linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  37#include <keys/user-type.h>
  38
  39#include <linux/device-mapper.h>
  40
  41#define DM_MSG_PREFIX "crypt"
  42
  43/*
  44 * context holding the current state of a multi-part conversion
  45 */
  46struct convert_context {
  47        struct completion restart;
  48        struct bio *bio_in;
  49        struct bio *bio_out;
  50        struct bvec_iter iter_in;
  51        struct bvec_iter iter_out;
  52        sector_t cc_sector;
  53        atomic_t cc_pending;
  54        union {
  55                struct skcipher_request *req;
  56                struct aead_request *req_aead;
  57        } r;
  58
  59};
  60
  61/*
  62 * per bio private data
  63 */
  64struct dm_crypt_io {
  65        struct crypt_config *cc;
  66        struct bio *base_bio;
  67        u8 *integrity_metadata;
  68        bool integrity_metadata_from_pool;
  69        struct work_struct work;
  70
  71        struct convert_context ctx;
  72
  73        atomic_t io_pending;
  74        int error;
  75        sector_t sector;
  76
  77        struct rb_node rb_node;
  78} CRYPTO_MINALIGN_ATTR;
  79
  80struct dm_crypt_request {
  81        struct convert_context *ctx;
  82        struct scatterlist sg_in[4];
  83        struct scatterlist sg_out[4];
  84        sector_t iv_sector;
  85};
  86
  87struct crypt_config;
  88
  89struct crypt_iv_operations {
  90        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  91                   const char *opts);
  92        void (*dtr)(struct crypt_config *cc);
  93        int (*init)(struct crypt_config *cc);
  94        int (*wipe)(struct crypt_config *cc);
  95        int (*generator)(struct crypt_config *cc, u8 *iv,
  96                         struct dm_crypt_request *dmreq);
  97        int (*post)(struct crypt_config *cc, u8 *iv,
  98                    struct dm_crypt_request *dmreq);
  99};
 100
 101struct iv_essiv_private {
 102        struct crypto_ahash *hash_tfm;
 103        u8 *salt;
 104};
 105
 106struct iv_benbi_private {
 107        int shift;
 108};
 109
 110#define LMK_SEED_SIZE 64 /* hash + 0 */
 111struct iv_lmk_private {
 112        struct crypto_shash *hash_tfm;
 113        u8 *seed;
 114};
 115
 116#define TCW_WHITENING_SIZE 16
 117struct iv_tcw_private {
 118        struct crypto_shash *crc32_tfm;
 119        u8 *iv_seed;
 120        u8 *whitening;
 121};
 122
 123/*
 124 * Crypt: maps a linear range of a block device
 125 * and encrypts / decrypts at the same time.
 126 */
 127enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 128             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 129
 130enum cipher_flags {
 131        CRYPT_MODE_INTEGRITY_AEAD,      /* Use authenticated mode for cihper */
 132        CRYPT_IV_LARGE_SECTORS,         /* Calculate IV from sector_size, not 512B sectors */
 133};
 134
 135/*
 136 * The fields in here must be read only after initialization.
 137 */
 138struct crypt_config {
 139        struct dm_dev *dev;
 140        sector_t start;
 141
 142        /*
 143         * pool for per bio private data, crypto requests,
 144         * encryption requeusts/buffer pages and integrity tags
 145         */
 146        mempool_t *req_pool;
 147        mempool_t *page_pool;
 148        mempool_t *tag_pool;
 149        unsigned tag_pool_max_sectors;
 150
 151        struct bio_set *bs;
 152        struct mutex bio_alloc_lock;
 153
 154        struct workqueue_struct *io_queue;
 155        struct workqueue_struct *crypt_queue;
 156
 157        struct task_struct *write_thread;
 158        wait_queue_head_t write_thread_wait;
 159        struct rb_root write_tree;
 160
 161        char *cipher;
 162        char *cipher_string;
 163        char *cipher_auth;
 164        char *key_string;
 165
 166        const struct crypt_iv_operations *iv_gen_ops;
 167        union {
 168                struct iv_essiv_private essiv;
 169                struct iv_benbi_private benbi;
 170                struct iv_lmk_private lmk;
 171                struct iv_tcw_private tcw;
 172        } iv_gen_private;
 173        sector_t iv_offset;
 174        unsigned int iv_size;
 175        unsigned short int sector_size;
 176        unsigned char sector_shift;
 177
 178        /* ESSIV: struct crypto_cipher *essiv_tfm */
 179        void *iv_private;
 180        union {
 181                struct crypto_skcipher **tfms;
 182                struct crypto_aead **tfms_aead;
 183        } cipher_tfm;
 184        unsigned tfms_count;
 185        unsigned long cipher_flags;
 186
 187        /*
 188         * Layout of each crypto request:
 189         *
 190         *   struct skcipher_request
 191         *      context
 192         *      padding
 193         *   struct dm_crypt_request
 194         *      padding
 195         *   IV
 196         *
 197         * The padding is added so that dm_crypt_request and the IV are
 198         * correctly aligned.
 199         */
 200        unsigned int dmreq_start;
 201
 202        unsigned int per_bio_data_size;
 203
 204        unsigned long flags;
 205        unsigned int key_size;
 206        unsigned int key_parts;      /* independent parts in key buffer */
 207        unsigned int key_extra_size; /* additional keys length */
 208        unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 209
 210        unsigned int integrity_tag_size;
 211        unsigned int integrity_iv_size;
 212        unsigned int on_disk_tag_size;
 213
 214        u8 *authenc_key; /* space for keys in authenc() format (if used) */
 215        u8 key[0];
 216};
 217
 218#define MIN_IOS         64
 219#define MAX_TAG_SIZE    480
 220#define POOL_ENTRY_SIZE 512
 221
 222static void clone_init(struct dm_crypt_io *, struct bio *);
 223static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 224static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 225                                             struct scatterlist *sg);
 226
 227/*
 228 * Use this to access cipher attributes that are independent of the key.
 229 */
 230static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 231{
 232        return cc->cipher_tfm.tfms[0];
 233}
 234
 235static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 236{
 237        return cc->cipher_tfm.tfms_aead[0];
 238}
 239
 240/*
 241 * Different IV generation algorithms:
 242 *
 243 * plain: the initial vector is the 32-bit little-endian version of the sector
 244 *        number, padded with zeros if necessary.
 245 *
 246 * plain64: the initial vector is the 64-bit little-endian version of the sector
 247 *        number, padded with zeros if necessary.
 248 *
 249 * essiv: "encrypted sector|salt initial vector", the sector number is
 250 *        encrypted with the bulk cipher using a salt as key. The salt
 251 *        should be derived from the bulk cipher's key via hashing.
 252 *
 253 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 254 *        (needed for LRW-32-AES and possible other narrow block modes)
 255 *
 256 * null: the initial vector is always zero.  Provides compatibility with
 257 *       obsolete loop_fish2 devices.  Do not use for new devices.
 258 *
 259 * lmk:  Compatible implementation of the block chaining mode used
 260 *       by the Loop-AES block device encryption system
 261 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 262 *       It operates on full 512 byte sectors and uses CBC
 263 *       with an IV derived from the sector number, the data and
 264 *       optionally extra IV seed.
 265 *       This means that after decryption the first block
 266 *       of sector must be tweaked according to decrypted data.
 267 *       Loop-AES can use three encryption schemes:
 268 *         version 1: is plain aes-cbc mode
 269 *         version 2: uses 64 multikey scheme with lmk IV generator
 270 *         version 3: the same as version 2 with additional IV seed
 271 *                   (it uses 65 keys, last key is used as IV seed)
 272 *
 273 * tcw:  Compatible implementation of the block chaining mode used
 274 *       by the TrueCrypt device encryption system (prior to version 4.1).
 275 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 276 *       It operates on full 512 byte sectors and uses CBC
 277 *       with an IV derived from initial key and the sector number.
 278 *       In addition, whitening value is applied on every sector, whitening
 279 *       is calculated from initial key, sector number and mixed using CRC32.
 280 *       Note that this encryption scheme is vulnerable to watermarking attacks
 281 *       and should be used for old compatible containers access only.
 282 *
 283 * plumb: unimplemented, see:
 284 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 285 */
 286
 287static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 288                              struct dm_crypt_request *dmreq)
 289{
 290        memset(iv, 0, cc->iv_size);
 291        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 292
 293        return 0;
 294}
 295
 296static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 297                                struct dm_crypt_request *dmreq)
 298{
 299        memset(iv, 0, cc->iv_size);
 300        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 301
 302        return 0;
 303}
 304
 305/* Initialise ESSIV - compute salt but no local memory allocations */
 306static int crypt_iv_essiv_init(struct crypt_config *cc)
 307{
 308        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 309        AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 310        struct scatterlist sg;
 311        struct crypto_cipher *essiv_tfm;
 312        int err;
 313
 314        sg_init_one(&sg, cc->key, cc->key_size);
 315        ahash_request_set_tfm(req, essiv->hash_tfm);
 316        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 317        ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 318
 319        err = crypto_ahash_digest(req);
 320        ahash_request_zero(req);
 321        if (err)
 322                return err;
 323
 324        essiv_tfm = cc->iv_private;
 325
 326        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 327                            crypto_ahash_digestsize(essiv->hash_tfm));
 328        if (err)
 329                return err;
 330
 331        return 0;
 332}
 333
 334/* Wipe salt and reset key derived from volume key */
 335static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 336{
 337        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 338        unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 339        struct crypto_cipher *essiv_tfm;
 340        int r, err = 0;
 341
 342        memset(essiv->salt, 0, salt_size);
 343
 344        essiv_tfm = cc->iv_private;
 345        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 346        if (r)
 347                err = r;
 348
 349        return err;
 350}
 351
 352/* Allocate the cipher for ESSIV */
 353static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
 354                                                struct dm_target *ti,
 355                                                const u8 *salt,
 356                                                unsigned int saltsize)
 357{
 358        struct crypto_cipher *essiv_tfm;
 359        int err;
 360
 361        /* Setup the essiv_tfm with the given salt */
 362        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 363        if (IS_ERR(essiv_tfm)) {
 364                ti->error = "Error allocating crypto tfm for ESSIV";
 365                return essiv_tfm;
 366        }
 367
 368        if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
 369                ti->error = "Block size of ESSIV cipher does "
 370                            "not match IV size of block cipher";
 371                crypto_free_cipher(essiv_tfm);
 372                return ERR_PTR(-EINVAL);
 373        }
 374
 375        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 376        if (err) {
 377                ti->error = "Failed to set key for ESSIV cipher";
 378                crypto_free_cipher(essiv_tfm);
 379                return ERR_PTR(err);
 380        }
 381
 382        return essiv_tfm;
 383}
 384
 385static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 386{
 387        struct crypto_cipher *essiv_tfm;
 388        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 389
 390        crypto_free_ahash(essiv->hash_tfm);
 391        essiv->hash_tfm = NULL;
 392
 393        kzfree(essiv->salt);
 394        essiv->salt = NULL;
 395
 396        essiv_tfm = cc->iv_private;
 397
 398        if (essiv_tfm)
 399                crypto_free_cipher(essiv_tfm);
 400
 401        cc->iv_private = NULL;
 402}
 403
 404static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 405                              const char *opts)
 406{
 407        struct crypto_cipher *essiv_tfm = NULL;
 408        struct crypto_ahash *hash_tfm = NULL;
 409        u8 *salt = NULL;
 410        int err;
 411
 412        if (!opts) {
 413                ti->error = "Digest algorithm missing for ESSIV mode";
 414                return -EINVAL;
 415        }
 416
 417        /* Allocate hash algorithm */
 418        hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 419        if (IS_ERR(hash_tfm)) {
 420                ti->error = "Error initializing ESSIV hash";
 421                err = PTR_ERR(hash_tfm);
 422                goto bad;
 423        }
 424
 425        salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 426        if (!salt) {
 427                ti->error = "Error kmallocing salt storage in ESSIV";
 428                err = -ENOMEM;
 429                goto bad;
 430        }
 431
 432        cc->iv_gen_private.essiv.salt = salt;
 433        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 434
 435        essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
 436                                       crypto_ahash_digestsize(hash_tfm));
 437        if (IS_ERR(essiv_tfm)) {
 438                crypt_iv_essiv_dtr(cc);
 439                return PTR_ERR(essiv_tfm);
 440        }
 441        cc->iv_private = essiv_tfm;
 442
 443        return 0;
 444
 445bad:
 446        if (hash_tfm && !IS_ERR(hash_tfm))
 447                crypto_free_ahash(hash_tfm);
 448        kfree(salt);
 449        return err;
 450}
 451
 452static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 453                              struct dm_crypt_request *dmreq)
 454{
 455        struct crypto_cipher *essiv_tfm = cc->iv_private;
 456
 457        memset(iv, 0, cc->iv_size);
 458        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 459        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 460
 461        return 0;
 462}
 463
 464static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 465                              const char *opts)
 466{
 467        unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 468        int log = ilog2(bs);
 469
 470        /* we need to calculate how far we must shift the sector count
 471         * to get the cipher block count, we use this shift in _gen */
 472
 473        if (1 << log != bs) {
 474                ti->error = "cypher blocksize is not a power of 2";
 475                return -EINVAL;
 476        }
 477
 478        if (log > 9) {
 479                ti->error = "cypher blocksize is > 512";
 480                return -EINVAL;
 481        }
 482
 483        cc->iv_gen_private.benbi.shift = 9 - log;
 484
 485        return 0;
 486}
 487
 488static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 489{
 490}
 491
 492static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 493                              struct dm_crypt_request *dmreq)
 494{
 495        __be64 val;
 496
 497        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 498
 499        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 500        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 501
 502        return 0;
 503}
 504
 505static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 506                             struct dm_crypt_request *dmreq)
 507{
 508        memset(iv, 0, cc->iv_size);
 509
 510        return 0;
 511}
 512
 513static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 514{
 515        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 516
 517        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 518                crypto_free_shash(lmk->hash_tfm);
 519        lmk->hash_tfm = NULL;
 520
 521        kzfree(lmk->seed);
 522        lmk->seed = NULL;
 523}
 524
 525static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 526                            const char *opts)
 527{
 528        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 529
 530        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 531                ti->error = "Unsupported sector size for LMK";
 532                return -EINVAL;
 533        }
 534
 535        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 536        if (IS_ERR(lmk->hash_tfm)) {
 537                ti->error = "Error initializing LMK hash";
 538                return PTR_ERR(lmk->hash_tfm);
 539        }
 540
 541        /* No seed in LMK version 2 */
 542        if (cc->key_parts == cc->tfms_count) {
 543                lmk->seed = NULL;
 544                return 0;
 545        }
 546
 547        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 548        if (!lmk->seed) {
 549                crypt_iv_lmk_dtr(cc);
 550                ti->error = "Error kmallocing seed storage in LMK";
 551                return -ENOMEM;
 552        }
 553
 554        return 0;
 555}
 556
 557static int crypt_iv_lmk_init(struct crypt_config *cc)
 558{
 559        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 560        int subkey_size = cc->key_size / cc->key_parts;
 561
 562        /* LMK seed is on the position of LMK_KEYS + 1 key */
 563        if (lmk->seed)
 564                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 565                       crypto_shash_digestsize(lmk->hash_tfm));
 566
 567        return 0;
 568}
 569
 570static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 571{
 572        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 573
 574        if (lmk->seed)
 575                memset(lmk->seed, 0, LMK_SEED_SIZE);
 576
 577        return 0;
 578}
 579
 580static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 581                            struct dm_crypt_request *dmreq,
 582                            u8 *data)
 583{
 584        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 585        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 586        struct md5_state md5state;
 587        __le32 buf[4];
 588        int i, r;
 589
 590        desc->tfm = lmk->hash_tfm;
 591        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 592
 593        r = crypto_shash_init(desc);
 594        if (r)
 595                return r;
 596
 597        if (lmk->seed) {
 598                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 599                if (r)
 600                        return r;
 601        }
 602
 603        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 604        r = crypto_shash_update(desc, data + 16, 16 * 31);
 605        if (r)
 606                return r;
 607
 608        /* Sector is cropped to 56 bits here */
 609        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 610        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 611        buf[2] = cpu_to_le32(4024);
 612        buf[3] = 0;
 613        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 614        if (r)
 615                return r;
 616
 617        /* No MD5 padding here */
 618        r = crypto_shash_export(desc, &md5state);
 619        if (r)
 620                return r;
 621
 622        for (i = 0; i < MD5_HASH_WORDS; i++)
 623                __cpu_to_le32s(&md5state.hash[i]);
 624        memcpy(iv, &md5state.hash, cc->iv_size);
 625
 626        return 0;
 627}
 628
 629static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 630                            struct dm_crypt_request *dmreq)
 631{
 632        struct scatterlist *sg;
 633        u8 *src;
 634        int r = 0;
 635
 636        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 637                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 638                src = kmap_atomic(sg_page(sg));
 639                r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 640                kunmap_atomic(src);
 641        } else
 642                memset(iv, 0, cc->iv_size);
 643
 644        return r;
 645}
 646
 647static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 648                             struct dm_crypt_request *dmreq)
 649{
 650        struct scatterlist *sg;
 651        u8 *dst;
 652        int r;
 653
 654        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 655                return 0;
 656
 657        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 658        dst = kmap_atomic(sg_page(sg));
 659        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 660
 661        /* Tweak the first block of plaintext sector */
 662        if (!r)
 663                crypto_xor(dst + sg->offset, iv, cc->iv_size);
 664
 665        kunmap_atomic(dst);
 666        return r;
 667}
 668
 669static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 670{
 671        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 672
 673        kzfree(tcw->iv_seed);
 674        tcw->iv_seed = NULL;
 675        kzfree(tcw->whitening);
 676        tcw->whitening = NULL;
 677
 678        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 679                crypto_free_shash(tcw->crc32_tfm);
 680        tcw->crc32_tfm = NULL;
 681}
 682
 683static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 684                            const char *opts)
 685{
 686        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 687
 688        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 689                ti->error = "Unsupported sector size for TCW";
 690                return -EINVAL;
 691        }
 692
 693        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 694                ti->error = "Wrong key size for TCW";
 695                return -EINVAL;
 696        }
 697
 698        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 699        if (IS_ERR(tcw->crc32_tfm)) {
 700                ti->error = "Error initializing CRC32 in TCW";
 701                return PTR_ERR(tcw->crc32_tfm);
 702        }
 703
 704        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 705        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 706        if (!tcw->iv_seed || !tcw->whitening) {
 707                crypt_iv_tcw_dtr(cc);
 708                ti->error = "Error allocating seed storage in TCW";
 709                return -ENOMEM;
 710        }
 711
 712        return 0;
 713}
 714
 715static int crypt_iv_tcw_init(struct crypt_config *cc)
 716{
 717        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 718        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 719
 720        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 721        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 722               TCW_WHITENING_SIZE);
 723
 724        return 0;
 725}
 726
 727static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 728{
 729        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 730
 731        memset(tcw->iv_seed, 0, cc->iv_size);
 732        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 733
 734        return 0;
 735}
 736
 737static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 738                                  struct dm_crypt_request *dmreq,
 739                                  u8 *data)
 740{
 741        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 742        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 743        u8 buf[TCW_WHITENING_SIZE];
 744        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 745        int i, r;
 746
 747        /* xor whitening with sector number */
 748        memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 749        crypto_xor(buf, (u8 *)&sector, 8);
 750        crypto_xor(&buf[8], (u8 *)&sector, 8);
 751
 752        /* calculate crc32 for every 32bit part and xor it */
 753        desc->tfm = tcw->crc32_tfm;
 754        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 755        for (i = 0; i < 4; i++) {
 756                r = crypto_shash_init(desc);
 757                if (r)
 758                        goto out;
 759                r = crypto_shash_update(desc, &buf[i * 4], 4);
 760                if (r)
 761                        goto out;
 762                r = crypto_shash_final(desc, &buf[i * 4]);
 763                if (r)
 764                        goto out;
 765        }
 766        crypto_xor(&buf[0], &buf[12], 4);
 767        crypto_xor(&buf[4], &buf[8], 4);
 768
 769        /* apply whitening (8 bytes) to whole sector */
 770        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 771                crypto_xor(data + i * 8, buf, 8);
 772out:
 773        memzero_explicit(buf, sizeof(buf));
 774        return r;
 775}
 776
 777static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 778                            struct dm_crypt_request *dmreq)
 779{
 780        struct scatterlist *sg;
 781        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 782        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 783        u8 *src;
 784        int r = 0;
 785
 786        /* Remove whitening from ciphertext */
 787        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 788                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 789                src = kmap_atomic(sg_page(sg));
 790                r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 791                kunmap_atomic(src);
 792        }
 793
 794        /* Calculate IV */
 795        memcpy(iv, tcw->iv_seed, cc->iv_size);
 796        crypto_xor(iv, (u8 *)&sector, 8);
 797        if (cc->iv_size > 8)
 798                crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 799
 800        return r;
 801}
 802
 803static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 804                             struct dm_crypt_request *dmreq)
 805{
 806        struct scatterlist *sg;
 807        u8 *dst;
 808        int r;
 809
 810        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 811                return 0;
 812
 813        /* Apply whitening on ciphertext */
 814        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 815        dst = kmap_atomic(sg_page(sg));
 816        r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 817        kunmap_atomic(dst);
 818
 819        return r;
 820}
 821
 822static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 823                                struct dm_crypt_request *dmreq)
 824{
 825        /* Used only for writes, there must be an additional space to store IV */
 826        get_random_bytes(iv, cc->iv_size);
 827        return 0;
 828}
 829
 830static const struct crypt_iv_operations crypt_iv_plain_ops = {
 831        .generator = crypt_iv_plain_gen
 832};
 833
 834static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 835        .generator = crypt_iv_plain64_gen
 836};
 837
 838static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 839        .ctr       = crypt_iv_essiv_ctr,
 840        .dtr       = crypt_iv_essiv_dtr,
 841        .init      = crypt_iv_essiv_init,
 842        .wipe      = crypt_iv_essiv_wipe,
 843        .generator = crypt_iv_essiv_gen
 844};
 845
 846static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 847        .ctr       = crypt_iv_benbi_ctr,
 848        .dtr       = crypt_iv_benbi_dtr,
 849        .generator = crypt_iv_benbi_gen
 850};
 851
 852static const struct crypt_iv_operations crypt_iv_null_ops = {
 853        .generator = crypt_iv_null_gen
 854};
 855
 856static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 857        .ctr       = crypt_iv_lmk_ctr,
 858        .dtr       = crypt_iv_lmk_dtr,
 859        .init      = crypt_iv_lmk_init,
 860        .wipe      = crypt_iv_lmk_wipe,
 861        .generator = crypt_iv_lmk_gen,
 862        .post      = crypt_iv_lmk_post
 863};
 864
 865static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 866        .ctr       = crypt_iv_tcw_ctr,
 867        .dtr       = crypt_iv_tcw_dtr,
 868        .init      = crypt_iv_tcw_init,
 869        .wipe      = crypt_iv_tcw_wipe,
 870        .generator = crypt_iv_tcw_gen,
 871        .post      = crypt_iv_tcw_post
 872};
 873
 874static struct crypt_iv_operations crypt_iv_random_ops = {
 875        .generator = crypt_iv_random_gen
 876};
 877
 878/*
 879 * Integrity extensions
 880 */
 881static bool crypt_integrity_aead(struct crypt_config *cc)
 882{
 883        return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
 884}
 885
 886static bool crypt_integrity_hmac(struct crypt_config *cc)
 887{
 888        return crypt_integrity_aead(cc) && cc->key_mac_size;
 889}
 890
 891/* Get sg containing data */
 892static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 893                                             struct scatterlist *sg)
 894{
 895        if (unlikely(crypt_integrity_aead(cc)))
 896                return &sg[2];
 897
 898        return sg;
 899}
 900
 901static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
 902{
 903        struct bio_integrity_payload *bip;
 904        unsigned int tag_len;
 905        int ret;
 906
 907        if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
 908                return 0;
 909
 910        bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
 911        if (IS_ERR(bip))
 912                return PTR_ERR(bip);
 913
 914        tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
 915
 916        bip->bip_iter.bi_size = tag_len;
 917        bip->bip_iter.bi_sector = io->cc->start + io->sector;
 918
 919        /* We own the metadata, do not let bio_free to release it */
 920        bip->bip_flags &= ~BIP_BLOCK_INTEGRITY;
 921
 922        ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
 923                                     tag_len, offset_in_page(io->integrity_metadata));
 924        if (unlikely(ret != tag_len))
 925                return -ENOMEM;
 926
 927        return 0;
 928}
 929
 930static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
 931{
 932#ifdef CONFIG_BLK_DEV_INTEGRITY
 933        struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
 934
 935        /* From now we require underlying device with our integrity profile */
 936        if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
 937                ti->error = "Integrity profile not supported.";
 938                return -EINVAL;
 939        }
 940
 941        if (bi->tag_size != cc->on_disk_tag_size ||
 942            bi->tuple_size != cc->on_disk_tag_size) {
 943                ti->error = "Integrity profile tag size mismatch.";
 944                return -EINVAL;
 945        }
 946        if (1 << bi->interval_exp != cc->sector_size) {
 947                ti->error = "Integrity profile sector size mismatch.";
 948                return -EINVAL;
 949        }
 950
 951        if (crypt_integrity_aead(cc)) {
 952                cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
 953                DMINFO("Integrity AEAD, tag size %u, IV size %u.",
 954                       cc->integrity_tag_size, cc->integrity_iv_size);
 955
 956                if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
 957                        ti->error = "Integrity AEAD auth tag size is not supported.";
 958                        return -EINVAL;
 959                }
 960        } else if (cc->integrity_iv_size)
 961                DMINFO("Additional per-sector space %u bytes for IV.",
 962                       cc->integrity_iv_size);
 963
 964        if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
 965                ti->error = "Not enough space for integrity tag in the profile.";
 966                return -EINVAL;
 967        }
 968
 969        return 0;
 970#else
 971        ti->error = "Integrity profile not supported.";
 972        return -EINVAL;
 973#endif
 974}
 975
 976static void crypt_convert_init(struct crypt_config *cc,
 977                               struct convert_context *ctx,
 978                               struct bio *bio_out, struct bio *bio_in,
 979                               sector_t sector)
 980{
 981        ctx->bio_in = bio_in;
 982        ctx->bio_out = bio_out;
 983        if (bio_in)
 984                ctx->iter_in = bio_in->bi_iter;
 985        if (bio_out)
 986                ctx->iter_out = bio_out->bi_iter;
 987        ctx->cc_sector = sector + cc->iv_offset;
 988        init_completion(&ctx->restart);
 989}
 990
 991static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 992                                             void *req)
 993{
 994        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 995}
 996
 997static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 998{
 999        return (void *)((char *)dmreq - cc->dmreq_start);
1000}
1001
1002static u8 *iv_of_dmreq(struct crypt_config *cc,
1003                       struct dm_crypt_request *dmreq)
1004{
1005        if (crypt_integrity_aead(cc))
1006                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1007                        crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1008        else
1009                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1010                        crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1011}
1012
1013static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1014                       struct dm_crypt_request *dmreq)
1015{
1016        return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1017}
1018
1019static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1020                       struct dm_crypt_request *dmreq)
1021{
1022        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1023        return (uint64_t*) ptr;
1024}
1025
1026static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1027                       struct dm_crypt_request *dmreq)
1028{
1029        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1030                  cc->iv_size + sizeof(uint64_t);
1031        return (unsigned int*)ptr;
1032}
1033
1034static void *tag_from_dmreq(struct crypt_config *cc,
1035                                struct dm_crypt_request *dmreq)
1036{
1037        struct convert_context *ctx = dmreq->ctx;
1038        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1039
1040        return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1041                cc->on_disk_tag_size];
1042}
1043
1044static void *iv_tag_from_dmreq(struct crypt_config *cc,
1045                               struct dm_crypt_request *dmreq)
1046{
1047        return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1048}
1049
1050static int crypt_convert_block_aead(struct crypt_config *cc,
1051                                     struct convert_context *ctx,
1052                                     struct aead_request *req,
1053                                     unsigned int tag_offset)
1054{
1055        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1056        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1057        struct dm_crypt_request *dmreq;
1058        u8 *iv, *org_iv, *tag_iv, *tag;
1059        uint64_t *sector;
1060        int r = 0;
1061
1062        BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1063
1064        /* Reject unexpected unaligned bio. */
1065        if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1066                return -EIO;
1067
1068        dmreq = dmreq_of_req(cc, req);
1069        dmreq->iv_sector = ctx->cc_sector;
1070        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1071                dmreq->iv_sector >>= cc->sector_shift;
1072        dmreq->ctx = ctx;
1073
1074        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1075
1076        sector = org_sector_of_dmreq(cc, dmreq);
1077        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1078
1079        iv = iv_of_dmreq(cc, dmreq);
1080        org_iv = org_iv_of_dmreq(cc, dmreq);
1081        tag = tag_from_dmreq(cc, dmreq);
1082        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1083
1084        /* AEAD request:
1085         *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1086         *  | (authenticated) | (auth+encryption) |              |
1087         *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1088         */
1089        sg_init_table(dmreq->sg_in, 4);
1090        sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1091        sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1092        sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1093        sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1094
1095        sg_init_table(dmreq->sg_out, 4);
1096        sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1097        sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1098        sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1099        sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1100
1101        if (cc->iv_gen_ops) {
1102                /* For READs use IV stored in integrity metadata */
1103                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1104                        memcpy(org_iv, tag_iv, cc->iv_size);
1105                } else {
1106                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1107                        if (r < 0)
1108                                return r;
1109                        /* Store generated IV in integrity metadata */
1110                        if (cc->integrity_iv_size)
1111                                memcpy(tag_iv, org_iv, cc->iv_size);
1112                }
1113                /* Working copy of IV, to be modified in crypto API */
1114                memcpy(iv, org_iv, cc->iv_size);
1115        }
1116
1117        aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1118        if (bio_data_dir(ctx->bio_in) == WRITE) {
1119                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1120                                       cc->sector_size, iv);
1121                r = crypto_aead_encrypt(req);
1122                if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1123                        memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1124                               cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1125        } else {
1126                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1127                                       cc->sector_size + cc->integrity_tag_size, iv);
1128                r = crypto_aead_decrypt(req);
1129        }
1130
1131        if (r == -EBADMSG)
1132                DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1133                            (unsigned long long)le64_to_cpu(*sector));
1134
1135        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1136                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1137
1138        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1139        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1140
1141        return r;
1142}
1143
1144static int crypt_convert_block_skcipher(struct crypt_config *cc,
1145                                        struct convert_context *ctx,
1146                                        struct skcipher_request *req,
1147                                        unsigned int tag_offset)
1148{
1149        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1150        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1151        struct scatterlist *sg_in, *sg_out;
1152        struct dm_crypt_request *dmreq;
1153        u8 *iv, *org_iv, *tag_iv;
1154        uint64_t *sector;
1155        int r = 0;
1156
1157        /* Reject unexpected unaligned bio. */
1158        if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1159                return -EIO;
1160
1161        dmreq = dmreq_of_req(cc, req);
1162        dmreq->iv_sector = ctx->cc_sector;
1163        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1164                dmreq->iv_sector >>= cc->sector_shift;
1165        dmreq->ctx = ctx;
1166
1167        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1168
1169        iv = iv_of_dmreq(cc, dmreq);
1170        org_iv = org_iv_of_dmreq(cc, dmreq);
1171        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1172
1173        sector = org_sector_of_dmreq(cc, dmreq);
1174        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1175
1176        /* For skcipher we use only the first sg item */
1177        sg_in  = &dmreq->sg_in[0];
1178        sg_out = &dmreq->sg_out[0];
1179
1180        sg_init_table(sg_in, 1);
1181        sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1182
1183        sg_init_table(sg_out, 1);
1184        sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1185
1186        if (cc->iv_gen_ops) {
1187                /* For READs use IV stored in integrity metadata */
1188                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1189                        memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1190                } else {
1191                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1192                        if (r < 0)
1193                                return r;
1194                        /* Store generated IV in integrity metadata */
1195                        if (cc->integrity_iv_size)
1196                                memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1197                }
1198                /* Working copy of IV, to be modified in crypto API */
1199                memcpy(iv, org_iv, cc->iv_size);
1200        }
1201
1202        skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1203
1204        if (bio_data_dir(ctx->bio_in) == WRITE)
1205                r = crypto_skcipher_encrypt(req);
1206        else
1207                r = crypto_skcipher_decrypt(req);
1208
1209        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1210                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1211
1212        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1213        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1214
1215        return r;
1216}
1217
1218static void kcryptd_async_done(struct crypto_async_request *async_req,
1219                               int error);
1220
1221static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1222                                     struct convert_context *ctx)
1223{
1224        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1225
1226        if (!ctx->r.req)
1227                ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1228
1229        skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1230
1231        /*
1232         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1233         * requests if driver request queue is full.
1234         */
1235        skcipher_request_set_callback(ctx->r.req,
1236            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1237            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1238}
1239
1240static void crypt_alloc_req_aead(struct crypt_config *cc,
1241                                 struct convert_context *ctx)
1242{
1243        if (!ctx->r.req_aead)
1244                ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1245
1246        aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1247
1248        /*
1249         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1250         * requests if driver request queue is full.
1251         */
1252        aead_request_set_callback(ctx->r.req_aead,
1253            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1254            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1255}
1256
1257static void crypt_alloc_req(struct crypt_config *cc,
1258                            struct convert_context *ctx)
1259{
1260        if (crypt_integrity_aead(cc))
1261                crypt_alloc_req_aead(cc, ctx);
1262        else
1263                crypt_alloc_req_skcipher(cc, ctx);
1264}
1265
1266static void crypt_free_req_skcipher(struct crypt_config *cc,
1267                                    struct skcipher_request *req, struct bio *base_bio)
1268{
1269        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1270
1271        if ((struct skcipher_request *)(io + 1) != req)
1272                mempool_free(req, cc->req_pool);
1273}
1274
1275static void crypt_free_req_aead(struct crypt_config *cc,
1276                                struct aead_request *req, struct bio *base_bio)
1277{
1278        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1279
1280        if ((struct aead_request *)(io + 1) != req)
1281                mempool_free(req, cc->req_pool);
1282}
1283
1284static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1285{
1286        if (crypt_integrity_aead(cc))
1287                crypt_free_req_aead(cc, req, base_bio);
1288        else
1289                crypt_free_req_skcipher(cc, req, base_bio);
1290}
1291
1292/*
1293 * Encrypt / decrypt data from one bio to another one (can be the same one)
1294 */
1295static int crypt_convert(struct crypt_config *cc,
1296                         struct convert_context *ctx)
1297{
1298        unsigned int tag_offset = 0;
1299        unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1300        int r;
1301
1302        atomic_set(&ctx->cc_pending, 1);
1303
1304        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1305
1306                crypt_alloc_req(cc, ctx);
1307                atomic_inc(&ctx->cc_pending);
1308
1309                if (crypt_integrity_aead(cc))
1310                        r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1311                else
1312                        r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1313
1314                switch (r) {
1315                /*
1316                 * The request was queued by a crypto driver
1317                 * but the driver request queue is full, let's wait.
1318                 */
1319                case -EBUSY:
1320                        wait_for_completion(&ctx->restart);
1321                        reinit_completion(&ctx->restart);
1322                        /* fall through */
1323                /*
1324                 * The request is queued and processed asynchronously,
1325                 * completion function kcryptd_async_done() will be called.
1326                 */
1327                case -EINPROGRESS:
1328                        ctx->r.req = NULL;
1329                        ctx->cc_sector += sector_step;
1330                        tag_offset++;
1331                        continue;
1332                /*
1333                 * The request was already processed (synchronously).
1334                 */
1335                case 0:
1336                        atomic_dec(&ctx->cc_pending);
1337                        ctx->cc_sector += sector_step;
1338                        tag_offset++;
1339                        cond_resched();
1340                        continue;
1341                /*
1342                 * There was a data integrity error.
1343                 */
1344                case -EBADMSG:
1345                        atomic_dec(&ctx->cc_pending);
1346                        return -EILSEQ;
1347                /*
1348                 * There was an error while processing the request.
1349                 */
1350                default:
1351                        atomic_dec(&ctx->cc_pending);
1352                        return -EIO;
1353                }
1354        }
1355
1356        return 0;
1357}
1358
1359static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1360
1361/*
1362 * Generate a new unfragmented bio with the given size
1363 * This should never violate the device limitations (but only because
1364 * max_segment_size is being constrained to PAGE_SIZE).
1365 *
1366 * This function may be called concurrently. If we allocate from the mempool
1367 * concurrently, there is a possibility of deadlock. For example, if we have
1368 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1369 * the mempool concurrently, it may deadlock in a situation where both processes
1370 * have allocated 128 pages and the mempool is exhausted.
1371 *
1372 * In order to avoid this scenario we allocate the pages under a mutex.
1373 *
1374 * In order to not degrade performance with excessive locking, we try
1375 * non-blocking allocations without a mutex first but on failure we fallback
1376 * to blocking allocations with a mutex.
1377 */
1378static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1379{
1380        struct crypt_config *cc = io->cc;
1381        struct bio *clone;
1382        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1383        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1384        unsigned i, len, remaining_size;
1385        struct page *page;
1386
1387retry:
1388        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1389                mutex_lock(&cc->bio_alloc_lock);
1390
1391        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1392        if (!clone)
1393                goto out;
1394
1395        clone_init(io, clone);
1396
1397        remaining_size = size;
1398
1399        for (i = 0; i < nr_iovecs; i++) {
1400                page = mempool_alloc(cc->page_pool, gfp_mask);
1401                if (!page) {
1402                        crypt_free_buffer_pages(cc, clone);
1403                        bio_put(clone);
1404                        gfp_mask |= __GFP_DIRECT_RECLAIM;
1405                        goto retry;
1406                }
1407
1408                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1409
1410                bio_add_page(clone, page, len, 0);
1411
1412                remaining_size -= len;
1413        }
1414
1415        /* Allocate space for integrity tags */
1416        if (dm_crypt_integrity_io_alloc(io, clone)) {
1417                crypt_free_buffer_pages(cc, clone);
1418                bio_put(clone);
1419                clone = NULL;
1420        }
1421out:
1422        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1423                mutex_unlock(&cc->bio_alloc_lock);
1424
1425        return clone;
1426}
1427
1428static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1429{
1430        unsigned int i;
1431        struct bio_vec *bv;
1432
1433        bio_for_each_segment_all(bv, clone, i) {
1434                BUG_ON(!bv->bv_page);
1435                mempool_free(bv->bv_page, cc->page_pool);
1436                bv->bv_page = NULL;
1437        }
1438}
1439
1440static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1441                          struct bio *bio, sector_t sector)
1442{
1443        io->cc = cc;
1444        io->base_bio = bio;
1445        io->sector = sector;
1446        io->error = 0;
1447        io->ctx.r.req = NULL;
1448        io->integrity_metadata = NULL;
1449        io->integrity_metadata_from_pool = false;
1450        atomic_set(&io->io_pending, 0);
1451}
1452
1453static void crypt_inc_pending(struct dm_crypt_io *io)
1454{
1455        atomic_inc(&io->io_pending);
1456}
1457
1458/*
1459 * One of the bios was finished. Check for completion of
1460 * the whole request and correctly clean up the buffer.
1461 */
1462static void crypt_dec_pending(struct dm_crypt_io *io)
1463{
1464        struct crypt_config *cc = io->cc;
1465        struct bio *base_bio = io->base_bio;
1466        int error = io->error;
1467
1468        if (!atomic_dec_and_test(&io->io_pending))
1469                return;
1470
1471        if (io->ctx.r.req)
1472                crypt_free_req(cc, io->ctx.r.req, base_bio);
1473
1474        if (unlikely(io->integrity_metadata_from_pool))
1475                mempool_free(io->integrity_metadata, io->cc->tag_pool);
1476        else
1477                kfree(io->integrity_metadata);
1478
1479        base_bio->bi_error = error;
1480        bio_endio(base_bio);
1481}
1482
1483/*
1484 * kcryptd/kcryptd_io:
1485 *
1486 * Needed because it would be very unwise to do decryption in an
1487 * interrupt context.
1488 *
1489 * kcryptd performs the actual encryption or decryption.
1490 *
1491 * kcryptd_io performs the IO submission.
1492 *
1493 * They must be separated as otherwise the final stages could be
1494 * starved by new requests which can block in the first stages due
1495 * to memory allocation.
1496 *
1497 * The work is done per CPU global for all dm-crypt instances.
1498 * They should not depend on each other and do not block.
1499 */
1500static void crypt_endio(struct bio *clone)
1501{
1502        struct dm_crypt_io *io = clone->bi_private;
1503        struct crypt_config *cc = io->cc;
1504        unsigned rw = bio_data_dir(clone);
1505        int error;
1506
1507        /*
1508         * free the processed pages
1509         */
1510        if (rw == WRITE)
1511                crypt_free_buffer_pages(cc, clone);
1512
1513        error = clone->bi_error;
1514        bio_put(clone);
1515
1516        if (rw == READ && !error) {
1517                kcryptd_queue_crypt(io);
1518                return;
1519        }
1520
1521        if (unlikely(error))
1522                io->error = error;
1523
1524        crypt_dec_pending(io);
1525}
1526
1527static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1528{
1529        struct crypt_config *cc = io->cc;
1530
1531        clone->bi_private = io;
1532        clone->bi_end_io  = crypt_endio;
1533        clone->bi_bdev    = cc->dev->bdev;
1534        clone->bi_opf     = io->base_bio->bi_opf;
1535}
1536
1537static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1538{
1539        struct crypt_config *cc = io->cc;
1540        struct bio *clone;
1541
1542        /*
1543         * We need the original biovec array in order to decrypt
1544         * the whole bio data *afterwards* -- thanks to immutable
1545         * biovecs we don't need to worry about the block layer
1546         * modifying the biovec array; so leverage bio_clone_fast().
1547         */
1548        clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1549        if (!clone)
1550                return 1;
1551
1552        crypt_inc_pending(io);
1553
1554        clone_init(io, clone);
1555        clone->bi_iter.bi_sector = cc->start + io->sector;
1556
1557        if (dm_crypt_integrity_io_alloc(io, clone)) {
1558                crypt_dec_pending(io);
1559                bio_put(clone);
1560                return 1;
1561        }
1562
1563        generic_make_request(clone);
1564        return 0;
1565}
1566
1567static void kcryptd_io_read_work(struct work_struct *work)
1568{
1569        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1570
1571        crypt_inc_pending(io);
1572        if (kcryptd_io_read(io, GFP_NOIO))
1573                io->error = -ENOMEM;
1574        crypt_dec_pending(io);
1575}
1576
1577static void kcryptd_queue_read(struct dm_crypt_io *io)
1578{
1579        struct crypt_config *cc = io->cc;
1580
1581        INIT_WORK(&io->work, kcryptd_io_read_work);
1582        queue_work(cc->io_queue, &io->work);
1583}
1584
1585static void kcryptd_io_write(struct dm_crypt_io *io)
1586{
1587        struct bio *clone = io->ctx.bio_out;
1588
1589        generic_make_request(clone);
1590}
1591
1592#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1593
1594static int dmcrypt_write(void *data)
1595{
1596        struct crypt_config *cc = data;
1597        struct dm_crypt_io *io;
1598
1599        while (1) {
1600                struct rb_root write_tree;
1601                struct blk_plug plug;
1602
1603                DECLARE_WAITQUEUE(wait, current);
1604
1605                spin_lock_irq(&cc->write_thread_wait.lock);
1606continue_locked:
1607
1608                if (!RB_EMPTY_ROOT(&cc->write_tree))
1609                        goto pop_from_list;
1610
1611                set_current_state(TASK_INTERRUPTIBLE);
1612                __add_wait_queue(&cc->write_thread_wait, &wait);
1613
1614                spin_unlock_irq(&cc->write_thread_wait.lock);
1615
1616                if (unlikely(kthread_should_stop())) {
1617                        set_current_state(TASK_RUNNING);
1618                        remove_wait_queue(&cc->write_thread_wait, &wait);
1619                        break;
1620                }
1621
1622                schedule();
1623
1624                set_current_state(TASK_RUNNING);
1625                spin_lock_irq(&cc->write_thread_wait.lock);
1626                __remove_wait_queue(&cc->write_thread_wait, &wait);
1627                goto continue_locked;
1628
1629pop_from_list:
1630                write_tree = cc->write_tree;
1631                cc->write_tree = RB_ROOT;
1632                spin_unlock_irq(&cc->write_thread_wait.lock);
1633
1634                BUG_ON(rb_parent(write_tree.rb_node));
1635
1636                /*
1637                 * Note: we cannot walk the tree here with rb_next because
1638                 * the structures may be freed when kcryptd_io_write is called.
1639                 */
1640                blk_start_plug(&plug);
1641                do {
1642                        io = crypt_io_from_node(rb_first(&write_tree));
1643                        rb_erase(&io->rb_node, &write_tree);
1644                        kcryptd_io_write(io);
1645                } while (!RB_EMPTY_ROOT(&write_tree));
1646                blk_finish_plug(&plug);
1647        }
1648        return 0;
1649}
1650
1651static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1652{
1653        struct bio *clone = io->ctx.bio_out;
1654        struct crypt_config *cc = io->cc;
1655        unsigned long flags;
1656        sector_t sector;
1657        struct rb_node **rbp, *parent;
1658
1659        if (unlikely(io->error < 0)) {
1660                crypt_free_buffer_pages(cc, clone);
1661                bio_put(clone);
1662                crypt_dec_pending(io);
1663                return;
1664        }
1665
1666        /* crypt_convert should have filled the clone bio */
1667        BUG_ON(io->ctx.iter_out.bi_size);
1668
1669        clone->bi_iter.bi_sector = cc->start + io->sector;
1670
1671        if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1672                generic_make_request(clone);
1673                return;
1674        }
1675
1676        spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1677        rbp = &cc->write_tree.rb_node;
1678        parent = NULL;
1679        sector = io->sector;
1680        while (*rbp) {
1681                parent = *rbp;
1682                if (sector < crypt_io_from_node(parent)->sector)
1683                        rbp = &(*rbp)->rb_left;
1684                else
1685                        rbp = &(*rbp)->rb_right;
1686        }
1687        rb_link_node(&io->rb_node, parent, rbp);
1688        rb_insert_color(&io->rb_node, &cc->write_tree);
1689
1690        wake_up_locked(&cc->write_thread_wait);
1691        spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1692}
1693
1694static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1695{
1696        struct crypt_config *cc = io->cc;
1697        struct bio *clone;
1698        int crypt_finished;
1699        sector_t sector = io->sector;
1700        int r;
1701
1702        /*
1703         * Prevent io from disappearing until this function completes.
1704         */
1705        crypt_inc_pending(io);
1706        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1707
1708        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1709        if (unlikely(!clone)) {
1710                io->error = -EIO;
1711                goto dec;
1712        }
1713
1714        io->ctx.bio_out = clone;
1715        io->ctx.iter_out = clone->bi_iter;
1716
1717        sector += bio_sectors(clone);
1718
1719        crypt_inc_pending(io);
1720        r = crypt_convert(cc, &io->ctx);
1721        if (r < 0)
1722                io->error = r;
1723        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1724
1725        /* Encryption was already finished, submit io now */
1726        if (crypt_finished) {
1727                kcryptd_crypt_write_io_submit(io, 0);
1728                io->sector = sector;
1729        }
1730
1731dec:
1732        crypt_dec_pending(io);
1733}
1734
1735static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1736{
1737        crypt_dec_pending(io);
1738}
1739
1740static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1741{
1742        struct crypt_config *cc = io->cc;
1743        int r = 0;
1744
1745        crypt_inc_pending(io);
1746
1747        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1748                           io->sector);
1749
1750        r = crypt_convert(cc, &io->ctx);
1751        if (r < 0)
1752                io->error = r;
1753
1754        if (atomic_dec_and_test(&io->ctx.cc_pending))
1755                kcryptd_crypt_read_done(io);
1756
1757        crypt_dec_pending(io);
1758}
1759
1760static void kcryptd_async_done(struct crypto_async_request *async_req,
1761                               int error)
1762{
1763        struct dm_crypt_request *dmreq = async_req->data;
1764        struct convert_context *ctx = dmreq->ctx;
1765        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1766        struct crypt_config *cc = io->cc;
1767
1768        /*
1769         * A request from crypto driver backlog is going to be processed now,
1770         * finish the completion and continue in crypt_convert().
1771         * (Callback will be called for the second time for this request.)
1772         */
1773        if (error == -EINPROGRESS) {
1774                complete(&ctx->restart);
1775                return;
1776        }
1777
1778        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1779                error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1780
1781        if (error == -EBADMSG) {
1782                DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1783                            (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1784                io->error = -EILSEQ;
1785        } else if (error < 0)
1786                io->error = -EIO;
1787
1788        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1789
1790        if (!atomic_dec_and_test(&ctx->cc_pending))
1791                return;
1792
1793        if (bio_data_dir(io->base_bio) == READ)
1794                kcryptd_crypt_read_done(io);
1795        else
1796                kcryptd_crypt_write_io_submit(io, 1);
1797}
1798
1799static void kcryptd_crypt(struct work_struct *work)
1800{
1801        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1802
1803        if (bio_data_dir(io->base_bio) == READ)
1804                kcryptd_crypt_read_convert(io);
1805        else
1806                kcryptd_crypt_write_convert(io);
1807}
1808
1809static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1810{
1811        struct crypt_config *cc = io->cc;
1812
1813        INIT_WORK(&io->work, kcryptd_crypt);
1814        queue_work(cc->crypt_queue, &io->work);
1815}
1816
1817static void crypt_free_tfms_aead(struct crypt_config *cc)
1818{
1819        if (!cc->cipher_tfm.tfms_aead)
1820                return;
1821
1822        if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1823                crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1824                cc->cipher_tfm.tfms_aead[0] = NULL;
1825        }
1826
1827        kfree(cc->cipher_tfm.tfms_aead);
1828        cc->cipher_tfm.tfms_aead = NULL;
1829}
1830
1831static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1832{
1833        unsigned i;
1834
1835        if (!cc->cipher_tfm.tfms)
1836                return;
1837
1838        for (i = 0; i < cc->tfms_count; i++)
1839                if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1840                        crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1841                        cc->cipher_tfm.tfms[i] = NULL;
1842                }
1843
1844        kfree(cc->cipher_tfm.tfms);
1845        cc->cipher_tfm.tfms = NULL;
1846}
1847
1848static void crypt_free_tfms(struct crypt_config *cc)
1849{
1850        if (crypt_integrity_aead(cc))
1851                crypt_free_tfms_aead(cc);
1852        else
1853                crypt_free_tfms_skcipher(cc);
1854}
1855
1856static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1857{
1858        unsigned i;
1859        int err;
1860
1861        cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1862                                      sizeof(struct crypto_skcipher *), GFP_KERNEL);
1863        if (!cc->cipher_tfm.tfms)
1864                return -ENOMEM;
1865
1866        for (i = 0; i < cc->tfms_count; i++) {
1867                cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1868                if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1869                        err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1870                        crypt_free_tfms(cc);
1871                        return err;
1872                }
1873        }
1874
1875        return 0;
1876}
1877
1878static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1879{
1880        int err;
1881
1882        cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1883        if (!cc->cipher_tfm.tfms)
1884                return -ENOMEM;
1885
1886        cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1887        if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1888                err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1889                crypt_free_tfms(cc);
1890                return err;
1891        }
1892
1893        return 0;
1894}
1895
1896static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1897{
1898        if (crypt_integrity_aead(cc))
1899                return crypt_alloc_tfms_aead(cc, ciphermode);
1900        else
1901                return crypt_alloc_tfms_skcipher(cc, ciphermode);
1902}
1903
1904static unsigned crypt_subkey_size(struct crypt_config *cc)
1905{
1906        return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1907}
1908
1909static unsigned crypt_authenckey_size(struct crypt_config *cc)
1910{
1911        return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1912}
1913
1914/*
1915 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1916 * the key must be for some reason in special format.
1917 * This funcion converts cc->key to this special format.
1918 */
1919static void crypt_copy_authenckey(char *p, const void *key,
1920                                  unsigned enckeylen, unsigned authkeylen)
1921{
1922        struct crypto_authenc_key_param *param;
1923        struct rtattr *rta;
1924
1925        rta = (struct rtattr *)p;
1926        param = RTA_DATA(rta);
1927        param->enckeylen = cpu_to_be32(enckeylen);
1928        rta->rta_len = RTA_LENGTH(sizeof(*param));
1929        rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1930        p += RTA_SPACE(sizeof(*param));
1931        memcpy(p, key + enckeylen, authkeylen);
1932        p += authkeylen;
1933        memcpy(p, key, enckeylen);
1934}
1935
1936static int crypt_setkey(struct crypt_config *cc)
1937{
1938        unsigned subkey_size;
1939        int err = 0, i, r;
1940
1941        /* Ignore extra keys (which are used for IV etc) */
1942        subkey_size = crypt_subkey_size(cc);
1943
1944        if (crypt_integrity_hmac(cc))
1945                crypt_copy_authenckey(cc->authenc_key, cc->key,
1946                                      subkey_size - cc->key_mac_size,
1947                                      cc->key_mac_size);
1948        for (i = 0; i < cc->tfms_count; i++) {
1949                if (crypt_integrity_hmac(cc))
1950                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1951                                cc->authenc_key, crypt_authenckey_size(cc));
1952                else if (crypt_integrity_aead(cc))
1953                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1954                                               cc->key + (i * subkey_size),
1955                                               subkey_size);
1956                else
1957                        r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1958                                                   cc->key + (i * subkey_size),
1959                                                   subkey_size);
1960                if (r)
1961                        err = r;
1962        }
1963
1964        if (crypt_integrity_hmac(cc))
1965                memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1966
1967        return err;
1968}
1969
1970#ifdef CONFIG_KEYS
1971
1972static bool contains_whitespace(const char *str)
1973{
1974        while (*str)
1975                if (isspace(*str++))
1976                        return true;
1977        return false;
1978}
1979
1980static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1981{
1982        char *new_key_string, *key_desc;
1983        int ret;
1984        struct key *key;
1985        const struct user_key_payload *ukp;
1986
1987        /*
1988         * Reject key_string with whitespace. dm core currently lacks code for
1989         * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1990         */
1991        if (contains_whitespace(key_string)) {
1992                DMERR("whitespace chars not allowed in key string");
1993                return -EINVAL;
1994        }
1995
1996        /* look for next ':' separating key_type from key_description */
1997        key_desc = strpbrk(key_string, ":");
1998        if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1999                return -EINVAL;
2000
2001        if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2002            strncmp(key_string, "user:", key_desc - key_string + 1))
2003                return -EINVAL;
2004
2005        new_key_string = kstrdup(key_string, GFP_KERNEL);
2006        if (!new_key_string)
2007                return -ENOMEM;
2008
2009        key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2010                          key_desc + 1, NULL);
2011        if (IS_ERR(key)) {
2012                kzfree(new_key_string);
2013                return PTR_ERR(key);
2014        }
2015
2016        down_read(&key->sem);
2017
2018        ukp = user_key_payload_locked(key);
2019        if (!ukp) {
2020                up_read(&key->sem);
2021                key_put(key);
2022                kzfree(new_key_string);
2023                return -EKEYREVOKED;
2024        }
2025
2026        if (cc->key_size != ukp->datalen) {
2027                up_read(&key->sem);
2028                key_put(key);
2029                kzfree(new_key_string);
2030                return -EINVAL;
2031        }
2032
2033        memcpy(cc->key, ukp->data, cc->key_size);
2034
2035        up_read(&key->sem);
2036        key_put(key);
2037
2038        /* clear the flag since following operations may invalidate previously valid key */
2039        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2040
2041        ret = crypt_setkey(cc);
2042
2043        /* wipe the kernel key payload copy in each case */
2044        memset(cc->key, 0, cc->key_size * sizeof(u8));
2045
2046        if (!ret) {
2047                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2048                kzfree(cc->key_string);
2049                cc->key_string = new_key_string;
2050        } else
2051                kzfree(new_key_string);
2052
2053        return ret;
2054}
2055
2056static int get_key_size(char **key_string)
2057{
2058        char *colon, dummy;
2059        int ret;
2060
2061        if (*key_string[0] != ':')
2062                return strlen(*key_string) >> 1;
2063
2064        /* look for next ':' in key string */
2065        colon = strpbrk(*key_string + 1, ":");
2066        if (!colon)
2067                return -EINVAL;
2068
2069        if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2070                return -EINVAL;
2071
2072        *key_string = colon;
2073
2074        /* remaining key string should be :<logon|user>:<key_desc> */
2075
2076        return ret;
2077}
2078
2079#else
2080
2081static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2082{
2083        return -EINVAL;
2084}
2085
2086static int get_key_size(char **key_string)
2087{
2088        return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2089}
2090
2091#endif
2092
2093static int crypt_set_key(struct crypt_config *cc, char *key)
2094{
2095        int r = -EINVAL;
2096        int key_string_len = strlen(key);
2097
2098        /* Hyphen (which gives a key_size of zero) means there is no key. */
2099        if (!cc->key_size && strcmp(key, "-"))
2100                goto out;
2101
2102        /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2103        if (key[0] == ':') {
2104                r = crypt_set_keyring_key(cc, key + 1);
2105                goto out;
2106        }
2107
2108        /* clear the flag since following operations may invalidate previously valid key */
2109        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2110
2111        /* wipe references to any kernel keyring key */
2112        kzfree(cc->key_string);
2113        cc->key_string = NULL;
2114
2115        /* Decode key from its hex representation. */
2116        if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2117                goto out;
2118
2119        r = crypt_setkey(cc);
2120        if (!r)
2121                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2122
2123out:
2124        /* Hex key string not needed after here, so wipe it. */
2125        memset(key, '0', key_string_len);
2126
2127        return r;
2128}
2129
2130static int crypt_wipe_key(struct crypt_config *cc)
2131{
2132        int r;
2133
2134        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2135        get_random_bytes(&cc->key, cc->key_size);
2136        kzfree(cc->key_string);
2137        cc->key_string = NULL;
2138        r = crypt_setkey(cc);
2139        memset(&cc->key, 0, cc->key_size * sizeof(u8));
2140
2141        return r;
2142}
2143
2144static void crypt_dtr(struct dm_target *ti)
2145{
2146        struct crypt_config *cc = ti->private;
2147
2148        ti->private = NULL;
2149
2150        if (!cc)
2151                return;
2152
2153        if (cc->write_thread)
2154                kthread_stop(cc->write_thread);
2155
2156        if (cc->io_queue)
2157                destroy_workqueue(cc->io_queue);
2158        if (cc->crypt_queue)
2159                destroy_workqueue(cc->crypt_queue);
2160
2161        crypt_free_tfms(cc);
2162
2163        if (cc->bs)
2164                bioset_free(cc->bs);
2165
2166        mempool_destroy(cc->page_pool);
2167        mempool_destroy(cc->req_pool);
2168        mempool_destroy(cc->tag_pool);
2169
2170        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2171                cc->iv_gen_ops->dtr(cc);
2172
2173        if (cc->dev)
2174                dm_put_device(ti, cc->dev);
2175
2176        kzfree(cc->cipher);
2177        kzfree(cc->cipher_string);
2178        kzfree(cc->key_string);
2179        kzfree(cc->cipher_auth);
2180        kzfree(cc->authenc_key);
2181
2182        /* Must zero key material before freeing */
2183        kzfree(cc);
2184}
2185
2186static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2187{
2188        struct crypt_config *cc = ti->private;
2189
2190        if (crypt_integrity_aead(cc))
2191                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2192        else
2193                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2194
2195        if (cc->iv_size)
2196                /* at least a 64 bit sector number should fit in our buffer */
2197                cc->iv_size = max(cc->iv_size,
2198                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
2199        else if (ivmode) {
2200                DMWARN("Selected cipher does not support IVs");
2201                ivmode = NULL;
2202        }
2203
2204        /* Choose ivmode, see comments at iv code. */
2205        if (ivmode == NULL)
2206                cc->iv_gen_ops = NULL;
2207        else if (strcmp(ivmode, "plain") == 0)
2208                cc->iv_gen_ops = &crypt_iv_plain_ops;
2209        else if (strcmp(ivmode, "plain64") == 0)
2210                cc->iv_gen_ops = &crypt_iv_plain64_ops;
2211        else if (strcmp(ivmode, "essiv") == 0)
2212                cc->iv_gen_ops = &crypt_iv_essiv_ops;
2213        else if (strcmp(ivmode, "benbi") == 0)
2214                cc->iv_gen_ops = &crypt_iv_benbi_ops;
2215        else if (strcmp(ivmode, "null") == 0)
2216                cc->iv_gen_ops = &crypt_iv_null_ops;
2217        else if (strcmp(ivmode, "lmk") == 0) {
2218                cc->iv_gen_ops = &crypt_iv_lmk_ops;
2219                /*
2220                 * Version 2 and 3 is recognised according
2221                 * to length of provided multi-key string.
2222                 * If present (version 3), last key is used as IV seed.
2223                 * All keys (including IV seed) are always the same size.
2224                 */
2225                if (cc->key_size % cc->key_parts) {
2226                        cc->key_parts++;
2227                        cc->key_extra_size = cc->key_size / cc->key_parts;
2228                }
2229        } else if (strcmp(ivmode, "tcw") == 0) {
2230                cc->iv_gen_ops = &crypt_iv_tcw_ops;
2231                cc->key_parts += 2; /* IV + whitening */
2232                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2233        } else if (strcmp(ivmode, "random") == 0) {
2234                cc->iv_gen_ops = &crypt_iv_random_ops;
2235                /* Need storage space in integrity fields. */
2236                cc->integrity_iv_size = cc->iv_size;
2237        } else {
2238                ti->error = "Invalid IV mode";
2239                return -EINVAL;
2240        }
2241
2242        return 0;
2243}
2244
2245/*
2246 * Workaround to parse cipher algorithm from crypto API spec.
2247 * The cc->cipher is currently used only in ESSIV.
2248 * This should be probably done by crypto-api calls (once available...)
2249 */
2250static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2251{
2252        const char *alg_name = NULL;
2253        char *start, *end;
2254
2255        if (crypt_integrity_aead(cc)) {
2256                alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2257                if (!alg_name)
2258                        return -EINVAL;
2259                if (crypt_integrity_hmac(cc)) {
2260                        alg_name = strchr(alg_name, ',');
2261                        if (!alg_name)
2262                                return -EINVAL;
2263                }
2264                alg_name++;
2265        } else {
2266                alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2267                if (!alg_name)
2268                        return -EINVAL;
2269        }
2270
2271        start = strchr(alg_name, '(');
2272        end = strchr(alg_name, ')');
2273
2274        if (!start && !end) {
2275                cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2276                return cc->cipher ? 0 : -ENOMEM;
2277        }
2278
2279        if (!start || !end || ++start >= end)
2280                return -EINVAL;
2281
2282        cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2283        if (!cc->cipher)
2284                return -ENOMEM;
2285
2286        strncpy(cc->cipher, start, end - start);
2287
2288        return 0;
2289}
2290
2291/*
2292 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2293 * The HMAC is needed to calculate tag size (HMAC digest size).
2294 * This should be probably done by crypto-api calls (once available...)
2295 */
2296static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2297{
2298        char *start, *end, *mac_alg = NULL;
2299        struct crypto_ahash *mac;
2300
2301        if (!strstarts(cipher_api, "authenc("))
2302                return 0;
2303
2304        start = strchr(cipher_api, '(');
2305        end = strchr(cipher_api, ',');
2306        if (!start || !end || ++start > end)
2307                return -EINVAL;
2308
2309        mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2310        if (!mac_alg)
2311                return -ENOMEM;
2312        strncpy(mac_alg, start, end - start);
2313
2314        mac = crypto_alloc_ahash(mac_alg, 0, 0);
2315        kfree(mac_alg);
2316
2317        if (IS_ERR(mac))
2318                return PTR_ERR(mac);
2319
2320        cc->key_mac_size = crypto_ahash_digestsize(mac);
2321        crypto_free_ahash(mac);
2322
2323        cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2324        if (!cc->authenc_key)
2325                return -ENOMEM;
2326
2327        return 0;
2328}
2329
2330static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2331                                char **ivmode, char **ivopts)
2332{
2333        struct crypt_config *cc = ti->private;
2334        char *tmp, *cipher_api;
2335        int ret = -EINVAL;
2336
2337        cc->tfms_count = 1;
2338
2339        /*
2340         * New format (capi: prefix)
2341         * capi:cipher_api_spec-iv:ivopts
2342         */
2343        tmp = &cipher_in[strlen("capi:")];
2344        cipher_api = strsep(&tmp, "-");
2345        *ivmode = strsep(&tmp, ":");
2346        *ivopts = tmp;
2347
2348        if (*ivmode && !strcmp(*ivmode, "lmk"))
2349                cc->tfms_count = 64;
2350
2351        cc->key_parts = cc->tfms_count;
2352
2353        /* Allocate cipher */
2354        ret = crypt_alloc_tfms(cc, cipher_api);
2355        if (ret < 0) {
2356                ti->error = "Error allocating crypto tfm";
2357                return ret;
2358        }
2359
2360        /* Alloc AEAD, can be used only in new format. */
2361        if (crypt_integrity_aead(cc)) {
2362                ret = crypt_ctr_auth_cipher(cc, cipher_api);
2363                if (ret < 0) {
2364                        ti->error = "Invalid AEAD cipher spec";
2365                        return -ENOMEM;
2366                }
2367                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2368        } else
2369                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2370
2371        ret = crypt_ctr_blkdev_cipher(cc);
2372        if (ret < 0) {
2373                ti->error = "Cannot allocate cipher string";
2374                return -ENOMEM;
2375        }
2376
2377        return 0;
2378}
2379
2380static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2381                                char **ivmode, char **ivopts)
2382{
2383        struct crypt_config *cc = ti->private;
2384        char *tmp, *cipher, *chainmode, *keycount;
2385        char *cipher_api = NULL;
2386        int ret = -EINVAL;
2387        char dummy;
2388
2389        if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2390                ti->error = "Bad cipher specification";
2391                return -EINVAL;
2392        }
2393
2394        /*
2395         * Legacy dm-crypt cipher specification
2396         * cipher[:keycount]-mode-iv:ivopts
2397         */
2398        tmp = cipher_in;
2399        keycount = strsep(&tmp, "-");
2400        cipher = strsep(&keycount, ":");
2401
2402        if (!keycount)
2403                cc->tfms_count = 1;
2404        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2405                 !is_power_of_2(cc->tfms_count)) {
2406                ti->error = "Bad cipher key count specification";
2407                return -EINVAL;
2408        }
2409        cc->key_parts = cc->tfms_count;
2410
2411        cc->cipher = kstrdup(cipher, GFP_KERNEL);
2412        if (!cc->cipher)
2413                goto bad_mem;
2414
2415        chainmode = strsep(&tmp, "-");
2416        *ivopts = strsep(&tmp, "-");
2417        *ivmode = strsep(&*ivopts, ":");
2418
2419        if (tmp)
2420                DMWARN("Ignoring unexpected additional cipher options");
2421
2422        /*
2423         * For compatibility with the original dm-crypt mapping format, if
2424         * only the cipher name is supplied, use cbc-plain.
2425         */
2426        if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2427                chainmode = "cbc";
2428                *ivmode = "plain";
2429        }
2430
2431        if (strcmp(chainmode, "ecb") && !*ivmode) {
2432                ti->error = "IV mechanism required";
2433                return -EINVAL;
2434        }
2435
2436        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2437        if (!cipher_api)
2438                goto bad_mem;
2439
2440        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2441                       "%s(%s)", chainmode, cipher);
2442        if (ret < 0) {
2443                kfree(cipher_api);
2444                goto bad_mem;
2445        }
2446
2447        /* Allocate cipher */
2448        ret = crypt_alloc_tfms(cc, cipher_api);
2449        if (ret < 0) {
2450                ti->error = "Error allocating crypto tfm";
2451                kfree(cipher_api);
2452                return ret;
2453        }
2454
2455        return 0;
2456bad_mem:
2457        ti->error = "Cannot allocate cipher strings";
2458        return -ENOMEM;
2459}
2460
2461static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2462{
2463        struct crypt_config *cc = ti->private;
2464        char *ivmode = NULL, *ivopts = NULL;
2465        int ret;
2466
2467        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2468        if (!cc->cipher_string) {
2469                ti->error = "Cannot allocate cipher strings";
2470                return -ENOMEM;
2471        }
2472
2473        if (strstarts(cipher_in, "capi:"))
2474                ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2475        else
2476                ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2477        if (ret)
2478                return ret;
2479
2480        /* Initialize IV */
2481        ret = crypt_ctr_ivmode(ti, ivmode);
2482        if (ret < 0)
2483                return ret;
2484
2485        /* Initialize and set key */
2486        ret = crypt_set_key(cc, key);
2487        if (ret < 0) {
2488                ti->error = "Error decoding and setting key";
2489                return ret;
2490        }
2491
2492        /* Allocate IV */
2493        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2494                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2495                if (ret < 0) {
2496                        ti->error = "Error creating IV";
2497                        return ret;
2498                }
2499        }
2500
2501        /* Initialize IV (set keys for ESSIV etc) */
2502        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2503                ret = cc->iv_gen_ops->init(cc);
2504                if (ret < 0) {
2505                        ti->error = "Error initialising IV";
2506                        return ret;
2507                }
2508        }
2509
2510        return ret;
2511}
2512
2513static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2514{
2515        struct crypt_config *cc = ti->private;
2516        struct dm_arg_set as;
2517        static struct dm_arg _args[] = {
2518                {0, 6, "Invalid number of feature args"},
2519        };
2520        unsigned int opt_params, val;
2521        const char *opt_string, *sval;
2522        char dummy;
2523        int ret;
2524
2525        /* Optional parameters */
2526        as.argc = argc;
2527        as.argv = argv;
2528
2529        ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2530        if (ret)
2531                return ret;
2532
2533        while (opt_params--) {
2534                opt_string = dm_shift_arg(&as);
2535                if (!opt_string) {
2536                        ti->error = "Not enough feature arguments";
2537                        return -EINVAL;
2538                }
2539
2540                if (!strcasecmp(opt_string, "allow_discards"))
2541                        ti->num_discard_bios = 1;
2542
2543                else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2544                        set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2545
2546                else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2547                        set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2548                else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2549                        if (val == 0 || val > MAX_TAG_SIZE) {
2550                                ti->error = "Invalid integrity arguments";
2551                                return -EINVAL;
2552                        }
2553                        cc->on_disk_tag_size = val;
2554                        sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2555                        if (!strcasecmp(sval, "aead")) {
2556                                set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2557                        } else  if (strcasecmp(sval, "none")) {
2558                                ti->error = "Unknown integrity profile";
2559                                return -EINVAL;
2560                        }
2561
2562                        cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2563                        if (!cc->cipher_auth)
2564                                return -ENOMEM;
2565                } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2566                        if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2567                            cc->sector_size > 4096 ||
2568                            (cc->sector_size & (cc->sector_size - 1))) {
2569                                ti->error = "Invalid feature value for sector_size";
2570                                return -EINVAL;
2571                        }
2572                        cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2573                } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2574                        set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2575                else {
2576                        ti->error = "Invalid feature arguments";
2577                        return -EINVAL;
2578                }
2579        }
2580
2581        return 0;
2582}
2583
2584/*
2585 * Construct an encryption mapping:
2586 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2587 */
2588static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2589{
2590        struct crypt_config *cc;
2591        int key_size;
2592        unsigned int align_mask;
2593        unsigned long long tmpll;
2594        int ret;
2595        size_t iv_size_padding, additional_req_size;
2596        char dummy;
2597
2598        if (argc < 5) {
2599                ti->error = "Not enough arguments";
2600                return -EINVAL;
2601        }
2602
2603        key_size = get_key_size(&argv[1]);
2604        if (key_size < 0) {
2605                ti->error = "Cannot parse key size";
2606                return -EINVAL;
2607        }
2608
2609        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2610        if (!cc) {
2611                ti->error = "Cannot allocate encryption context";
2612                return -ENOMEM;
2613        }
2614        cc->key_size = key_size;
2615        cc->sector_size = (1 << SECTOR_SHIFT);
2616        cc->sector_shift = 0;
2617
2618        ti->private = cc;
2619
2620        /* Optional parameters need to be read before cipher constructor */
2621        if (argc > 5) {
2622                ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2623                if (ret)
2624                        goto bad;
2625        }
2626
2627        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2628        if (ret < 0)
2629                goto bad;
2630
2631        if (crypt_integrity_aead(cc)) {
2632                cc->dmreq_start = sizeof(struct aead_request);
2633                cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2634                align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2635        } else {
2636                cc->dmreq_start = sizeof(struct skcipher_request);
2637                cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2638                align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2639        }
2640        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2641
2642        if (align_mask < CRYPTO_MINALIGN) {
2643                /* Allocate the padding exactly */
2644                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2645                                & align_mask;
2646        } else {
2647                /*
2648                 * If the cipher requires greater alignment than kmalloc
2649                 * alignment, we don't know the exact position of the
2650                 * initialization vector. We must assume worst case.
2651                 */
2652                iv_size_padding = align_mask;
2653        }
2654
2655        ret = -ENOMEM;
2656
2657        /*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2658        additional_req_size = sizeof(struct dm_crypt_request) +
2659                iv_size_padding + cc->iv_size +
2660                cc->iv_size +
2661                sizeof(uint64_t) +
2662                sizeof(unsigned int);
2663
2664        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2665        if (!cc->req_pool) {
2666                ti->error = "Cannot allocate crypt request mempool";
2667                goto bad;
2668        }
2669
2670        cc->per_bio_data_size = ti->per_io_data_size =
2671                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2672                      ARCH_KMALLOC_MINALIGN);
2673
2674        cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
2675        if (!cc->page_pool) {
2676                ti->error = "Cannot allocate page mempool";
2677                goto bad;
2678        }
2679
2680        cc->bs = bioset_create(MIN_IOS, 0);
2681        if (!cc->bs) {
2682                ti->error = "Cannot allocate crypt bioset";
2683                goto bad;
2684        }
2685
2686        mutex_init(&cc->bio_alloc_lock);
2687
2688        ret = -EINVAL;
2689        if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2690            (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2691                ti->error = "Invalid iv_offset sector";
2692                goto bad;
2693        }
2694        cc->iv_offset = tmpll;
2695
2696        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2697        if (ret) {
2698                ti->error = "Device lookup failed";
2699                goto bad;
2700        }
2701
2702        ret = -EINVAL;
2703        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2704                ti->error = "Invalid device sector";
2705                goto bad;
2706        }
2707        cc->start = tmpll;
2708
2709        if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2710                ret = crypt_integrity_ctr(cc, ti);
2711                if (ret)
2712                        goto bad;
2713
2714                cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2715                if (!cc->tag_pool_max_sectors)
2716                        cc->tag_pool_max_sectors = 1;
2717
2718                cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2719                        cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2720                if (!cc->tag_pool) {
2721                        ti->error = "Cannot allocate integrity tags mempool";
2722                        goto bad;
2723                }
2724
2725                cc->tag_pool_max_sectors <<= cc->sector_shift;
2726        }
2727
2728        ret = -ENOMEM;
2729        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2730        if (!cc->io_queue) {
2731                ti->error = "Couldn't create kcryptd io queue";
2732                goto bad;
2733        }
2734
2735        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2736                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2737        else
2738                cc->crypt_queue = alloc_workqueue("kcryptd",
2739                                                  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2740                                                  num_online_cpus());
2741        if (!cc->crypt_queue) {
2742                ti->error = "Couldn't create kcryptd queue";
2743                goto bad;
2744        }
2745
2746        init_waitqueue_head(&cc->write_thread_wait);
2747        cc->write_tree = RB_ROOT;
2748
2749        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2750        if (IS_ERR(cc->write_thread)) {
2751                ret = PTR_ERR(cc->write_thread);
2752                cc->write_thread = NULL;
2753                ti->error = "Couldn't spawn write thread";
2754                goto bad;
2755        }
2756        wake_up_process(cc->write_thread);
2757
2758        ti->num_flush_bios = 1;
2759
2760        return 0;
2761
2762bad:
2763        crypt_dtr(ti);
2764        return ret;
2765}
2766
2767static int crypt_map(struct dm_target *ti, struct bio *bio)
2768{
2769        struct dm_crypt_io *io;
2770        struct crypt_config *cc = ti->private;
2771
2772        /*
2773         * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2774         * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2775         * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2776         */
2777        if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2778            bio_op(bio) == REQ_OP_DISCARD)) {
2779                bio->bi_bdev = cc->dev->bdev;
2780                if (bio_sectors(bio))
2781                        bio->bi_iter.bi_sector = cc->start +
2782                                dm_target_offset(ti, bio->bi_iter.bi_sector);
2783                return DM_MAPIO_REMAPPED;
2784        }
2785
2786        /*
2787         * Check if bio is too large, split as needed.
2788         */
2789        if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2790            (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2791                dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2792
2793        /*
2794         * Ensure that bio is a multiple of internal sector encryption size
2795         * and is aligned to this size as defined in IO hints.
2796         */
2797        if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2798                return -EIO;
2799
2800        if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2801                return -EIO;
2802
2803        io = dm_per_bio_data(bio, cc->per_bio_data_size);
2804        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2805
2806        if (cc->on_disk_tag_size) {
2807                unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2808
2809                if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2810                    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2811                                GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2812                        if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2813                                dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2814                        io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2815                        io->integrity_metadata_from_pool = true;
2816                }
2817        }
2818
2819        if (crypt_integrity_aead(cc))
2820                io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2821        else
2822                io->ctx.r.req = (struct skcipher_request *)(io + 1);
2823
2824        if (bio_data_dir(io->base_bio) == READ) {
2825                if (kcryptd_io_read(io, GFP_NOWAIT))
2826                        kcryptd_queue_read(io);
2827        } else
2828                kcryptd_queue_crypt(io);
2829
2830        return DM_MAPIO_SUBMITTED;
2831}
2832
2833static void crypt_status(struct dm_target *ti, status_type_t type,
2834                         unsigned status_flags, char *result, unsigned maxlen)
2835{
2836        struct crypt_config *cc = ti->private;
2837        unsigned i, sz = 0;
2838        int num_feature_args = 0;
2839
2840        switch (type) {
2841        case STATUSTYPE_INFO:
2842                result[0] = '\0';
2843                break;
2844
2845        case STATUSTYPE_TABLE:
2846                DMEMIT("%s ", cc->cipher_string);
2847
2848                if (cc->key_size > 0) {
2849                        if (cc->key_string)
2850                                DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2851                        else
2852                                for (i = 0; i < cc->key_size; i++)
2853                                        DMEMIT("%02x", cc->key[i]);
2854                } else
2855                        DMEMIT("-");
2856
2857                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2858                                cc->dev->name, (unsigned long long)cc->start);
2859
2860                num_feature_args += !!ti->num_discard_bios;
2861                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2862                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2863                num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2864                num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2865                if (cc->on_disk_tag_size)
2866                        num_feature_args++;
2867                if (num_feature_args) {
2868                        DMEMIT(" %d", num_feature_args);
2869                        if (ti->num_discard_bios)
2870                                DMEMIT(" allow_discards");
2871                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2872                                DMEMIT(" same_cpu_crypt");
2873                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2874                                DMEMIT(" submit_from_crypt_cpus");
2875                        if (cc->on_disk_tag_size)
2876                                DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2877                        if (cc->sector_size != (1 << SECTOR_SHIFT))
2878                                DMEMIT(" sector_size:%d", cc->sector_size);
2879                        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2880                                DMEMIT(" iv_large_sectors");
2881                }
2882
2883                break;
2884        }
2885}
2886
2887static void crypt_postsuspend(struct dm_target *ti)
2888{
2889        struct crypt_config *cc = ti->private;
2890
2891        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2892}
2893
2894static int crypt_preresume(struct dm_target *ti)
2895{
2896        struct crypt_config *cc = ti->private;
2897
2898        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2899                DMERR("aborting resume - crypt key is not set.");
2900                return -EAGAIN;
2901        }
2902
2903        return 0;
2904}
2905
2906static void crypt_resume(struct dm_target *ti)
2907{
2908        struct crypt_config *cc = ti->private;
2909
2910        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2911}
2912
2913/* Message interface
2914 *      key set <key>
2915 *      key wipe
2916 */
2917static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2918{
2919        struct crypt_config *cc = ti->private;
2920        int key_size, ret = -EINVAL;
2921
2922        if (argc < 2)
2923                goto error;
2924
2925        if (!strcasecmp(argv[0], "key")) {
2926                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2927                        DMWARN("not suspended during key manipulation.");
2928                        return -EINVAL;
2929                }
2930                if (argc == 3 && !strcasecmp(argv[1], "set")) {
2931                        /* The key size may not be changed. */
2932                        key_size = get_key_size(&argv[2]);
2933                        if (key_size < 0 || cc->key_size != key_size) {
2934                                memset(argv[2], '0', strlen(argv[2]));
2935                                return -EINVAL;
2936                        }
2937
2938                        ret = crypt_set_key(cc, argv[2]);
2939                        if (ret)
2940                                return ret;
2941                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2942                                ret = cc->iv_gen_ops->init(cc);
2943                        return ret;
2944                }
2945                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2946                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2947                                ret = cc->iv_gen_ops->wipe(cc);
2948                                if (ret)
2949                                        return ret;
2950                        }
2951                        return crypt_wipe_key(cc);
2952                }
2953        }
2954
2955error:
2956        DMWARN("unrecognised message received.");
2957        return -EINVAL;
2958}
2959
2960static int crypt_iterate_devices(struct dm_target *ti,
2961                                 iterate_devices_callout_fn fn, void *data)
2962{
2963        struct crypt_config *cc = ti->private;
2964
2965        return fn(ti, cc->dev, cc->start, ti->len, data);
2966}
2967
2968static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2969{
2970        struct crypt_config *cc = ti->private;
2971
2972        /*
2973         * Unfortunate constraint that is required to avoid the potential
2974         * for exceeding underlying device's max_segments limits -- due to
2975         * crypt_alloc_buffer() possibly allocating pages for the encryption
2976         * bio that are not as physically contiguous as the original bio.
2977         */
2978        limits->max_segment_size = PAGE_SIZE;
2979
2980        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
2981                limits->logical_block_size = cc->sector_size;
2982                limits->physical_block_size = cc->sector_size;
2983                blk_limits_io_min(limits, cc->sector_size);
2984        }
2985}
2986
2987static struct target_type crypt_target = {
2988        .name   = "crypt",
2989        .version = {1, 17, 0},
2990        .module = THIS_MODULE,
2991        .ctr    = crypt_ctr,
2992        .dtr    = crypt_dtr,
2993        .map    = crypt_map,
2994        .status = crypt_status,
2995        .postsuspend = crypt_postsuspend,
2996        .preresume = crypt_preresume,
2997        .resume = crypt_resume,
2998        .message = crypt_message,
2999        .iterate_devices = crypt_iterate_devices,
3000        .io_hints = crypt_io_hints,
3001};
3002
3003static int __init dm_crypt_init(void)
3004{
3005        int r;
3006
3007        r = dm_register_target(&crypt_target);
3008        if (r < 0)
3009                DMERR("register failed %d", r);
3010
3011        return r;
3012}
3013
3014static void __exit dm_crypt_exit(void)
3015{
3016        dm_unregister_target(&crypt_target);
3017}
3018
3019module_init(dm_crypt_init);
3020module_exit(dm_crypt_exit);
3021
3022MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3023MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3024MODULE_LICENSE("GPL");
3025