linux/drivers/md/dm-cache-target.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25        "A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *            either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43        spinlock_t lock;
  44
  45        /*
  46         * Sectors of in-flight IO.
  47         */
  48        sector_t in_flight;
  49
  50        /*
  51         * The time, in jiffies, when this device became idle (if it is
  52         * indeed idle).
  53         */
  54        unsigned long idle_time;
  55        unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60        spin_lock_init(&iot->lock);
  61        iot->in_flight = 0ul;
  62        iot->idle_time = 0ul;
  63        iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68        if (iot->in_flight)
  69                return false;
  70
  71        return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76        bool r;
  77        unsigned long flags;
  78
  79        spin_lock_irqsave(&iot->lock, flags);
  80        r = __iot_idle_for(iot, jifs);
  81        spin_unlock_irqrestore(&iot->lock, flags);
  82
  83        return r;
  84}
  85
  86static void iot_io_begin(struct io_tracker *iot, sector_t len)
  87{
  88        unsigned long flags;
  89
  90        spin_lock_irqsave(&iot->lock, flags);
  91        iot->in_flight += len;
  92        spin_unlock_irqrestore(&iot->lock, flags);
  93}
  94
  95static void __iot_io_end(struct io_tracker *iot, sector_t len)
  96{
  97        if (!len)
  98                return;
  99
 100        iot->in_flight -= len;
 101        if (!iot->in_flight)
 102                iot->idle_time = jiffies;
 103}
 104
 105static void iot_io_end(struct io_tracker *iot, sector_t len)
 106{
 107        unsigned long flags;
 108
 109        spin_lock_irqsave(&iot->lock, flags);
 110        __iot_io_end(iot, len);
 111        spin_unlock_irqrestore(&iot->lock, flags);
 112}
 113
 114/*----------------------------------------------------------------*/
 115
 116/*
 117 * Represents a chunk of future work.  'input' allows continuations to pass
 118 * values between themselves, typically error values.
 119 */
 120struct continuation {
 121        struct work_struct ws;
 122        int input;
 123};
 124
 125static inline void init_continuation(struct continuation *k,
 126                                     void (*fn)(struct work_struct *))
 127{
 128        INIT_WORK(&k->ws, fn);
 129        k->input = 0;
 130}
 131
 132static inline void queue_continuation(struct workqueue_struct *wq,
 133                                      struct continuation *k)
 134{
 135        queue_work(wq, &k->ws);
 136}
 137
 138/*----------------------------------------------------------------*/
 139
 140/*
 141 * The batcher collects together pieces of work that need a particular
 142 * operation to occur before they can proceed (typically a commit).
 143 */
 144struct batcher {
 145        /*
 146         * The operation that everyone is waiting for.
 147         */
 148        int (*commit_op)(void *context);
 149        void *commit_context;
 150
 151        /*
 152         * This is how bios should be issued once the commit op is complete
 153         * (accounted_request).
 154         */
 155        void (*issue_op)(struct bio *bio, void *context);
 156        void *issue_context;
 157
 158        /*
 159         * Queued work gets put on here after commit.
 160         */
 161        struct workqueue_struct *wq;
 162
 163        spinlock_t lock;
 164        struct list_head work_items;
 165        struct bio_list bios;
 166        struct work_struct commit_work;
 167
 168        bool commit_scheduled;
 169};
 170
 171static void __commit(struct work_struct *_ws)
 172{
 173        struct batcher *b = container_of(_ws, struct batcher, commit_work);
 174
 175        int r;
 176        unsigned long flags;
 177        struct list_head work_items;
 178        struct work_struct *ws, *tmp;
 179        struct continuation *k;
 180        struct bio *bio;
 181        struct bio_list bios;
 182
 183        INIT_LIST_HEAD(&work_items);
 184        bio_list_init(&bios);
 185
 186        /*
 187         * We have to grab these before the commit_op to avoid a race
 188         * condition.
 189         */
 190        spin_lock_irqsave(&b->lock, flags);
 191        list_splice_init(&b->work_items, &work_items);
 192        bio_list_merge(&bios, &b->bios);
 193        bio_list_init(&b->bios);
 194        b->commit_scheduled = false;
 195        spin_unlock_irqrestore(&b->lock, flags);
 196
 197        r = b->commit_op(b->commit_context);
 198
 199        list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 200                k = container_of(ws, struct continuation, ws);
 201                k->input = r;
 202                INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 203                queue_work(b->wq, ws);
 204        }
 205
 206        while ((bio = bio_list_pop(&bios))) {
 207                if (r) {
 208                        bio->bi_error = r;
 209                        bio_endio(bio);
 210                } else
 211                        b->issue_op(bio, b->issue_context);
 212        }
 213}
 214
 215static void batcher_init(struct batcher *b,
 216                         int (*commit_op)(void *),
 217                         void *commit_context,
 218                         void (*issue_op)(struct bio *bio, void *),
 219                         void *issue_context,
 220                         struct workqueue_struct *wq)
 221{
 222        b->commit_op = commit_op;
 223        b->commit_context = commit_context;
 224        b->issue_op = issue_op;
 225        b->issue_context = issue_context;
 226        b->wq = wq;
 227
 228        spin_lock_init(&b->lock);
 229        INIT_LIST_HEAD(&b->work_items);
 230        bio_list_init(&b->bios);
 231        INIT_WORK(&b->commit_work, __commit);
 232        b->commit_scheduled = false;
 233}
 234
 235static void async_commit(struct batcher *b)
 236{
 237        queue_work(b->wq, &b->commit_work);
 238}
 239
 240static void continue_after_commit(struct batcher *b, struct continuation *k)
 241{
 242        unsigned long flags;
 243        bool commit_scheduled;
 244
 245        spin_lock_irqsave(&b->lock, flags);
 246        commit_scheduled = b->commit_scheduled;
 247        list_add_tail(&k->ws.entry, &b->work_items);
 248        spin_unlock_irqrestore(&b->lock, flags);
 249
 250        if (commit_scheduled)
 251                async_commit(b);
 252}
 253
 254/*
 255 * Bios are errored if commit failed.
 256 */
 257static void issue_after_commit(struct batcher *b, struct bio *bio)
 258{
 259       unsigned long flags;
 260       bool commit_scheduled;
 261
 262       spin_lock_irqsave(&b->lock, flags);
 263       commit_scheduled = b->commit_scheduled;
 264       bio_list_add(&b->bios, bio);
 265       spin_unlock_irqrestore(&b->lock, flags);
 266
 267       if (commit_scheduled)
 268               async_commit(b);
 269}
 270
 271/*
 272 * Call this if some urgent work is waiting for the commit to complete.
 273 */
 274static void schedule_commit(struct batcher *b)
 275{
 276        bool immediate;
 277        unsigned long flags;
 278
 279        spin_lock_irqsave(&b->lock, flags);
 280        immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 281        b->commit_scheduled = true;
 282        spin_unlock_irqrestore(&b->lock, flags);
 283
 284        if (immediate)
 285                async_commit(b);
 286}
 287
 288/*
 289 * There are a couple of places where we let a bio run, but want to do some
 290 * work before calling its endio function.  We do this by temporarily
 291 * changing the endio fn.
 292 */
 293struct dm_hook_info {
 294        bio_end_io_t *bi_end_io;
 295};
 296
 297static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 298                        bio_end_io_t *bi_end_io, void *bi_private)
 299{
 300        h->bi_end_io = bio->bi_end_io;
 301
 302        bio->bi_end_io = bi_end_io;
 303        bio->bi_private = bi_private;
 304}
 305
 306static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 307{
 308        bio->bi_end_io = h->bi_end_io;
 309}
 310
 311/*----------------------------------------------------------------*/
 312
 313#define MIGRATION_POOL_SIZE 128
 314#define COMMIT_PERIOD HZ
 315#define MIGRATION_COUNT_WINDOW 10
 316
 317/*
 318 * The block size of the device holding cache data must be
 319 * between 32KB and 1GB.
 320 */
 321#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 322#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 323
 324enum cache_metadata_mode {
 325        CM_WRITE,               /* metadata may be changed */
 326        CM_READ_ONLY,           /* metadata may not be changed */
 327        CM_FAIL
 328};
 329
 330enum cache_io_mode {
 331        /*
 332         * Data is written to cached blocks only.  These blocks are marked
 333         * dirty.  If you lose the cache device you will lose data.
 334         * Potential performance increase for both reads and writes.
 335         */
 336        CM_IO_WRITEBACK,
 337
 338        /*
 339         * Data is written to both cache and origin.  Blocks are never
 340         * dirty.  Potential performance benfit for reads only.
 341         */
 342        CM_IO_WRITETHROUGH,
 343
 344        /*
 345         * A degraded mode useful for various cache coherency situations
 346         * (eg, rolling back snapshots).  Reads and writes always go to the
 347         * origin.  If a write goes to a cached oblock, then the cache
 348         * block is invalidated.
 349         */
 350        CM_IO_PASSTHROUGH
 351};
 352
 353struct cache_features {
 354        enum cache_metadata_mode mode;
 355        enum cache_io_mode io_mode;
 356        unsigned metadata_version;
 357};
 358
 359struct cache_stats {
 360        atomic_t read_hit;
 361        atomic_t read_miss;
 362        atomic_t write_hit;
 363        atomic_t write_miss;
 364        atomic_t demotion;
 365        atomic_t promotion;
 366        atomic_t writeback;
 367        atomic_t copies_avoided;
 368        atomic_t cache_cell_clash;
 369        atomic_t commit_count;
 370        atomic_t discard_count;
 371};
 372
 373struct cache {
 374        struct dm_target *ti;
 375        struct dm_target_callbacks callbacks;
 376
 377        struct dm_cache_metadata *cmd;
 378
 379        /*
 380         * Metadata is written to this device.
 381         */
 382        struct dm_dev *metadata_dev;
 383
 384        /*
 385         * The slower of the two data devices.  Typically a spindle.
 386         */
 387        struct dm_dev *origin_dev;
 388
 389        /*
 390         * The faster of the two data devices.  Typically an SSD.
 391         */
 392        struct dm_dev *cache_dev;
 393
 394        /*
 395         * Size of the origin device in _complete_ blocks and native sectors.
 396         */
 397        dm_oblock_t origin_blocks;
 398        sector_t origin_sectors;
 399
 400        /*
 401         * Size of the cache device in blocks.
 402         */
 403        dm_cblock_t cache_size;
 404
 405        /*
 406         * Fields for converting from sectors to blocks.
 407         */
 408        sector_t sectors_per_block;
 409        int sectors_per_block_shift;
 410
 411        spinlock_t lock;
 412        struct list_head deferred_cells;
 413        struct bio_list deferred_bios;
 414        struct bio_list deferred_writethrough_bios;
 415        sector_t migration_threshold;
 416        wait_queue_head_t migration_wait;
 417        atomic_t nr_allocated_migrations;
 418
 419        /*
 420         * The number of in flight migrations that are performing
 421         * background io. eg, promotion, writeback.
 422         */
 423        atomic_t nr_io_migrations;
 424
 425        struct rw_semaphore quiesce_lock;
 426
 427        /*
 428         * cache_size entries, dirty if set
 429         */
 430        atomic_t nr_dirty;
 431        unsigned long *dirty_bitset;
 432
 433        /*
 434         * origin_blocks entries, discarded if set.
 435         */
 436        dm_dblock_t discard_nr_blocks;
 437        unsigned long *discard_bitset;
 438        uint32_t discard_block_size; /* a power of 2 times sectors per block */
 439
 440        /*
 441         * Rather than reconstructing the table line for the status we just
 442         * save it and regurgitate.
 443         */
 444        unsigned nr_ctr_args;
 445        const char **ctr_args;
 446
 447        struct dm_kcopyd_client *copier;
 448        struct workqueue_struct *wq;
 449        struct work_struct deferred_bio_worker;
 450        struct work_struct deferred_writethrough_worker;
 451        struct work_struct migration_worker;
 452        struct delayed_work waker;
 453        struct dm_bio_prison_v2 *prison;
 454
 455        mempool_t *migration_pool;
 456
 457        struct dm_cache_policy *policy;
 458        unsigned policy_nr_args;
 459
 460        bool need_tick_bio:1;
 461        bool sized:1;
 462        bool invalidate:1;
 463        bool commit_requested:1;
 464        bool loaded_mappings:1;
 465        bool loaded_discards:1;
 466
 467        /*
 468         * Cache features such as write-through.
 469         */
 470        struct cache_features features;
 471
 472        struct cache_stats stats;
 473
 474        /*
 475         * Invalidation fields.
 476         */
 477        spinlock_t invalidation_lock;
 478        struct list_head invalidation_requests;
 479
 480        struct io_tracker tracker;
 481
 482        struct work_struct commit_ws;
 483        struct batcher committer;
 484
 485        struct rw_semaphore background_work_lock;
 486};
 487
 488struct per_bio_data {
 489        bool tick:1;
 490        unsigned req_nr:2;
 491        struct dm_bio_prison_cell_v2 *cell;
 492        struct dm_hook_info hook_info;
 493        sector_t len;
 494
 495        /*
 496         * writethrough fields.  These MUST remain at the end of this
 497         * structure and the 'cache' member must be the first as it
 498         * is used to determine the offset of the writethrough fields.
 499         */
 500        struct cache *cache;
 501        dm_cblock_t cblock;
 502        struct dm_bio_details bio_details;
 503};
 504
 505struct dm_cache_migration {
 506        struct continuation k;
 507        struct cache *cache;
 508
 509        struct policy_work *op;
 510        struct bio *overwrite_bio;
 511        struct dm_bio_prison_cell_v2 *cell;
 512
 513        dm_cblock_t invalidate_cblock;
 514        dm_oblock_t invalidate_oblock;
 515};
 516
 517/*----------------------------------------------------------------*/
 518
 519static bool writethrough_mode(struct cache_features *f)
 520{
 521        return f->io_mode == CM_IO_WRITETHROUGH;
 522}
 523
 524static bool writeback_mode(struct cache_features *f)
 525{
 526        return f->io_mode == CM_IO_WRITEBACK;
 527}
 528
 529static inline bool passthrough_mode(struct cache_features *f)
 530{
 531        return unlikely(f->io_mode == CM_IO_PASSTHROUGH);
 532}
 533
 534/*----------------------------------------------------------------*/
 535
 536static void wake_deferred_bio_worker(struct cache *cache)
 537{
 538        queue_work(cache->wq, &cache->deferred_bio_worker);
 539}
 540
 541static void wake_deferred_writethrough_worker(struct cache *cache)
 542{
 543        queue_work(cache->wq, &cache->deferred_writethrough_worker);
 544}
 545
 546static void wake_migration_worker(struct cache *cache)
 547{
 548        if (passthrough_mode(&cache->features))
 549                return;
 550
 551        queue_work(cache->wq, &cache->migration_worker);
 552}
 553
 554/*----------------------------------------------------------------*/
 555
 556static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 557{
 558        return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
 559}
 560
 561static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 562{
 563        dm_bio_prison_free_cell_v2(cache->prison, cell);
 564}
 565
 566static struct dm_cache_migration *alloc_migration(struct cache *cache)
 567{
 568        struct dm_cache_migration *mg;
 569
 570        mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 571        if (mg) {
 572                mg->cache = cache;
 573                atomic_inc(&mg->cache->nr_allocated_migrations);
 574        }
 575
 576        return mg;
 577}
 578
 579static void free_migration(struct dm_cache_migration *mg)
 580{
 581        struct cache *cache = mg->cache;
 582
 583        if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 584                wake_up(&cache->migration_wait);
 585
 586        mempool_free(mg, cache->migration_pool);
 587}
 588
 589/*----------------------------------------------------------------*/
 590
 591static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 592{
 593        return to_oblock(from_oblock(b) + 1ull);
 594}
 595
 596static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 597{
 598        key->virtual = 0;
 599        key->dev = 0;
 600        key->block_begin = from_oblock(begin);
 601        key->block_end = from_oblock(end);
 602}
 603
 604/*
 605 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 606 * level 1 which prevents *both* READs and WRITEs.
 607 */
 608#define WRITE_LOCK_LEVEL 0
 609#define READ_WRITE_LOCK_LEVEL 1
 610
 611static unsigned lock_level(struct bio *bio)
 612{
 613        return bio_data_dir(bio) == WRITE ?
 614                WRITE_LOCK_LEVEL :
 615                READ_WRITE_LOCK_LEVEL;
 616}
 617
 618/*----------------------------------------------------------------
 619 * Per bio data
 620 *--------------------------------------------------------------*/
 621
 622/*
 623 * If using writeback, leave out struct per_bio_data's writethrough fields.
 624 */
 625#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 626#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 627
 628static size_t get_per_bio_data_size(struct cache *cache)
 629{
 630        return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 631}
 632
 633static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 634{
 635        struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 636        BUG_ON(!pb);
 637        return pb;
 638}
 639
 640static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 641{
 642        struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 643
 644        pb->tick = false;
 645        pb->req_nr = dm_bio_get_target_bio_nr(bio);
 646        pb->cell = NULL;
 647        pb->len = 0;
 648
 649        return pb;
 650}
 651
 652/*----------------------------------------------------------------*/
 653
 654static void defer_bio(struct cache *cache, struct bio *bio)
 655{
 656        unsigned long flags;
 657
 658        spin_lock_irqsave(&cache->lock, flags);
 659        bio_list_add(&cache->deferred_bios, bio);
 660        spin_unlock_irqrestore(&cache->lock, flags);
 661
 662        wake_deferred_bio_worker(cache);
 663}
 664
 665static void defer_bios(struct cache *cache, struct bio_list *bios)
 666{
 667        unsigned long flags;
 668
 669        spin_lock_irqsave(&cache->lock, flags);
 670        bio_list_merge(&cache->deferred_bios, bios);
 671        bio_list_init(bios);
 672        spin_unlock_irqrestore(&cache->lock, flags);
 673
 674        wake_deferred_bio_worker(cache);
 675}
 676
 677/*----------------------------------------------------------------*/
 678
 679static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 680{
 681        bool r;
 682        size_t pb_size;
 683        struct per_bio_data *pb;
 684        struct dm_cell_key_v2 key;
 685        dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 686        struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 687
 688        cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 689        if (!cell_prealloc) {
 690                defer_bio(cache, bio);
 691                return false;
 692        }
 693
 694        build_key(oblock, end, &key);
 695        r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 696        if (!r) {
 697                /*
 698                 * Failed to get the lock.
 699                 */
 700                free_prison_cell(cache, cell_prealloc);
 701                return r;
 702        }
 703
 704        if (cell != cell_prealloc)
 705                free_prison_cell(cache, cell_prealloc);
 706
 707        pb_size = get_per_bio_data_size(cache);
 708        pb = get_per_bio_data(bio, pb_size);
 709        pb->cell = cell;
 710
 711        return r;
 712}
 713
 714/*----------------------------------------------------------------*/
 715
 716static bool is_dirty(struct cache *cache, dm_cblock_t b)
 717{
 718        return test_bit(from_cblock(b), cache->dirty_bitset);
 719}
 720
 721static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 722{
 723        if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 724                atomic_inc(&cache->nr_dirty);
 725                policy_set_dirty(cache->policy, cblock);
 726        }
 727}
 728
 729/*
 730 * These two are called when setting after migrations to force the policy
 731 * and dirty bitset to be in sync.
 732 */
 733static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 734{
 735        if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 736                atomic_inc(&cache->nr_dirty);
 737        policy_set_dirty(cache->policy, cblock);
 738}
 739
 740static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 741{
 742        if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 743                if (atomic_dec_return(&cache->nr_dirty) == 0)
 744                        dm_table_event(cache->ti->table);
 745        }
 746
 747        policy_clear_dirty(cache->policy, cblock);
 748}
 749
 750/*----------------------------------------------------------------*/
 751
 752static bool block_size_is_power_of_two(struct cache *cache)
 753{
 754        return cache->sectors_per_block_shift >= 0;
 755}
 756
 757/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 758#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 759__always_inline
 760#endif
 761static dm_block_t block_div(dm_block_t b, uint32_t n)
 762{
 763        do_div(b, n);
 764
 765        return b;
 766}
 767
 768static dm_block_t oblocks_per_dblock(struct cache *cache)
 769{
 770        dm_block_t oblocks = cache->discard_block_size;
 771
 772        if (block_size_is_power_of_two(cache))
 773                oblocks >>= cache->sectors_per_block_shift;
 774        else
 775                oblocks = block_div(oblocks, cache->sectors_per_block);
 776
 777        return oblocks;
 778}
 779
 780static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 781{
 782        return to_dblock(block_div(from_oblock(oblock),
 783                                   oblocks_per_dblock(cache)));
 784}
 785
 786static void set_discard(struct cache *cache, dm_dblock_t b)
 787{
 788        unsigned long flags;
 789
 790        BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 791        atomic_inc(&cache->stats.discard_count);
 792
 793        spin_lock_irqsave(&cache->lock, flags);
 794        set_bit(from_dblock(b), cache->discard_bitset);
 795        spin_unlock_irqrestore(&cache->lock, flags);
 796}
 797
 798static void clear_discard(struct cache *cache, dm_dblock_t b)
 799{
 800        unsigned long flags;
 801
 802        spin_lock_irqsave(&cache->lock, flags);
 803        clear_bit(from_dblock(b), cache->discard_bitset);
 804        spin_unlock_irqrestore(&cache->lock, flags);
 805}
 806
 807static bool is_discarded(struct cache *cache, dm_dblock_t b)
 808{
 809        int r;
 810        unsigned long flags;
 811
 812        spin_lock_irqsave(&cache->lock, flags);
 813        r = test_bit(from_dblock(b), cache->discard_bitset);
 814        spin_unlock_irqrestore(&cache->lock, flags);
 815
 816        return r;
 817}
 818
 819static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 820{
 821        int r;
 822        unsigned long flags;
 823
 824        spin_lock_irqsave(&cache->lock, flags);
 825        r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 826                     cache->discard_bitset);
 827        spin_unlock_irqrestore(&cache->lock, flags);
 828
 829        return r;
 830}
 831
 832/*----------------------------------------------------------------
 833 * Remapping
 834 *--------------------------------------------------------------*/
 835static void remap_to_origin(struct cache *cache, struct bio *bio)
 836{
 837        bio->bi_bdev = cache->origin_dev->bdev;
 838}
 839
 840static void remap_to_cache(struct cache *cache, struct bio *bio,
 841                           dm_cblock_t cblock)
 842{
 843        sector_t bi_sector = bio->bi_iter.bi_sector;
 844        sector_t block = from_cblock(cblock);
 845
 846        bio->bi_bdev = cache->cache_dev->bdev;
 847        if (!block_size_is_power_of_two(cache))
 848                bio->bi_iter.bi_sector =
 849                        (block * cache->sectors_per_block) +
 850                        sector_div(bi_sector, cache->sectors_per_block);
 851        else
 852                bio->bi_iter.bi_sector =
 853                        (block << cache->sectors_per_block_shift) |
 854                        (bi_sector & (cache->sectors_per_block - 1));
 855}
 856
 857static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 858{
 859        unsigned long flags;
 860        size_t pb_data_size = get_per_bio_data_size(cache);
 861        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 862
 863        spin_lock_irqsave(&cache->lock, flags);
 864        if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 865            bio_op(bio) != REQ_OP_DISCARD) {
 866                pb->tick = true;
 867                cache->need_tick_bio = false;
 868        }
 869        spin_unlock_irqrestore(&cache->lock, flags);
 870}
 871
 872static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 873                                          dm_oblock_t oblock)
 874{
 875        // FIXME: this is called way too much.
 876        check_if_tick_bio_needed(cache, bio);
 877        remap_to_origin(cache, bio);
 878        if (bio_data_dir(bio) == WRITE)
 879                clear_discard(cache, oblock_to_dblock(cache, oblock));
 880}
 881
 882static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 883                                 dm_oblock_t oblock, dm_cblock_t cblock)
 884{
 885        check_if_tick_bio_needed(cache, bio);
 886        remap_to_cache(cache, bio, cblock);
 887        if (bio_data_dir(bio) == WRITE) {
 888                set_dirty(cache, cblock);
 889                clear_discard(cache, oblock_to_dblock(cache, oblock));
 890        }
 891}
 892
 893static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 894{
 895        sector_t block_nr = bio->bi_iter.bi_sector;
 896
 897        if (!block_size_is_power_of_two(cache))
 898                (void) sector_div(block_nr, cache->sectors_per_block);
 899        else
 900                block_nr >>= cache->sectors_per_block_shift;
 901
 902        return to_oblock(block_nr);
 903}
 904
 905static bool accountable_bio(struct cache *cache, struct bio *bio)
 906{
 907        return bio_op(bio) != REQ_OP_DISCARD;
 908}
 909
 910static void accounted_begin(struct cache *cache, struct bio *bio)
 911{
 912        size_t pb_data_size = get_per_bio_data_size(cache);
 913        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 914
 915        if (accountable_bio(cache, bio)) {
 916                pb->len = bio_sectors(bio);
 917                iot_io_begin(&cache->tracker, pb->len);
 918        }
 919}
 920
 921static void accounted_complete(struct cache *cache, struct bio *bio)
 922{
 923        size_t pb_data_size = get_per_bio_data_size(cache);
 924        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 925
 926        iot_io_end(&cache->tracker, pb->len);
 927}
 928
 929static void accounted_request(struct cache *cache, struct bio *bio)
 930{
 931        accounted_begin(cache, bio);
 932        generic_make_request(bio);
 933}
 934
 935static void issue_op(struct bio *bio, void *context)
 936{
 937        struct cache *cache = context;
 938        accounted_request(cache, bio);
 939}
 940
 941static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 942{
 943        unsigned long flags;
 944
 945        spin_lock_irqsave(&cache->lock, flags);
 946        bio_list_add(&cache->deferred_writethrough_bios, bio);
 947        spin_unlock_irqrestore(&cache->lock, flags);
 948
 949        wake_deferred_writethrough_worker(cache);
 950}
 951
 952static void writethrough_endio(struct bio *bio)
 953{
 954        struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 955
 956        dm_unhook_bio(&pb->hook_info, bio);
 957
 958        if (bio->bi_error) {
 959                bio_endio(bio);
 960                return;
 961        }
 962
 963        dm_bio_restore(&pb->bio_details, bio);
 964        remap_to_cache(pb->cache, bio, pb->cblock);
 965
 966        /*
 967         * We can't issue this bio directly, since we're in interrupt
 968         * context.  So it gets put on a bio list for processing by the
 969         * worker thread.
 970         */
 971        defer_writethrough_bio(pb->cache, bio);
 972}
 973
 974/*
 975 * FIXME: send in parallel, huge latency as is.
 976 * When running in writethrough mode we need to send writes to clean blocks
 977 * to both the cache and origin devices.  In future we'd like to clone the
 978 * bio and send them in parallel, but for now we're doing them in
 979 * series as this is easier.
 980 */
 981static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 982                                       dm_oblock_t oblock, dm_cblock_t cblock)
 983{
 984        struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 985
 986        pb->cache = cache;
 987        pb->cblock = cblock;
 988        dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 989        dm_bio_record(&pb->bio_details, bio);
 990
 991        remap_to_origin_clear_discard(pb->cache, bio, oblock);
 992}
 993
 994/*----------------------------------------------------------------
 995 * Failure modes
 996 *--------------------------------------------------------------*/
 997static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 998{
 999        return cache->features.mode;
1000}
1001
1002static const char *cache_device_name(struct cache *cache)
1003{
1004        return dm_device_name(dm_table_get_md(cache->ti->table));
1005}
1006
1007static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
1008{
1009        const char *descs[] = {
1010                "write",
1011                "read-only",
1012                "fail"
1013        };
1014
1015        dm_table_event(cache->ti->table);
1016        DMINFO("%s: switching cache to %s mode",
1017               cache_device_name(cache), descs[(int)mode]);
1018}
1019
1020static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
1021{
1022        bool needs_check;
1023        enum cache_metadata_mode old_mode = get_cache_mode(cache);
1024
1025        if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
1026                DMERR("%s: unable to read needs_check flag, setting failure mode.",
1027                      cache_device_name(cache));
1028                new_mode = CM_FAIL;
1029        }
1030
1031        if (new_mode == CM_WRITE && needs_check) {
1032                DMERR("%s: unable to switch cache to write mode until repaired.",
1033                      cache_device_name(cache));
1034                if (old_mode != new_mode)
1035                        new_mode = old_mode;
1036                else
1037                        new_mode = CM_READ_ONLY;
1038        }
1039
1040        /* Never move out of fail mode */
1041        if (old_mode == CM_FAIL)
1042                new_mode = CM_FAIL;
1043
1044        switch (new_mode) {
1045        case CM_FAIL:
1046        case CM_READ_ONLY:
1047                dm_cache_metadata_set_read_only(cache->cmd);
1048                break;
1049
1050        case CM_WRITE:
1051                dm_cache_metadata_set_read_write(cache->cmd);
1052                break;
1053        }
1054
1055        cache->features.mode = new_mode;
1056
1057        if (new_mode != old_mode)
1058                notify_mode_switch(cache, new_mode);
1059}
1060
1061static void abort_transaction(struct cache *cache)
1062{
1063        const char *dev_name = cache_device_name(cache);
1064
1065        if (get_cache_mode(cache) >= CM_READ_ONLY)
1066                return;
1067
1068        if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1069                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1070                set_cache_mode(cache, CM_FAIL);
1071        }
1072
1073        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1074        if (dm_cache_metadata_abort(cache->cmd)) {
1075                DMERR("%s: failed to abort metadata transaction", dev_name);
1076                set_cache_mode(cache, CM_FAIL);
1077        }
1078}
1079
1080static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1081{
1082        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1083                    cache_device_name(cache), op, r);
1084        abort_transaction(cache);
1085        set_cache_mode(cache, CM_READ_ONLY);
1086}
1087
1088/*----------------------------------------------------------------*/
1089
1090static void load_stats(struct cache *cache)
1091{
1092        struct dm_cache_statistics stats;
1093
1094        dm_cache_metadata_get_stats(cache->cmd, &stats);
1095        atomic_set(&cache->stats.read_hit, stats.read_hits);
1096        atomic_set(&cache->stats.read_miss, stats.read_misses);
1097        atomic_set(&cache->stats.write_hit, stats.write_hits);
1098        atomic_set(&cache->stats.write_miss, stats.write_misses);
1099}
1100
1101static void save_stats(struct cache *cache)
1102{
1103        struct dm_cache_statistics stats;
1104
1105        if (get_cache_mode(cache) >= CM_READ_ONLY)
1106                return;
1107
1108        stats.read_hits = atomic_read(&cache->stats.read_hit);
1109        stats.read_misses = atomic_read(&cache->stats.read_miss);
1110        stats.write_hits = atomic_read(&cache->stats.write_hit);
1111        stats.write_misses = atomic_read(&cache->stats.write_miss);
1112
1113        dm_cache_metadata_set_stats(cache->cmd, &stats);
1114}
1115
1116static void update_stats(struct cache_stats *stats, enum policy_operation op)
1117{
1118        switch (op) {
1119        case POLICY_PROMOTE:
1120                atomic_inc(&stats->promotion);
1121                break;
1122
1123        case POLICY_DEMOTE:
1124                atomic_inc(&stats->demotion);
1125                break;
1126
1127        case POLICY_WRITEBACK:
1128                atomic_inc(&stats->writeback);
1129                break;
1130        }
1131}
1132
1133/*----------------------------------------------------------------
1134 * Migration processing
1135 *
1136 * Migration covers moving data from the origin device to the cache, or
1137 * vice versa.
1138 *--------------------------------------------------------------*/
1139
1140static void inc_io_migrations(struct cache *cache)
1141{
1142        atomic_inc(&cache->nr_io_migrations);
1143}
1144
1145static void dec_io_migrations(struct cache *cache)
1146{
1147        atomic_dec(&cache->nr_io_migrations);
1148}
1149
1150static bool discard_or_flush(struct bio *bio)
1151{
1152        return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1153}
1154
1155static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1156                                     dm_dblock_t *b, dm_dblock_t *e)
1157{
1158        sector_t sb = bio->bi_iter.bi_sector;
1159        sector_t se = bio_end_sector(bio);
1160
1161        *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1162
1163        if (se - sb < cache->discard_block_size)
1164                *e = *b;
1165        else
1166                *e = to_dblock(block_div(se, cache->discard_block_size));
1167}
1168
1169/*----------------------------------------------------------------*/
1170
1171static void prevent_background_work(struct cache *cache)
1172{
1173        lockdep_off();
1174        down_write(&cache->background_work_lock);
1175        lockdep_on();
1176}
1177
1178static void allow_background_work(struct cache *cache)
1179{
1180        lockdep_off();
1181        up_write(&cache->background_work_lock);
1182        lockdep_on();
1183}
1184
1185static bool background_work_begin(struct cache *cache)
1186{
1187        bool r;
1188
1189        lockdep_off();
1190        r = down_read_trylock(&cache->background_work_lock);
1191        lockdep_on();
1192
1193        return r;
1194}
1195
1196static void background_work_end(struct cache *cache)
1197{
1198        lockdep_off();
1199        up_read(&cache->background_work_lock);
1200        lockdep_on();
1201}
1202
1203/*----------------------------------------------------------------*/
1204
1205static void quiesce(struct dm_cache_migration *mg,
1206                    void (*continuation)(struct work_struct *))
1207{
1208        init_continuation(&mg->k, continuation);
1209        dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1210}
1211
1212static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1213{
1214        struct continuation *k = container_of(ws, struct continuation, ws);
1215        return container_of(k, struct dm_cache_migration, k);
1216}
1217
1218static void copy_complete(int read_err, unsigned long write_err, void *context)
1219{
1220        struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1221
1222        if (read_err || write_err)
1223                mg->k.input = -EIO;
1224
1225        queue_continuation(mg->cache->wq, &mg->k);
1226}
1227
1228static int copy(struct dm_cache_migration *mg, bool promote)
1229{
1230        int r;
1231        struct dm_io_region o_region, c_region;
1232        struct cache *cache = mg->cache;
1233
1234        o_region.bdev = cache->origin_dev->bdev;
1235        o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1236        o_region.count = cache->sectors_per_block;
1237
1238        c_region.bdev = cache->cache_dev->bdev;
1239        c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1240        c_region.count = cache->sectors_per_block;
1241
1242        if (promote)
1243                r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1244        else
1245                r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1246
1247        return r;
1248}
1249
1250static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1251{
1252        size_t pb_data_size = get_per_bio_data_size(cache);
1253        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1254
1255        if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1256                free_prison_cell(cache, pb->cell);
1257        pb->cell = NULL;
1258}
1259
1260static void overwrite_endio(struct bio *bio)
1261{
1262        struct dm_cache_migration *mg = bio->bi_private;
1263        struct cache *cache = mg->cache;
1264        size_t pb_data_size = get_per_bio_data_size(cache);
1265        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1266
1267        dm_unhook_bio(&pb->hook_info, bio);
1268
1269        if (bio->bi_error)
1270                mg->k.input = bio->bi_error;
1271
1272        queue_continuation(mg->cache->wq, &mg->k);
1273}
1274
1275static void overwrite(struct dm_cache_migration *mg,
1276                      void (*continuation)(struct work_struct *))
1277{
1278        struct bio *bio = mg->overwrite_bio;
1279        size_t pb_data_size = get_per_bio_data_size(mg->cache);
1280        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1281
1282        dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1283
1284        /*
1285         * The overwrite bio is part of the copy operation, as such it does
1286         * not set/clear discard or dirty flags.
1287         */
1288        if (mg->op->op == POLICY_PROMOTE)
1289                remap_to_cache(mg->cache, bio, mg->op->cblock);
1290        else
1291                remap_to_origin(mg->cache, bio);
1292
1293        init_continuation(&mg->k, continuation);
1294        accounted_request(mg->cache, bio);
1295}
1296
1297/*
1298 * Migration steps:
1299 *
1300 * 1) exclusive lock preventing WRITEs
1301 * 2) quiesce
1302 * 3) copy or issue overwrite bio
1303 * 4) upgrade to exclusive lock preventing READs and WRITEs
1304 * 5) quiesce
1305 * 6) update metadata and commit
1306 * 7) unlock
1307 */
1308static void mg_complete(struct dm_cache_migration *mg, bool success)
1309{
1310        struct bio_list bios;
1311        struct cache *cache = mg->cache;
1312        struct policy_work *op = mg->op;
1313        dm_cblock_t cblock = op->cblock;
1314
1315        if (success)
1316                update_stats(&cache->stats, op->op);
1317
1318        switch (op->op) {
1319        case POLICY_PROMOTE:
1320                clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1321                policy_complete_background_work(cache->policy, op, success);
1322
1323                if (mg->overwrite_bio) {
1324                        if (success)
1325                                force_set_dirty(cache, cblock);
1326                        else
1327                                mg->overwrite_bio->bi_error = (mg->k.input ? : -EIO);
1328                        bio_endio(mg->overwrite_bio);
1329                } else {
1330                        if (success)
1331                                force_clear_dirty(cache, cblock);
1332                        dec_io_migrations(cache);
1333                }
1334                break;
1335
1336        case POLICY_DEMOTE:
1337                /*
1338                 * We clear dirty here to update the nr_dirty counter.
1339                 */
1340                if (success)
1341                        force_clear_dirty(cache, cblock);
1342                policy_complete_background_work(cache->policy, op, success);
1343                dec_io_migrations(cache);
1344                break;
1345
1346        case POLICY_WRITEBACK:
1347                if (success)
1348                        force_clear_dirty(cache, cblock);
1349                policy_complete_background_work(cache->policy, op, success);
1350                dec_io_migrations(cache);
1351                break;
1352        }
1353
1354        bio_list_init(&bios);
1355        if (mg->cell) {
1356                if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1357                        free_prison_cell(cache, mg->cell);
1358        }
1359
1360        free_migration(mg);
1361        defer_bios(cache, &bios);
1362        wake_migration_worker(cache);
1363
1364        background_work_end(cache);
1365}
1366
1367static void mg_success(struct work_struct *ws)
1368{
1369        struct dm_cache_migration *mg = ws_to_mg(ws);
1370        mg_complete(mg, mg->k.input == 0);
1371}
1372
1373static void mg_update_metadata(struct work_struct *ws)
1374{
1375        int r;
1376        struct dm_cache_migration *mg = ws_to_mg(ws);
1377        struct cache *cache = mg->cache;
1378        struct policy_work *op = mg->op;
1379
1380        switch (op->op) {
1381        case POLICY_PROMOTE:
1382                r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1383                if (r) {
1384                        DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1385                                    cache_device_name(cache));
1386                        metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1387
1388                        mg_complete(mg, false);
1389                        return;
1390                }
1391                mg_complete(mg, true);
1392                break;
1393
1394        case POLICY_DEMOTE:
1395                r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1396                if (r) {
1397                        DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1398                                    cache_device_name(cache));
1399                        metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1400
1401                        mg_complete(mg, false);
1402                        return;
1403                }
1404
1405                /*
1406                 * It would be nice if we only had to commit when a REQ_FLUSH
1407                 * comes through.  But there's one scenario that we have to
1408                 * look out for:
1409                 *
1410                 * - vblock x in a cache block
1411                 * - domotion occurs
1412                 * - cache block gets reallocated and over written
1413                 * - crash
1414                 *
1415                 * When we recover, because there was no commit the cache will
1416                 * rollback to having the data for vblock x in the cache block.
1417                 * But the cache block has since been overwritten, so it'll end
1418                 * up pointing to data that was never in 'x' during the history
1419                 * of the device.
1420                 *
1421                 * To avoid this issue we require a commit as part of the
1422                 * demotion operation.
1423                 */
1424                init_continuation(&mg->k, mg_success);
1425                continue_after_commit(&cache->committer, &mg->k);
1426                schedule_commit(&cache->committer);
1427                break;
1428
1429        case POLICY_WRITEBACK:
1430                mg_complete(mg, true);
1431                break;
1432        }
1433}
1434
1435static void mg_update_metadata_after_copy(struct work_struct *ws)
1436{
1437        struct dm_cache_migration *mg = ws_to_mg(ws);
1438
1439        /*
1440         * Did the copy succeed?
1441         */
1442        if (mg->k.input)
1443                mg_complete(mg, false);
1444        else
1445                mg_update_metadata(ws);
1446}
1447
1448static void mg_upgrade_lock(struct work_struct *ws)
1449{
1450        int r;
1451        struct dm_cache_migration *mg = ws_to_mg(ws);
1452
1453        /*
1454         * Did the copy succeed?
1455         */
1456        if (mg->k.input)
1457                mg_complete(mg, false);
1458
1459        else {
1460                /*
1461                 * Now we want the lock to prevent both reads and writes.
1462                 */
1463                r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1464                                            READ_WRITE_LOCK_LEVEL);
1465                if (r < 0)
1466                        mg_complete(mg, false);
1467
1468                else if (r)
1469                        quiesce(mg, mg_update_metadata);
1470
1471                else
1472                        mg_update_metadata(ws);
1473        }
1474}
1475
1476static void mg_copy(struct work_struct *ws)
1477{
1478        int r;
1479        struct dm_cache_migration *mg = ws_to_mg(ws);
1480
1481        if (mg->overwrite_bio) {
1482                /*
1483                 * It's safe to do this here, even though it's new data
1484                 * because all IO has been locked out of the block.
1485                 *
1486                 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1487                 * so _not_ using mg_upgrade_lock() as continutation.
1488                 */
1489                overwrite(mg, mg_update_metadata_after_copy);
1490
1491        } else {
1492                struct cache *cache = mg->cache;
1493                struct policy_work *op = mg->op;
1494                bool is_policy_promote = (op->op == POLICY_PROMOTE);
1495
1496                if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1497                    is_discarded_oblock(cache, op->oblock)) {
1498                        mg_upgrade_lock(ws);
1499                        return;
1500                }
1501
1502                init_continuation(&mg->k, mg_upgrade_lock);
1503
1504                r = copy(mg, is_policy_promote);
1505                if (r) {
1506                        DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1507                        mg->k.input = -EIO;
1508                        mg_complete(mg, false);
1509                }
1510        }
1511}
1512
1513static int mg_lock_writes(struct dm_cache_migration *mg)
1514{
1515        int r;
1516        struct dm_cell_key_v2 key;
1517        struct cache *cache = mg->cache;
1518        struct dm_bio_prison_cell_v2 *prealloc;
1519
1520        prealloc = alloc_prison_cell(cache);
1521        if (!prealloc) {
1522                DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1523                mg_complete(mg, false);
1524                return -ENOMEM;
1525        }
1526
1527        /*
1528         * Prevent writes to the block, but allow reads to continue.
1529         * Unless we're using an overwrite bio, in which case we lock
1530         * everything.
1531         */
1532        build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1533        r = dm_cell_lock_v2(cache->prison, &key,
1534                            mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1535                            prealloc, &mg->cell);
1536        if (r < 0) {
1537                free_prison_cell(cache, prealloc);
1538                mg_complete(mg, false);
1539                return r;
1540        }
1541
1542        if (mg->cell != prealloc)
1543                free_prison_cell(cache, prealloc);
1544
1545        if (r == 0)
1546                mg_copy(&mg->k.ws);
1547        else
1548                quiesce(mg, mg_copy);
1549
1550        return 0;
1551}
1552
1553static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1554{
1555        struct dm_cache_migration *mg;
1556
1557        if (!background_work_begin(cache)) {
1558                policy_complete_background_work(cache->policy, op, false);
1559                return -EPERM;
1560        }
1561
1562        mg = alloc_migration(cache);
1563        if (!mg) {
1564                policy_complete_background_work(cache->policy, op, false);
1565                background_work_end(cache);
1566                return -ENOMEM;
1567        }
1568
1569        memset(mg, 0, sizeof(*mg));
1570
1571        mg->cache = cache;
1572        mg->op = op;
1573        mg->overwrite_bio = bio;
1574
1575        if (!bio)
1576                inc_io_migrations(cache);
1577
1578        return mg_lock_writes(mg);
1579}
1580
1581/*----------------------------------------------------------------
1582 * invalidation processing
1583 *--------------------------------------------------------------*/
1584
1585static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1586{
1587        struct bio_list bios;
1588        struct cache *cache = mg->cache;
1589
1590        bio_list_init(&bios);
1591        if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1592                free_prison_cell(cache, mg->cell);
1593
1594        if (!success && mg->overwrite_bio)
1595                bio_io_error(mg->overwrite_bio);
1596
1597        free_migration(mg);
1598        defer_bios(cache, &bios);
1599
1600        background_work_end(cache);
1601}
1602
1603static void invalidate_completed(struct work_struct *ws)
1604{
1605        struct dm_cache_migration *mg = ws_to_mg(ws);
1606        invalidate_complete(mg, !mg->k.input);
1607}
1608
1609static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1610{
1611        int r = policy_invalidate_mapping(cache->policy, cblock);
1612        if (!r) {
1613                r = dm_cache_remove_mapping(cache->cmd, cblock);
1614                if (r) {
1615                        DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1616                                    cache_device_name(cache));
1617                        metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1618                }
1619
1620        } else if (r == -ENODATA) {
1621                /*
1622                 * Harmless, already unmapped.
1623                 */
1624                r = 0;
1625
1626        } else
1627                DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1628
1629        return r;
1630}
1631
1632static void invalidate_remove(struct work_struct *ws)
1633{
1634        int r;
1635        struct dm_cache_migration *mg = ws_to_mg(ws);
1636        struct cache *cache = mg->cache;
1637
1638        r = invalidate_cblock(cache, mg->invalidate_cblock);
1639        if (r) {
1640                invalidate_complete(mg, false);
1641                return;
1642        }
1643
1644        init_continuation(&mg->k, invalidate_completed);
1645        continue_after_commit(&cache->committer, &mg->k);
1646        remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1647        mg->overwrite_bio = NULL;
1648        schedule_commit(&cache->committer);
1649}
1650
1651static int invalidate_lock(struct dm_cache_migration *mg)
1652{
1653        int r;
1654        struct dm_cell_key_v2 key;
1655        struct cache *cache = mg->cache;
1656        struct dm_bio_prison_cell_v2 *prealloc;
1657
1658        prealloc = alloc_prison_cell(cache);
1659        if (!prealloc) {
1660                invalidate_complete(mg, false);
1661                return -ENOMEM;
1662        }
1663
1664        build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1665        r = dm_cell_lock_v2(cache->prison, &key,
1666                            READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1667        if (r < 0) {
1668                free_prison_cell(cache, prealloc);
1669                invalidate_complete(mg, false);
1670                return r;
1671        }
1672
1673        if (mg->cell != prealloc)
1674                free_prison_cell(cache, prealloc);
1675
1676        if (r)
1677                quiesce(mg, invalidate_remove);
1678
1679        else {
1680                /*
1681                 * We can't call invalidate_remove() directly here because we
1682                 * might still be in request context.
1683                 */
1684                init_continuation(&mg->k, invalidate_remove);
1685                queue_work(cache->wq, &mg->k.ws);
1686        }
1687
1688        return 0;
1689}
1690
1691static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1692                            dm_oblock_t oblock, struct bio *bio)
1693{
1694        struct dm_cache_migration *mg;
1695
1696        if (!background_work_begin(cache))
1697                return -EPERM;
1698
1699        mg = alloc_migration(cache);
1700        if (!mg) {
1701                background_work_end(cache);
1702                return -ENOMEM;
1703        }
1704
1705        memset(mg, 0, sizeof(*mg));
1706
1707        mg->cache = cache;
1708        mg->overwrite_bio = bio;
1709        mg->invalidate_cblock = cblock;
1710        mg->invalidate_oblock = oblock;
1711
1712        return invalidate_lock(mg);
1713}
1714
1715/*----------------------------------------------------------------
1716 * bio processing
1717 *--------------------------------------------------------------*/
1718
1719enum busy {
1720        IDLE,
1721        BUSY
1722};
1723
1724static enum busy spare_migration_bandwidth(struct cache *cache)
1725{
1726        bool idle = iot_idle_for(&cache->tracker, HZ);
1727        sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1728                cache->sectors_per_block;
1729
1730        if (idle && current_volume <= cache->migration_threshold)
1731                return IDLE;
1732        else
1733                return BUSY;
1734}
1735
1736static void inc_hit_counter(struct cache *cache, struct bio *bio)
1737{
1738        atomic_inc(bio_data_dir(bio) == READ ?
1739                   &cache->stats.read_hit : &cache->stats.write_hit);
1740}
1741
1742static void inc_miss_counter(struct cache *cache, struct bio *bio)
1743{
1744        atomic_inc(bio_data_dir(bio) == READ ?
1745                   &cache->stats.read_miss : &cache->stats.write_miss);
1746}
1747
1748/*----------------------------------------------------------------*/
1749
1750static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1751{
1752        return (bio_data_dir(bio) == WRITE) &&
1753                (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1754}
1755
1756static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1757{
1758        return writeback_mode(&cache->features) &&
1759                (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1760}
1761
1762static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1763                   bool *commit_needed)
1764{
1765        int r, data_dir;
1766        bool rb, background_queued;
1767        dm_cblock_t cblock;
1768        size_t pb_data_size = get_per_bio_data_size(cache);
1769        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1770
1771        *commit_needed = false;
1772
1773        rb = bio_detain_shared(cache, block, bio);
1774        if (!rb) {
1775                /*
1776                 * An exclusive lock is held for this block, so we have to
1777                 * wait.  We set the commit_needed flag so the current
1778                 * transaction will be committed asap, allowing this lock
1779                 * to be dropped.
1780                 */
1781                *commit_needed = true;
1782                return DM_MAPIO_SUBMITTED;
1783        }
1784
1785        data_dir = bio_data_dir(bio);
1786
1787        if (optimisable_bio(cache, bio, block)) {
1788                struct policy_work *op = NULL;
1789
1790                r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1791                if (unlikely(r && r != -ENOENT)) {
1792                        DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1793                                    cache_device_name(cache), r);
1794                        bio_io_error(bio);
1795                        return DM_MAPIO_SUBMITTED;
1796                }
1797
1798                if (r == -ENOENT && op) {
1799                        bio_drop_shared_lock(cache, bio);
1800                        BUG_ON(op->op != POLICY_PROMOTE);
1801                        mg_start(cache, op, bio);
1802                        return DM_MAPIO_SUBMITTED;
1803                }
1804        } else {
1805                r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1806                if (unlikely(r && r != -ENOENT)) {
1807                        DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1808                                    cache_device_name(cache), r);
1809                        bio_io_error(bio);
1810                        return DM_MAPIO_SUBMITTED;
1811                }
1812
1813                if (background_queued)
1814                        wake_migration_worker(cache);
1815        }
1816
1817        if (r == -ENOENT) {
1818                /*
1819                 * Miss.
1820                 */
1821                inc_miss_counter(cache, bio);
1822                if (pb->req_nr == 0) {
1823                        accounted_begin(cache, bio);
1824                        remap_to_origin_clear_discard(cache, bio, block);
1825
1826                } else {
1827                        /*
1828                         * This is a duplicate writethrough io that is no
1829                         * longer needed because the block has been demoted.
1830                         */
1831                        bio_endio(bio);
1832                        return DM_MAPIO_SUBMITTED;
1833                }
1834        } else {
1835                /*
1836                 * Hit.
1837                 */
1838                inc_hit_counter(cache, bio);
1839
1840                /*
1841                 * Passthrough always maps to the origin, invalidating any
1842                 * cache blocks that are written to.
1843                 */
1844                if (passthrough_mode(&cache->features)) {
1845                        if (bio_data_dir(bio) == WRITE) {
1846                                bio_drop_shared_lock(cache, bio);
1847                                atomic_inc(&cache->stats.demotion);
1848                                invalidate_start(cache, cblock, block, bio);
1849                        } else
1850                                remap_to_origin_clear_discard(cache, bio, block);
1851
1852                } else {
1853                        if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
1854                            !is_dirty(cache, cblock)) {
1855                                remap_to_origin_then_cache(cache, bio, block, cblock);
1856                                accounted_begin(cache, bio);
1857                        } else
1858                                remap_to_cache_dirty(cache, bio, block, cblock);
1859                }
1860        }
1861
1862        /*
1863         * dm core turns FUA requests into a separate payload and FLUSH req.
1864         */
1865        if (bio->bi_opf & REQ_FUA) {
1866                /*
1867                 * issue_after_commit will call accounted_begin a second time.  So
1868                 * we call accounted_complete() to avoid double accounting.
1869                 */
1870                accounted_complete(cache, bio);
1871                issue_after_commit(&cache->committer, bio);
1872                *commit_needed = true;
1873                return DM_MAPIO_SUBMITTED;
1874        }
1875
1876        return DM_MAPIO_REMAPPED;
1877}
1878
1879static bool process_bio(struct cache *cache, struct bio *bio)
1880{
1881        bool commit_needed;
1882
1883        if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1884                generic_make_request(bio);
1885
1886        return commit_needed;
1887}
1888
1889/*
1890 * A non-zero return indicates read_only or fail_io mode.
1891 */
1892static int commit(struct cache *cache, bool clean_shutdown)
1893{
1894        int r;
1895
1896        if (get_cache_mode(cache) >= CM_READ_ONLY)
1897                return -EINVAL;
1898
1899        atomic_inc(&cache->stats.commit_count);
1900        r = dm_cache_commit(cache->cmd, clean_shutdown);
1901        if (r)
1902                metadata_operation_failed(cache, "dm_cache_commit", r);
1903
1904        return r;
1905}
1906
1907/*
1908 * Used by the batcher.
1909 */
1910static int commit_op(void *context)
1911{
1912        struct cache *cache = context;
1913
1914        if (dm_cache_changed_this_transaction(cache->cmd))
1915                return commit(cache, false);
1916
1917        return 0;
1918}
1919
1920/*----------------------------------------------------------------*/
1921
1922static bool process_flush_bio(struct cache *cache, struct bio *bio)
1923{
1924        size_t pb_data_size = get_per_bio_data_size(cache);
1925        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1926
1927        if (!pb->req_nr)
1928                remap_to_origin(cache, bio);
1929        else
1930                remap_to_cache(cache, bio, 0);
1931
1932        issue_after_commit(&cache->committer, bio);
1933        return true;
1934}
1935
1936static bool process_discard_bio(struct cache *cache, struct bio *bio)
1937{
1938        dm_dblock_t b, e;
1939
1940        // FIXME: do we need to lock the region?  Or can we just assume the
1941        // user wont be so foolish as to issue discard concurrently with
1942        // other IO?
1943        calc_discard_block_range(cache, bio, &b, &e);
1944        while (b != e) {
1945                set_discard(cache, b);
1946                b = to_dblock(from_dblock(b) + 1);
1947        }
1948
1949        bio_endio(bio);
1950
1951        return false;
1952}
1953
1954static void process_deferred_bios(struct work_struct *ws)
1955{
1956        struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1957
1958        unsigned long flags;
1959        bool commit_needed = false;
1960        struct bio_list bios;
1961        struct bio *bio;
1962
1963        bio_list_init(&bios);
1964
1965        spin_lock_irqsave(&cache->lock, flags);
1966        bio_list_merge(&bios, &cache->deferred_bios);
1967        bio_list_init(&cache->deferred_bios);
1968        spin_unlock_irqrestore(&cache->lock, flags);
1969
1970        while ((bio = bio_list_pop(&bios))) {
1971                if (bio->bi_opf & REQ_PREFLUSH)
1972                        commit_needed = process_flush_bio(cache, bio) || commit_needed;
1973
1974                else if (bio_op(bio) == REQ_OP_DISCARD)
1975                        commit_needed = process_discard_bio(cache, bio) || commit_needed;
1976
1977                else
1978                        commit_needed = process_bio(cache, bio) || commit_needed;
1979        }
1980
1981        if (commit_needed)
1982                schedule_commit(&cache->committer);
1983}
1984
1985static void process_deferred_writethrough_bios(struct work_struct *ws)
1986{
1987        struct cache *cache = container_of(ws, struct cache, deferred_writethrough_worker);
1988
1989        unsigned long flags;
1990        struct bio_list bios;
1991        struct bio *bio;
1992
1993        bio_list_init(&bios);
1994
1995        spin_lock_irqsave(&cache->lock, flags);
1996        bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1997        bio_list_init(&cache->deferred_writethrough_bios);
1998        spin_unlock_irqrestore(&cache->lock, flags);
1999
2000        /*
2001         * These bios have already been through accounted_begin()
2002         */
2003        while ((bio = bio_list_pop(&bios)))
2004                generic_make_request(bio);
2005}
2006
2007/*----------------------------------------------------------------
2008 * Main worker loop
2009 *--------------------------------------------------------------*/
2010
2011static void requeue_deferred_bios(struct cache *cache)
2012{
2013        struct bio *bio;
2014        struct bio_list bios;
2015
2016        bio_list_init(&bios);
2017        bio_list_merge(&bios, &cache->deferred_bios);
2018        bio_list_init(&cache->deferred_bios);
2019
2020        while ((bio = bio_list_pop(&bios))) {
2021                bio->bi_error = DM_ENDIO_REQUEUE;
2022                bio_endio(bio);
2023        }
2024}
2025
2026/*
2027 * We want to commit periodically so that not too much
2028 * unwritten metadata builds up.
2029 */
2030static void do_waker(struct work_struct *ws)
2031{
2032        struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2033
2034        policy_tick(cache->policy, true);
2035        wake_migration_worker(cache);
2036        schedule_commit(&cache->committer);
2037        queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2038}
2039
2040static void check_migrations(struct work_struct *ws)
2041{
2042        int r;
2043        struct policy_work *op;
2044        struct cache *cache = container_of(ws, struct cache, migration_worker);
2045        enum busy b;
2046
2047        for (;;) {
2048                b = spare_migration_bandwidth(cache);
2049
2050                r = policy_get_background_work(cache->policy, b == IDLE, &op);
2051                if (r == -ENODATA)
2052                        break;
2053
2054                if (r) {
2055                        DMERR_LIMIT("%s: policy_background_work failed",
2056                                    cache_device_name(cache));
2057                        break;
2058                }
2059
2060                r = mg_start(cache, op, NULL);
2061                if (r)
2062                        break;
2063        }
2064}
2065
2066/*----------------------------------------------------------------
2067 * Target methods
2068 *--------------------------------------------------------------*/
2069
2070/*
2071 * This function gets called on the error paths of the constructor, so we
2072 * have to cope with a partially initialised struct.
2073 */
2074static void destroy(struct cache *cache)
2075{
2076        unsigned i;
2077
2078        mempool_destroy(cache->migration_pool);
2079
2080        if (cache->prison)
2081                dm_bio_prison_destroy_v2(cache->prison);
2082
2083        if (cache->wq)
2084                destroy_workqueue(cache->wq);
2085
2086        if (cache->dirty_bitset)
2087                free_bitset(cache->dirty_bitset);
2088
2089        if (cache->discard_bitset)
2090                free_bitset(cache->discard_bitset);
2091
2092        if (cache->copier)
2093                dm_kcopyd_client_destroy(cache->copier);
2094
2095        if (cache->cmd)
2096                dm_cache_metadata_close(cache->cmd);
2097
2098        if (cache->metadata_dev)
2099                dm_put_device(cache->ti, cache->metadata_dev);
2100
2101        if (cache->origin_dev)
2102                dm_put_device(cache->ti, cache->origin_dev);
2103
2104        if (cache->cache_dev)
2105                dm_put_device(cache->ti, cache->cache_dev);
2106
2107        if (cache->policy)
2108                dm_cache_policy_destroy(cache->policy);
2109
2110        for (i = 0; i < cache->nr_ctr_args ; i++)
2111                kfree(cache->ctr_args[i]);
2112        kfree(cache->ctr_args);
2113
2114        kfree(cache);
2115}
2116
2117static void cache_dtr(struct dm_target *ti)
2118{
2119        struct cache *cache = ti->private;
2120
2121        destroy(cache);
2122}
2123
2124static sector_t get_dev_size(struct dm_dev *dev)
2125{
2126        return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2127}
2128
2129/*----------------------------------------------------------------*/
2130
2131/*
2132 * Construct a cache device mapping.
2133 *
2134 * cache <metadata dev> <cache dev> <origin dev> <block size>
2135 *       <#feature args> [<feature arg>]*
2136 *       <policy> <#policy args> [<policy arg>]*
2137 *
2138 * metadata dev    : fast device holding the persistent metadata
2139 * cache dev       : fast device holding cached data blocks
2140 * origin dev      : slow device holding original data blocks
2141 * block size      : cache unit size in sectors
2142 *
2143 * #feature args   : number of feature arguments passed
2144 * feature args    : writethrough.  (The default is writeback.)
2145 *
2146 * policy          : the replacement policy to use
2147 * #policy args    : an even number of policy arguments corresponding
2148 *                   to key/value pairs passed to the policy
2149 * policy args     : key/value pairs passed to the policy
2150 *                   E.g. 'sequential_threshold 1024'
2151 *                   See cache-policies.txt for details.
2152 *
2153 * Optional feature arguments are:
2154 *   writethrough  : write through caching that prohibits cache block
2155 *                   content from being different from origin block content.
2156 *                   Without this argument, the default behaviour is to write
2157 *                   back cache block contents later for performance reasons,
2158 *                   so they may differ from the corresponding origin blocks.
2159 */
2160struct cache_args {
2161        struct dm_target *ti;
2162
2163        struct dm_dev *metadata_dev;
2164
2165        struct dm_dev *cache_dev;
2166        sector_t cache_sectors;
2167
2168        struct dm_dev *origin_dev;
2169        sector_t origin_sectors;
2170
2171        uint32_t block_size;
2172
2173        const char *policy_name;
2174        int policy_argc;
2175        const char **policy_argv;
2176
2177        struct cache_features features;
2178};
2179
2180static void destroy_cache_args(struct cache_args *ca)
2181{
2182        if (ca->metadata_dev)
2183                dm_put_device(ca->ti, ca->metadata_dev);
2184
2185        if (ca->cache_dev)
2186                dm_put_device(ca->ti, ca->cache_dev);
2187
2188        if (ca->origin_dev)
2189                dm_put_device(ca->ti, ca->origin_dev);
2190
2191        kfree(ca);
2192}
2193
2194static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2195{
2196        if (!as->argc) {
2197                *error = "Insufficient args";
2198                return false;
2199        }
2200
2201        return true;
2202}
2203
2204static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2205                              char **error)
2206{
2207        int r;
2208        sector_t metadata_dev_size;
2209        char b[BDEVNAME_SIZE];
2210
2211        if (!at_least_one_arg(as, error))
2212                return -EINVAL;
2213
2214        r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2215                          &ca->metadata_dev);
2216        if (r) {
2217                *error = "Error opening metadata device";
2218                return r;
2219        }
2220
2221        metadata_dev_size = get_dev_size(ca->metadata_dev);
2222        if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2223                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2224                       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2225
2226        return 0;
2227}
2228
2229static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2230                           char **error)
2231{
2232        int r;
2233
2234        if (!at_least_one_arg(as, error))
2235                return -EINVAL;
2236
2237        r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2238                          &ca->cache_dev);
2239        if (r) {
2240                *error = "Error opening cache device";
2241                return r;
2242        }
2243        ca->cache_sectors = get_dev_size(ca->cache_dev);
2244
2245        return 0;
2246}
2247
2248static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2249                            char **error)
2250{
2251        int r;
2252
2253        if (!at_least_one_arg(as, error))
2254                return -EINVAL;
2255
2256        r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2257                          &ca->origin_dev);
2258        if (r) {
2259                *error = "Error opening origin device";
2260                return r;
2261        }
2262
2263        ca->origin_sectors = get_dev_size(ca->origin_dev);
2264        if (ca->ti->len > ca->origin_sectors) {
2265                *error = "Device size larger than cached device";
2266                return -EINVAL;
2267        }
2268
2269        return 0;
2270}
2271
2272static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2273                            char **error)
2274{
2275        unsigned long block_size;
2276
2277        if (!at_least_one_arg(as, error))
2278                return -EINVAL;
2279
2280        if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2281            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2282            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2283            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2284                *error = "Invalid data block size";
2285                return -EINVAL;
2286        }
2287
2288        if (block_size > ca->cache_sectors) {
2289                *error = "Data block size is larger than the cache device";
2290                return -EINVAL;
2291        }
2292
2293        ca->block_size = block_size;
2294
2295        return 0;
2296}
2297
2298static void init_features(struct cache_features *cf)
2299{
2300        cf->mode = CM_WRITE;
2301        cf->io_mode = CM_IO_WRITEBACK;
2302        cf->metadata_version = 1;
2303}
2304
2305static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2306                          char **error)
2307{
2308        static struct dm_arg _args[] = {
2309                {0, 2, "Invalid number of cache feature arguments"},
2310        };
2311
2312        int r;
2313        unsigned argc;
2314        const char *arg;
2315        struct cache_features *cf = &ca->features;
2316
2317        init_features(cf);
2318
2319        r = dm_read_arg_group(_args, as, &argc, error);
2320        if (r)
2321                return -EINVAL;
2322
2323        while (argc--) {
2324                arg = dm_shift_arg(as);
2325
2326                if (!strcasecmp(arg, "writeback"))
2327                        cf->io_mode = CM_IO_WRITEBACK;
2328
2329                else if (!strcasecmp(arg, "writethrough"))
2330                        cf->io_mode = CM_IO_WRITETHROUGH;
2331
2332                else if (!strcasecmp(arg, "passthrough"))
2333                        cf->io_mode = CM_IO_PASSTHROUGH;
2334
2335                else if (!strcasecmp(arg, "metadata2"))
2336                        cf->metadata_version = 2;
2337
2338                else {
2339                        *error = "Unrecognised cache feature requested";
2340                        return -EINVAL;
2341                }
2342        }
2343
2344        return 0;
2345}
2346
2347static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2348                        char **error)
2349{
2350        static struct dm_arg _args[] = {
2351                {0, 1024, "Invalid number of policy arguments"},
2352        };
2353
2354        int r;
2355
2356        if (!at_least_one_arg(as, error))
2357                return -EINVAL;
2358
2359        ca->policy_name = dm_shift_arg(as);
2360
2361        r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2362        if (r)
2363                return -EINVAL;
2364
2365        ca->policy_argv = (const char **)as->argv;
2366        dm_consume_args(as, ca->policy_argc);
2367
2368        return 0;
2369}
2370
2371static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2372                            char **error)
2373{
2374        int r;
2375        struct dm_arg_set as;
2376
2377        as.argc = argc;
2378        as.argv = argv;
2379
2380        r = parse_metadata_dev(ca, &as, error);
2381        if (r)
2382                return r;
2383
2384        r = parse_cache_dev(ca, &as, error);
2385        if (r)
2386                return r;
2387
2388        r = parse_origin_dev(ca, &as, error);
2389        if (r)
2390                return r;
2391
2392        r = parse_block_size(ca, &as, error);
2393        if (r)
2394                return r;
2395
2396        r = parse_features(ca, &as, error);
2397        if (r)
2398                return r;
2399
2400        r = parse_policy(ca, &as, error);
2401        if (r)
2402                return r;
2403
2404        return 0;
2405}
2406
2407/*----------------------------------------------------------------*/
2408
2409static struct kmem_cache *migration_cache;
2410
2411#define NOT_CORE_OPTION 1
2412
2413static int process_config_option(struct cache *cache, const char *key, const char *value)
2414{
2415        unsigned long tmp;
2416
2417        if (!strcasecmp(key, "migration_threshold")) {
2418                if (kstrtoul(value, 10, &tmp))
2419                        return -EINVAL;
2420
2421                cache->migration_threshold = tmp;
2422                return 0;
2423        }
2424
2425        return NOT_CORE_OPTION;
2426}
2427
2428static int set_config_value(struct cache *cache, const char *key, const char *value)
2429{
2430        int r = process_config_option(cache, key, value);
2431
2432        if (r == NOT_CORE_OPTION)
2433                r = policy_set_config_value(cache->policy, key, value);
2434
2435        if (r)
2436                DMWARN("bad config value for %s: %s", key, value);
2437
2438        return r;
2439}
2440
2441static int set_config_values(struct cache *cache, int argc, const char **argv)
2442{
2443        int r = 0;
2444
2445        if (argc & 1) {
2446                DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2447                return -EINVAL;
2448        }
2449
2450        while (argc) {
2451                r = set_config_value(cache, argv[0], argv[1]);
2452                if (r)
2453                        break;
2454
2455                argc -= 2;
2456                argv += 2;
2457        }
2458
2459        return r;
2460}
2461
2462static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2463                               char **error)
2464{
2465        struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2466                                                           cache->cache_size,
2467                                                           cache->origin_sectors,
2468                                                           cache->sectors_per_block);
2469        if (IS_ERR(p)) {
2470                *error = "Error creating cache's policy";
2471                return PTR_ERR(p);
2472        }
2473        cache->policy = p;
2474        BUG_ON(!cache->policy);
2475
2476        return 0;
2477}
2478
2479/*
2480 * We want the discard block size to be at least the size of the cache
2481 * block size and have no more than 2^14 discard blocks across the origin.
2482 */
2483#define MAX_DISCARD_BLOCKS (1 << 14)
2484
2485static bool too_many_discard_blocks(sector_t discard_block_size,
2486                                    sector_t origin_size)
2487{
2488        (void) sector_div(origin_size, discard_block_size);
2489
2490        return origin_size > MAX_DISCARD_BLOCKS;
2491}
2492
2493static sector_t calculate_discard_block_size(sector_t cache_block_size,
2494                                             sector_t origin_size)
2495{
2496        sector_t discard_block_size = cache_block_size;
2497
2498        if (origin_size)
2499                while (too_many_discard_blocks(discard_block_size, origin_size))
2500                        discard_block_size *= 2;
2501
2502        return discard_block_size;
2503}
2504
2505static void set_cache_size(struct cache *cache, dm_cblock_t size)
2506{
2507        dm_block_t nr_blocks = from_cblock(size);
2508
2509        if (nr_blocks > (1 << 20) && cache->cache_size != size)
2510                DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2511                             "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2512                             "Please consider increasing the cache block size to reduce the overall cache block count.",
2513                             (unsigned long long) nr_blocks);
2514
2515        cache->cache_size = size;
2516}
2517
2518static int is_congested(struct dm_dev *dev, int bdi_bits)
2519{
2520        struct request_queue *q = bdev_get_queue(dev->bdev);
2521        return bdi_congested(q->backing_dev_info, bdi_bits);
2522}
2523
2524static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2525{
2526        struct cache *cache = container_of(cb, struct cache, callbacks);
2527
2528        return is_congested(cache->origin_dev, bdi_bits) ||
2529                is_congested(cache->cache_dev, bdi_bits);
2530}
2531
2532#define DEFAULT_MIGRATION_THRESHOLD 2048
2533
2534static int cache_create(struct cache_args *ca, struct cache **result)
2535{
2536        int r = 0;
2537        char **error = &ca->ti->error;
2538        struct cache *cache;
2539        struct dm_target *ti = ca->ti;
2540        dm_block_t origin_blocks;
2541        struct dm_cache_metadata *cmd;
2542        bool may_format = ca->features.mode == CM_WRITE;
2543
2544        cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2545        if (!cache)
2546                return -ENOMEM;
2547
2548        cache->ti = ca->ti;
2549        ti->private = cache;
2550        ti->num_flush_bios = 2;
2551        ti->flush_supported = true;
2552
2553        ti->num_discard_bios = 1;
2554        ti->discards_supported = true;
2555        ti->split_discard_bios = false;
2556
2557        cache->features = ca->features;
2558        ti->per_io_data_size = get_per_bio_data_size(cache);
2559
2560        cache->callbacks.congested_fn = cache_is_congested;
2561        dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2562
2563        cache->metadata_dev = ca->metadata_dev;
2564        cache->origin_dev = ca->origin_dev;
2565        cache->cache_dev = ca->cache_dev;
2566
2567        ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2568
2569        origin_blocks = cache->origin_sectors = ca->origin_sectors;
2570        origin_blocks = block_div(origin_blocks, ca->block_size);
2571        cache->origin_blocks = to_oblock(origin_blocks);
2572
2573        cache->sectors_per_block = ca->block_size;
2574        if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2575                r = -EINVAL;
2576                goto bad;
2577        }
2578
2579        if (ca->block_size & (ca->block_size - 1)) {
2580                dm_block_t cache_size = ca->cache_sectors;
2581
2582                cache->sectors_per_block_shift = -1;
2583                cache_size = block_div(cache_size, ca->block_size);
2584                set_cache_size(cache, to_cblock(cache_size));
2585        } else {
2586                cache->sectors_per_block_shift = __ffs(ca->block_size);
2587                set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2588        }
2589
2590        r = create_cache_policy(cache, ca, error);
2591        if (r)
2592                goto bad;
2593
2594        cache->policy_nr_args = ca->policy_argc;
2595        cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2596
2597        r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2598        if (r) {
2599                *error = "Error setting cache policy's config values";
2600                goto bad;
2601        }
2602
2603        cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2604                                     ca->block_size, may_format,
2605                                     dm_cache_policy_get_hint_size(cache->policy),
2606                                     ca->features.metadata_version);
2607        if (IS_ERR(cmd)) {
2608                *error = "Error creating metadata object";
2609                r = PTR_ERR(cmd);
2610                goto bad;
2611        }
2612        cache->cmd = cmd;
2613        set_cache_mode(cache, CM_WRITE);
2614        if (get_cache_mode(cache) != CM_WRITE) {
2615                *error = "Unable to get write access to metadata, please check/repair metadata.";
2616                r = -EINVAL;
2617                goto bad;
2618        }
2619
2620        if (passthrough_mode(&cache->features)) {
2621                bool all_clean;
2622
2623                r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2624                if (r) {
2625                        *error = "dm_cache_metadata_all_clean() failed";
2626                        goto bad;
2627                }
2628
2629                if (!all_clean) {
2630                        *error = "Cannot enter passthrough mode unless all blocks are clean";
2631                        r = -EINVAL;
2632                        goto bad;
2633                }
2634
2635                policy_allow_migrations(cache->policy, false);
2636        }
2637
2638        spin_lock_init(&cache->lock);
2639        INIT_LIST_HEAD(&cache->deferred_cells);
2640        bio_list_init(&cache->deferred_bios);
2641        bio_list_init(&cache->deferred_writethrough_bios);
2642        atomic_set(&cache->nr_allocated_migrations, 0);
2643        atomic_set(&cache->nr_io_migrations, 0);
2644        init_waitqueue_head(&cache->migration_wait);
2645
2646        r = -ENOMEM;
2647        atomic_set(&cache->nr_dirty, 0);
2648        cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2649        if (!cache->dirty_bitset) {
2650                *error = "could not allocate dirty bitset";
2651                goto bad;
2652        }
2653        clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2654
2655        cache->discard_block_size =
2656                calculate_discard_block_size(cache->sectors_per_block,
2657                                             cache->origin_sectors);
2658        cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2659                                                              cache->discard_block_size));
2660        cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2661        if (!cache->discard_bitset) {
2662                *error = "could not allocate discard bitset";
2663                goto bad;
2664        }
2665        clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2666
2667        cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2668        if (IS_ERR(cache->copier)) {
2669                *error = "could not create kcopyd client";
2670                r = PTR_ERR(cache->copier);
2671                goto bad;
2672        }
2673
2674        cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2675        if (!cache->wq) {
2676                *error = "could not create workqueue for metadata object";
2677                goto bad;
2678        }
2679        INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2680        INIT_WORK(&cache->deferred_writethrough_worker,
2681                  process_deferred_writethrough_bios);
2682        INIT_WORK(&cache->migration_worker, check_migrations);
2683        INIT_DELAYED_WORK(&cache->waker, do_waker);
2684
2685        cache->prison = dm_bio_prison_create_v2(cache->wq);
2686        if (!cache->prison) {
2687                *error = "could not create bio prison";
2688                goto bad;
2689        }
2690
2691        cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2692                                                         migration_cache);
2693        if (!cache->migration_pool) {
2694                *error = "Error creating cache's migration mempool";
2695                goto bad;
2696        }
2697
2698        cache->need_tick_bio = true;
2699        cache->sized = false;
2700        cache->invalidate = false;
2701        cache->commit_requested = false;
2702        cache->loaded_mappings = false;
2703        cache->loaded_discards = false;
2704
2705        load_stats(cache);
2706
2707        atomic_set(&cache->stats.demotion, 0);
2708        atomic_set(&cache->stats.promotion, 0);
2709        atomic_set(&cache->stats.copies_avoided, 0);
2710        atomic_set(&cache->stats.cache_cell_clash, 0);
2711        atomic_set(&cache->stats.commit_count, 0);
2712        atomic_set(&cache->stats.discard_count, 0);
2713
2714        spin_lock_init(&cache->invalidation_lock);
2715        INIT_LIST_HEAD(&cache->invalidation_requests);
2716
2717        batcher_init(&cache->committer, commit_op, cache,
2718                     issue_op, cache, cache->wq);
2719        iot_init(&cache->tracker);
2720
2721        init_rwsem(&cache->background_work_lock);
2722        prevent_background_work(cache);
2723
2724        *result = cache;
2725        return 0;
2726bad:
2727        destroy(cache);
2728        return r;
2729}
2730
2731static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2732{
2733        unsigned i;
2734        const char **copy;
2735
2736        copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2737        if (!copy)
2738                return -ENOMEM;
2739        for (i = 0; i < argc; i++) {
2740                copy[i] = kstrdup(argv[i], GFP_KERNEL);
2741                if (!copy[i]) {
2742                        while (i--)
2743                                kfree(copy[i]);
2744                        kfree(copy);
2745                        return -ENOMEM;
2746                }
2747        }
2748
2749        cache->nr_ctr_args = argc;
2750        cache->ctr_args = copy;
2751
2752        return 0;
2753}
2754
2755static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2756{
2757        int r = -EINVAL;
2758        struct cache_args *ca;
2759        struct cache *cache = NULL;
2760
2761        ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2762        if (!ca) {
2763                ti->error = "Error allocating memory for cache";
2764                return -ENOMEM;
2765        }
2766        ca->ti = ti;
2767
2768        r = parse_cache_args(ca, argc, argv, &ti->error);
2769        if (r)
2770                goto out;
2771
2772        r = cache_create(ca, &cache);
2773        if (r)
2774                goto out;
2775
2776        r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2777        if (r) {
2778                destroy(cache);
2779                goto out;
2780        }
2781
2782        ti->private = cache;
2783out:
2784        destroy_cache_args(ca);
2785        return r;
2786}
2787
2788/*----------------------------------------------------------------*/
2789
2790static int cache_map(struct dm_target *ti, struct bio *bio)
2791{
2792        struct cache *cache = ti->private;
2793
2794        int r;
2795        bool commit_needed;
2796        dm_oblock_t block = get_bio_block(cache, bio);
2797        size_t pb_data_size = get_per_bio_data_size(cache);
2798
2799        init_per_bio_data(bio, pb_data_size);
2800        if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2801                /*
2802                 * This can only occur if the io goes to a partial block at
2803                 * the end of the origin device.  We don't cache these.
2804                 * Just remap to the origin and carry on.
2805                 */
2806                remap_to_origin(cache, bio);
2807                accounted_begin(cache, bio);
2808                return DM_MAPIO_REMAPPED;
2809        }
2810
2811        if (discard_or_flush(bio)) {
2812                defer_bio(cache, bio);
2813                return DM_MAPIO_SUBMITTED;
2814        }
2815
2816        r = map_bio(cache, bio, block, &commit_needed);
2817        if (commit_needed)
2818                schedule_commit(&cache->committer);
2819
2820        return r;
2821}
2822
2823static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2824{
2825        struct cache *cache = ti->private;
2826        unsigned long flags;
2827        size_t pb_data_size = get_per_bio_data_size(cache);
2828        struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2829
2830        if (pb->tick) {
2831                policy_tick(cache->policy, false);
2832
2833                spin_lock_irqsave(&cache->lock, flags);
2834                cache->need_tick_bio = true;
2835                spin_unlock_irqrestore(&cache->lock, flags);
2836        }
2837
2838        bio_drop_shared_lock(cache, bio);
2839        accounted_complete(cache, bio);
2840
2841        return 0;
2842}
2843
2844static int write_dirty_bitset(struct cache *cache)
2845{
2846        int r;
2847
2848        if (get_cache_mode(cache) >= CM_READ_ONLY)
2849                return -EINVAL;
2850
2851        r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2852        if (r)
2853                metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2854
2855        return r;
2856}
2857
2858static int write_discard_bitset(struct cache *cache)
2859{
2860        unsigned i, r;
2861
2862        if (get_cache_mode(cache) >= CM_READ_ONLY)
2863                return -EINVAL;
2864
2865        r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2866                                           cache->discard_nr_blocks);
2867        if (r) {
2868                DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2869                metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2870                return r;
2871        }
2872
2873        for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2874                r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2875                                         is_discarded(cache, to_dblock(i)));
2876                if (r) {
2877                        metadata_operation_failed(cache, "dm_cache_set_discard", r);
2878                        return r;
2879                }
2880        }
2881
2882        return 0;
2883}
2884
2885static int write_hints(struct cache *cache)
2886{
2887        int r;
2888
2889        if (get_cache_mode(cache) >= CM_READ_ONLY)
2890                return -EINVAL;
2891
2892        r = dm_cache_write_hints(cache->cmd, cache->policy);
2893        if (r) {
2894                metadata_operation_failed(cache, "dm_cache_write_hints", r);
2895                return r;
2896        }
2897
2898        return 0;
2899}
2900
2901/*
2902 * returns true on success
2903 */
2904static bool sync_metadata(struct cache *cache)
2905{
2906        int r1, r2, r3, r4;
2907
2908        r1 = write_dirty_bitset(cache);
2909        if (r1)
2910                DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2911
2912        r2 = write_discard_bitset(cache);
2913        if (r2)
2914                DMERR("%s: could not write discard bitset", cache_device_name(cache));
2915
2916        save_stats(cache);
2917
2918        r3 = write_hints(cache);
2919        if (r3)
2920                DMERR("%s: could not write hints", cache_device_name(cache));
2921
2922        /*
2923         * If writing the above metadata failed, we still commit, but don't
2924         * set the clean shutdown flag.  This will effectively force every
2925         * dirty bit to be set on reload.
2926         */
2927        r4 = commit(cache, !r1 && !r2 && !r3);
2928        if (r4)
2929                DMERR("%s: could not write cache metadata", cache_device_name(cache));
2930
2931        return !r1 && !r2 && !r3 && !r4;
2932}
2933
2934static void cache_postsuspend(struct dm_target *ti)
2935{
2936        struct cache *cache = ti->private;
2937
2938        prevent_background_work(cache);
2939        BUG_ON(atomic_read(&cache->nr_io_migrations));
2940
2941        cancel_delayed_work(&cache->waker);
2942        flush_workqueue(cache->wq);
2943        WARN_ON(cache->tracker.in_flight);
2944
2945        /*
2946         * If it's a flush suspend there won't be any deferred bios, so this
2947         * call is harmless.
2948         */
2949        requeue_deferred_bios(cache);
2950
2951        if (get_cache_mode(cache) == CM_WRITE)
2952                (void) sync_metadata(cache);
2953}
2954
2955static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2956                        bool dirty, uint32_t hint, bool hint_valid)
2957{
2958        int r;
2959        struct cache *cache = context;
2960
2961        if (dirty) {
2962                set_bit(from_cblock(cblock), cache->dirty_bitset);
2963                atomic_inc(&cache->nr_dirty);
2964        } else
2965                clear_bit(from_cblock(cblock), cache->dirty_bitset);
2966
2967        r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2968        if (r)
2969                return r;
2970
2971        return 0;
2972}
2973
2974/*
2975 * The discard block size in the on disk metadata is not
2976 * neccessarily the same as we're currently using.  So we have to
2977 * be careful to only set the discarded attribute if we know it
2978 * covers a complete block of the new size.
2979 */
2980struct discard_load_info {
2981        struct cache *cache;
2982
2983        /*
2984         * These blocks are sized using the on disk dblock size, rather
2985         * than the current one.
2986         */
2987        dm_block_t block_size;
2988        dm_block_t discard_begin, discard_end;
2989};
2990
2991static void discard_load_info_init(struct cache *cache,
2992                                   struct discard_load_info *li)
2993{
2994        li->cache = cache;
2995        li->discard_begin = li->discard_end = 0;
2996}
2997
2998static void set_discard_range(struct discard_load_info *li)
2999{
3000        sector_t b, e;
3001
3002        if (li->discard_begin == li->discard_end)
3003                return;
3004
3005        /*
3006         * Convert to sectors.
3007         */
3008        b = li->discard_begin * li->block_size;
3009        e = li->discard_end * li->block_size;
3010
3011        /*
3012         * Then convert back to the current dblock size.
3013         */
3014        b = dm_sector_div_up(b, li->cache->discard_block_size);
3015        sector_div(e, li->cache->discard_block_size);
3016
3017        /*
3018         * The origin may have shrunk, so we need to check we're still in
3019         * bounds.
3020         */
3021        if (e > from_dblock(li->cache->discard_nr_blocks))
3022                e = from_dblock(li->cache->discard_nr_blocks);
3023
3024        for (; b < e; b++)
3025                set_discard(li->cache, to_dblock(b));
3026}
3027
3028static int load_discard(void *context, sector_t discard_block_size,
3029                        dm_dblock_t dblock, bool discard)
3030{
3031        struct discard_load_info *li = context;
3032
3033        li->block_size = discard_block_size;
3034
3035        if (discard) {
3036                if (from_dblock(dblock) == li->discard_end)
3037                        /*
3038                         * We're already in a discard range, just extend it.
3039                         */
3040                        li->discard_end = li->discard_end + 1ULL;
3041
3042                else {
3043                        /*
3044                         * Emit the old range and start a new one.
3045                         */
3046                        set_discard_range(li);
3047                        li->discard_begin = from_dblock(dblock);
3048                        li->discard_end = li->discard_begin + 1ULL;
3049                }
3050        } else {
3051                set_discard_range(li);
3052                li->discard_begin = li->discard_end = 0;
3053        }
3054
3055        return 0;
3056}
3057
3058static dm_cblock_t get_cache_dev_size(struct cache *cache)
3059{
3060        sector_t size = get_dev_size(cache->cache_dev);
3061        (void) sector_div(size, cache->sectors_per_block);
3062        return to_cblock(size);
3063}
3064
3065static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3066{
3067        if (from_cblock(new_size) > from_cblock(cache->cache_size))
3068                return true;
3069
3070        /*
3071         * We can't drop a dirty block when shrinking the cache.
3072         */
3073        while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3074                new_size = to_cblock(from_cblock(new_size) + 1);
3075                if (is_dirty(cache, new_size)) {
3076                        DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3077                              cache_device_name(cache),
3078                              (unsigned long long) from_cblock(new_size));
3079                        return false;
3080                }
3081        }
3082
3083        return true;
3084}
3085
3086static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3087{
3088        int r;
3089
3090        r = dm_cache_resize(cache->cmd, new_size);
3091        if (r) {
3092                DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3093                metadata_operation_failed(cache, "dm_cache_resize", r);
3094                return r;
3095        }
3096
3097        set_cache_size(cache, new_size);
3098
3099        return 0;
3100}
3101
3102static int cache_preresume(struct dm_target *ti)
3103{
3104        int r = 0;
3105        struct cache *cache = ti->private;
3106        dm_cblock_t csize = get_cache_dev_size(cache);
3107
3108        /*
3109         * Check to see if the cache has resized.
3110         */
3111        if (!cache->sized) {
3112                r = resize_cache_dev(cache, csize);
3113                if (r)
3114                        return r;
3115
3116                cache->sized = true;
3117
3118        } else if (csize != cache->cache_size) {
3119                if (!can_resize(cache, csize))
3120                        return -EINVAL;
3121
3122                r = resize_cache_dev(cache, csize);
3123                if (r)
3124                        return r;
3125        }
3126
3127        if (!cache->loaded_mappings) {
3128                r = dm_cache_load_mappings(cache->cmd, cache->policy,
3129                                           load_mapping, cache);
3130                if (r) {
3131                        DMERR("%s: could not load cache mappings", cache_device_name(cache));
3132                        metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3133                        return r;
3134                }
3135
3136                cache->loaded_mappings = true;
3137        }
3138
3139        if (!cache->loaded_discards) {
3140                struct discard_load_info li;
3141
3142                /*
3143                 * The discard bitset could have been resized, or the
3144                 * discard block size changed.  To be safe we start by
3145                 * setting every dblock to not discarded.
3146                 */
3147                clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3148
3149                discard_load_info_init(cache, &li);
3150                r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3151                if (r) {
3152                        DMERR("%s: could not load origin discards", cache_device_name(cache));
3153                        metadata_operation_failed(cache, "dm_cache_load_discards", r);
3154                        return r;
3155                }
3156                set_discard_range(&li);
3157
3158                cache->loaded_discards = true;
3159        }
3160
3161        return r;
3162}
3163
3164static void cache_resume(struct dm_target *ti)
3165{
3166        struct cache *cache = ti->private;
3167
3168        cache->need_tick_bio = true;
3169        allow_background_work(cache);
3170        do_waker(&cache->waker.work);
3171}
3172
3173/*
3174 * Status format:
3175 *
3176 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3177 * <cache block size> <#used cache blocks>/<#total cache blocks>
3178 * <#read hits> <#read misses> <#write hits> <#write misses>
3179 * <#demotions> <#promotions> <#dirty>
3180 * <#features> <features>*
3181 * <#core args> <core args>
3182 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3183 */
3184static void cache_status(struct dm_target *ti, status_type_t type,
3185                         unsigned status_flags, char *result, unsigned maxlen)
3186{
3187        int r = 0;
3188        unsigned i;
3189        ssize_t sz = 0;
3190        dm_block_t nr_free_blocks_metadata = 0;
3191        dm_block_t nr_blocks_metadata = 0;
3192        char buf[BDEVNAME_SIZE];
3193        struct cache *cache = ti->private;
3194        dm_cblock_t residency;
3195        bool needs_check;
3196
3197        switch (type) {
3198        case STATUSTYPE_INFO:
3199                if (get_cache_mode(cache) == CM_FAIL) {
3200                        DMEMIT("Fail");
3201                        break;
3202                }
3203
3204                /* Commit to ensure statistics aren't out-of-date */
3205                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3206                        (void) commit(cache, false);
3207
3208                r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3209                if (r) {
3210                        DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3211                              cache_device_name(cache), r);
3212                        goto err;
3213                }
3214
3215                r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3216                if (r) {
3217                        DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3218                              cache_device_name(cache), r);
3219                        goto err;
3220                }
3221
3222                residency = policy_residency(cache->policy);
3223
3224                DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3225                       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3226                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3227                       (unsigned long long)nr_blocks_metadata,
3228                       (unsigned long long)cache->sectors_per_block,
3229                       (unsigned long long) from_cblock(residency),
3230                       (unsigned long long) from_cblock(cache->cache_size),
3231                       (unsigned) atomic_read(&cache->stats.read_hit),
3232                       (unsigned) atomic_read(&cache->stats.read_miss),
3233                       (unsigned) atomic_read(&cache->stats.write_hit),
3234                       (unsigned) atomic_read(&cache->stats.write_miss),
3235                       (unsigned) atomic_read(&cache->stats.demotion),
3236                       (unsigned) atomic_read(&cache->stats.promotion),
3237                       (unsigned long) atomic_read(&cache->nr_dirty));
3238
3239                if (cache->features.metadata_version == 2)
3240                        DMEMIT("2 metadata2 ");
3241                else
3242                        DMEMIT("1 ");
3243
3244                if (writethrough_mode(&cache->features))
3245                        DMEMIT("writethrough ");
3246
3247                else if (passthrough_mode(&cache->features))
3248                        DMEMIT("passthrough ");
3249
3250                else if (writeback_mode(&cache->features))
3251                        DMEMIT("writeback ");
3252
3253                else {
3254                        DMERR("%s: internal error: unknown io mode: %d",
3255                              cache_device_name(cache), (int) cache->features.io_mode);
3256                        goto err;
3257                }
3258
3259                DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3260
3261                DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3262                if (sz < maxlen) {
3263                        r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3264                        if (r)
3265                                DMERR("%s: policy_emit_config_values returned %d",
3266                                      cache_device_name(cache), r);
3267                }
3268
3269                if (get_cache_mode(cache) == CM_READ_ONLY)
3270                        DMEMIT("ro ");
3271                else
3272                        DMEMIT("rw ");
3273
3274                r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3275
3276                if (r || needs_check)
3277                        DMEMIT("needs_check ");
3278                else
3279                        DMEMIT("- ");
3280
3281                break;
3282
3283        case STATUSTYPE_TABLE:
3284                format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3285                DMEMIT("%s ", buf);
3286                format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3287                DMEMIT("%s ", buf);
3288                format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3289                DMEMIT("%s", buf);
3290
3291                for (i = 0; i < cache->nr_ctr_args - 1; i++)
3292                        DMEMIT(" %s", cache->ctr_args[i]);
3293                if (cache->nr_ctr_args)
3294                        DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3295        }
3296
3297        return;
3298
3299err:
3300        DMEMIT("Error");
3301}
3302
3303/*
3304 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3305 * the one-past-the-end value.
3306 */
3307struct cblock_range {
3308        dm_cblock_t begin;
3309        dm_cblock_t end;
3310};
3311
3312/*
3313 * A cache block range can take two forms:
3314 *
3315 * i) A single cblock, eg. '3456'
3316 * ii) A begin and end cblock with a dash between, eg. 123-234
3317 */
3318static int parse_cblock_range(struct cache *cache, const char *str,
3319                              struct cblock_range *result)
3320{
3321        char dummy;
3322        uint64_t b, e;
3323        int r;
3324
3325        /*
3326         * Try and parse form (ii) first.
3327         */
3328        r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3329        if (r < 0)
3330                return r;
3331
3332        if (r == 2) {
3333                result->begin = to_cblock(b);
3334                result->end = to_cblock(e);
3335                return 0;
3336        }
3337
3338        /*
3339         * That didn't work, try form (i).
3340         */
3341        r = sscanf(str, "%llu%c", &b, &dummy);
3342        if (r < 0)
3343                return r;
3344
3345        if (r == 1) {
3346                result->begin = to_cblock(b);
3347                result->end = to_cblock(from_cblock(result->begin) + 1u);
3348                return 0;
3349        }
3350
3351        DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3352        return -EINVAL;
3353}
3354
3355static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3356{
3357        uint64_t b = from_cblock(range->begin);
3358        uint64_t e = from_cblock(range->end);
3359        uint64_t n = from_cblock(cache->cache_size);
3360
3361        if (b >= n) {
3362                DMERR("%s: begin cblock out of range: %llu >= %llu",
3363                      cache_device_name(cache), b, n);
3364                return -EINVAL;
3365        }
3366
3367        if (e > n) {
3368                DMERR("%s: end cblock out of range: %llu > %llu",
3369                      cache_device_name(cache), e, n);
3370                return -EINVAL;
3371        }
3372
3373        if (b >= e) {
3374                DMERR("%s: invalid cblock range: %llu >= %llu",
3375                      cache_device_name(cache), b, e);
3376                return -EINVAL;
3377        }
3378
3379        return 0;
3380}
3381
3382static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3383{
3384        return to_cblock(from_cblock(b) + 1);
3385}
3386
3387static int request_invalidation(struct cache *cache, struct cblock_range *range)
3388{
3389        int r = 0;
3390
3391        /*
3392         * We don't need to do any locking here because we know we're in
3393         * passthrough mode.  There's is potential for a race between an
3394         * invalidation triggered by an io and an invalidation message.  This
3395         * is harmless, we must not worry if the policy call fails.
3396         */
3397        while (range->begin != range->end) {
3398                r = invalidate_cblock(cache, range->begin);
3399                if (r)
3400                        return r;
3401
3402                range->begin = cblock_succ(range->begin);
3403        }
3404
3405        cache->commit_requested = true;
3406        return r;
3407}
3408
3409static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3410                                              const char **cblock_ranges)
3411{
3412        int r = 0;
3413        unsigned i;
3414        struct cblock_range range;
3415
3416        if (!passthrough_mode(&cache->features)) {
3417                DMERR("%s: cache has to be in passthrough mode for invalidation",
3418                      cache_device_name(cache));
3419                return -EPERM;
3420        }
3421
3422        for (i = 0; i < count; i++) {
3423                r = parse_cblock_range(cache, cblock_ranges[i], &range);
3424                if (r)
3425                        break;
3426
3427                r = validate_cblock_range(cache, &range);
3428                if (r)
3429                        break;
3430
3431                /*
3432                 * Pass begin and end origin blocks to the worker and wake it.
3433                 */
3434                r = request_invalidation(cache, &range);
3435                if (r)
3436                        break;
3437        }
3438
3439        return r;
3440}
3441
3442/*
3443 * Supports
3444 *      "<key> <value>"
3445 * and
3446 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3447 *
3448 * The key migration_threshold is supported by the cache target core.
3449 */
3450static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3451{
3452        struct cache *cache = ti->private;
3453
3454        if (!argc)
3455                return -EINVAL;
3456
3457        if (get_cache_mode(cache) >= CM_READ_ONLY) {
3458                DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3459                      cache_device_name(cache));
3460                return -EOPNOTSUPP;
3461        }
3462
3463        if (!strcasecmp(argv[0], "invalidate_cblocks"))
3464                return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3465
3466        if (argc != 2)
3467                return -EINVAL;
3468
3469        return set_config_value(cache, argv[0], argv[1]);
3470}
3471
3472static int cache_iterate_devices(struct dm_target *ti,
3473                                 iterate_devices_callout_fn fn, void *data)
3474{
3475        int r = 0;
3476        struct cache *cache = ti->private;
3477
3478        r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3479        if (!r)
3480                r = fn(ti, cache->origin_dev, 0, ti->len, data);
3481
3482        return r;
3483}
3484
3485static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3486{
3487        /*
3488         * FIXME: these limits may be incompatible with the cache device
3489         */
3490        limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3491                                            cache->origin_sectors);
3492        limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3493}
3494
3495static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3496{
3497        struct cache *cache = ti->private;
3498        uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3499
3500        /*
3501         * If the system-determined stacked limits are compatible with the
3502         * cache's blocksize (io_opt is a factor) do not override them.
3503         */
3504        if (io_opt_sectors < cache->sectors_per_block ||
3505            do_div(io_opt_sectors, cache->sectors_per_block)) {
3506                blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3507                blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3508        }
3509        set_discard_limits(cache, limits);
3510}
3511
3512/*----------------------------------------------------------------*/
3513
3514static struct target_type cache_target = {
3515        .name = "cache",
3516        .version = {2, 0, 0},
3517        .module = THIS_MODULE,
3518        .ctr = cache_ctr,
3519        .dtr = cache_dtr,
3520        .map = cache_map,
3521        .end_io = cache_end_io,
3522        .postsuspend = cache_postsuspend,
3523        .preresume = cache_preresume,
3524        .resume = cache_resume,
3525        .status = cache_status,
3526        .message = cache_message,
3527        .iterate_devices = cache_iterate_devices,
3528        .io_hints = cache_io_hints,
3529};
3530
3531static int __init dm_cache_init(void)
3532{
3533        int r;
3534
3535        r = dm_register_target(&cache_target);
3536        if (r) {
3537                DMERR("cache target registration failed: %d", r);
3538                return r;
3539        }
3540
3541        migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3542        if (!migration_cache) {
3543                dm_unregister_target(&cache_target);
3544                return -ENOMEM;
3545        }
3546
3547        return 0;
3548}
3549
3550static void __exit dm_cache_exit(void)
3551{
3552        dm_unregister_target(&cache_target);
3553        kmem_cache_destroy(migration_cache);
3554}
3555
3556module_init(dm_cache_init);
3557module_exit(dm_cache_exit);
3558
3559MODULE_DESCRIPTION(DM_NAME " cache target");
3560MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3561MODULE_LICENSE("GPL");
3562