linux/drivers/md/bcache/request.c
<<
>>
Prefs
   1/*
   2 * Main bcache entry point - handle a read or a write request and decide what to
   3 * do with it; the make_request functions are called by the block layer.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "request.h"
  13#include "writeback.h"
  14
  15#include <linux/module.h>
  16#include <linux/hash.h>
  17#include <linux/random.h>
  18#include <linux/backing-dev.h>
  19
  20#include <trace/events/bcache.h>
  21
  22#define CUTOFF_CACHE_ADD        95
  23#define CUTOFF_CACHE_READA      90
  24
  25struct kmem_cache *bch_search_cache;
  26
  27static void bch_data_insert_start(struct closure *);
  28
  29static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  30{
  31        return BDEV_CACHE_MODE(&dc->sb);
  32}
  33
  34static bool verify(struct cached_dev *dc, struct bio *bio)
  35{
  36        return dc->verify;
  37}
  38
  39static void bio_csum(struct bio *bio, struct bkey *k)
  40{
  41        struct bio_vec bv;
  42        struct bvec_iter iter;
  43        uint64_t csum = 0;
  44
  45        bio_for_each_segment(bv, bio, iter) {
  46                void *d = kmap(bv.bv_page) + bv.bv_offset;
  47                csum = bch_crc64_update(csum, d, bv.bv_len);
  48                kunmap(bv.bv_page);
  49        }
  50
  51        k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  52}
  53
  54/* Insert data into cache */
  55
  56static void bch_data_insert_keys(struct closure *cl)
  57{
  58        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  59        atomic_t *journal_ref = NULL;
  60        struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  61        int ret;
  62
  63        /*
  64         * If we're looping, might already be waiting on
  65         * another journal write - can't wait on more than one journal write at
  66         * a time
  67         *
  68         * XXX: this looks wrong
  69         */
  70#if 0
  71        while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
  72                closure_sync(&s->cl);
  73#endif
  74
  75        if (!op->replace)
  76                journal_ref = bch_journal(op->c, &op->insert_keys,
  77                                          op->flush_journal ? cl : NULL);
  78
  79        ret = bch_btree_insert(op->c, &op->insert_keys,
  80                               journal_ref, replace_key);
  81        if (ret == -ESRCH) {
  82                op->replace_collision = true;
  83        } else if (ret) {
  84                op->error               = -ENOMEM;
  85                op->insert_data_done    = true;
  86        }
  87
  88        if (journal_ref)
  89                atomic_dec_bug(journal_ref);
  90
  91        if (!op->insert_data_done) {
  92                continue_at(cl, bch_data_insert_start, op->wq);
  93                return;
  94        }
  95
  96        bch_keylist_free(&op->insert_keys);
  97        closure_return(cl);
  98}
  99
 100static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
 101                               struct cache_set *c)
 102{
 103        size_t oldsize = bch_keylist_nkeys(l);
 104        size_t newsize = oldsize + u64s;
 105
 106        /*
 107         * The journalling code doesn't handle the case where the keys to insert
 108         * is bigger than an empty write: If we just return -ENOMEM here,
 109         * bio_insert() and bio_invalidate() will insert the keys created so far
 110         * and finish the rest when the keylist is empty.
 111         */
 112        if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
 113                return -ENOMEM;
 114
 115        return __bch_keylist_realloc(l, u64s);
 116}
 117
 118static void bch_data_invalidate(struct closure *cl)
 119{
 120        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 121        struct bio *bio = op->bio;
 122
 123        pr_debug("invalidating %i sectors from %llu",
 124                 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 125
 126        while (bio_sectors(bio)) {
 127                unsigned sectors = min(bio_sectors(bio),
 128                                       1U << (KEY_SIZE_BITS - 1));
 129
 130                if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 131                        goto out;
 132
 133                bio->bi_iter.bi_sector  += sectors;
 134                bio->bi_iter.bi_size    -= sectors << 9;
 135
 136                bch_keylist_add(&op->insert_keys,
 137                                &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
 138        }
 139
 140        op->insert_data_done = true;
 141        bio_put(bio);
 142out:
 143        continue_at(cl, bch_data_insert_keys, op->wq);
 144}
 145
 146static void bch_data_insert_error(struct closure *cl)
 147{
 148        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 149
 150        /*
 151         * Our data write just errored, which means we've got a bunch of keys to
 152         * insert that point to data that wasn't succesfully written.
 153         *
 154         * We don't have to insert those keys but we still have to invalidate
 155         * that region of the cache - so, if we just strip off all the pointers
 156         * from the keys we'll accomplish just that.
 157         */
 158
 159        struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 160
 161        while (src != op->insert_keys.top) {
 162                struct bkey *n = bkey_next(src);
 163
 164                SET_KEY_PTRS(src, 0);
 165                memmove(dst, src, bkey_bytes(src));
 166
 167                dst = bkey_next(dst);
 168                src = n;
 169        }
 170
 171        op->insert_keys.top = dst;
 172
 173        bch_data_insert_keys(cl);
 174}
 175
 176static void bch_data_insert_endio(struct bio *bio)
 177{
 178        struct closure *cl = bio->bi_private;
 179        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 180
 181        if (bio->bi_error) {
 182                /* TODO: We could try to recover from this. */
 183                if (op->writeback)
 184                        op->error = bio->bi_error;
 185                else if (!op->replace)
 186                        set_closure_fn(cl, bch_data_insert_error, op->wq);
 187                else
 188                        set_closure_fn(cl, NULL, NULL);
 189        }
 190
 191        bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache");
 192}
 193
 194static void bch_data_insert_start(struct closure *cl)
 195{
 196        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 197        struct bio *bio = op->bio, *n;
 198
 199        if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 200                wake_up_gc(op->c);
 201
 202        if (op->bypass)
 203                return bch_data_invalidate(cl);
 204
 205        /*
 206         * Journal writes are marked REQ_PREFLUSH; if the original write was a
 207         * flush, it'll wait on the journal write.
 208         */
 209        bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 210
 211        do {
 212                unsigned i;
 213                struct bkey *k;
 214                struct bio_set *split = op->c->bio_split;
 215
 216                /* 1 for the device pointer and 1 for the chksum */
 217                if (bch_keylist_realloc(&op->insert_keys,
 218                                        3 + (op->csum ? 1 : 0),
 219                                        op->c)) {
 220                        continue_at(cl, bch_data_insert_keys, op->wq);
 221                        return;
 222                }
 223
 224                k = op->insert_keys.top;
 225                bkey_init(k);
 226                SET_KEY_INODE(k, op->inode);
 227                SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 228
 229                if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 230                                       op->write_point, op->write_prio,
 231                                       op->writeback))
 232                        goto err;
 233
 234                n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 235
 236                n->bi_end_io    = bch_data_insert_endio;
 237                n->bi_private   = cl;
 238
 239                if (op->writeback) {
 240                        SET_KEY_DIRTY(k, true);
 241
 242                        for (i = 0; i < KEY_PTRS(k); i++)
 243                                SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 244                                            GC_MARK_DIRTY);
 245                }
 246
 247                SET_KEY_CSUM(k, op->csum);
 248                if (KEY_CSUM(k))
 249                        bio_csum(n, k);
 250
 251                trace_bcache_cache_insert(k);
 252                bch_keylist_push(&op->insert_keys);
 253
 254                bio_set_op_attrs(n, REQ_OP_WRITE, 0);
 255                bch_submit_bbio(n, op->c, k, 0);
 256        } while (n != bio);
 257
 258        op->insert_data_done = true;
 259        continue_at(cl, bch_data_insert_keys, op->wq);
 260        return;
 261err:
 262        /* bch_alloc_sectors() blocks if s->writeback = true */
 263        BUG_ON(op->writeback);
 264
 265        /*
 266         * But if it's not a writeback write we'd rather just bail out if
 267         * there aren't any buckets ready to write to - it might take awhile and
 268         * we might be starving btree writes for gc or something.
 269         */
 270
 271        if (!op->replace) {
 272                /*
 273                 * Writethrough write: We can't complete the write until we've
 274                 * updated the index. But we don't want to delay the write while
 275                 * we wait for buckets to be freed up, so just invalidate the
 276                 * rest of the write.
 277                 */
 278                op->bypass = true;
 279                return bch_data_invalidate(cl);
 280        } else {
 281                /*
 282                 * From a cache miss, we can just insert the keys for the data
 283                 * we have written or bail out if we didn't do anything.
 284                 */
 285                op->insert_data_done = true;
 286                bio_put(bio);
 287
 288                if (!bch_keylist_empty(&op->insert_keys))
 289                        continue_at(cl, bch_data_insert_keys, op->wq);
 290                else
 291                        closure_return(cl);
 292        }
 293}
 294
 295/**
 296 * bch_data_insert - stick some data in the cache
 297 *
 298 * This is the starting point for any data to end up in a cache device; it could
 299 * be from a normal write, or a writeback write, or a write to a flash only
 300 * volume - it's also used by the moving garbage collector to compact data in
 301 * mostly empty buckets.
 302 *
 303 * It first writes the data to the cache, creating a list of keys to be inserted
 304 * (if the data had to be fragmented there will be multiple keys); after the
 305 * data is written it calls bch_journal, and after the keys have been added to
 306 * the next journal write they're inserted into the btree.
 307 *
 308 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
 309 * and op->inode is used for the key inode.
 310 *
 311 * If s->bypass is true, instead of inserting the data it invalidates the
 312 * region of the cache represented by s->cache_bio and op->inode.
 313 */
 314void bch_data_insert(struct closure *cl)
 315{
 316        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 317
 318        trace_bcache_write(op->c, op->inode, op->bio,
 319                           op->writeback, op->bypass);
 320
 321        bch_keylist_init(&op->insert_keys);
 322        bio_get(op->bio);
 323        bch_data_insert_start(cl);
 324}
 325
 326/* Congested? */
 327
 328unsigned bch_get_congested(struct cache_set *c)
 329{
 330        int i;
 331        long rand;
 332
 333        if (!c->congested_read_threshold_us &&
 334            !c->congested_write_threshold_us)
 335                return 0;
 336
 337        i = (local_clock_us() - c->congested_last_us) / 1024;
 338        if (i < 0)
 339                return 0;
 340
 341        i += atomic_read(&c->congested);
 342        if (i >= 0)
 343                return 0;
 344
 345        i += CONGESTED_MAX;
 346
 347        if (i > 0)
 348                i = fract_exp_two(i, 6);
 349
 350        rand = get_random_int();
 351        i -= bitmap_weight(&rand, BITS_PER_LONG);
 352
 353        return i > 0 ? i : 1;
 354}
 355
 356static void add_sequential(struct task_struct *t)
 357{
 358        ewma_add(t->sequential_io_avg,
 359                 t->sequential_io, 8, 0);
 360
 361        t->sequential_io = 0;
 362}
 363
 364static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 365{
 366        return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 367}
 368
 369static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 370{
 371        struct cache_set *c = dc->disk.c;
 372        unsigned mode = cache_mode(dc, bio);
 373        unsigned sectors, congested = bch_get_congested(c);
 374        struct task_struct *task = current;
 375        struct io *i;
 376
 377        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 378            c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 379            (bio_op(bio) == REQ_OP_DISCARD))
 380                goto skip;
 381
 382        if (mode == CACHE_MODE_NONE ||
 383            (mode == CACHE_MODE_WRITEAROUND &&
 384             op_is_write(bio_op(bio))))
 385                goto skip;
 386
 387        if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
 388            bio_sectors(bio) & (c->sb.block_size - 1)) {
 389                pr_debug("skipping unaligned io");
 390                goto skip;
 391        }
 392
 393        if (bypass_torture_test(dc)) {
 394                if ((get_random_int() & 3) == 3)
 395                        goto skip;
 396                else
 397                        goto rescale;
 398        }
 399
 400        if (!congested && !dc->sequential_cutoff)
 401                goto rescale;
 402
 403        if (!congested &&
 404            mode == CACHE_MODE_WRITEBACK &&
 405            op_is_write(bio->bi_opf) &&
 406            op_is_sync(bio->bi_opf))
 407                goto rescale;
 408
 409        spin_lock(&dc->io_lock);
 410
 411        hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 412                if (i->last == bio->bi_iter.bi_sector &&
 413                    time_before(jiffies, i->jiffies))
 414                        goto found;
 415
 416        i = list_first_entry(&dc->io_lru, struct io, lru);
 417
 418        add_sequential(task);
 419        i->sequential = 0;
 420found:
 421        if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 422                i->sequential   += bio->bi_iter.bi_size;
 423
 424        i->last                  = bio_end_sector(bio);
 425        i->jiffies               = jiffies + msecs_to_jiffies(5000);
 426        task->sequential_io      = i->sequential;
 427
 428        hlist_del(&i->hash);
 429        hlist_add_head(&i->hash, iohash(dc, i->last));
 430        list_move_tail(&i->lru, &dc->io_lru);
 431
 432        spin_unlock(&dc->io_lock);
 433
 434        sectors = max(task->sequential_io,
 435                      task->sequential_io_avg) >> 9;
 436
 437        if (dc->sequential_cutoff &&
 438            sectors >= dc->sequential_cutoff >> 9) {
 439                trace_bcache_bypass_sequential(bio);
 440                goto skip;
 441        }
 442
 443        if (congested && sectors >= congested) {
 444                trace_bcache_bypass_congested(bio);
 445                goto skip;
 446        }
 447
 448rescale:
 449        bch_rescale_priorities(c, bio_sectors(bio));
 450        return false;
 451skip:
 452        bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 453        return true;
 454}
 455
 456/* Cache lookup */
 457
 458struct search {
 459        /* Stack frame for bio_complete */
 460        struct closure          cl;
 461
 462        struct bbio             bio;
 463        struct bio              *orig_bio;
 464        struct bio              *cache_miss;
 465        struct bcache_device    *d;
 466
 467        unsigned                insert_bio_sectors;
 468        unsigned                recoverable:1;
 469        unsigned                write:1;
 470        unsigned                read_dirty_data:1;
 471
 472        unsigned long           start_time;
 473
 474        struct btree_op         op;
 475        struct data_insert_op   iop;
 476};
 477
 478static void bch_cache_read_endio(struct bio *bio)
 479{
 480        struct bbio *b = container_of(bio, struct bbio, bio);
 481        struct closure *cl = bio->bi_private;
 482        struct search *s = container_of(cl, struct search, cl);
 483
 484        /*
 485         * If the bucket was reused while our bio was in flight, we might have
 486         * read the wrong data. Set s->error but not error so it doesn't get
 487         * counted against the cache device, but we'll still reread the data
 488         * from the backing device.
 489         */
 490
 491        if (bio->bi_error)
 492                s->iop.error = bio->bi_error;
 493        else if (!KEY_DIRTY(&b->key) &&
 494                 ptr_stale(s->iop.c, &b->key, 0)) {
 495                atomic_long_inc(&s->iop.c->cache_read_races);
 496                s->iop.error = -EINTR;
 497        }
 498
 499        bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache");
 500}
 501
 502/*
 503 * Read from a single key, handling the initial cache miss if the key starts in
 504 * the middle of the bio
 505 */
 506static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 507{
 508        struct search *s = container_of(op, struct search, op);
 509        struct bio *n, *bio = &s->bio.bio;
 510        struct bkey *bio_key;
 511        unsigned ptr;
 512
 513        if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 514                return MAP_CONTINUE;
 515
 516        if (KEY_INODE(k) != s->iop.inode ||
 517            KEY_START(k) > bio->bi_iter.bi_sector) {
 518                unsigned bio_sectors = bio_sectors(bio);
 519                unsigned sectors = KEY_INODE(k) == s->iop.inode
 520                        ? min_t(uint64_t, INT_MAX,
 521                                KEY_START(k) - bio->bi_iter.bi_sector)
 522                        : INT_MAX;
 523
 524                int ret = s->d->cache_miss(b, s, bio, sectors);
 525                if (ret != MAP_CONTINUE)
 526                        return ret;
 527
 528                /* if this was a complete miss we shouldn't get here */
 529                BUG_ON(bio_sectors <= sectors);
 530        }
 531
 532        if (!KEY_SIZE(k))
 533                return MAP_CONTINUE;
 534
 535        /* XXX: figure out best pointer - for multiple cache devices */
 536        ptr = 0;
 537
 538        PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 539
 540        if (KEY_DIRTY(k))
 541                s->read_dirty_data = true;
 542
 543        n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 544                                      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 545                           GFP_NOIO, s->d->bio_split);
 546
 547        bio_key = &container_of(n, struct bbio, bio)->key;
 548        bch_bkey_copy_single_ptr(bio_key, k, ptr);
 549
 550        bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 551        bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 552
 553        n->bi_end_io    = bch_cache_read_endio;
 554        n->bi_private   = &s->cl;
 555
 556        /*
 557         * The bucket we're reading from might be reused while our bio
 558         * is in flight, and we could then end up reading the wrong
 559         * data.
 560         *
 561         * We guard against this by checking (in cache_read_endio()) if
 562         * the pointer is stale again; if so, we treat it as an error
 563         * and reread from the backing device (but we don't pass that
 564         * error up anywhere).
 565         */
 566
 567        __bch_submit_bbio(n, b->c);
 568        return n == bio ? MAP_DONE : MAP_CONTINUE;
 569}
 570
 571static void cache_lookup(struct closure *cl)
 572{
 573        struct search *s = container_of(cl, struct search, iop.cl);
 574        struct bio *bio = &s->bio.bio;
 575        int ret;
 576
 577        bch_btree_op_init(&s->op, -1);
 578
 579        ret = bch_btree_map_keys(&s->op, s->iop.c,
 580                                 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 581                                 cache_lookup_fn, MAP_END_KEY);
 582        if (ret == -EAGAIN) {
 583                continue_at(cl, cache_lookup, bcache_wq);
 584                return;
 585        }
 586
 587        closure_return(cl);
 588}
 589
 590/* Common code for the make_request functions */
 591
 592static void request_endio(struct bio *bio)
 593{
 594        struct closure *cl = bio->bi_private;
 595
 596        if (bio->bi_error) {
 597                struct search *s = container_of(cl, struct search, cl);
 598                s->iop.error = bio->bi_error;
 599                /* Only cache read errors are recoverable */
 600                s->recoverable = false;
 601        }
 602
 603        bio_put(bio);
 604        closure_put(cl);
 605}
 606
 607static void bio_complete(struct search *s)
 608{
 609        if (s->orig_bio) {
 610                generic_end_io_acct(bio_data_dir(s->orig_bio),
 611                                    &s->d->disk->part0, s->start_time);
 612
 613                trace_bcache_request_end(s->d, s->orig_bio);
 614                s->orig_bio->bi_error = s->iop.error;
 615                bio_endio(s->orig_bio);
 616                s->orig_bio = NULL;
 617        }
 618}
 619
 620static void do_bio_hook(struct search *s, struct bio *orig_bio)
 621{
 622        struct bio *bio = &s->bio.bio;
 623
 624        bio_init(bio, NULL, 0);
 625        __bio_clone_fast(bio, orig_bio);
 626        bio->bi_end_io          = request_endio;
 627        bio->bi_private         = &s->cl;
 628
 629        bio_cnt_set(bio, 3);
 630}
 631
 632static void search_free(struct closure *cl)
 633{
 634        struct search *s = container_of(cl, struct search, cl);
 635        bio_complete(s);
 636
 637        if (s->iop.bio)
 638                bio_put(s->iop.bio);
 639
 640        closure_debug_destroy(cl);
 641        mempool_free(s, s->d->c->search);
 642}
 643
 644static inline struct search *search_alloc(struct bio *bio,
 645                                          struct bcache_device *d)
 646{
 647        struct search *s;
 648
 649        s = mempool_alloc(d->c->search, GFP_NOIO);
 650
 651        closure_init(&s->cl, NULL);
 652        do_bio_hook(s, bio);
 653
 654        s->orig_bio             = bio;
 655        s->cache_miss           = NULL;
 656        s->d                    = d;
 657        s->recoverable          = 1;
 658        s->write                = op_is_write(bio_op(bio));
 659        s->read_dirty_data      = 0;
 660        s->start_time           = jiffies;
 661
 662        s->iop.c                = d->c;
 663        s->iop.bio              = NULL;
 664        s->iop.inode            = d->id;
 665        s->iop.write_point      = hash_long((unsigned long) current, 16);
 666        s->iop.write_prio       = 0;
 667        s->iop.error            = 0;
 668        s->iop.flags            = 0;
 669        s->iop.flush_journal    = op_is_flush(bio->bi_opf);
 670        s->iop.wq               = bcache_wq;
 671
 672        return s;
 673}
 674
 675/* Cached devices */
 676
 677static void cached_dev_bio_complete(struct closure *cl)
 678{
 679        struct search *s = container_of(cl, struct search, cl);
 680        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 681
 682        search_free(cl);
 683        cached_dev_put(dc);
 684}
 685
 686/* Process reads */
 687
 688static void cached_dev_cache_miss_done(struct closure *cl)
 689{
 690        struct search *s = container_of(cl, struct search, cl);
 691
 692        if (s->iop.replace_collision)
 693                bch_mark_cache_miss_collision(s->iop.c, s->d);
 694
 695        if (s->iop.bio)
 696                bio_free_pages(s->iop.bio);
 697
 698        cached_dev_bio_complete(cl);
 699}
 700
 701static void cached_dev_read_error(struct closure *cl)
 702{
 703        struct search *s = container_of(cl, struct search, cl);
 704        struct bio *bio = &s->bio.bio;
 705
 706        if (s->recoverable) {
 707                /* Retry from the backing device: */
 708                trace_bcache_read_retry(s->orig_bio);
 709
 710                s->iop.error = 0;
 711                do_bio_hook(s, s->orig_bio);
 712
 713                /* XXX: invalidate cache */
 714
 715                closure_bio_submit(bio, cl);
 716        }
 717
 718        continue_at(cl, cached_dev_cache_miss_done, NULL);
 719}
 720
 721static void cached_dev_read_done(struct closure *cl)
 722{
 723        struct search *s = container_of(cl, struct search, cl);
 724        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 725
 726        /*
 727         * We had a cache miss; cache_bio now contains data ready to be inserted
 728         * into the cache.
 729         *
 730         * First, we copy the data we just read from cache_bio's bounce buffers
 731         * to the buffers the original bio pointed to:
 732         */
 733
 734        if (s->iop.bio) {
 735                bio_reset(s->iop.bio);
 736                s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
 737                s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
 738                s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 739                bch_bio_map(s->iop.bio, NULL);
 740
 741                bio_copy_data(s->cache_miss, s->iop.bio);
 742
 743                bio_put(s->cache_miss);
 744                s->cache_miss = NULL;
 745        }
 746
 747        if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
 748                bch_data_verify(dc, s->orig_bio);
 749
 750        bio_complete(s);
 751
 752        if (s->iop.bio &&
 753            !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 754                BUG_ON(!s->iop.replace);
 755                closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 756        }
 757
 758        continue_at(cl, cached_dev_cache_miss_done, NULL);
 759}
 760
 761static void cached_dev_read_done_bh(struct closure *cl)
 762{
 763        struct search *s = container_of(cl, struct search, cl);
 764        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 765
 766        bch_mark_cache_accounting(s->iop.c, s->d,
 767                                  !s->cache_miss, s->iop.bypass);
 768        trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
 769
 770        if (s->iop.error)
 771                continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 772        else if (s->iop.bio || verify(dc, &s->bio.bio))
 773                continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 774        else
 775                continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 776}
 777
 778static int cached_dev_cache_miss(struct btree *b, struct search *s,
 779                                 struct bio *bio, unsigned sectors)
 780{
 781        int ret = MAP_CONTINUE;
 782        unsigned reada = 0;
 783        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 784        struct bio *miss, *cache_bio;
 785
 786        if (s->cache_miss || s->iop.bypass) {
 787                miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 788                ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 789                goto out_submit;
 790        }
 791
 792        if (!(bio->bi_opf & REQ_RAHEAD) &&
 793            !(bio->bi_opf & REQ_META) &&
 794            s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
 795                reada = min_t(sector_t, dc->readahead >> 9,
 796                              bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
 797
 798        s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
 799
 800        s->iop.replace_key = KEY(s->iop.inode,
 801                                 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 802                                 s->insert_bio_sectors);
 803
 804        ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 805        if (ret)
 806                return ret;
 807
 808        s->iop.replace = true;
 809
 810        miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 811
 812        /* btree_search_recurse()'s btree iterator is no good anymore */
 813        ret = miss == bio ? MAP_DONE : -EINTR;
 814
 815        cache_bio = bio_alloc_bioset(GFP_NOWAIT,
 816                        DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 817                        dc->disk.bio_split);
 818        if (!cache_bio)
 819                goto out_submit;
 820
 821        cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
 822        cache_bio->bi_bdev              = miss->bi_bdev;
 823        cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
 824
 825        cache_bio->bi_end_io    = request_endio;
 826        cache_bio->bi_private   = &s->cl;
 827
 828        bch_bio_map(cache_bio, NULL);
 829        if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 830                goto out_put;
 831
 832        if (reada)
 833                bch_mark_cache_readahead(s->iop.c, s->d);
 834
 835        s->cache_miss   = miss;
 836        s->iop.bio      = cache_bio;
 837        bio_get(cache_bio);
 838        closure_bio_submit(cache_bio, &s->cl);
 839
 840        return ret;
 841out_put:
 842        bio_put(cache_bio);
 843out_submit:
 844        miss->bi_end_io         = request_endio;
 845        miss->bi_private        = &s->cl;
 846        closure_bio_submit(miss, &s->cl);
 847        return ret;
 848}
 849
 850static void cached_dev_read(struct cached_dev *dc, struct search *s)
 851{
 852        struct closure *cl = &s->cl;
 853
 854        closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 855        continue_at(cl, cached_dev_read_done_bh, NULL);
 856}
 857
 858/* Process writes */
 859
 860static void cached_dev_write_complete(struct closure *cl)
 861{
 862        struct search *s = container_of(cl, struct search, cl);
 863        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 864
 865        up_read_non_owner(&dc->writeback_lock);
 866        cached_dev_bio_complete(cl);
 867}
 868
 869static void cached_dev_write(struct cached_dev *dc, struct search *s)
 870{
 871        struct closure *cl = &s->cl;
 872        struct bio *bio = &s->bio.bio;
 873        struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 874        struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 875
 876        bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 877
 878        down_read_non_owner(&dc->writeback_lock);
 879        if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 880                /*
 881                 * We overlap with some dirty data undergoing background
 882                 * writeback, force this write to writeback
 883                 */
 884                s->iop.bypass = false;
 885                s->iop.writeback = true;
 886        }
 887
 888        /*
 889         * Discards aren't _required_ to do anything, so skipping if
 890         * check_overlapping returned true is ok
 891         *
 892         * But check_overlapping drops dirty keys for which io hasn't started,
 893         * so we still want to call it.
 894         */
 895        if (bio_op(bio) == REQ_OP_DISCARD)
 896                s->iop.bypass = true;
 897
 898        if (should_writeback(dc, s->orig_bio,
 899                             cache_mode(dc, bio),
 900                             s->iop.bypass)) {
 901                s->iop.bypass = false;
 902                s->iop.writeback = true;
 903        }
 904
 905        if (s->iop.bypass) {
 906                s->iop.bio = s->orig_bio;
 907                bio_get(s->iop.bio);
 908
 909                if ((bio_op(bio) != REQ_OP_DISCARD) ||
 910                    blk_queue_discard(bdev_get_queue(dc->bdev)))
 911                        closure_bio_submit(bio, cl);
 912        } else if (s->iop.writeback) {
 913                bch_writeback_add(dc);
 914                s->iop.bio = bio;
 915
 916                if (bio->bi_opf & REQ_PREFLUSH) {
 917                        /* Also need to send a flush to the backing device */
 918                        struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
 919                                                             dc->disk.bio_split);
 920
 921                        flush->bi_bdev  = bio->bi_bdev;
 922                        flush->bi_end_io = request_endio;
 923                        flush->bi_private = cl;
 924                        flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 925
 926                        closure_bio_submit(flush, cl);
 927                }
 928        } else {
 929                s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
 930
 931                closure_bio_submit(bio, cl);
 932        }
 933
 934        closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 935        continue_at(cl, cached_dev_write_complete, NULL);
 936}
 937
 938static void cached_dev_nodata(struct closure *cl)
 939{
 940        struct search *s = container_of(cl, struct search, cl);
 941        struct bio *bio = &s->bio.bio;
 942
 943        if (s->iop.flush_journal)
 944                bch_journal_meta(s->iop.c, cl);
 945
 946        /* If it's a flush, we send the flush to the backing device too */
 947        closure_bio_submit(bio, cl);
 948
 949        continue_at(cl, cached_dev_bio_complete, NULL);
 950}
 951
 952/* Cached devices - read & write stuff */
 953
 954static blk_qc_t cached_dev_make_request(struct request_queue *q,
 955                                        struct bio *bio)
 956{
 957        struct search *s;
 958        struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
 959        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 960        int rw = bio_data_dir(bio);
 961
 962        generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
 963
 964        bio->bi_bdev = dc->bdev;
 965        bio->bi_iter.bi_sector += dc->sb.data_offset;
 966
 967        if (cached_dev_get(dc)) {
 968                s = search_alloc(bio, d);
 969                trace_bcache_request_start(s->d, bio);
 970
 971                if (!bio->bi_iter.bi_size) {
 972                        /*
 973                         * can't call bch_journal_meta from under
 974                         * generic_make_request
 975                         */
 976                        continue_at_nobarrier(&s->cl,
 977                                              cached_dev_nodata,
 978                                              bcache_wq);
 979                } else {
 980                        s->iop.bypass = check_should_bypass(dc, bio);
 981
 982                        if (rw)
 983                                cached_dev_write(dc, s);
 984                        else
 985                                cached_dev_read(dc, s);
 986                }
 987        } else {
 988                if ((bio_op(bio) == REQ_OP_DISCARD) &&
 989                    !blk_queue_discard(bdev_get_queue(dc->bdev)))
 990                        bio_endio(bio);
 991                else
 992                        generic_make_request(bio);
 993        }
 994
 995        return BLK_QC_T_NONE;
 996}
 997
 998static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
 999                            unsigned int cmd, unsigned long arg)
1000{
1001        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1002        return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1003}
1004
1005static int cached_dev_congested(void *data, int bits)
1006{
1007        struct bcache_device *d = data;
1008        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1009        struct request_queue *q = bdev_get_queue(dc->bdev);
1010        int ret = 0;
1011
1012        if (bdi_congested(q->backing_dev_info, bits))
1013                return 1;
1014
1015        if (cached_dev_get(dc)) {
1016                unsigned i;
1017                struct cache *ca;
1018
1019                for_each_cache(ca, d->c, i) {
1020                        q = bdev_get_queue(ca->bdev);
1021                        ret |= bdi_congested(q->backing_dev_info, bits);
1022                }
1023
1024                cached_dev_put(dc);
1025        }
1026
1027        return ret;
1028}
1029
1030void bch_cached_dev_request_init(struct cached_dev *dc)
1031{
1032        struct gendisk *g = dc->disk.disk;
1033
1034        g->queue->make_request_fn               = cached_dev_make_request;
1035        g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1036        dc->disk.cache_miss                     = cached_dev_cache_miss;
1037        dc->disk.ioctl                          = cached_dev_ioctl;
1038}
1039
1040/* Flash backed devices */
1041
1042static int flash_dev_cache_miss(struct btree *b, struct search *s,
1043                                struct bio *bio, unsigned sectors)
1044{
1045        unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1046
1047        swap(bio->bi_iter.bi_size, bytes);
1048        zero_fill_bio(bio);
1049        swap(bio->bi_iter.bi_size, bytes);
1050
1051        bio_advance(bio, bytes);
1052
1053        if (!bio->bi_iter.bi_size)
1054                return MAP_DONE;
1055
1056        return MAP_CONTINUE;
1057}
1058
1059static void flash_dev_nodata(struct closure *cl)
1060{
1061        struct search *s = container_of(cl, struct search, cl);
1062
1063        if (s->iop.flush_journal)
1064                bch_journal_meta(s->iop.c, cl);
1065
1066        continue_at(cl, search_free, NULL);
1067}
1068
1069static blk_qc_t flash_dev_make_request(struct request_queue *q,
1070                                             struct bio *bio)
1071{
1072        struct search *s;
1073        struct closure *cl;
1074        struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1075        int rw = bio_data_dir(bio);
1076
1077        generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1078
1079        s = search_alloc(bio, d);
1080        cl = &s->cl;
1081        bio = &s->bio.bio;
1082
1083        trace_bcache_request_start(s->d, bio);
1084
1085        if (!bio->bi_iter.bi_size) {
1086                /*
1087                 * can't call bch_journal_meta from under
1088                 * generic_make_request
1089                 */
1090                continue_at_nobarrier(&s->cl,
1091                                      flash_dev_nodata,
1092                                      bcache_wq);
1093                return BLK_QC_T_NONE;
1094        } else if (rw) {
1095                bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1096                                        &KEY(d->id, bio->bi_iter.bi_sector, 0),
1097                                        &KEY(d->id, bio_end_sector(bio), 0));
1098
1099                s->iop.bypass           = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1100                s->iop.writeback        = true;
1101                s->iop.bio              = bio;
1102
1103                closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1104        } else {
1105                closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1106        }
1107
1108        continue_at(cl, search_free, NULL);
1109        return BLK_QC_T_NONE;
1110}
1111
1112static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1113                           unsigned int cmd, unsigned long arg)
1114{
1115        return -ENOTTY;
1116}
1117
1118static int flash_dev_congested(void *data, int bits)
1119{
1120        struct bcache_device *d = data;
1121        struct request_queue *q;
1122        struct cache *ca;
1123        unsigned i;
1124        int ret = 0;
1125
1126        for_each_cache(ca, d->c, i) {
1127                q = bdev_get_queue(ca->bdev);
1128                ret |= bdi_congested(q->backing_dev_info, bits);
1129        }
1130
1131        return ret;
1132}
1133
1134void bch_flash_dev_request_init(struct bcache_device *d)
1135{
1136        struct gendisk *g = d->disk;
1137
1138        g->queue->make_request_fn               = flash_dev_make_request;
1139        g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1140        d->cache_miss                           = flash_dev_cache_miss;
1141        d->ioctl                                = flash_dev_ioctl;
1142}
1143
1144void bch_request_exit(void)
1145{
1146        if (bch_search_cache)
1147                kmem_cache_destroy(bch_search_cache);
1148}
1149
1150int __init bch_request_init(void)
1151{
1152        bch_search_cache = KMEM_CACHE(search, 0);
1153        if (!bch_search_cache)
1154                return -ENOMEM;
1155
1156        return 0;
1157}
1158