042        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5043                         fmax, fmin, fstart);
5044
5045        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5046
5047        /*
5048         * Interrupts will be enabled in ironlake_irq_postinstall
5049         */
5050
5051        I915_WRITE(VIDSTART, vstart);
5052        POSTING_READ(VIDSTART);
5053
5054        rgvmodectl |= MEMMODE_SWMODE_EN;
5055        I915_WRITE(MEMMODECTL, rgvmodectl);
5056
5057        if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5058                DRM_ERROR("stuck trying to change perf mode\n");
5059        mdelay(1);
5060
5061        ironlake_set_drps(dev_priv, fstart);
5062
5063        dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5064                I915_READ(DDREC) + I915_READ(CSIEC);
5065        dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5066        dev_priv->ips.last_count2 = I915_READ(GFXEC);
5067        dev_priv->ips.last_time2 = ktime_get_raw_ns();
5068
5069        spin_unlock_irq(&mchdev_lock);
5070}
5071
5072static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5073{
5074        u16 rgvswctl;
5075
5076        spin_lock_irq(&mchdev_lock);
5077
5078        rgvswctl = I915_READ16(MEMSWCTL);
5079
5080        /* Ack interrupts, disable EFC interrupt */
5081        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5082        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5083        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5084        I915_WRITE(DEIIR, DE_PCU_EVENT);
5085        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5086
5087        /* Go back to the starting frequency */
5088        ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5089        mdelay(1);
5090        rgvswctl |= MEMCTL_CMD_STS;
5091        I915_WRITE(MEMSWCTL, rgvswctl);
5092        mdelay(1);
5093
5094        spin_unlock_irq(&mchdev_lock);
5095}
5096
5097/* There's a funny hw issue where the hw returns all 0 when reading from
5098 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5099 * ourselves, instead of doing a rmw cycle (which might result in us clearing
5100 * all limits and the gpu stuck at whatever frequency it is at atm).
5101 */
5102static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5103{
5104        u32 limits;
5105
5106        /* Only set the down limit when we've reached the lowest level to avoid
5107         * getting more interrupts, otherwise leave this clear. This prevents a
5108         * race in the hw when coming out of rc6: There's a tiny window where
5109         * the hw runs at the minimal clock before selecting the desired
5110         * frequency, if the down threshold expires in that window we will not
5111         * receive a down interrupt. */
5112        if (IS_GEN9(dev_priv)) {
5113                limits = (dev_priv->rps.max_freq_softlimit) << 23;
5114                if (val <= dev_priv->rps.min_freq_softlimit)
5115                        limits |= (dev_priv->rps.min_freq_softlimit) << 14;
5116        } else {
5117                limits = dev_priv->rps.max_freq_softlimit << 24;
5118                if (val <= dev_priv->rps.min_freq_softlimit)
5119                        limits |= dev_priv->rps.min_freq_softlimit << 16;
5120        }
5121
5122        return limits;
5123}
5124
5125static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
5126{
5127        int new_power;
5128        u32 threshold_up = 0, threshold_down = 0; /* in % */
5129        u32 ei_up = 0, ei_down = 0;
5130
5131        new_power = dev_priv->rps.power;
5132        switch (dev_priv->rps.power) {
5133        case LOW_POWER:
5134                if (val > dev_priv->rps.efficient_freq + 1 &&
5135                    val > dev_priv->rps.cur_freq)
5136                        new_power = BETWEEN;
5137                break;
5138
5139        case BETWEEN:
5140                if (val <= dev_priv->rps.efficient_freq &&
5141                    val < dev_priv->rps.cur_freq)
5142                        new_power = LOW_POWER;
5143                else if (val >= dev_priv->rps.rp0_freq &&
5144                         val > dev_priv->rps.cur_freq)
5145                        new_power = HIGH_POWER;
5146                break;
5147
5148        case HIGH_POWER:
5149                if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
5150                    val < dev_priv->rps.cur_freq)
5151                        new_power = BETWEEN;
5152                break;
5153        }
5154        /* Max/min bins are special */
5155        if (val <= dev_priv->rps.min_freq_softlimit)
5156                new_power = LOW_POWER;
5157        if (val >= dev_priv->rps.max_freq_softlimit)
5158                new_power = HIGH_POWER;
5159        if (new_power == dev_priv->rps.power)
5160                return;
5161
5162        /* Note the units here are not exactly 1us, but 1280ns. */
5163        switch (new_power) {
5164        case LOW_POWER:
5165                /* Upclock if more than 95% busy over 16ms */
5166                ei_up = 16000;
5167                threshold_up = 95;
5168
5169                /* Downclock if less than 85% busy over 32ms */
5170                ei_down = 32000;
5171                threshold_down = 85;
5172                break;
5173
5174        case BETWEEN:
5175                /* Upclock if more than 90% busy over 13ms */
5176                ei_up = 13000;
5177                threshold_up = 90;
5178
5179                /* Downclock if less than 75% busy over 32ms */
5180                ei_down = 32000;
5181                threshold_down = 75;
5182                break;
5183
5184        case HIGH_POWER:
5185                /* Upclock if more than 85% busy over 10ms */
5186                ei_up = 10000;
5187                threshold_up = 85;
5188
5189                /* Downclock if less than 60% busy over 32ms */
5190                ei_down = 32000;
5191                threshold_down = 60;
5192                break;
5193        }
5194
5195        /* When byt can survive without system hang with dynamic
5196         * sw freq adjustments, this restriction can be lifted.
5197         */
5198        if (IS_VALLEYVIEW(dev_priv))
5199                goto skip_hw_write;
5200
5201        I915_WRITE(GEN6_RP_UP_EI,
5202                   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5203        I915_WRITE(GEN6_RP_UP_THRESHOLD,
5204                   GT_INTERVAL_FROM_US(dev_priv,
5205                                       ei_up * threshold_up / 100));
5206
5207        I915_WRITE(GEN6_RP_DOWN_EI,
5208                   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5209        I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5210                   GT_INTERVAL_FROM_US(dev_priv,
5211                                       ei_down * threshold_down / 100));
5212
5213        I915_WRITE(GEN6_RP_CONTROL,
5214                   GEN6_RP_MEDIA_TURBO |
5215                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5216                   GEN6_RP_MEDIA_IS_GFX |
5217                   GEN6_RP_ENABLE |
5218                   GEN6_RP_UP_BUSY_AVG |
5219                   GEN6_RP_DOWN_IDLE_AVG);
5220
5221skip_hw_write:
5222        dev_priv->rps.power = new_power;
5223        dev_priv->rps.up_threshold = threshold_up;
5224        dev_priv->rps.down_threshold = threshold_down;
5225        dev_priv->rps.last_adj = 0;
5226}
5227
5228static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
5229{
5230        u32 mask = 0;
5231
5232        /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5233        if (val > dev_priv->rps.min_freq_softlimit)
5234                mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5235        if (val < dev_priv->rps.max_freq_softlimit)
5236                mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5237
5238        mask &= dev_priv->pm_rps_events;
5239
5240        return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5241}
5242
5243/* gen6_set_rps is called to update the frequency request, but should also be
5244 * called when the range (min_delay and max_delay) is modified so that we can
5245 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5246static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5247{
5248        /* min/max delay may still have been modified so be sure to
5249         * write the limits value.
5250         */
5251        if (val != dev_priv->rps.cur_freq) {
5252                gen6_set_rps_thresholds(dev_priv, val);
5253
5254                if (IS_GEN9(dev_priv))
5255                        I915_WRITE(GEN6_RPNSWREQ,
5256                                   GEN9_FREQUENCY(val));
5257                else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5258                        I915_WRITE(GEN6_RPNSWREQ,
5259                                   HSW_FREQUENCY(val));
5260                else
5261                        I915_WRITE(GEN6_RPNSWREQ,
5262                                   GEN6_FREQUENCY(val) |
5263                                   GEN6_OFFSET(0) |
5264                                   GEN6_AGGRESSIVE_TURBO);
5265        }
5266
5267        /* Make sure we continue to get interrupts
5268         * until we hit the minimum or maximum frequencies.
5269         */
5270        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5271        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5272
5273        dev_priv->rps.cur_freq = val;
5274        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5275
5276        return 0;
5277}
5278
5279static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5280{
5281        int err;
5282
5283        if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5284                      "Odd GPU freq value\n"))
5285                val &= ~1;
5286
5287        I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5288
5289        if (val != dev_priv->rps.cur_freq) {
5290                err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5291                if (err)
5292                        return err;
5293
5294                gen6_set_rps_thresholds(dev_priv, val);
5295        }
5296
5297        dev_priv->rps.cur_freq = val;
5298        trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5299
5300        return 0;
5301}
5302
5303/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5304 *
5305 * * If Gfx is Idle, then
5306 * 1. Forcewake Media well.
5307 * 2. Request idle freq.
5308 * 3. Release Forcewake of Media well.
5309*/
5310static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5311{
5312        u32 val = dev_priv->rps.idle_freq;
5313        int err;
5314
5315        if (dev_priv->rps.cur_freq <= val)
5316                return;
5317
5318        /* The punit delays the write of the frequency and voltage until it
5319         * determines the GPU is awake. During normal usage we don't want to
5320         * waste power changing the frequency if the GPU is sleeping (rc6).
5321         * However, the GPU and driver is now idle and we do not want to delay
5322         * switching to minimum voltage (reducing power whilst idle) as we do
5323         * not expect to be woken in the near future and so must flush the
5324         * change by waking the device.
5325         *
5326         * We choose to take the media powerwell (either would do to trick the
5327         * punit into committing the voltage change) as that takes a lot less
5328         * power than the render powerwell.
5329         */
5330        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5331        err = valleyview_set_rps(dev_priv, val);
5332        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5333
5334        if (err)
5335                DRM_ERROR("Failed to set RPS for idle\n");
5336}
5337
5338void gen6_rps_busy(struct drm_i915_private *dev_priv)
5339{
5340        mutex_lock(&dev_priv->rps.hw_lock);
5341        if (dev_priv->rps.enabled) {
5342                u8 freq;
5343
5344                if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5345                        gen6_rps_reset_ei(dev_priv);
5346                I915_WRITE(GEN6_PMINTRMSK,
5347                           gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5348
5349                gen6_enable_rps_interrupts(dev_priv);
5350
5351                /* Use the user's desired frequency as a guide, but for better
5352                 * performance, jump directly to RPe as our starting frequency.
5353                 */
5354                freq = max(dev_priv->rps.cur_freq,
5355                           dev_priv->rps.efficient_freq);
5356
5357                if (intel_set_rps(dev_priv,
5358                                  clamp(freq,
5359                                        dev_priv->rps.min_freq_softlimit,
5360                                        dev_priv->rps.max_freq_softlimit)))
5361                        DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5362        }
5363        mutex_unlock(&dev_priv->rps.hw_lock);
5364}
5365
5366void gen6_rps_idle(struct drm_i915_private *dev_priv)
5367{
5368        /* Flush our bottom-half so that it does not race with us
5369         * setting the idle frequency and so that it is bounded by
5370         * our rpm wakeref. And then disable the interrupts to stop any
5371         * futher RPS reclocking whilst we are asleep.
5372         */
5373        gen6_disable_rps_interrupts(dev_priv);
5374
5375        mutex_lock(&dev_priv->rps.hw_lock);
5376        if (dev_priv->rps.enabled) {
5377                if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5378                        vlv_set_rps_idle(dev_priv);
5379                else
5380                        gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5381                dev_priv->rps.last_adj = 0;
5382                I915_WRITE(GEN6_PMINTRMSK,
5383                           gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5384        }
5385        mutex_unlock(&dev_priv->rps.hw_lock);
5386
5387        spin_lock(&dev_priv->rps.client_lock);
5388        while (!list_empty(&dev_priv->rps.clients))
5389                list_del_init(dev_priv->rps.clients.next);
5390        spin_unlock(&dev_priv->rps.client_lock);
5391}
5392
5393void gen6_rps_boost(struct drm_i915_private *dev_priv,
5394                    struct intel_rps_client *rps,
5395                    unsigned long submitted)
5396{
5397        /* This is intentionally racy! We peek at the state here, then
5398         * validate inside the RPS worker.
5399         */
5400        if (!(dev_priv->gt.awake &&
5401              dev_priv->rps.enabled &&
5402              dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5403                return;
5404
5405        /* Force a RPS boost (and don't count it against the client) if
5406         * the GPU is severely congested.
5407         */
5408        if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5409                rps = NULL;
5410
5411        spin_lock(&dev_priv->rps.client_lock);
5412        if (rps == NULL || list_empty(&rps->link)) {
5413                spin_lock_irq(&dev_priv->irq_lock);
5414                if (dev_priv->rps.interrupts_enabled) {
5415                        dev_priv->rps.client_boost = true;
5416                        schedule_work(&dev_priv->rps.work);
5417                }
5418                spin_unlock_irq(&dev_priv->irq_lock);
5419
5420                if (rps != NULL) {
5421                        list_add(&rps->link, &dev_priv->rps.clients);
5422                        rps->boosts++;
5423                } else
5424                        dev_priv->rps.boosts++;
5425        }
5426        spin_unlock(&dev_priv->rps.client_lock);
5427}
5428
5429int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5430{
5431        int err;
5432
5433        lockdep_assert_held(&dev_priv->rps.hw_lock);
5434        GEM_BUG_ON(val > dev_priv->rps.max_freq);
5435        GEM_BUG_ON(val < dev_priv->rps.min_freq);
5436
5437        if (!dev_priv->rps.enabled) {
5438                dev_priv->rps.cur_freq = val;
5439                return 0;
5440        }
5441
5442        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5443                err = valleyview_set_rps(dev_priv, val);
5444        else
5445                err = gen6_set_rps(dev_priv, val);
5446
5447        return err;
5448}
5449
5450static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5451{
5452        I915_WRITE(GEN6_RC_CONTROL, 0);
5453        I915_WRITE(GEN9_PG_ENABLE, 0);
5454}
5455
5456static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5457{
5458        I915_WRITE(GEN6_RP_CONTROL, 0);
5459}
5460
5461static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5462{
5463        I915_WRITE(GEN6_RC_CONTROL, 0);
5464        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5465        I915_WRITE(GEN6_RP_CONTROL, 0);
5466}
5467
5468static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5469{
5470        I915_WRITE(GEN6_RC_CONTROL, 0);
5471}
5472
5473static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5474{
5475        /* we're doing forcewake before Disabling RC6,
5476         * This what the BIOS expects when going into suspend */
5477        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5478
5479        I915_WRITE(GEN6_RC_CONTROL, 0);
5480
5481        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5482}
5483
5484static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5485{
5486        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5487                if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5488                        mode = GEN6_RC_CTL_RC6_ENABLE;
5489                else
5490                        mode = 0;
5491        }
5492        if (HAS_RC6p(dev_priv))
5493                DRM_DEBUG_DRIVER("Enabling RC6 states: "
5494                                 "RC6 %s RC6p %s RC6pp %s\n",
5495                                 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5496                                 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5497                                 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5498
5499        else
5500                DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5501                                 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5502}
5503
5504static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5505{
5506        struct i915_ggtt *ggtt = &dev_priv->ggtt;
5507        bool enable_rc6 = true;
5508        unsigned long rc6_ctx_base;
5509        u32 rc_ctl;
5510        int rc_sw_target;
5511
5512        rc_ctl = I915_READ(GEN6_RC_CONTROL);
5513        rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5514                       RC_SW_TARGET_STATE_SHIFT;
5515        DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5516                         "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5517                         onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5518                         onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5519                         rc_sw_target);
5520
5521        if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5522                DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5523                enable_rc6 = false;
5524        }
5525
5526        /*
5527         * The exact context size is not known for BXT, so assume a page size
5528         * for this check.
5529         */
5530        rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5531        if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5532              (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5533                                        ggtt->stolen_reserved_size))) {
5534                DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5535                enable_rc6 = false;
5536        }
5537
5538        if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5539              ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5540              ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5541              ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5542                DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5543                enable_rc6 = false;
5544        }
5545
5546        if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5547            !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5548            !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5549                DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5550                enable_rc6 = false;
5551        }
5552
5553        if (!I915_READ(GEN6_GFXPAUSE)) {
5554                DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5555                enable_rc6 = false;
5556        }
5557
5558        if (!I915_READ(GEN8_MISC_CTRL0)) {
5559                DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5560                enable_rc6 = false;
5561        }
5562
5563        return enable_rc6;
5564}
5565
5566int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5567{
5568        /* No RC6 before Ironlake and code is gone for ilk. */
5569        if (INTEL_INFO(dev_priv)->gen < 6)
5570                return 0;
5571
5572        if (!enable_rc6)
5573                return 0;
5574
5575        if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5576                DRM_INFO("RC6 disabled by BIOS\n");
5577                return 0;
5578        }
5579
5580        /* Respect the kernel parameter if it is set */
5581        if (enable_rc6 >= 0) {
5582                int mask;
5583
5584                if (HAS_RC6p(dev_priv))
5585                        mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5586                               INTEL_RC6pp_ENABLE;
5587                else
5588                        mask = INTEL_RC6_ENABLE;
5589
5590                if ((enable_rc6 & mask) != enable_rc6)
5591                        DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5592                                         "(requested %d, valid %d)\n",
5593                                         enable_rc6 & mask, enable_rc6, mask);
5594
5595                return enable_rc6 & mask;
5596        }
5597
5598        if (IS_IVYBRIDGE(dev_priv))
5599                return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5600
5601        return INTEL_RC6_ENABLE;
5602}
5603
5604static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5605{
5606        /* All of these values are in units of 50MHz */
5607
5608        /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5609        if (IS_GEN9_LP(dev_priv)) {
5610                u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5611                dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5612                dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5613                dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5614        } else {
5615                u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5616                dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5617                dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5618                dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5619        }
5620        /* hw_max = RP0 until we check for overclocking */
5621        dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5622
5623        dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5624        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5625            IS_GEN9_BC(dev_priv)) {
5626                u32 ddcc_status = 0;
5627
5628                if (sandybridge_pcode_read(dev_priv,
5629                                           HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5630                                           &ddcc_status) == 0)
5631                        dev_priv->rps.efficient_freq =
5632                                clamp_t(u8,
5633                                        ((ddcc_status >> 8) & 0xff),
5634                                        dev_priv->rps.min_freq,
5635                                        dev_priv->rps.max_freq);
5636        }
5637
5638        if (IS_GEN9_BC(dev_priv)) {
5639                /* Store the frequency values in 16.66 MHZ units, which is
5640                 * the natural hardware unit for SKL
5641                 */
5642                dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5643                dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5644                dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5645                dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5646                dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5647        }
5648}
5649
5650static void reset_rps(struct drm_i915_private *dev_priv,
5651                      int (*set)(struct drm_i915_private *, u8))
5652{
5653        u8 freq = dev_priv->rps.cur_freq;
5654
5655        /* force a reset */
5656        dev_priv->rps.power = -1;
5657        dev_priv->rps.cur_freq = -1;
5658
5659        if (set(dev_priv, freq))
5660                DRM_ERROR("Failed to reset RPS to initial values\n");
5661}
5662
5663/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5664static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5665{
5666        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5667
5668        /* Program defaults and thresholds for RPS*/
5669        I915_WRITE(GEN6_RC_VIDEO_FREQ,
5670                GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5671
5672        /* 1 second timeout*/
5673        I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5674                GT_INTERVAL_FROM_US(dev_priv, 1000000));
5675
5676        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5677
5678        /* Leaning on the below call to gen6_set_rps to program/setup the
5679         * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5680         * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5681        reset_rps(dev_priv, gen6_set_rps);
5682
5683        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5684}
5685
5686static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5687{
5688        struct intel_engine_cs *engine;
5689        enum intel_engine_id id;
5690        uint32_t rc6_mask = 0;
5691
5692        /* 1a: Software RC state - RC0 */
5693        I915_WRITE(GEN6_RC_STATE, 0);
5694
5695        /* 1b: Get forcewake during program sequence. Although the driver
5696         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5697        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5698
5699        /* 2a: Disable RC states. */
5700        I915_WRITE(GEN6_RC_CONTROL, 0);
5701
5702        /* 2b: Program RC6 thresholds.*/
5703
5704        /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5705        if (IS_SKYLAKE(dev_priv))
5706                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5707        else
5708                I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5709        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5710        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5711        for_each_engine(engine, dev_priv, id)
5712                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5713
5714        if (HAS_GUC(dev_priv))
5715                I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5716
5717        I915_WRITE(GEN6_RC_SLEEP, 0);
5718
5719        /* 2c: Program Coarse Power Gating Policies. */
5720        I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5721        I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5722
5723        /* 3a: Enable RC6 */
5724        if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5725                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5726        DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5727        I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5728        I915_WRITE(GEN6_RC_CONTROL,
5729                   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
5730
5731        /*
5732         * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5733         * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5734         */
5735        if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5736                I915_WRITE(GEN9_PG_ENABLE, 0);
5737        else
5738                I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5739                                (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5740
5741        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5742}
5743
5744static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5745{
5746        struct intel_engine_cs *engine;
5747        enum intel_engine_id id;
5748        uint32_t rc6_mask = 0;
5749
5750        /* 1a: Software RC state - RC0 */
5751        I915_WRITE(GEN6_RC_STATE, 0);
5752
5753        /* 1c & 1d: Get forcewake during program sequence. Although the driver
5754         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5755        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5756
5757        /* 2a: Disable RC states. */
5758        I915_WRITE(GEN6_RC_CONTROL, 0);
5759
5760        /* 2b: Program RC6 thresholds.*/
5761        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5762        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5763        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5764        for_each_engine(engine, dev_priv, id)
5765                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5766        I915_WRITE(GEN6_RC_SLEEP, 0);
5767        if (IS_BROADWELL(dev_priv))
5768                I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5769        else
5770                I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5771
5772        /* 3: Enable RC6 */
5773        if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5774                rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5775        intel_print_rc6_info(dev_priv, rc6_mask);
5776        if (IS_BROADWELL(dev_priv))
5777                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5778                                GEN7_RC_CTL_TO_MODE |
5779                                rc6_mask);
5780        else
5781                I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5782                                GEN6_RC_CTL_EI_MODE(1) |
5783                                rc6_mask);
5784
5785        /* 4 Program defaults and thresholds for RPS*/
5786        I915_WRITE(GEN6_RPNSWREQ,
5787                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5788        I915_WRITE(GEN6_RC_VIDEO_FREQ,
5789                   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5790        /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5791        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5792
5793        /* Docs recommend 900MHz, and 300 MHz respectively */
5794        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5795                   dev_priv->rps.max_freq_softlimit << 24 |
5796                   dev_priv->rps.min_freq_softlimit << 16);
5797
5798        I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5799        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5800        I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5801        I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5802
5803        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5804
5805        /* 5: Enable RPS */
5806        I915_WRITE(GEN6_RP_CONTROL,
5807                   GEN6_RP_MEDIA_TURBO |
5808                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5809                   GEN6_RP_MEDIA_IS_GFX |
5810                   GEN6_RP_ENABLE |
5811                   GEN6_RP_UP_BUSY_AVG |
5812                   GEN6_RP_DOWN_IDLE_AVG);
5813
5814        /* 6: Ring frequency + overclocking (our driver does this later */
5815
5816        reset_rps(dev_priv, gen6_set_rps);
5817
5818        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5819}
5820
5821static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5822{
5823        struct intel_engine_cs *engine;
5824        enum intel_engine_id id;
5825        u32 rc6vids, rc6_mask = 0;
5826        u32 gtfifodbg;
5827        int rc6_mode;
5828        int ret;
5829
5830        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5831
5832        /* Here begins a magic sequence of register writes to enable
5833         * auto-downclocking.
5834         *
5835         * Perhaps there might be some value in exposing these to
5836         * userspace...
5837         */
5838        I915_WRITE(GEN6_RC_STATE, 0);
5839
5840        /* Clear the DBG now so we don't confuse earlier errors */
5841        gtfifodbg = I915_READ(GTFIFODBG);
5842        if (gtfifodbg) {
5843                DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5844                I915_WRITE(GTFIFODBG, gtfifodbg);
5845        }
5846
5847        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5848
5849        /* disable the counters and set deterministic thresholds */
5850        I915_WRITE(GEN6_RC_CONTROL, 0);
5851
5852        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5853        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5854        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5855        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5856        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5857
5858        for_each_engine(engine, dev_priv, id)
5859                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5860
5861        I915_WRITE(GEN6_RC_SLEEP, 0);
5862        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5863        if (IS_IVYBRIDGE(dev_priv))
5864                I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5865        else
5866                I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5867        I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5868        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5869
5870        /* Check if we are enabling RC6 */
5871        rc6_mode = intel_enable_rc6();
5872        if (rc6_mode & INTEL_RC6_ENABLE)
5873                rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5874
5875        /* We don't use those on Haswell */
5876        if (!IS_HASWELL(dev_priv)) {
5877                if (rc6_mode & INTEL_RC6p_ENABLE)
5878                        rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5879
5880                if (rc6_mode & INTEL_RC6pp_ENABLE)
5881                        rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5882        }
5883
5884        intel_print_rc6_info(dev_priv, rc6_mask);
5885
5886        I915_WRITE(GEN6_RC_CONTROL,
5887                   rc6_mask |
5888                   GEN6_RC_CTL_EI_MODE(1) |
5889                   GEN6_RC_CTL_HW_ENABLE);
5890
5891        /* Power down if completely idle for over 50ms */
5892        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5893        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5894
5895        reset_rps(dev_priv, gen6_set_rps);
5896
5897        rc6vids = 0;
5898        ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5899        if (IS_GEN6(dev_priv) && ret) {
5900                DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5901        } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5902                DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5903                          GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5904                rc6vids &= 0xffff00;
5905                rc6vids |= GEN6_ENCODE_RC6_VID(450);
5906                ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5907                if (ret)
5908                        DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5909        }
5910
5911        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5912}
5913
5914static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5915{
5916        int min_freq = 15;
5917        unsigned int gpu_freq;
5918        unsigned int max_ia_freq, min_ring_freq;
5919        unsigned int max_gpu_freq, min_gpu_freq;
5920        int scaling_factor = 180;
5921        struct cpufreq_policy *policy;
5922
5923        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5924
5925        policy = cpufreq_cpu_get(0);
5926        if (policy) {
5927                max_ia_freq = policy->cpuinfo.max_freq;
5928                cpufreq_cpu_put(policy);
5929        } else {
5930                /*
5931                 * Default to measured freq if none found, PCU will ensure we
5932                 * don't go over
5933                 */
5934                max_ia_freq = tsc_khz;
5935        }
5936
5937        /* Convert from kHz to MHz */
5938        max_ia_freq /= 1000;
5939
5940        min_ring_freq = I915_READ(DCLK) & 0xf;
5941        /* convert DDR frequency from units of 266.6MHz to bandwidth */
5942        min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5943
5944        if (IS_GEN9_BC(dev_priv)) {
5945                /* Convert GT frequency to 50 HZ units */
5946                min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5947                max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5948        } else {
5949                min_gpu_freq = dev_priv->rps.min_freq;
5950                max_gpu_freq = dev_priv->rps.max_freq;
5951        }
5952
5953        /*
5954         * For each potential GPU frequency, load a ring frequency we'd like
5955         * to use for memory access.  We do this by specifying the IA frequency
5956         * the PCU should use as a reference to determine the ring frequency.
5957         */
5958        for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5959                int diff = max_gpu_freq - gpu_freq;
5960                unsigned int ia_freq = 0, ring_freq = 0;
5961
5962                if (IS_GEN9_BC(dev_priv)) {
5963                        /*
5964                         * ring_freq = 2 * GT. ring_freq is in 100MHz units
5965                         * No floor required for ring frequency on SKL.
5966                         */
5967                        ring_freq = gpu_freq;
5968                } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5969                        /* max(2 * GT, DDR). NB: GT is 50MHz units */
5970                        ring_freq = max(min_ring_freq, gpu_freq);
5971                } else if (IS_HASWELL(dev_priv)) {
5972                        ring_freq = mult_frac(gpu_freq, 5, 4);
5973                        ring_freq = max(min_ring_freq, ring_freq);
5974                        /* leave ia_freq as the default, chosen by cpufreq */
5975                } else {
5976                        /* On older processors, there is no separate ring
5977                         * clock domain, so in order to boost the bandwidth
5978                         * of the ring, we need to upclock the CPU (ia_freq).
5979                         *
5980                         * For GPU frequencies less than 750MHz,
5981                         * just use the lowest ring freq.
5982                         */
5983                        if (gpu_freq < min_freq)
5984                                ia_freq = 800;
5985                        else
5986                                ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5987                        ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5988                }
5989
5990                sandybridge_pcode_write(dev_priv,
5991                                        GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5992                                        ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5993                                        ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5994                                        gpu_freq);
5995        }
5996}
5997
5998static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5999{
6000        u32 val, rp0;
6001
6002        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6003
6004        switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6005        case 8:
6006                /* (2 * 4) config */
6007                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6008                break;
6009        case 12:
6010                /* (2 * 6) config */
6011                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6012                break;
6013        case 16:
6014                /* (2 * 8) config */
6015        default:
6016                /* Setting (2 * 8) Min RP0 for any other combination */
6017                rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6018                break;
6019        }
6020
6021        rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6022
6023        return rp0;
6024}
6025
6026static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6027{
6028        u32 val, rpe;
6029
6030        val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6031        rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6032
6033        return rpe;
6034}
6035
6036static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6037{
6038        u32 val, rp1;
6039
6040        val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6041        rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6042
6043        return rp1;
6044}
6045
6046static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6047{
6048        u32 val, rpn;
6049
6050        val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6051        rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6052                       FB_GFX_FREQ_FUSE_MASK);
6053
6054        return rpn;
6055}
6056
6057static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6058{
6059        u32 val, rp1;
6060
6061        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6062
6063        rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6064
6065        return rp1;
6066}
6067
6068static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6069{
6070        u32 val, rp0;
6071
6072        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6073
6074        rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
6075        /* Clamp to max */
6076        rp0 = min_t(u32, rp0, 0xea);
6077
6078        return rp0;
6079}
6080
6081static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6082{
6083        u32 val, rpe;
6084
6085        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6086        rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6087        val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6088        rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
6089
6090        return rpe;
6091}
6092
6093static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6094{
6095        u32 val;
6096
6097        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
6098        /*
6099         * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
6100         * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
6101         * a BYT-M B0 the above register contains 0xbf. Moreover when setting
6102         * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
6103         * to make sure it matches what Punit accepts.
6104         */
6105        return max_t(u32, val, 0xc0);
6106}
6107
6108/* Check that the pctx buffer wasn't move under us. */
6109static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
6110{
6111        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6112
6113        WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
6114                             dev_priv->vlv_pctx->stolen->start);
6115}
6116
6117
6118/* Check that the pcbr address is not empty. */
6119static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
6120{
6121        unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6122
6123        WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
6124}
6125
6126static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6127{
6128        struct i915_ggtt *ggtt = &dev_priv->ggtt;
6129        unsigned long pctx_paddr, paddr;
6130        u32 pcbr;
6131        int pctx_size = 32*1024;
6132
6133        pcbr = I915_READ(VLV_PCBR);
6134        if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6135                DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6136                paddr = (dev_priv->mm.stolen_base +
6137                         (ggtt->stolen_size - pctx_size));
6138
6139                pctx_paddr = (paddr & (~4095));
6140                I915_WRITE(VLV_PCBR, pctx_paddr);
6141        }
6142
6143        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6144}
6145
6146static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6147{
6148        struct drm_i915_gem_object *pctx;
6149        unsigned long pctx_paddr;
6150        u32 pcbr;
6151        int pctx_size = 24*1024;
6152
6153        pcbr = I915_READ(VLV_PCBR);
6154        if (pcbr) {
6155                /* BIOS set it up already, grab the pre-alloc'd space */
6156                int pcbr_offset;
6157
6158                pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6159                pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6160                                                                      pcbr_offset,
6161                                                                      I915_GTT_OFFSET_NONE,
6162                                                                      pctx_size);
6163                goto out;
6164        }
6165
6166        DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6167
6168        /*
6169         * From the Gunit register HAS:
6170         * The Gfx driver is expected to program this register and ensure
6171         * proper allocation within Gfx stolen memory.  For example, this
6172         * register should be programmed such than the PCBR range does not
6173         * overlap with other ranges, such as the frame buffer, protected
6174         * memory, or any other relevant ranges.
6175         */
6176        pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6177        if (!pctx) {
6178                DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6179                goto out;
6180        }
6181
6182        pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
6183        I915_WRITE(VLV_PCBR, pctx_paddr);
6184
6185out:
6186        DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6187        dev_priv->vlv_pctx = pctx;
6188}
6189
6190static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6191{
6192        if (WARN_ON(!dev_priv->vlv_pctx))
6193                return;
6194
6195        i915_gem_object_put(dev_priv->vlv_pctx);
6196        dev_priv->vlv_pctx = NULL;
6197}
6198
6199static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
6200{
6201        dev_priv->rps.gpll_ref_freq =
6202                vlv_get_cck_clock(dev_priv, "GPLL ref",
6203                                  CCK_GPLL_CLOCK_CONTROL,
6204                                  dev_priv->czclk_freq);
6205
6206        DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
6207                         dev_priv->rps.gpll_ref_freq);
6208}
6209
6210static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6211{
6212        u32 val;
6213
6214        valleyview_setup_pctx(dev_priv);
6215
6216        vlv_init_gpll_ref_freq(dev_priv);
6217
6218        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6219        switch ((val >> 6) & 3) {
6220        case 0:
6221        case 1:
6222                dev_priv->mem_freq = 800;
6223                break;
6224        case 2:
6225                dev_priv->mem_freq = 1066;
6226                break;
6227        case 3:
6228                dev_priv->mem_freq = 1333;
6229                break;
6230        }
6231        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6232
6233        dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
6234        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6235        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6236                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6237                         dev_priv->rps.max_freq);
6238
6239        dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
6240        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6241                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6242                         dev_priv->rps.efficient_freq);
6243
6244        dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
6245        DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6246                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6247                         dev_priv->rps.rp1_freq);
6248
6249        dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
6250        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6251                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6252                         dev_priv->rps.min_freq);
6253}
6254
6255static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6256{
6257        u32 val;
6258
6259        cherryview_setup_pctx(dev_priv);
6260
6261        vlv_init_gpll_ref_freq(dev_priv);
6262
6263        mutex_lock(&dev_priv->sb_lock);
6264        val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6265        mutex_unlock(&dev_priv->sb_lock);
6266
6267        switch ((val >> 2) & 0x7) {
6268        case 3:
6269                dev_priv->mem_freq = 2000;
6270                break;
6271        default:
6272                dev_priv->mem_freq = 1600;
6273                break;
6274        }
6275        DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6276
6277        dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
6278        dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6279        DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6280                         intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6281                         dev_priv->rps.max_freq);
6282
6283        dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
6284        DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6285                         intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6286                         dev_priv->rps.efficient_freq);
6287
6288        dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
6289        DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6290                         intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6291                         dev_priv->rps.rp1_freq);
6292
6293        dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6294        DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6295                         intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6296                         dev_priv->rps.min_freq);
6297
6298        WARN_ONCE((dev_priv->rps.max_freq |
6299                   dev_priv->rps.efficient_freq |
6300                   dev_priv->rps.rp1_freq |
6301                   dev_priv->rps.min_freq) & 1,
6302                  "Odd GPU freq values\n");
6303}
6304
6305static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6306{
6307        valleyview_cleanup_pctx(dev_priv);
6308}
6309
6310static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6311{
6312        struct intel_engine_cs *engine;
6313        enum intel_engine_id id;
6314        u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6315
6316        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6317
6318        gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6319                                             GT_FIFO_FREE_ENTRIES_CHV);
6320        if (gtfifodbg) {
6321                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6322                                 gtfifodbg);
6323                I915_WRITE(GTFIFODBG, gtfifodbg);
6324        }
6325
6326        cherryview_check_pctx(dev_priv);
6327
6328        /* 1a & 1b: Get forcewake during program sequence. Although the driver
6329         * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6330        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6331
6332        /*  Disable RC states. */
6333        I915_WRITE(GEN6_RC_CONTROL, 0);
6334
6335        /* 2a: Program RC6 thresholds.*/
6336        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6337        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6338        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6339
6340        for_each_engine(engine, dev_priv, id)
6341                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6342        I915_WRITE(GEN6_RC_SLEEP, 0);
6343
6344        /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6345        I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6346
6347        /* allows RC6 residency counter to work */
6348        I915_WRITE(VLV_COUNTER_CONTROL,
6349                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6350                                      VLV_MEDIA_RC6_COUNT_EN |
6351                                      VLV_RENDER_RC6_COUNT_EN));
6352
6353        /* For now we assume BIOS is allocating and populating the PCBR  */
6354        pcbr = I915_READ(VLV_PCBR);
6355
6356        /* 3: Enable RC6 */
6357        if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6358            (pcbr >> VLV_PCBR_ADDR_SHIFT))
6359                rc6_mode = GEN7_RC_CTL_TO_MODE;
6360
6361        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6362
6363        /* 4 Program defaults and thresholds for RPS*/
6364        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6365        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6366        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6367        I915_WRITE(GEN6_RP_UP_EI, 66000);
6368        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6369
6370        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6371
6372        /* 5: Enable RPS */
6373        I915_WRITE(GEN6_RP_CONTROL,
6374                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6375                   GEN6_RP_MEDIA_IS_GFX |
6376                   GEN6_RP_ENABLE |
6377                   GEN6_RP_UP_BUSY_AVG |
6378                   GEN6_RP_DOWN_IDLE_AVG);
6379
6380        /* Setting Fixed Bias */
6381        val = VLV_OVERRIDE_EN |
6382                  VLV_SOC_TDP_EN |
6383                  CHV_BIAS_CPU_50_SOC_50;
6384        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6385
6386        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6387
6388        /* RPS code assumes GPLL is used */
6389        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6390
6391        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6392        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6393
6394        reset_rps(dev_priv, valleyview_set_rps);
6395
6396        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6397}
6398
6399static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6400{
6401        struct intel_engine_cs *engine;
6402        enum intel_engine_id id;
6403        u32 gtfifodbg, val, rc6_mode = 0;
6404
6405        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6406
6407        valleyview_check_pctx(dev_priv);
6408
6409        gtfifodbg = I915_READ(GTFIFODBG);
6410        if (gtfifodbg) {
6411                DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6412                                 gtfifodbg);
6413                I915_WRITE(GTFIFODBG, gtfifodbg);
6414        }
6415
6416        /* If VLV, Forcewake all wells, else re-direct to regular path */
6417        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6418
6419        /*  Disable RC states. */
6420        I915_WRITE(GEN6_RC_CONTROL, 0);
6421
6422        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6423        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6424        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6425        I915_WRITE(GEN6_RP_UP_EI, 66000);
6426        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6427
6428        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6429
6430        I915_WRITE(GEN6_RP_CONTROL,
6431                   GEN6_RP_MEDIA_TURBO |
6432                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6433                   GEN6_RP_MEDIA_IS_GFX |
6434                   GEN6_RP_ENABLE |
6435                   GEN6_RP_UP_BUSY_AVG |
6436                   GEN6_RP_DOWN_IDLE_CONT);
6437
6438        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6439        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6440        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6441
6442        for_each_engine(engine, dev_priv, id)
6443                I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6444
6445        I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6446
6447        /* allows RC6 residency counter to work */
6448        I915_WRITE(VLV_COUNTER_CONTROL,
6449                   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6450                                      VLV_MEDIA_RC0_COUNT_EN |
6451                                      VLV_RENDER_RC0_COUNT_EN |
6452                                      VLV_MEDIA_RC6_COUNT_EN |
6453                                      VLV_RENDER_RC6_COUNT_EN));
6454
6455        if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6456                rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6457
6458        intel_print_rc6_info(dev_priv, rc6_mode);
6459
6460        I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6461
6462        /* Setting Fixed Bias */
6463        val = VLV_OVERRIDE_EN |
6464                  VLV_SOC_TDP_EN |
6465                  VLV_BIAS_CPU_125_SOC_875;
6466        vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6467
6468        val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6469
6470        /* RPS code assumes GPLL is used */
6471        WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6472
6473        DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6474        DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6475
6476        reset_rps(dev_priv, valleyview_set_rps);
6477
6478        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6479}
6480
6481static unsigned long intel_pxfreq(u32 vidfreq)
6482{
6483        unsigned long freq;
6484        int div = (vidfreq & 0x3f0000) >> 16;
6485        int post = (vidfreq & 0x3000) >> 12;
6486        int pre = (vidfreq & 0x7);
6487
6488        if (!pre)
6489                return 0;
6490
6491        freq = ((div * 133333) / ((1<<post) * pre));
6492
6493        return freq;
6494}
6495
6496static const struct cparams {
6497        u16 i;
6498        u16 t;
6499        u16 m;
6500        u16 c;
6501} cparams[] = {
6502        { 1, 1333, 301, 28664 },
6503        { 1, 1066, 294, 24460 },
6504        { 1, 800, 294, 25192 },
6505        { 0, 1333, 276, 27605 },
6506        { 0, 1066, 276, 27605 },
6507        { 0, 800, 231, 23784 },
6508};
6509
6510static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6511{
6512        u64 total_count, diff, ret;
6513        u32 count1, count2, count3, m = 0, c = 0;
6514        unsigned long now = jiffies_to_msecs(jiffies), diff1;
6515        int i;
6516
6517        lockdep_assert_held(&mchdev_lock);
6518
6519        diff1 = now - dev_priv->ips.last_time1;
6520
6521        /* Prevent division-by-zero if we are asking too fast.
6522         * Also, we don't get interesting results if we are polling
6523         * faster than once in 10ms, so just return the saved value
6524         * in such cases.
6525         */
6526        if (diff1 <= 10)
6527                return dev_priv->ips.chipset_power;
6528
6529        count1 = I915_READ(DMIEC);
6530        count2 = I915_READ(DDREC);
6531        count3 = I915_READ(CSIEC);
6532
6533        total_count = count1 + count2 + count3;
6534
6535        /* FIXME: handle per-counter overflow */
6536        if (total_count < dev_priv->ips.last_count1) {
6537                diff = ~0UL - dev_priv->ips.last_count1;
6538                diff += total_count;
6539        } else {
6540                diff = total_count - dev_priv->ips.last_count1;
6541        }
6542
6543        for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6544                if (cparams[i].i == dev_priv->ips.c_m &&
6545                    cparams[i].t == dev_priv->ips.r_t) {
6546                        m = cparams[i].m;
6547                        c = cparams[i].c;
6548                        break;
6549                }
6550        }
6551
6552        diff = div_u64(diff, diff1);
6553        ret = ((m * diff) + c);
6554        ret = div_u64(ret, 10);
6555
6556        dev_priv->ips.last_count1 = total_count;
6557        dev_priv->ips.last_time1 = now;
6558
6559        dev_priv->ips.chipset_power = ret;
6560
6561        return ret;
6562}
6563
6564unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6565{
6566        unsigned long val;
6567
6568        if (INTEL_INFO(dev_priv)->gen != 5)
6569                return 0;
6570
6571        spin_lock_irq(&mchdev_lock);
6572
6573        val = __i915_chipset_val(dev_priv);
6574
6575        spin_unlock_irq(&mchdev_lock);
6576
6577        return val;
6578}
6579
6580unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6581{
6582        unsigned long m, x, b;
6583        u32 tsfs;
6584
6585        tsfs = I915_READ(TSFS);
6586
6587        m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6588        x = I915_READ8(TR1);
6589
6590        b = tsfs & TSFS_INTR_MASK;
6591
6592        return ((m * x) / 127) - b;
6593}
6594
6595static int _pxvid_to_vd(u8 pxvid)
6596{
6597        if (pxvid == 0)
6598                return 0;
6599
6600        if (pxvid >= 8 && pxvid < 31)
6601                pxvid = 31;
6602
6603        return (pxvid + 2) * 125;
6604}
6605
6606static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6607{
6608        const int vd = _pxvid_to_vd(pxvid);
6609        const int vm = vd - 1125;
6610
6611        if (INTEL_INFO(dev_priv)->is_mobile)
6612                return vm > 0 ? vm : 0;
6613
6614        return vd;
6615}
6616
6617static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6618{
6619        u64 now, diff, diffms;
6620        u32 count;
6621
6622        lockdep_assert_held(&mchdev_lock);
6623
6624        now = ktime_get_raw_ns();
6625        diffms = now - dev_priv->ips.last_time2;
6626        do_div(diffms, NSEC_PER_MSEC);
6627
6628        /* Don't divide by 0 */
6629        if (!diffms)
6630                return;
6631
6632        count = I915_READ(GFXEC);
6633
6634        if (count < dev_priv->ips.last_count2) {
6635                diff = ~0UL - dev_priv->ips.last_count2;
6636                diff += count;
6637        } else {
6638                diff = count - dev_priv->ips.last_count2;
6639        }
6640
6641        dev_priv->ips.last_count2 = count;
6642        dev_priv->ips.last_time2 = now;
6643
6644        /* More magic constants... */
6645        diff = diff * 1181;
6646        diff = div_u64(diff, diffms * 10);
6647        dev_priv->ips.gfx_power = diff;
6648}
6649
6650void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6651{
6652        if (INTEL_INFO(dev_priv)->gen != 5)
6653                return;
6654
6655        spin_lock_irq(&mchdev_lock);
6656
6657        __i915_update_gfx_val(dev_priv);
6658
6659        spin_unlock_irq(&mchdev_lock);
6660}
6661
6662static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6663{
6664        unsigned long t, corr, state1, corr2, state2;
6665        u32 pxvid, ext_v;
6666
6667        lockdep_assert_held(&mchdev_lock);
6668
6669        pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6670        pxvid = (pxvid >> 24) & 0x7f;
6671        ext_v = pvid_to_extvid(dev_priv, pxvid);
6672
6673        state1 = ext_v;
6674
6675        t = i915_mch_val(dev_priv);
6676
6677        /* Revel in the empirically derived constants */
6678
6679        /* Correction factor in 1/100000 units */
6680        if (t > 80)
6681                corr = ((t * 2349) + 135940);
6682        else if (t >= 50)
6683                corr = ((t * 964) + 29317);
6684        else /* < 50 */
6685                corr = ((t * 301) + 1004);
6686
6687        corr = corr * ((150142 * state1) / 10000 - 78642);
6688        corr /= 100000;
6689        corr2 = (corr * dev_priv->ips.corr);
6690
6691        state2 = (corr2 * state1) / 10000;
6692        state2 /= 100; /* convert to mW */
6693
6694        __i915_update_gfx_val(dev_priv);
6695
6696        return dev_priv->ips.gfx_power + state2;
6697}
6698
6699unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6700{
6701        unsigned long val;
6702
6703        if (INTEL_INFO(dev_priv)->gen != 5)
6704                return 0;
6705
6706        spin_lock_irq(&mchdev_lock);
6707
6708        val = __i915_gfx_val(dev_priv);
6709
6710        spin_unlock_irq(&mchdev_lock);
6711
6712        return val;
6713}
6714
6715/**
6716 * i915_read_mch_val - return value for IPS use
6717 *
6718 * Calculate and return a value for the IPS driver to use when deciding whether
6719 * we have thermal and power headroom to increase CPU or GPU power budget.
6720 */
6721unsigned long i915_read_mch_val(void)
6722{
6723        struct drm_i915_private *dev_priv;
6724        unsigned long chipset_val, graphics_val, ret = 0;
6725
6726        spin_lock_irq(&mchdev_lock);
6727        if (!i915_mch_dev)
6728                goto out_unlock;
6729        dev_priv = i915_mch_dev;
6730
6731        chipset_val = __i915_chipset_val(dev_priv);
6732        graphics_val = __i915_gfx_val(dev_priv);
6733
6734        ret = chipset_val + graphics_val;
6735
6736out_unlock:
6737        spin_unlock_irq(&mchdev_lock);
6738
6739        return ret;
6740}
6741EXPORT_SYMBOL_GPL(i915_read_mch_val);
6742
6743/**
6744 * i915_gpu_raise - raise GPU frequency limit
6745 *
6746 * Raise the limit; IPS indicates we have thermal headroom.
6747 */
6748bool i915_gpu_raise(void)
6749{
6750        struct drm_i915_private *dev_priv;
6751        bool ret = true;
6752
6753        spin_lock_irq(&mchdev_lock);
6754        if (!i915_mch_dev) {
6755                ret = false;
6756                goto out_unlock;
6757        }
6758        dev_priv = i915_mch_dev;
6759
6760        if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6761                dev_priv->ips.max_delay--;
6762
6763out_unlock:
6764        spin_unlock_irq(&mchdev_lock);
6765
6766        return ret;
6767}
6768EXPORT_SYMBOL_GPL(i915_gpu_raise);
6769
6770/**
6771 * i915_gpu_lower - lower GPU frequency limit
6772 *
6773 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6774 * frequency maximum.
6775 */
6776bool i915_gpu_lower(void)
6777{
6778        struct drm_i915_private *dev_priv;
6779        bool ret = true;
6780
6781        spin_lock_irq(&mchdev_lock);
6782        if (!i915_mch_dev) {
6783                ret = false;
6784                goto out_unlock;
6785        }
6786        dev_priv = i915_mch_dev;
6787
6788        if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6789                dev_priv->ips.max_delay++;
6790
6791out_unlock:
6792        spin_unlock_irq(&mchdev_lock);
6793
6794        return ret;
6795}
6796EXPORT_SYMBOL_GPL(i915_gpu_lower);
6797
6798/**
6799 * i915_gpu_busy - indicate GPU business to IPS
6800 *
6801 * Tell the IPS driver whether or not the GPU is busy.
6802 */
6803bool i915_gpu_busy(void)
6804{
6805        bool ret = false;
6806
6807        spin_lock_irq(&mchdev_lock);
6808        if (i915_mch_dev)
6809                ret = i915_mch_dev->gt.awake;
6810        spin_unlock_irq(&mchdev_lock);
6811
6812        return ret;
6813}
6814EXPORT_SYMBOL_GPL(i915_gpu_busy);
6815
6816/**
6817 * i915_gpu_turbo_disable - disable graphics turbo
6818 *
6819 * Disable graphics turbo by resetting the max frequency and setting the
6820 * current frequency to the default.
6821 */
6822bool i915_gpu_turbo_disable(void)
6823{
6824        struct drm_i915_private *dev_priv;
6825        bool ret = true;
6826
6827        spin_lock_irq(&mchdev_lock);
6828        if (!i915_mch_dev) {
6829                ret = false;
6830                goto out_unlock;
6831        }
6832        dev_priv = i915_mch_dev;
6833
6834        dev_priv->ips.max_delay = dev_priv->ips.fstart;
6835
6836        if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6837                ret = false;
6838
6839out_unlock:
6840        spin_unlock_irq(&mchdev_lock);
6841
6842        return ret;
6843}
6844EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6845
6846/**
6847 * Tells the intel_ips driver that the i915 driver is now loaded, if
6848 * IPS got loaded first.
6849 *
6850 * This awkward dance is so that neither module has to depend on the
6851 * other in order for IPS to do the appropriate communication of
6852 * GPU turbo limits to i915.
6853 */
6854static void
6855ips_ping_for_i915_load(void)
6856{
6857        void (*link)(void);
6858
6859        link = symbol_get(ips_link_to_i915_driver);
6860        if (link) {
6861                link();
6862                symbol_put(ips_link_to_i915_driver);
6863        }
6864}
6865
6866void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6867{
6868        /* We only register the i915 ips part with intel-ips once everything is
6869         * set up, to avoid intel-ips sneaking in and reading bogus values. */
6870        spin_lock_irq(&mchdev_lock);
6871        i915_mch_dev = dev_priv;
6872        spin_unlock_irq(&mchdev_lock);
6873
6874        ips_ping_for_i915_load();
6875}
6876
6877void intel_gpu_ips_teardown(void)
6878{
6879        spin_lock_irq(&mchdev_lock);
6880        i915_mch_dev = NULL;
6881        spin_unlock_irq(&mchdev_lock);
6882}
6883
6884static void intel_init_emon(struct drm_i915_private *dev_priv)
6885{
6886        u32 lcfuse;
6887        u8 pxw[16];
6888        int i;
6889
6890        /* Disable to program */
6891        I915_WRITE(ECR, 0);
6892        POSTING_READ(ECR);
6893
6894        /* Program energy weights for various events */
6895        I915_WRITE(SDEW, 0x15040d00);
6896        I915_WRITE(CSIEW0, 0x007f0000);
6897        I915_WRITE(CSIEW1, 0x1e220004);
6898        I915_WRITE(CSIEW2, 0x04000004);
6899
6900        for (i = 0; i < 5; i++)
6901                I915_WRITE(PEW(i), 0);
6902        for (i = 0; i < 3; i++)
6903                I915_WRITE(DEW(i), 0);
6904
6905        /* Program P-state weights to account for frequency power adjustment */
6906        for (i = 0; i < 16; i++) {
6907                u32 pxvidfreq = I915_READ(PXVFREQ(i));
6908                unsigned long freq = intel_pxfreq(pxvidfreq);
6909                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6910                        PXVFREQ_PX_SHIFT;
6911                unsigned long val;
6912
6913                val = vid * vid;
6914                val *= (freq / 1000);
6915                val *= 255;
6916                val /= (127*127*900);
6917                if (val > 0xff)
6918                        DRM_ERROR("bad pxval: %ld\n", val);
6919                pxw[i] = val;
6920        }
6921        /* Render standby states get 0 weight */
6922        pxw[14] = 0;
6923        pxw[15] = 0;
6924
6925        for (i = 0; i < 4; i++) {
6926                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6927                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6928                I915_WRITE(PXW(i), val);
6929        }
6930
6931        /* Adjust magic regs to magic values (more experimental results) */
6932        I915_WRITE(OGW0, 0);
6933        I915_WRITE(OGW1, 0);
6934        I915_WRITE(EG0, 0x00007f00);
6935        I915_WRITE(EG1, 0x0000000e);
6936        I915_WRITE(EG2, 0x000e0000);
6937        I915_WRITE(EG3, 0x68000300);
6938        I915_WRITE(EG4, 0x42000000);
6939        I915_WRITE(EG5, 0x00140031);
6940        I915_WRITE(EG6, 0);
6941        I915_WRITE(EG7, 0);
6942
6943        for (i = 0; i < 8; i++)
6944                I915_WRITE(PXWL(i), 0);
6945
6946        /* Enable PMON + select events */
6947        I915_WRITE(ECR, 0x80000019);
6948
6949        lcfuse = I915_READ(LCFUSE02);
6950
6951        dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6952}
6953
6954void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6955{
6956        /*
6957         * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6958         * requirement.
6959         */
6960        if (!i915.enable_rc6) {
6961                DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6962                intel_runtime_pm_get(dev_priv);
6963        }
6964
6965        mutex_lock(&dev_priv->drm.struct_mutex);
6966        mutex_lock(&dev_priv->rps.hw_lock);
6967
6968        /* Initialize RPS limits (for userspace) */
6969        if (IS_CHERRYVIEW(dev_priv))
6970                cherryview_init_gt_powersave(dev_priv);
6971        else if (IS_VALLEYVIEW(dev_priv))
6972                valleyview_init_gt_powersave(dev_priv);
6973        else if (INTEL_GEN(dev_priv) >= 6)
6974                gen6_init_rps_frequencies(dev_priv);
6975
6976        /* Derive initial user preferences/limits from the hardware limits */
6977        dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6978        dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6979
6980        dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6981        dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6982
6983        if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6984                dev_priv->rps.min_freq_softlimit =
6985                        max_t(int,
6986                              dev_priv->rps.efficient_freq,
6987                              intel_freq_opcode(dev_priv, 450));
6988
6989        /* After setting max-softlimit, find the overclock max freq */
6990        if (IS_GEN6(dev_priv) ||
6991            IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6992                u32 params = 0;
6993
6994                sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6995                if (params & BIT(31)) { /* OC supported */
6996                        DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6997                                         (dev_priv->rps.max_freq & 0xff) * 50,
6998                                         (params & 0xff) * 50);
6999                        dev_priv->rps.max_freq = params & 0xff;
7000                }
7001        }
7002
7003        /* Finally allow us to boost to max by default */
7004        dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
7005
7006        mutex_unlock(&dev_priv->rps.hw_lock);
7007        mutex_unlock(&dev_priv->drm.struct_mutex);
7008
7009        intel_autoenable_gt_powersave(dev_priv);
7010}
7011
7012void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7013{
7014        if (IS_VALLEYVIEW(dev_priv))
7015                valleyview_cleanup_gt_powersave(dev_priv);
7016
7017        if (!i915.enable_rc6)
7018                intel_runtime_pm_put(dev_priv);
7019}
7020
7021/**
7022 * intel_suspend_gt_powersave - suspend PM work and helper threads
7023 * @dev_priv: i915 device
7024 *
7025 * We don't want to disable RC6 or other features here, we just want
7026 * to make sure any work we've queued has finished and won't bother
7027 * us while we're suspended.
7028 */
7029void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7030{
7031        if (INTEL_GEN(dev_priv) < 6)
7032                return;
7033
7034        if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
7035                intel_runtime_pm_put(dev_priv);
7036
7037        /* gen6_rps_idle() will be called later to disable interrupts */
7038}
7039
7040void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7041{
7042        dev_priv->rps.enabled = true; /* force disabling */
7043        intel_disable_gt_powersave(dev_priv);
7044
7045        gen6_reset_rps_interrupts(dev_priv);
7046}
7047
7048void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7049{
7050        if (!READ_ONCE(dev_priv->rps.enabled))
7051                return;
7052
7053        mutex_lock(&dev_priv->rps.hw_lock);
7054
7055        if (INTEL_GEN(dev_priv) >= 9) {
7056                gen9_disable_rc6(dev_priv);
7057                gen9_disable_rps(dev_priv);
7058        } else if (IS_CHERRYVIEW(dev_priv)) {
7059                cherryview_disable_rps(dev_priv);
7060        } else if (IS_VALLEYVIEW(dev_priv)) {
7061                valleyview_disable_rps(dev_priv);
7062        } else if (INTEL_GEN(dev_priv) >= 6) {
7063                gen6_disable_rps(dev_priv);
7064        }  else if (IS_IRONLAKE_M(dev_priv)) {
7065                ironlake_disable_drps(dev_priv);
7066        }
7067
7068        dev_priv->rps.enabled = false;
7069        mutex_unlock(&dev_priv->rps.hw_lock);
7070}
7071
7072void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7073{
7074        /* We shouldn't be disabling as we submit, so this should be less
7075         * racy than it appears!
7076         */
7077        if (READ_ONCE(dev_priv->rps.enabled))
7078                return;
7079
7080        /* Powersaving is controlled by the host when inside a VM */
7081        if (intel_vgpu_active(dev_priv))
7082                return;
7083
7084        mutex_lock(&dev_priv->rps.hw_lock);
7085
7086        if (IS_CHERRYVIEW(dev_priv)) {
7087                cherryview_enable_rps(dev_priv);
7088        } else if (IS_VALLEYVIEW(dev_priv)) {
7089                valleyview_enable_rps(dev_priv);
7090        } else if (INTEL_GEN(dev_priv) >= 9) {
7091                gen9_enable_rc6(dev_priv);
7092                gen9_enable_rps(dev_priv);
7093                if (IS_GEN9_BC(dev_priv))
7094                        gen6_update_ring_freq(dev_priv);
7095        } else if (IS_BROADWELL(dev_priv)) {
7096                gen8_enable_rps(dev_priv);
7097                gen6_update_ring_freq(dev_priv);
7098        } else if (INTEL_GEN(dev_priv) >= 6) {
7099                gen6_enable_rps(dev_priv);
7100                gen6_update_ring_freq(dev_priv);
7101        } else if (IS_IRONLAKE_M(dev_priv)) {
7102                ironlake_enable_drps(dev_priv);
7103                intel_init_emon(dev_priv);
7104        }
7105
7106        WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
7107        WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
7108
7109        WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
7110        WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
7111
7112        dev_priv->rps.enabled = true;
7113        mutex_unlock(&dev_priv->rps.hw_lock);
7114}
7115
7116static void __intel_autoenable_gt_powersave(struct work_struct *work)
7117{
7118        struct drm_i915_private *dev_priv =
7119                container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
7120        struct intel_engine_cs *rcs;
7121        struct drm_i915_gem_request *req;
7122
7123        if (READ_ONCE(dev_priv->rps.enabled))
7124                goto out;
7125
7126        rcs = dev_priv->engine[RCS];
7127        if (rcs->last_retired_context)
7128                goto out;
7129
7130        if (!rcs->init_context)
7131                goto out;
7132
7133        mutex_lock(&dev_priv->drm.struct_mutex);
7134
7135        req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
7136        if (IS_ERR(req))
7137                goto unlock;
7138
7139        if (!i915.enable_execlists && i915_switch_context(req) == 0)
7140                rcs->init_context(req);
7141
7142        /* Mark the device busy, calling intel_enable_gt_powersave() */
7143        i915_add_request(req);
7144
7145unlock:
7146        mutex_unlock(&dev_priv->drm.struct_mutex);
7147out:
7148        intel_runtime_pm_put(dev_priv);
7149}
7150
7151void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
7152{
7153        if (READ_ONCE(dev_priv->rps.enabled))
7154                return;
7155
7156        if (IS_IRONLAKE_M(dev_priv)) {
7157                ironlake_enable_drps(dev_priv);
7158                intel_init_emon(dev_priv);
7159        } else if (INTEL_INFO(dev_priv)->gen >= 6) {
7160                /*
7161                 * PCU communication is slow and this doesn't need to be
7162                 * done at any specific time, so do this out of our fast path
7163                 * to make resume and init faster.
7164                 *
7165                 * We depend on the HW RC6 power context save/restore
7166                 * mechanism when entering D3 through runtime PM suspend. So
7167                 * disable RPM until RPS/RC6 is properly setup. We can only
7168                 * get here via the driver load/system resume/runtime resume
7169                 * paths, so the _noresume version is enough (and in case of
7170                 * runtime resume it's necessary).
7171                 */
7172                if (queue_delayed_work(dev_priv->wq,
7173                                       &dev_priv->rps.autoenable_work,
7174                                       round_jiffies_up_relative(HZ)))
7175                        intel_runtime_pm_get_noresume(dev_priv);
7176        }
7177}
7178
7179static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7180{
7181        /*
7182         * On Ibex Peak and Cougar Point, we need to disable clock
7183         * gating for the panel power sequencer or it will fail to
7184         * start up when no ports are active.
7185         */
7186        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7187}
7188
7189static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7190{
7191        enum pipe pipe;
7192
7193        for_each_pipe(dev_priv, pipe) {
7194                I915_WRITE(DSPCNTR(pipe),
7195                           I915_READ(DSPCNTR(pipe)) |
7196                           DISPPLANE_TRICKLE_FEED_DISABLE);
7197
7198                I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
7199                POSTING_READ(DSPSURF(pipe));
7200        }
7201}
7202
7203static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7204{
7205        I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
7206        I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
7207        I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
7208
7209        /*
7210         * Don't touch WM1S_LP_EN here.
7211         * Doing so could cause underruns.
7212         */
7213}
7214
7215static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7216{
7217        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7218
7219        /*
7220         * Required for FBC
7221         * WaFbcDisableDpfcClockGating:ilk
7222         */
7223        dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7224                   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7225                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7226
7227        I915_WRITE(PCH_3DCGDIS0,
7228                   MARIUNIT_CLOCK_GATE_DISABLE |
7229                   SVSMUNIT_CLOCK_GATE_DISABLE);
7230        I915_WRITE(PCH_3DCGDIS1,
7231                   VFMUNIT_CLOCK_GATE_DISABLE);
7232
7233        /*
7234         * According to the spec the following bits should be set in
7235         * order to enable memory self-refresh
7236         * The bit 22/21 of 0x42004
7237         * The bit 5 of 0x42020
7238         * The bit 15 of 0x45000
7239         */
7240        I915_WRITE(ILK_DISPLAY_CHICKEN2,
7241                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
7242                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7243        dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7244        I915_WRITE(DISP_ARB_CTL,
7245                   (I915_READ(DISP_ARB_CTL) |
7246                    DISP_FBC_WM_DIS));
7247
7248        ilk_init_lp_watermarks(dev_priv);
7249
7250        /*
7251         * Based on the document from hardware guys the following bits
7252         * should be set unconditionally in order to enable FBC.
7253         * The bit 22 of 0x42000
7254         * The bit 22 of 0x42004
7255         * The bit 7,8,9 of 0x42020.
7256         */
7257        if (IS_IRONLAKE_M(dev_priv)) {
7258                /* WaFbcAsynchFlipDisableFbcQueue:ilk */
7259                I915_WRITE(ILK_DISPLAY_CHICKEN1,
7260                           I915_READ(ILK_DISPLAY_CHICKEN1) |
7261                           ILK_FBCQ_DIS);
7262                I915_WRITE(ILK_DISPLAY_CHICKEN2,
7263                           I915_READ(ILK_DISPLAY_CHICKEN2) |
7264                           ILK_DPARB_GATE);
7265        }
7266
7267        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7268
7269        I915_WRITE(ILK_DISPLAY_CHICKEN2,
7270                   I915_READ(ILK_DISPLAY_CHICKEN2) |
7271                   ILK_ELPIN_409_SELECT);
7272        I915_WRITE(_3D_CHICKEN2,
7273                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7274                   _3D_CHICKEN2_WM_READ_PIPELINED);
7275
7276        /* WaDisableRenderCachePipelinedFlush:ilk */
7277        I915_WRITE(CACHE_MODE_0,
7278                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7279
7280        /* WaDisable_RenderCache_OperationalFlush:ilk */
7281        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7282
7283        g4x_disable_trickle_feed(dev_priv);
7284
7285        ibx_init_clock_gating(dev_priv);
7286}
7287
7288static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7289{
7290        int pipe;
7291        uint32_t val;
7292
7293        /*
7294         * On Ibex Peak and Cougar Point, we need to disable clock
7295         * gating for the panel power sequencer or it will fail to
7296         * start up when no ports are active.
7297         */
7298        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7299                   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7300                   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7301        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7302                   DPLS_EDP_PPS_FIX_DIS);
7303        /* The below fixes the weird display corruption, a few pixels shifted
7304         * downward, on (only) LVDS of some HP laptops with IVY.
7305         */
7306        for_each_pipe(dev_priv, pipe) {
7307                val = I915_READ(TRANS_CHICKEN2(pipe));
7308                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7309                val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7310                if (dev_priv->vbt.fdi_rx_polarity_inverted)
7311                        val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7312                val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
7313                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7314                val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7315                I915_WRITE(TRANS_CHICKEN2(pipe), val);
7316        }
7317        /* WADP0ClockGatingDisable */
7318        for_each_pipe(dev_priv, pipe) {
7319                I915_WRITE(TRANS_CHICKEN1(pipe),
7320                           TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7321        }
7322}
7323
7324static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7325{
7326        uint32_t tmp;
7327
7328        tmp = I915_READ(MCH_SSKPD);
7329        if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7330                DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7331                              tmp);
7332}
7333
7334static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7335{
7336        uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7337
7338        I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7339
7340        I915_WRITE(ILK_DISPLAY_CHICKEN2,
7341                   I915_READ(ILK_DISPLAY_CHICKEN2) |
7342                   ILK_ELPIN_409_SELECT);
7343
7344        /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7345        I915_WRITE(_3D_CHICKEN,
7346                   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7347
7348        /* WaDisable_RenderCache_OperationalFlush:snb */
7349        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7350
7351        /*
7352         * BSpec recoomends 8x4 when MSAA is used,
7353         * however in practice 16x4 seems fastest.
7354         *
7355         * Note that PS/WM thread counts depend on the WIZ hashing
7356         * disable bit, which we don't touch here, but it's good
7357         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7358         */
7359        I915_WRITE(GEN6_GT_MODE,
7360                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7361
7362        ilk_init_lp_watermarks(dev_priv);
7363
7364        I915_WRITE(CACHE_MODE_0,
7365                   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7366
7367        I915_WRITE(GEN6_UCGCTL1,
7368                   I915_READ(GEN6_UCGCTL1) |
7369                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7370                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7371
7372        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7373         * gating disable must be set.  Failure to set it results in
7374         * flickering pixels due to Z write ordering failures after
7375         * some amount of runtime in the Mesa "fire" demo, and Unigine
7376         * Sanctuary and Tropics, and apparently anything else with
7377         * alpha test or pixel discard.
7378         *
7379         * According to the spec, bit 11 (RCCUNIT) must also be set,
7380         * but we didn't debug actual testcases to find it out.
7381         *
7382         * WaDisableRCCUnitClockGating:snb
7383         * WaDisableRCPBUnitClockGating:snb
7384         */
7385        I915_WRITE(GEN6_UCGCTL2,
7386                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7387                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7388
7389        /* WaStripsFansDisableFastClipPerformanceFix:snb */
7390        I915_WRITE(_3D_CHICKEN3,
7391                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7392
7393        /*
7394         * Bspec says:
7395         * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7396         * 3DSTATE_SF number of SF output attributes is more than 16."
7397         */
7398        I915_WRITE(_3D_CHICKEN3,
7399                   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7400
7401        /*
7402         * According to the spec the following bits should be
7403         * set in order to enable memory self-refresh and fbc:
7404         * The bit21 and bit22 of 0x42000
7405         * The bit21 and bit22 of 0x42004
7406         * The bit5 and bit7 of 0x42020
7407         * The bit14 of 0x70180
7408         * The bit14 of 0x71180
7409         *
7410         * WaFbcAsynchFlipDisableFbcQueue:snb
7411         */
7412        I915_WRITE(ILK_DISPLAY_CHICKEN1,
7413                   I915_READ(ILK_DISPLAY_CHICKEN1) |
7414                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7415        I915_WRITE(ILK_DISPLAY_CHICKEN2,
7416                   I915_READ(ILK_DISPLAY_CHICKEN2) |
7417                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7418        I915_WRITE(ILK_DSPCLK_GATE_D,
7419                   I915_READ(ILK_DSPCLK_GATE_D) |
7420                   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7421                   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7422
7423        g4x_disable_trickle_feed(dev_priv);
7424
7425        cpt_init_clock_gating(dev_priv);
7426
7427        gen6_check_mch_setup(dev_priv);
7428}
7429
7430static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7431{
7432        uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7433
7434        /*
7435         * WaVSThreadDispatchOverride:ivb,vlv
7436         *
7437         * This actually overrides the dispatch
7438         * mode for all thread types.
7439         */
7440        reg &= ~GEN7_FF_SCHED_MASK;
7441        reg |= GEN7_FF_TS_SCHED_HW;
7442        reg |= GEN7_FF_VS_SCHED_HW;
7443        reg |= GEN7_FF_DS_SCHED_HW;
7444
7445        I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7446}
7447
7448static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7449{
7450        /*
7451         * TODO: this bit should only be enabled when really needed, then
7452         * disabled when not needed anymore in order to save power.
7453         */
7454        if (HAS_PCH_LPT_LP(dev_priv))
7455                I915_WRITE(SOUTH_DSPCLK_GATE_D,
7456                           I915_READ(SOUTH_DSPCLK_GATE_D) |
7457                           PCH_LP_PARTITION_LEVEL_DISABLE);
7458
7459        /* WADPOClockGatingDisable:hsw */
7460        I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7461                   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7462                   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7463}
7464
7465static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7466{
7467        if (HAS_PCH_LPT_LP(dev_priv)) {
7468                uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7469
7470                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7471                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7472        }
7473}
7474
7475static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7476                                   int general_prio_credits,
7477                                   int high_prio_credits)
7478{
7479        u32 misccpctl;
7480
7481        /* WaTempDisableDOPClkGating:bdw */
7482        misccpctl = I915_READ(GEN7_MISCCPCTL);
7483        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7484
7485        I915_WRITE(GEN8_L3SQCREG1,
7486                   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7487                   L3_HIGH_PRIO_CREDITS(high_prio_credits));
7488
7489        /*
7490         * Wait at least 100 clocks before re-enabling clock gating.
7491         * See the definition of L3SQCREG1 in BSpec.
7492         */
7493        POSTING_READ(GEN8_L3SQCREG1);
7494        udelay(1);
7495        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7496}
7497
7498static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7499{
7500        gen9_init_clock_gating(dev_priv);
7501
7502        /* WaDisableSDEUnitClockGating:kbl */
7503        if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7504                I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7505                           GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7506
7507        /* WaDisableGamClockGating:kbl */
7508        if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7509                I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7510                           GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7511
7512        /* WaFbcNukeOnHostModify:kbl */
7513        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7514                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7515}
7516
7517static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7518{
7519        gen9_init_clock_gating(dev_priv);
7520
7521        /* WAC6entrylatency:skl */
7522        I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7523                   FBC_LLC_FULLY_OPEN);
7524
7525        /* WaFbcNukeOnHostModify:skl */
7526        I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7527                   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7528}
7529
7530static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7531{
7532        enum pipe pipe;
7533
7534        ilk_init_lp_watermarks(dev_priv);
7535
7536        /* WaSwitchSolVfFArbitrationPriority:bdw */
7537        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7538
7539        /* WaPsrDPAMaskVBlankInSRD:bdw */
7540        I915_WRITE(CHICKEN_PAR1_1,
7541                   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7542
7543        /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7544        for_each_pipe(dev_priv, pipe) {
7545                I915_WRITE(CHICKEN_PIPESL_1(pipe),
7546                           I915_READ(CHICKEN_PIPESL_1(pipe)) |
7547                           BDW_DPRS_MASK_VBLANK_SRD);
7548        }
7549
7550        /* WaVSRefCountFullforceMissDisable:bdw */
7551        /* WaDSRefCountFullforceMissDisable:bdw */
7552        I915_WRITE(GEN7_FF_THREAD_MODE,
7553                   I915_READ(GEN7_FF_THREAD_MODE) &
7554                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7555
7556        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7557                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7558
7559        /* WaDisableSDEUnitClockGating:bdw */
7560        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7561                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7562
7563        /* WaProgramL3SqcReg1Default:bdw */
7564        gen8_set_l3sqc_credits(dev_priv, 30, 2);
7565
7566        /*
7567         * WaGttCachingOffByDefault:bdw
7568         * GTT cache may not work with big pages, so if those
7569         * are ever enabled GTT cache may need to be disabled.
7570         */
7571        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7572
7573        /* WaKVMNotificationOnConfigChange:bdw */
7574        I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7575                   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7576
7577        lpt_init_clock_gating(dev_priv);
7578
7579        /* WaDisableDopClockGating:bdw
7580         *
7581         * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7582         * clock gating.
7583         */
7584        I915_WRITE(GEN6_UCGCTL1,
7585                   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7586}
7587
7588static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7589{
7590        ilk_init_lp_watermarks(dev_priv);
7591
7592        /* L3 caching of data atomics doesn't work -- disable it. */
7593        I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7594        I915_WRITE(HSW_ROW_CHICKEN3,
7595                   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7596
7597        /* This is required by WaCatErrorRejectionIssue:hsw */
7598        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7599                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7600                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7601
7602        /* WaVSRefCountFullforceMissDisable:hsw */
7603        I915_WRITE(GEN7_FF_THREAD_MODE,
7604                   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7605
7606        /* WaDisable_RenderCache_OperationalFlush:hsw */
7607        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7608
7609        /* enable HiZ Raw Stall Optimization */
7610        I915_WRITE(CACHE_MODE_0_GEN7,
7611                   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7612
7613        /* WaDisable4x2SubspanOptimization:hsw */
7614        I915_WRITE(CACHE_MODE_1,
7615                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7616
7617        /*
7618         * BSpec recommends 8x4 when MSAA is used,
7619         * however in practice 16x4 seems fastest.
7620         *
7621         * Note that PS/WM thread counts depend on the WIZ hashing
7622         * disable bit, which we don't touch here, but it's good
7623         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7624         */
7625        I915_WRITE(GEN7_GT_MODE,
7626                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7627
7628        /* WaSampleCChickenBitEnable:hsw */
7629        I915_WRITE(HALF_SLICE_CHICKEN3,
7630                   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7631
7632        /* WaSwitchSolVfFArbitrationPriority:hsw */
7633        I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7634
7635        /* WaRsPkgCStateDisplayPMReq:hsw */
7636        I915_WRITE(CHICKEN_PAR1_1,
7637                   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7638
7639        lpt_init_clock_gating(dev_priv);
7640}
7641
7642static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7643{
7644        uint32_t snpcr;
7645
7646        ilk_init_lp_watermarks(dev_priv);
7647
7648        I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7649
7650        /* WaDisableEarlyCull:ivb */
7651        I915_WRITE(_3D_CHICKEN3,
7652                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7653
7654        /* WaDisableBackToBackFlipFix:ivb */
7655        I915_WRITE(IVB_CHICKEN3,
7656                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7657                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7658
7659        /* WaDisablePSDDualDispatchEnable:ivb */
7660        if (IS_IVB_GT1(dev_priv))
7661                I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7662                           _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7663
7664        /* WaDisable_RenderCache_OperationalFlush:ivb */
7665        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7666
7667        /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7668        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7669                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7670
7671        /* WaApplyL3ControlAndL3ChickenMode:ivb */
7672        I915_WRITE(GEN7_L3CNTLREG1,
7673                        GEN7_WA_FOR_GEN7_L3_CONTROL);
7674        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7675                   GEN7_WA_L3_CHICKEN_MODE);
7676        if (IS_IVB_GT1(dev_priv))
7677                I915_WRITE(GEN7_ROW_CHICKEN2,
7678                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7679        else {
7680                /* must write both registers */
7681                I915_WRITE(GEN7_ROW_CHICKEN2,
7682                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7683                I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7684                           _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7685        }
7686
7687        /* WaForceL3Serialization:ivb */
7688        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7689                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7690
7691        /*
7692         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7693         * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7694         */
7695        I915_WRITE(GEN6_UCGCTL2,
7696                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7697
7698        /* This is required by WaCatErrorRejectionIssue:ivb */
7699        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7700                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7701                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7702
7703        g4x_disable_trickle_feed(dev_priv);
7704
7705        gen7_setup_fixed_func_scheduler(dev_priv);
7706
7707        if (0) { /* causes HiZ corruption on ivb:gt1 */
7708                /* enable HiZ Raw Stall Optimization */
7709                I915_WRITE(CACHE_MODE_0_GEN7,
7710                           _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7711        }
7712
7713        /* WaDisable4x2SubspanOptimization:ivb */
7714        I915_WRITE(CACHE_MODE_1,
7715                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7716
7717        /*
7718         * BSpec recommends 8x4 when MSAA is used,
7719         * however in practice 16x4 seems fastest.
7720         *
7721         * Note that PS/WM thread counts depend on the WIZ hashing
7722         * disable bit, which we don't touch here, but it's good
7723         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7724         */
7725        I915_WRITE(GEN7_GT_MODE,
7726                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7727
7728        snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7729        snpcr &= ~GEN6_MBC_SNPCR_MASK;
7730        snpcr |= GEN6_MBC_SNPCR_MED;
7731        I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7732
7733        if (!HAS_PCH_NOP(dev_priv))
7734                cpt_init_clock_gating(dev_priv);
7735
7736        gen6_check_mch_setup(dev_priv);
7737}
7738
7739static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7740{
7741        /* WaDisableEarlyCull:vlv */
7742        I915_WRITE(_3D_CHICKEN3,
7743                   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7744
7745        /* WaDisableBackToBackFlipFix:vlv */
7746        I915_WRITE(IVB_CHICKEN3,
7747                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7748                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7749
7750        /* WaPsdDispatchEnable:vlv */
7751        /* WaDisablePSDDualDispatchEnable:vlv */
7752        I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7753                   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7754                                      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7755
7756        /* WaDisable_RenderCache_OperationalFlush:vlv */
7757        I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7758
7759        /* WaForceL3Serialization:vlv */
7760        I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7761                   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7762
7763        /* WaDisableDopClockGating:vlv */
7764        I915_WRITE(GEN7_ROW_CHICKEN2,
7765                   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7766
7767        /* This is required by WaCatErrorRejectionIssue:vlv */
7768        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7769                   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7770                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7771
7772        gen7_setup_fixed_func_scheduler(dev_priv);
7773
7774        /*
7775         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7776         * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7777         */
7778        I915_WRITE(GEN6_UCGCTL2,
7779                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7780
7781        /* WaDisableL3Bank2xClockGate:vlv
7782         * Disabling L3 clock gating- MMIO 940c[25] = 1
7783         * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7784        I915_WRITE(GEN7_UCGCTL4,
7785                   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7786
7787        /*
7788         * BSpec says this must be set, even though
7789         * WaDisable4x2SubspanOptimization isn't listed for VLV.
7790         */
7791        I915_WRITE(CACHE_MODE_1,
7792                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7793
7794        /*
7795         * BSpec recommends 8x4 when MSAA is used,
7796         * however in practice 16x4 seems fastest.
7797         *
7798         * Note that PS/WM thread counts depend on the WIZ hashing
7799         * disable bit, which we don't touch here, but it's good
7800         * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7801         */
7802        I915_WRITE(GEN7_GT_MODE,
7803                   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7804
7805        /*
7806         * WaIncreaseL3CreditsForVLVB0:vlv
7807         * This is the hardware default actually.
7808         */
7809        I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7810
7811        /*
7812         * WaDisableVLVClockGating_VBIIssue:vlv
7813         * Disable clock gating on th GCFG unit to prevent a delay
7814         * in the reporting of vblank events.
7815         */
7816        I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7817}
7818
7819static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7820{
7821        /* WaVSRefCountFullforceMissDisable:chv */
7822        /* WaDSRefCountFullforceMissDisable:chv */
7823        I915_WRITE(GEN7_FF_THREAD_MODE,
7824                   I915_READ(GEN7_FF_THREAD_MODE) &
7825                   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7826
7827        /* WaDisableSemaphoreAndSyncFlipWait:chv */
7828        I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7829                   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7830
7831        /* WaDisableCSUnitClockGating:chv */
7832        I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7833                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7834
7835        /* WaDisableSDEUnitClockGating:chv */
7836        I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7837                   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7838
7839        /*
7840         * WaProgramL3SqcReg1Default:chv
7841         * See gfxspecs/Related Documents/Performance Guide/
7842         * LSQC Setting Recommendations.
7843         */
7844        gen8_set_l3sqc_credits(dev_priv, 38, 2);
7845
7846        /*
7847         * GTT cache may not work with big pages, so if those
7848         * are ever enabled GTT cache may need to be disabled.
7849         */
7850        I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7851}
7852
7853static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7854{
7855        uint32_t dspclk_gate;
7856
7857        I915_WRITE(RENCLK_GATE_D1, 0);
7858        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7859                   GS_UNIT_CLOCK_GATE_DISABLE |
7860                   CL_UNIT_CLOCK_GATE_DISABLE);
7861        I915_WRITE(RAMCLK_GATE_D, 0);
7862        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7863                OVRUNIT_CLOCK_GATE_DISABLE |
7864                OVCUNIT_CLOCK_GATE_DISABLE;
7865        if (IS_GM45(dev_priv))
7866                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7867        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7868
7869        /* WaDisableRenderCachePipelinedFlush */
7870        I915_WRITE(CACHE_MODE_0,
7871                   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7872
7873        /* WaDisable_RenderCache_OperationalFlush:g4x */
7874        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7875
7876        g4x_disable_trickle_feed(dev_priv);
7877}
7878
7879static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7880{
7881        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7882        I915_WRITE(RENCLK_GATE_D2, 0);
7883        I915_WRITE(DSPCLK_GATE_D, 0);
7884        I915_WRITE(RAMCLK_GATE_D, 0);
7885        I915_WRITE16(DEUC, 0);
7886        I915_WRITE(MI_ARB_STATE,
7887                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7888
7889        /* WaDisable_RenderCache_OperationalFlush:gen4 */
7890        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7891}
7892
7893static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7894{
7895        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7896                   I965_RCC_CLOCK_GATE_DISABLE |
7897                   I965_RCPB_CLOCK_GATE_DISABLE |
7898                   I965_ISC_CLOCK_GATE_DISABLE |
7899                   I965_FBC_CLOCK_GATE_DISABLE);
7900        I915_WRITE(RENCLK_GATE_D2, 0);
7901        I915_WRITE(MI_ARB_STATE,
7902                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7903
7904        /* WaDisable_RenderCache_OperationalFlush:gen4 */
7905        I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7906}
7907
7908static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7909{
7910        u32 dstate = I915_READ(D_STATE);
7911
7912        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7913                DSTATE_DOT_CLOCK_GATING;
7914        I915_WRITE(D_STATE, dstate);
7915
7916        if (IS_PINEVIEW(dev_priv))
7917                I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7918
7919        /* IIR "flip pending" means done if this bit is set */
7920        I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7921
7922        /* interrupts should cause a wake up from C3 */
7923        I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7924
7925        /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7926        I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7927
7928        I915_WRITE(MI_ARB_STATE,
7929                   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7930}
7931
7932static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7933{
7934        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7935
7936        /* interrupts should cause a wake up from C3 */
7937        I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7938                   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7939
7940        I915_WRITE(MEM_MODE,
7941                   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7942}
7943
7944static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7945{
7946        I915_WRITE(MEM_MODE,
7947                   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7948                   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7949}
7950
7951void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7952{
7953        dev_priv->display.init_clock_gating(dev_priv);
7954}
7955
7956void intel_suspend_hw(struct drm_i915_private *dev_priv)
7957{
7958        if (HAS_PCH_LPT(dev_priv))
7959                lpt_suspend_hw(dev_priv);
7960}
7961
7962static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7963{
7964        DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7965}
7966
7967/**
7968 * intel_init_clock_gating_hooks - setup the clock gating hooks
7969 * @dev_priv: device private
7970 *
7971 * Setup the hooks that configure which clocks of a given platform can be
7972 * gated and also apply various GT and display specific workarounds for these
7973 * platforms. Note that some GT specific workarounds are applied separately
7974 * when GPU contexts or batchbuffers start their execution.
7975 */
7976void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7977{
7978        if (IS_SKYLAKE(dev_priv))
7979                dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7980        else if (IS_KABYLAKE(dev_priv))
7981                dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7982        else if (IS_BROXTON(dev_priv))
7983                dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7984        else if (IS_GEMINILAKE(dev_priv))
7985                dev_priv->display.init_clock_gating = glk_init_clock_gating;
7986        else if (IS_BROADWELL(dev_priv))
7987                dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7988        else if (IS_CHERRYVIEW(dev_priv))
7989                dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7990        else if (IS_HASWELL(dev_priv))
7991                dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7992        else if (IS_IVYBRIDGE(dev_priv))
7993                dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7994        else if (IS_VALLEYVIEW(dev_priv))
7995                dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7996        else if (IS_GEN6(dev_priv))
7997                dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7998        else if (IS_GEN5(dev_priv))
7999                dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8000        else if (IS_G4X(dev_priv))
8001                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8002        else if (IS_I965GM(dev_priv))
8003                dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8004        else if (IS_I965G(dev_priv))
8005                dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8006        else if (IS_GEN3(dev_priv))
8007                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8008        else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8009                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8010        else if (IS_GEN2(dev_priv))
8011                dev_priv->display.init_clock_gating = i830_init_clock_gating;
8012        else {
8013                MISSING_CASE(INTEL_DEVID(dev_priv));
8014                dev_priv->display.init_clock_gating = nop_init_clock_gating;
8015        }
8016}
8017
8018/* Set up chip specific power management-related functions */
8019void intel_init_pm(struct drm_i915_private *dev_priv)
8020{
8021        intel_fbc_init(dev_priv);
8022
8023        /* For cxsr */
8024        if (IS_PINEVIEW(dev_priv))
8025                i915_pineview_get_mem_freq(dev_priv);
8026        else if (IS_GEN5(dev_priv))
8027                i915_ironlake_get_mem_freq(dev_priv);
8028
8029        /* For FIFO watermark updates */
8030        if (INTEL_GEN(dev_priv) >= 9) {
8031                skl_setup_wm_latency(dev_priv);
8032                dev_priv->display.initial_watermarks = skl_initial_wm;
8033                dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8034                dev_priv->display.compute_global_watermarks = skl_compute_wm;
8035        } else if (HAS_PCH_SPLIT(dev_priv)) {
8036                ilk_setup_wm_latency(dev_priv);
8037
8038                if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8039                     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8040                    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8041                     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8042                        dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8043                        dev_priv->display.compute_intermediate_wm =
8044                                ilk_compute_intermediate_wm;
8045                        dev_priv->display.initial_watermarks =
8046                                ilk_initial_watermarks;
8047                        dev_priv->display.optimize_watermarks =
8048                                ilk_optimize_watermarks;
8049                } else {
8050                        DRM_DEBUG_KMS("Failed to read display plane latency. "
8051                                      "Disable CxSR\n");
8052                }
8053        } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8054                vlv_setup_wm_latency(dev_priv);
8055                dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8056                dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8057                dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8058                dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8059                dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8060        } else if (IS_PINEVIEW(dev_priv)) {
8061                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8062                                            dev_priv->is_ddr3,
8063                                            dev_priv->fsb_freq,
8064                                            dev_priv->mem_freq)) {
8065                        DRM_INFO("failed to find known CxSR latency "
8066                                 "(found ddr%s fsb freq %d, mem freq %d), "
8067                                 "disabling CxSR\n",
8068                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8069                                 dev_priv->fsb_freq, dev_priv->mem_freq);
8070                        /* Disable CxSR and never update its watermark again */
8071                        intel_set_memory_cxsr(dev_priv, false);
8072                        dev_priv->display.update_wm = NULL;
8073                } else
8074                        dev_priv->display.update_wm = pineview_update_wm;
8075        } else if (IS_G4X(dev_priv)) {
8076                dev_priv->display.update_wm = g4x_update_wm;
8077        } else if (IS_GEN4(dev_priv)) {
8078                dev_priv->display.update_wm = i965_update_wm;
8079        } else if (IS_GEN3(dev_priv)) {
8080                dev_priv->display.update_wm = i9xx_update_wm;
8081                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8082        } else if (IS_GEN2(dev_priv)) {
8083                if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8084                        dev_priv->display.update_wm = i845_update_wm;
8085                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
8086                } else {
8087                        dev_priv->display.update_wm = i9xx_update_wm;
8088                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
8089                }
8090        } else {
8091                DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8092        }
8093}
8094
8095static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
8096{
8097        uint32_t flags =
8098                I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8099
8100        switch (flags) {
8101        case GEN6_PCODE_SUCCESS:
8102                return 0;
8103        case GEN6_PCODE_UNIMPLEMENTED_CMD:
8104        case GEN6_PCODE_ILLEGAL_CMD:
8105                return -ENXIO;
8106        case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8107        case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8108                return -EOVERFLOW;
8109        case GEN6_PCODE_TIMEOUT:
8110                return -ETIMEDOUT;
8111        default:
8112                MISSING_CASE(flags);
8113                return 0;
8114        }
8115}
8116
8117static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
8118{
8119        uint32_t flags =
8120                I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8121
8122        switch (flags) {
8123        case GEN6_PCODE_SUCCESS:
8124                return 0;
8125        case GEN6_PCODE_ILLEGAL_CMD:
8126                return -ENXIO;
8127        case GEN7_PCODE_TIMEOUT:
8128                return -ETIMEDOUT;
8129        case GEN7_PCODE_ILLEGAL_DATA:
8130                return -EINVAL;
8131        case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8132                return -EOVERFLOW;
8133        default:
8134                MISSING_CASE(flags);
8135                return 0;
8136        }
8137}
8138
8139int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
8140{
8141        int status;
8142
8143        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8144
8145        /* GEN6_PCODE_* are outside of the forcewake domain, we can
8146         * use te fw I915_READ variants to reduce the amount of work
8147         * required when reading/writing.
8148         */
8149
8150        if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8151                DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
8152                return -EAGAIN;
8153        }
8154
8155        I915_WRITE_FW(GEN6_PCODE_DATA, *val);
8156        I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8157        I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8158
8159        if (intel_wait_for_register_fw(dev_priv,
8160                                       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8161                                       500)) {
8162                DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
8163                return -ETIMEDOUT;
8164        }
8165
8166        *val = I915_READ_FW(GEN6_PCODE_DATA);
8167        I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8168
8169        if (INTEL_GEN(dev_priv) > 6)
8170                status = gen7_check_mailbox_status(dev_priv);
8171        else
8172                status = gen6_check_mailbox_status(dev_priv);
8173
8174        if (status) {
8175                DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
8176                                 status);
8177                return status;
8178        }
8179
8180        return 0;
8181}
8182
8183int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8184                            u32 mbox, u32 val)
8185{
8186        int status;
8187
8188        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8189
8190        /* GEN6_PCODE_* are outside of the forcewake domain, we can
8191         * use te fw I915_READ variants to reduce the amount of work
8192         * required when reading/writing.
8193         */
8194
8195        if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8196                DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
8197                return -EAGAIN;
8198        }
8199
8200        I915_WRITE_FW(GEN6_PCODE_DATA, val);
8201        I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8202        I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8203
8204        if (intel_wait_for_register_fw(dev_priv,
8205                                       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8206                                       500)) {
8207                DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
8208                return -ETIMEDOUT;
8209        }
8210
8211        I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8212
8213        if (INTEL_GEN(dev_priv) > 6)
8214                status = gen7_check_mailbox_status(dev_priv);
8215        else
8216                status = gen6_check_mailbox_status(dev_priv);
8217
8218        if (status) {
8219                DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
8220                                 status);
8221                return status;
8222        }
8223
8224        return 0;
8225}
8226
8227static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
8228                                  u32 request, u32 reply_mask, u32 reply,
8229                                  u32 *status)
8230{
8231        u32 val = request;
8232
8233        *status = sandybridge_pcode_read(dev_priv, mbox, &val);
8234
8235        return *status || ((val & reply_mask) == reply);
8236}
8237
8238/**
8239 * skl_pcode_request - send PCODE request until acknowledgment
8240 * @dev_priv: device private
8241 * @mbox: PCODE mailbox ID the request is targeted for
8242 * @request: request ID
8243 * @reply_mask: mask used to check for request acknowledgment
8244 * @reply: value used to check for request acknowledgment
8245 * @timeout_base_ms: timeout for polling with preemption enabled
8246 *
8247 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8248 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8249 * The request is acknowledged once the PCODE reply dword equals @reply after
8250 * applying @reply_mask. Polling is first attempted with preemption enabled
8251 * for @timeout_base_ms and if this times out for another 50 ms with
8252 * preemption disabled.
8253 *
8254 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
8255 * other error as reported by PCODE.
8256 */
8257int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
8258                      u32 reply_mask, u32 reply, int timeout_base_ms)
8259{
8260        u32 status;
8261        int ret;
8262
8263        WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8264
8265#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
8266                                   &status)
8267
8268        /*
8269         * Prime the PCODE by doing a request first. Normally it guarantees
8270         * that a subsequent request, at most @timeout_base_ms later, succeeds.
8271         * _wait_for() doesn't guarantee when its passed condition is evaluated
8272         * first, so send the first request explicitly.
8273         */
8274        if (COND) {
8275                ret = 0;
8276                goto out;
8277        }
8278        ret = _wait_for(COND, timeout_base_ms * 1000, 10);
8279        if (!ret)
8280                goto out;
8281
8282        /*
8283         * The above can time out if the number of requests was low (2 in the
8284         * worst case) _and_ PCODE was busy for some reason even after a
8285         * (queued) request and @timeout_base_ms delay. As a workaround retry
8286         * the poll with preemption disabled to maximize the number of
8287         * requests. Increase the timeout from @timeout_base_ms to 50ms to
8288         * account for interrupts that could reduce the number of these
8289         * requests, and for any quirks of the PCODE firmware that delays
8290         * the request completion.
8291         */
8292        DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
8293        WARN_ON_ONCE(timeout_base_ms > 3);
8294        preempt_disable();
8295        ret = wait_for_atomic(COND, 50);
8296        preempt_enable();
8297
8298out:
8299        return ret ? ret : status;
8300#undef COND
8301}
8302
8303static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
8304{
8305        /*
8306         * N = val - 0xb7
8307         * Slow = Fast = GPLL ref * N
8308         */
8309        return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8310}
8311
8312static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8313{
8314        return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8315}
8316
8317static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8318{
8319        /*
8320         * N = val / 2
8321         * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
8322         */
8323        return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8324}
8325
8326static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8327{
8328        /* CHV needs even values */
8329        return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8330}
8331
8332int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8333{
8334        if (IS_GEN9(dev_priv))
8335                return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8336                                         GEN9_FREQ_SCALER);
8337        else if (IS_CHERRYVIEW(dev_priv))
8338                return chv_gpu_freq(dev_priv, val);
8339        else if (IS_VALLEYVIEW(dev_priv))
8340                return byt_gpu_freq(dev_priv, val);
8341        else
8342                return val * GT_FREQUENCY_MULTIPLIER;
8343}
8344
8345int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8346{
8347        if (IS_GEN9(dev_priv))
8348                return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8349                                         GT_FREQUENCY_MULTIPLIER);
8350        else if (IS_CHERRYVIEW(dev_priv))
8351                return chv_freq_opcode(dev_priv, val);
8352        else if (IS_VALLEYVIEW(dev_priv))
8353                return byt_freq_opcode(dev_priv, val);
8354        else
8355                return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8356}
8357
8358struct request_boost {
8359        struct work_struct work;
8360        struct drm_i915_gem_request *req;
8361};
8362
8363static void __intel_rps_boost_work(struct work_struct *work)
8364{
8365        struct request_boost *boost = container_of(work, struct request_boost, work);
8366        struct drm_i915_gem_request *req = boost->req;
8367
8368        if (!i915_gem_request_completed(req))
8369                gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8370
8371        i915_gem_request_put(req);
8372        kfree(boost);
8373}
8374
8375void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8376{
8377        struct request_boost *boost;
8378
8379        if (req == NULL || INTEL_GEN(req->i915) < 6)
8380                return;
8381
8382        if (i915_gem_request_completed(req))
8383                return;
8384
8385        boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8386        if (boost == NULL)
8387                return;
8388
8389        boost->req = i915_gem_request_get(req);
8390
8391        INIT_WORK(&boost->work, __intel_rps_boost_work);
8392        queue_work(req->i915->wq, &boost->work);
8393}
8394
8395void intel_pm_setup(struct drm_i915_private *dev_priv)
8396{
8397        mutex_init(&dev_priv->rps.hw_lock);
8398        spin_lock_init(&dev_priv->rps.client_lock);
8399
8400        INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8401                          __intel_autoenable_gt_powersave);
8402        INIT_LIST_HEAD(&dev_priv->rps.clients);
8403
8404        dev_priv->pm.suspended = false;
8405        atomic_set(&dev_priv->pm.wakeref_count, 0);
8406}
8407
8408static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
8409                             const i915_reg_t reg)
8410{
8411        u32 lower, upper, tmp;
8412        int loop = 2;
8413
8414        /* The register accessed do not need forcewake. We borrow
8415         * uncore lock to prevent concurrent access to range reg.
8416         */
8417        spin_lock_irq(&dev_priv->uncore.lock);
8418
8419        /* vlv and chv residency counters are 40 bits in width.
8420         * With a control bit, we can choose between upper or lower
8421         * 32bit window into this counter.
8422         *
8423         * Although we always use the counter in high-range mode elsewhere,
8424         * userspace may attempt to read the value before rc6 is initialised,
8425         * before we have set the default VLV_COUNTER_CONTROL value. So always
8426         * set the high bit to be safe.
8427         */
8428        I915_WRITE_FW(VLV_COUNTER_CONTROL,
8429                      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
8430        upper = I915_READ_FW(reg);
8431        do {
8432                tmp = upper;
8433
8434                I915_WRITE_FW(VLV_COUNTER_CONTROL,
8435                              _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
8436                lower = I915_READ_FW(reg);
8437
8438                I915_WRITE_FW(VLV_COUNTER_CONTROL,
8439                              _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
8440                upper = I915_READ_FW(reg);
8441        } while (upper != tmp && --loop);
8442
8443        /* Everywhere else we always use VLV_COUNTER_CONTROL with the
8444         * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
8445         * now.
8446         */
8447
8448        spin_unlock_irq(&dev_priv->uncore.lock);
8449
8450        return lower | (u64)upper << 8;
8451}
8452
8453u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
8454                           const i915_reg_t reg)
8455{
8456        u64 time_hw, units, div;
8457
8458        if (!intel_enable_rc6())
8459                return 0;
8460
8461        intel_runtime_pm_get(dev_priv);
8462
8463        /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
8464        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8465                units = 1000;
8466                div = dev_priv->czclk_freq;
8467
8468                time_hw = vlv_residency_raw(dev_priv, reg);
8469        } else if (IS_GEN9_LP(dev_priv)) {
8470                units = 1000;
8471                div = 1200;             /* 833.33ns */
8472
8473                time_hw = I915_READ(reg);
8474        } else {
8475                units = 128000; /* 1.28us */
8476                div = 100000;
8477
8478                time_hw = I915_READ(reg);
8479        }
8480
8481        intel_runtime_pm_put(dev_priv);
8482        return DIV_ROUND_UP_ULL(time_hw * units, div);
8483}
8484