linux/drivers/md/dm-thin.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define DM_MSG_PREFIX   "thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38                "A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116        VIRTUAL,
 117        PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121                      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123        key->virtual = (ls == VIRTUAL);
 124        key->dev = dm_thin_dev_id(td);
 125        key->block_begin = b;
 126        key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130                           struct dm_cell_key *key)
 131{
 132        build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136                              struct dm_cell_key *key)
 137{
 138        build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146        struct rw_semaphore lock;
 147        unsigned long threshold;
 148        bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153        init_rwsem(&t->lock);
 154        t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159        t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164        if (!t->throttle_applied && jiffies > t->threshold) {
 165                down_write(&t->lock);
 166                t->throttle_applied = true;
 167        }
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172        if (t->throttle_applied) {
 173                t->throttle_applied = false;
 174                up_write(&t->lock);
 175        }
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180        down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185        up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201        PM_WRITE,               /* metadata may be changed */
 202        PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
 203        PM_READ_ONLY,           /* metadata may not be changed */
 204        PM_FAIL,                /* all I/O fails */
 205};
 206
 207struct pool_features {
 208        enum pool_mode mode;
 209
 210        bool zero_new_blocks:1;
 211        bool discard_enabled:1;
 212        bool discard_passdown:1;
 213        bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224        struct list_head list;
 225        struct dm_target *ti;   /* Only set if a pool target is bound */
 226
 227        struct mapped_device *pool_md;
 228        struct block_device *md_dev;
 229        struct dm_pool_metadata *pmd;
 230
 231        dm_block_t low_water_blocks;
 232        uint32_t sectors_per_block;
 233        int sectors_per_block_shift;
 234
 235        struct pool_features pf;
 236        bool low_water_triggered:1;     /* A dm event has been sent */
 237        bool suspended:1;
 238        bool out_of_data_space:1;
 239
 240        struct dm_bio_prison *prison;
 241        struct dm_kcopyd_client *copier;
 242
 243        struct workqueue_struct *wq;
 244        struct throttle throttle;
 245        struct work_struct worker;
 246        struct delayed_work waker;
 247        struct delayed_work no_space_timeout;
 248
 249        unsigned long last_commit_jiffies;
 250        unsigned ref_count;
 251
 252        spinlock_t lock;
 253        struct bio_list deferred_flush_bios;
 254        struct list_head prepared_mappings;
 255        struct list_head prepared_discards;
 256        struct list_head prepared_discards_pt2;
 257        struct list_head active_thins;
 258
 259        struct dm_deferred_set *shared_read_ds;
 260        struct dm_deferred_set *all_io_ds;
 261
 262        struct dm_thin_new_mapping *next_mapping;
 263        mempool_t *mapping_pool;
 264
 265        process_bio_fn process_bio;
 266        process_bio_fn process_discard;
 267
 268        process_cell_fn process_cell;
 269        process_cell_fn process_discard_cell;
 270
 271        process_mapping_fn process_prepared_mapping;
 272        process_mapping_fn process_prepared_discard;
 273        process_mapping_fn process_prepared_discard_pt2;
 274
 275        struct dm_bio_prison_cell **cell_sort_array;
 276};
 277
 278static enum pool_mode get_pool_mode(struct pool *pool);
 279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 280
 281/*
 282 * Target context for a pool.
 283 */
 284struct pool_c {
 285        struct dm_target *ti;
 286        struct pool *pool;
 287        struct dm_dev *data_dev;
 288        struct dm_dev *metadata_dev;
 289        struct dm_target_callbacks callbacks;
 290
 291        dm_block_t low_water_blocks;
 292        struct pool_features requested_pf; /* Features requested during table load */
 293        struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 294};
 295
 296/*
 297 * Target context for a thin.
 298 */
 299struct thin_c {
 300        struct list_head list;
 301        struct dm_dev *pool_dev;
 302        struct dm_dev *origin_dev;
 303        sector_t origin_size;
 304        dm_thin_id dev_id;
 305
 306        struct pool *pool;
 307        struct dm_thin_device *td;
 308        struct mapped_device *thin_md;
 309
 310        bool requeue_mode:1;
 311        spinlock_t lock;
 312        struct list_head deferred_cells;
 313        struct bio_list deferred_bio_list;
 314        struct bio_list retry_on_resume_list;
 315        struct rb_root sort_bio_list; /* sorted list of deferred bios */
 316
 317        /*
 318         * Ensures the thin is not destroyed until the worker has finished
 319         * iterating the active_thins list.
 320         */
 321        atomic_t refcount;
 322        struct completion can_destroy;
 323};
 324
 325/*----------------------------------------------------------------*/
 326
 327static bool block_size_is_power_of_two(struct pool *pool)
 328{
 329        return pool->sectors_per_block_shift >= 0;
 330}
 331
 332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 333{
 334        return block_size_is_power_of_two(pool) ?
 335                (b << pool->sectors_per_block_shift) :
 336                (b * pool->sectors_per_block);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341struct discard_op {
 342        struct thin_c *tc;
 343        struct blk_plug plug;
 344        struct bio *parent_bio;
 345        struct bio *bio;
 346};
 347
 348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 349{
 350        BUG_ON(!parent);
 351
 352        op->tc = tc;
 353        blk_start_plug(&op->plug);
 354        op->parent_bio = parent;
 355        op->bio = NULL;
 356}
 357
 358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 359{
 360        struct thin_c *tc = op->tc;
 361        sector_t s = block_to_sectors(tc->pool, data_b);
 362        sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 363
 364        return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 365                                      GFP_NOWAIT, 0, &op->bio);
 366}
 367
 368static void end_discard(struct discard_op *op, int r)
 369{
 370        if (op->bio) {
 371                /*
 372                 * Even if one of the calls to issue_discard failed, we
 373                 * need to wait for the chain to complete.
 374                 */
 375                bio_chain(op->bio, op->parent_bio);
 376                bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 377                submit_bio(op->bio);
 378        }
 379
 380        blk_finish_plug(&op->plug);
 381
 382        /*
 383         * Even if r is set, there could be sub discards in flight that we
 384         * need to wait for.
 385         */
 386        if (r && !op->parent_bio->bi_error)
 387                op->parent_bio->bi_error = r;
 388        bio_endio(op->parent_bio);
 389}
 390
 391/*----------------------------------------------------------------*/
 392
 393/*
 394 * wake_worker() is used when new work is queued and when pool_resume is
 395 * ready to continue deferred IO processing.
 396 */
 397static void wake_worker(struct pool *pool)
 398{
 399        queue_work(pool->wq, &pool->worker);
 400}
 401
 402/*----------------------------------------------------------------*/
 403
 404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 405                      struct dm_bio_prison_cell **cell_result)
 406{
 407        int r;
 408        struct dm_bio_prison_cell *cell_prealloc;
 409
 410        /*
 411         * Allocate a cell from the prison's mempool.
 412         * This might block but it can't fail.
 413         */
 414        cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 415
 416        r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 417        if (r)
 418                /*
 419                 * We reused an old cell; we can get rid of
 420                 * the new one.
 421                 */
 422                dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 423
 424        return r;
 425}
 426
 427static void cell_release(struct pool *pool,
 428                         struct dm_bio_prison_cell *cell,
 429                         struct bio_list *bios)
 430{
 431        dm_cell_release(pool->prison, cell, bios);
 432        dm_bio_prison_free_cell(pool->prison, cell);
 433}
 434
 435static void cell_visit_release(struct pool *pool,
 436                               void (*fn)(void *, struct dm_bio_prison_cell *),
 437                               void *context,
 438                               struct dm_bio_prison_cell *cell)
 439{
 440        dm_cell_visit_release(pool->prison, fn, context, cell);
 441        dm_bio_prison_free_cell(pool->prison, cell);
 442}
 443
 444static void cell_release_no_holder(struct pool *pool,
 445                                   struct dm_bio_prison_cell *cell,
 446                                   struct bio_list *bios)
 447{
 448        dm_cell_release_no_holder(pool->prison, cell, bios);
 449        dm_bio_prison_free_cell(pool->prison, cell);
 450}
 451
 452static void cell_error_with_code(struct pool *pool,
 453                                 struct dm_bio_prison_cell *cell, int error_code)
 454{
 455        dm_cell_error(pool->prison, cell, error_code);
 456        dm_bio_prison_free_cell(pool->prison, cell);
 457}
 458
 459static int get_pool_io_error_code(struct pool *pool)
 460{
 461        return pool->out_of_data_space ? -ENOSPC : -EIO;
 462}
 463
 464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 465{
 466        int error = get_pool_io_error_code(pool);
 467
 468        cell_error_with_code(pool, cell, error);
 469}
 470
 471static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 472{
 473        cell_error_with_code(pool, cell, 0);
 474}
 475
 476static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 477{
 478        cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
 479}
 480
 481/*----------------------------------------------------------------*/
 482
 483/*
 484 * A global list of pools that uses a struct mapped_device as a key.
 485 */
 486static struct dm_thin_pool_table {
 487        struct mutex mutex;
 488        struct list_head pools;
 489} dm_thin_pool_table;
 490
 491static void pool_table_init(void)
 492{
 493        mutex_init(&dm_thin_pool_table.mutex);
 494        INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 495}
 496
 497static void __pool_table_insert(struct pool *pool)
 498{
 499        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 500        list_add(&pool->list, &dm_thin_pool_table.pools);
 501}
 502
 503static void __pool_table_remove(struct pool *pool)
 504{
 505        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 506        list_del(&pool->list);
 507}
 508
 509static struct pool *__pool_table_lookup(struct mapped_device *md)
 510{
 511        struct pool *pool = NULL, *tmp;
 512
 513        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 514
 515        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 516                if (tmp->pool_md == md) {
 517                        pool = tmp;
 518                        break;
 519                }
 520        }
 521
 522        return pool;
 523}
 524
 525static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 526{
 527        struct pool *pool = NULL, *tmp;
 528
 529        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 530
 531        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 532                if (tmp->md_dev == md_dev) {
 533                        pool = tmp;
 534                        break;
 535                }
 536        }
 537
 538        return pool;
 539}
 540
 541/*----------------------------------------------------------------*/
 542
 543struct dm_thin_endio_hook {
 544        struct thin_c *tc;
 545        struct dm_deferred_entry *shared_read_entry;
 546        struct dm_deferred_entry *all_io_entry;
 547        struct dm_thin_new_mapping *overwrite_mapping;
 548        struct rb_node rb_node;
 549        struct dm_bio_prison_cell *cell;
 550};
 551
 552static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 553{
 554        bio_list_merge(bios, master);
 555        bio_list_init(master);
 556}
 557
 558static void error_bio_list(struct bio_list *bios, int error)
 559{
 560        struct bio *bio;
 561
 562        while ((bio = bio_list_pop(bios))) {
 563                bio->bi_error = error;
 564                bio_endio(bio);
 565        }
 566}
 567
 568static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
 569{
 570        struct bio_list bios;
 571        unsigned long flags;
 572
 573        bio_list_init(&bios);
 574
 575        spin_lock_irqsave(&tc->lock, flags);
 576        __merge_bio_list(&bios, master);
 577        spin_unlock_irqrestore(&tc->lock, flags);
 578
 579        error_bio_list(&bios, error);
 580}
 581
 582static void requeue_deferred_cells(struct thin_c *tc)
 583{
 584        struct pool *pool = tc->pool;
 585        unsigned long flags;
 586        struct list_head cells;
 587        struct dm_bio_prison_cell *cell, *tmp;
 588
 589        INIT_LIST_HEAD(&cells);
 590
 591        spin_lock_irqsave(&tc->lock, flags);
 592        list_splice_init(&tc->deferred_cells, &cells);
 593        spin_unlock_irqrestore(&tc->lock, flags);
 594
 595        list_for_each_entry_safe(cell, tmp, &cells, user_list)
 596                cell_requeue(pool, cell);
 597}
 598
 599static void requeue_io(struct thin_c *tc)
 600{
 601        struct bio_list bios;
 602        unsigned long flags;
 603
 604        bio_list_init(&bios);
 605
 606        spin_lock_irqsave(&tc->lock, flags);
 607        __merge_bio_list(&bios, &tc->deferred_bio_list);
 608        __merge_bio_list(&bios, &tc->retry_on_resume_list);
 609        spin_unlock_irqrestore(&tc->lock, flags);
 610
 611        error_bio_list(&bios, DM_ENDIO_REQUEUE);
 612        requeue_deferred_cells(tc);
 613}
 614
 615static void error_retry_list_with_code(struct pool *pool, int error)
 616{
 617        struct thin_c *tc;
 618
 619        rcu_read_lock();
 620        list_for_each_entry_rcu(tc, &pool->active_thins, list)
 621                error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 622        rcu_read_unlock();
 623}
 624
 625static void error_retry_list(struct pool *pool)
 626{
 627        int error = get_pool_io_error_code(pool);
 628
 629        error_retry_list_with_code(pool, error);
 630}
 631
 632/*
 633 * This section of code contains the logic for processing a thin device's IO.
 634 * Much of the code depends on pool object resources (lists, workqueues, etc)
 635 * but most is exclusively called from the thin target rather than the thin-pool
 636 * target.
 637 */
 638
 639static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 640{
 641        struct pool *pool = tc->pool;
 642        sector_t block_nr = bio->bi_iter.bi_sector;
 643
 644        if (block_size_is_power_of_two(pool))
 645                block_nr >>= pool->sectors_per_block_shift;
 646        else
 647                (void) sector_div(block_nr, pool->sectors_per_block);
 648
 649        return block_nr;
 650}
 651
 652/*
 653 * Returns the _complete_ blocks that this bio covers.
 654 */
 655static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 656                                dm_block_t *begin, dm_block_t *end)
 657{
 658        struct pool *pool = tc->pool;
 659        sector_t b = bio->bi_iter.bi_sector;
 660        sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 661
 662        b += pool->sectors_per_block - 1ull; /* so we round up */
 663
 664        if (block_size_is_power_of_two(pool)) {
 665                b >>= pool->sectors_per_block_shift;
 666                e >>= pool->sectors_per_block_shift;
 667        } else {
 668                (void) sector_div(b, pool->sectors_per_block);
 669                (void) sector_div(e, pool->sectors_per_block);
 670        }
 671
 672        if (e < b)
 673                /* Can happen if the bio is within a single block. */
 674                e = b;
 675
 676        *begin = b;
 677        *end = e;
 678}
 679
 680static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 681{
 682        struct pool *pool = tc->pool;
 683        sector_t bi_sector = bio->bi_iter.bi_sector;
 684
 685        bio->bi_bdev = tc->pool_dev->bdev;
 686        if (block_size_is_power_of_two(pool))
 687                bio->bi_iter.bi_sector =
 688                        (block << pool->sectors_per_block_shift) |
 689                        (bi_sector & (pool->sectors_per_block - 1));
 690        else
 691                bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 692                                 sector_div(bi_sector, pool->sectors_per_block);
 693}
 694
 695static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 696{
 697        bio->bi_bdev = tc->origin_dev->bdev;
 698}
 699
 700static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 701{
 702        return op_is_flush(bio->bi_opf) &&
 703                dm_thin_changed_this_transaction(tc->td);
 704}
 705
 706static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 707{
 708        struct dm_thin_endio_hook *h;
 709
 710        if (bio_op(bio) == REQ_OP_DISCARD)
 711                return;
 712
 713        h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 714        h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 715}
 716
 717static void issue(struct thin_c *tc, struct bio *bio)
 718{
 719        struct pool *pool = tc->pool;
 720        unsigned long flags;
 721
 722        if (!bio_triggers_commit(tc, bio)) {
 723                generic_make_request(bio);
 724                return;
 725        }
 726
 727        /*
 728         * Complete bio with an error if earlier I/O caused changes to
 729         * the metadata that can't be committed e.g, due to I/O errors
 730         * on the metadata device.
 731         */
 732        if (dm_thin_aborted_changes(tc->td)) {
 733                bio_io_error(bio);
 734                return;
 735        }
 736
 737        /*
 738         * Batch together any bios that trigger commits and then issue a
 739         * single commit for them in process_deferred_bios().
 740         */
 741        spin_lock_irqsave(&pool->lock, flags);
 742        bio_list_add(&pool->deferred_flush_bios, bio);
 743        spin_unlock_irqrestore(&pool->lock, flags);
 744}
 745
 746static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 747{
 748        remap_to_origin(tc, bio);
 749        issue(tc, bio);
 750}
 751
 752static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 753                            dm_block_t block)
 754{
 755        remap(tc, bio, block);
 756        issue(tc, bio);
 757}
 758
 759/*----------------------------------------------------------------*/
 760
 761/*
 762 * Bio endio functions.
 763 */
 764struct dm_thin_new_mapping {
 765        struct list_head list;
 766
 767        bool pass_discard:1;
 768        bool maybe_shared:1;
 769
 770        /*
 771         * Track quiescing, copying and zeroing preparation actions.  When this
 772         * counter hits zero the block is prepared and can be inserted into the
 773         * btree.
 774         */
 775        atomic_t prepare_actions;
 776
 777        int err;
 778        struct thin_c *tc;
 779        dm_block_t virt_begin, virt_end;
 780        dm_block_t data_block;
 781        struct dm_bio_prison_cell *cell;
 782
 783        /*
 784         * If the bio covers the whole area of a block then we can avoid
 785         * zeroing or copying.  Instead this bio is hooked.  The bio will
 786         * still be in the cell, so care has to be taken to avoid issuing
 787         * the bio twice.
 788         */
 789        struct bio *bio;
 790        bio_end_io_t *saved_bi_end_io;
 791};
 792
 793static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 794{
 795        struct pool *pool = m->tc->pool;
 796
 797        if (atomic_dec_and_test(&m->prepare_actions)) {
 798                list_add_tail(&m->list, &pool->prepared_mappings);
 799                wake_worker(pool);
 800        }
 801}
 802
 803static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 804{
 805        unsigned long flags;
 806        struct pool *pool = m->tc->pool;
 807
 808        spin_lock_irqsave(&pool->lock, flags);
 809        __complete_mapping_preparation(m);
 810        spin_unlock_irqrestore(&pool->lock, flags);
 811}
 812
 813static void copy_complete(int read_err, unsigned long write_err, void *context)
 814{
 815        struct dm_thin_new_mapping *m = context;
 816
 817        m->err = read_err || write_err ? -EIO : 0;
 818        complete_mapping_preparation(m);
 819}
 820
 821static void overwrite_endio(struct bio *bio)
 822{
 823        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 824        struct dm_thin_new_mapping *m = h->overwrite_mapping;
 825
 826        bio->bi_end_io = m->saved_bi_end_io;
 827
 828        m->err = bio->bi_error;
 829        complete_mapping_preparation(m);
 830}
 831
 832/*----------------------------------------------------------------*/
 833
 834/*
 835 * Workqueue.
 836 */
 837
 838/*
 839 * Prepared mapping jobs.
 840 */
 841
 842/*
 843 * This sends the bios in the cell, except the original holder, back
 844 * to the deferred_bios list.
 845 */
 846static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 847{
 848        struct pool *pool = tc->pool;
 849        unsigned long flags;
 850
 851        spin_lock_irqsave(&tc->lock, flags);
 852        cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 853        spin_unlock_irqrestore(&tc->lock, flags);
 854
 855        wake_worker(pool);
 856}
 857
 858static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 859
 860struct remap_info {
 861        struct thin_c *tc;
 862        struct bio_list defer_bios;
 863        struct bio_list issue_bios;
 864};
 865
 866static void __inc_remap_and_issue_cell(void *context,
 867                                       struct dm_bio_prison_cell *cell)
 868{
 869        struct remap_info *info = context;
 870        struct bio *bio;
 871
 872        while ((bio = bio_list_pop(&cell->bios))) {
 873                if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 874                        bio_list_add(&info->defer_bios, bio);
 875                else {
 876                        inc_all_io_entry(info->tc->pool, bio);
 877
 878                        /*
 879                         * We can't issue the bios with the bio prison lock
 880                         * held, so we add them to a list to issue on
 881                         * return from this function.
 882                         */
 883                        bio_list_add(&info->issue_bios, bio);
 884                }
 885        }
 886}
 887
 888static void inc_remap_and_issue_cell(struct thin_c *tc,
 889                                     struct dm_bio_prison_cell *cell,
 890                                     dm_block_t block)
 891{
 892        struct bio *bio;
 893        struct remap_info info;
 894
 895        info.tc = tc;
 896        bio_list_init(&info.defer_bios);
 897        bio_list_init(&info.issue_bios);
 898
 899        /*
 900         * We have to be careful to inc any bios we're about to issue
 901         * before the cell is released, and avoid a race with new bios
 902         * being added to the cell.
 903         */
 904        cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 905                           &info, cell);
 906
 907        while ((bio = bio_list_pop(&info.defer_bios)))
 908                thin_defer_bio(tc, bio);
 909
 910        while ((bio = bio_list_pop(&info.issue_bios)))
 911                remap_and_issue(info.tc, bio, block);
 912}
 913
 914static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 915{
 916        cell_error(m->tc->pool, m->cell);
 917        list_del(&m->list);
 918        mempool_free(m, m->tc->pool->mapping_pool);
 919}
 920
 921static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 922{
 923        struct thin_c *tc = m->tc;
 924        struct pool *pool = tc->pool;
 925        struct bio *bio = m->bio;
 926        int r;
 927
 928        if (m->err) {
 929                cell_error(pool, m->cell);
 930                goto out;
 931        }
 932
 933        /*
 934         * Commit the prepared block into the mapping btree.
 935         * Any I/O for this block arriving after this point will get
 936         * remapped to it directly.
 937         */
 938        r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 939        if (r) {
 940                metadata_operation_failed(pool, "dm_thin_insert_block", r);
 941                cell_error(pool, m->cell);
 942                goto out;
 943        }
 944
 945        /*
 946         * Release any bios held while the block was being provisioned.
 947         * If we are processing a write bio that completely covers the block,
 948         * we already processed it so can ignore it now when processing
 949         * the bios in the cell.
 950         */
 951        if (bio) {
 952                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 953                bio_endio(bio);
 954        } else {
 955                inc_all_io_entry(tc->pool, m->cell->holder);
 956                remap_and_issue(tc, m->cell->holder, m->data_block);
 957                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 958        }
 959
 960out:
 961        list_del(&m->list);
 962        mempool_free(m, pool->mapping_pool);
 963}
 964
 965/*----------------------------------------------------------------*/
 966
 967static void free_discard_mapping(struct dm_thin_new_mapping *m)
 968{
 969        struct thin_c *tc = m->tc;
 970        if (m->cell)
 971                cell_defer_no_holder(tc, m->cell);
 972        mempool_free(m, tc->pool->mapping_pool);
 973}
 974
 975static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 976{
 977        bio_io_error(m->bio);
 978        free_discard_mapping(m);
 979}
 980
 981static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 982{
 983        bio_endio(m->bio);
 984        free_discard_mapping(m);
 985}
 986
 987static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 988{
 989        int r;
 990        struct thin_c *tc = m->tc;
 991
 992        r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 993        if (r) {
 994                metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 995                bio_io_error(m->bio);
 996        } else
 997                bio_endio(m->bio);
 998
 999        cell_defer_no_holder(tc, m->cell);
1000        mempool_free(m, tc->pool->mapping_pool);
1001}
1002
1003/*----------------------------------------------------------------*/
1004
1005static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1006                                                   struct bio *discard_parent)
1007{
1008        /*
1009         * We've already unmapped this range of blocks, but before we
1010         * passdown we have to check that these blocks are now unused.
1011         */
1012        int r = 0;
1013        bool used = true;
1014        struct thin_c *tc = m->tc;
1015        struct pool *pool = tc->pool;
1016        dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1017        struct discard_op op;
1018
1019        begin_discard(&op, tc, discard_parent);
1020        while (b != end) {
1021                /* find start of unmapped run */
1022                for (; b < end; b++) {
1023                        r = dm_pool_block_is_used(pool->pmd, b, &used);
1024                        if (r)
1025                                goto out;
1026
1027                        if (!used)
1028                                break;
1029                }
1030
1031                if (b == end)
1032                        break;
1033
1034                /* find end of run */
1035                for (e = b + 1; e != end; e++) {
1036                        r = dm_pool_block_is_used(pool->pmd, e, &used);
1037                        if (r)
1038                                goto out;
1039
1040                        if (used)
1041                                break;
1042                }
1043
1044                r = issue_discard(&op, b, e);
1045                if (r)
1046                        goto out;
1047
1048                b = e;
1049        }
1050out:
1051        end_discard(&op, r);
1052}
1053
1054static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1055{
1056        unsigned long flags;
1057        struct pool *pool = m->tc->pool;
1058
1059        spin_lock_irqsave(&pool->lock, flags);
1060        list_add_tail(&m->list, &pool->prepared_discards_pt2);
1061        spin_unlock_irqrestore(&pool->lock, flags);
1062        wake_worker(pool);
1063}
1064
1065static void passdown_endio(struct bio *bio)
1066{
1067        /*
1068         * It doesn't matter if the passdown discard failed, we still want
1069         * to unmap (we ignore err).
1070         */
1071        queue_passdown_pt2(bio->bi_private);
1072        bio_put(bio);
1073}
1074
1075static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1076{
1077        int r;
1078        struct thin_c *tc = m->tc;
1079        struct pool *pool = tc->pool;
1080        struct bio *discard_parent;
1081        dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1082
1083        /*
1084         * Only this thread allocates blocks, so we can be sure that the
1085         * newly unmapped blocks will not be allocated before the end of
1086         * the function.
1087         */
1088        r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1089        if (r) {
1090                metadata_operation_failed(pool, "dm_thin_remove_range", r);
1091                bio_io_error(m->bio);
1092                cell_defer_no_holder(tc, m->cell);
1093                mempool_free(m, pool->mapping_pool);
1094                return;
1095        }
1096
1097        /*
1098         * Increment the unmapped blocks.  This prevents a race between the
1099         * passdown io and reallocation of freed blocks.
1100         */
1101        r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1102        if (r) {
1103                metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1104                bio_io_error(m->bio);
1105                cell_defer_no_holder(tc, m->cell);
1106                mempool_free(m, pool->mapping_pool);
1107                return;
1108        }
1109
1110        discard_parent = bio_alloc(GFP_NOIO, 1);
1111        if (!discard_parent) {
1112                DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1113                       dm_device_name(tc->pool->pool_md));
1114                queue_passdown_pt2(m);
1115
1116        } else {
1117                discard_parent->bi_end_io = passdown_endio;
1118                discard_parent->bi_private = m;
1119
1120                if (m->maybe_shared)
1121                        passdown_double_checking_shared_status(m, discard_parent);
1122                else {
1123                        struct discard_op op;
1124
1125                        begin_discard(&op, tc, discard_parent);
1126                        r = issue_discard(&op, m->data_block, data_end);
1127                        end_discard(&op, r);
1128                }
1129        }
1130}
1131
1132static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1133{
1134        int r;
1135        struct thin_c *tc = m->tc;
1136        struct pool *pool = tc->pool;
1137
1138        /*
1139         * The passdown has completed, so now we can decrement all those
1140         * unmapped blocks.
1141         */
1142        r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1143                                   m->data_block + (m->virt_end - m->virt_begin));
1144        if (r) {
1145                metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1146                bio_io_error(m->bio);
1147        } else
1148                bio_endio(m->bio);
1149
1150        cell_defer_no_holder(tc, m->cell);
1151        mempool_free(m, pool->mapping_pool);
1152}
1153
1154static void process_prepared(struct pool *pool, struct list_head *head,
1155                             process_mapping_fn *fn)
1156{
1157        unsigned long flags;
1158        struct list_head maps;
1159        struct dm_thin_new_mapping *m, *tmp;
1160
1161        INIT_LIST_HEAD(&maps);
1162        spin_lock_irqsave(&pool->lock, flags);
1163        list_splice_init(head, &maps);
1164        spin_unlock_irqrestore(&pool->lock, flags);
1165
1166        list_for_each_entry_safe(m, tmp, &maps, list)
1167                (*fn)(m);
1168}
1169
1170/*
1171 * Deferred bio jobs.
1172 */
1173static int io_overlaps_block(struct pool *pool, struct bio *bio)
1174{
1175        return bio->bi_iter.bi_size ==
1176                (pool->sectors_per_block << SECTOR_SHIFT);
1177}
1178
1179static int io_overwrites_block(struct pool *pool, struct bio *bio)
1180{
1181        return (bio_data_dir(bio) == WRITE) &&
1182                io_overlaps_block(pool, bio);
1183}
1184
1185static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1186                               bio_end_io_t *fn)
1187{
1188        *save = bio->bi_end_io;
1189        bio->bi_end_io = fn;
1190}
1191
1192static int ensure_next_mapping(struct pool *pool)
1193{
1194        if (pool->next_mapping)
1195                return 0;
1196
1197        pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1198
1199        return pool->next_mapping ? 0 : -ENOMEM;
1200}
1201
1202static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1203{
1204        struct dm_thin_new_mapping *m = pool->next_mapping;
1205
1206        BUG_ON(!pool->next_mapping);
1207
1208        memset(m, 0, sizeof(struct dm_thin_new_mapping));
1209        INIT_LIST_HEAD(&m->list);
1210        m->bio = NULL;
1211
1212        pool->next_mapping = NULL;
1213
1214        return m;
1215}
1216
1217static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1218                    sector_t begin, sector_t end)
1219{
1220        int r;
1221        struct dm_io_region to;
1222
1223        to.bdev = tc->pool_dev->bdev;
1224        to.sector = begin;
1225        to.count = end - begin;
1226
1227        r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1228        if (r < 0) {
1229                DMERR_LIMIT("dm_kcopyd_zero() failed");
1230                copy_complete(1, 1, m);
1231        }
1232}
1233
1234static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1235                                      dm_block_t data_begin,
1236                                      struct dm_thin_new_mapping *m)
1237{
1238        struct pool *pool = tc->pool;
1239        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1240
1241        h->overwrite_mapping = m;
1242        m->bio = bio;
1243        save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1244        inc_all_io_entry(pool, bio);
1245        remap_and_issue(tc, bio, data_begin);
1246}
1247
1248/*
1249 * A partial copy also needs to zero the uncopied region.
1250 */
1251static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1252                          struct dm_dev *origin, dm_block_t data_origin,
1253                          dm_block_t data_dest,
1254                          struct dm_bio_prison_cell *cell, struct bio *bio,
1255                          sector_t len)
1256{
1257        int r;
1258        struct pool *pool = tc->pool;
1259        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1260
1261        m->tc = tc;
1262        m->virt_begin = virt_block;
1263        m->virt_end = virt_block + 1u;
1264        m->data_block = data_dest;
1265        m->cell = cell;
1266
1267        /*
1268         * quiesce action + copy action + an extra reference held for the
1269         * duration of this function (we may need to inc later for a
1270         * partial zero).
1271         */
1272        atomic_set(&m->prepare_actions, 3);
1273
1274        if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1275                complete_mapping_preparation(m); /* already quiesced */
1276
1277        /*
1278         * IO to pool_dev remaps to the pool target's data_dev.
1279         *
1280         * If the whole block of data is being overwritten, we can issue the
1281         * bio immediately. Otherwise we use kcopyd to clone the data first.
1282         */
1283        if (io_overwrites_block(pool, bio))
1284                remap_and_issue_overwrite(tc, bio, data_dest, m);
1285        else {
1286                struct dm_io_region from, to;
1287
1288                from.bdev = origin->bdev;
1289                from.sector = data_origin * pool->sectors_per_block;
1290                from.count = len;
1291
1292                to.bdev = tc->pool_dev->bdev;
1293                to.sector = data_dest * pool->sectors_per_block;
1294                to.count = len;
1295
1296                r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1297                                   0, copy_complete, m);
1298                if (r < 0) {
1299                        DMERR_LIMIT("dm_kcopyd_copy() failed");
1300                        copy_complete(1, 1, m);
1301
1302                        /*
1303                         * We allow the zero to be issued, to simplify the
1304                         * error path.  Otherwise we'd need to start
1305                         * worrying about decrementing the prepare_actions
1306                         * counter.
1307                         */
1308                }
1309
1310                /*
1311                 * Do we need to zero a tail region?
1312                 */
1313                if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1314                        atomic_inc(&m->prepare_actions);
1315                        ll_zero(tc, m,
1316                                data_dest * pool->sectors_per_block + len,
1317                                (data_dest + 1) * pool->sectors_per_block);
1318                }
1319        }
1320
1321        complete_mapping_preparation(m); /* drop our ref */
1322}
1323
1324static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1325                                   dm_block_t data_origin, dm_block_t data_dest,
1326                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1327{
1328        schedule_copy(tc, virt_block, tc->pool_dev,
1329                      data_origin, data_dest, cell, bio,
1330                      tc->pool->sectors_per_block);
1331}
1332
1333static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1334                          dm_block_t data_block, struct dm_bio_prison_cell *cell,
1335                          struct bio *bio)
1336{
1337        struct pool *pool = tc->pool;
1338        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1339
1340        atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1341        m->tc = tc;
1342        m->virt_begin = virt_block;
1343        m->virt_end = virt_block + 1u;
1344        m->data_block = data_block;
1345        m->cell = cell;
1346
1347        /*
1348         * If the whole block of data is being overwritten or we are not
1349         * zeroing pre-existing data, we can issue the bio immediately.
1350         * Otherwise we use kcopyd to zero the data first.
1351         */
1352        if (pool->pf.zero_new_blocks) {
1353                if (io_overwrites_block(pool, bio))
1354                        remap_and_issue_overwrite(tc, bio, data_block, m);
1355                else
1356                        ll_zero(tc, m, data_block * pool->sectors_per_block,
1357                                (data_block + 1) * pool->sectors_per_block);
1358        } else
1359                process_prepared_mapping(m);
1360}
1361
1362static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1363                                   dm_block_t data_dest,
1364                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1365{
1366        struct pool *pool = tc->pool;
1367        sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1368        sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1369
1370        if (virt_block_end <= tc->origin_size)
1371                schedule_copy(tc, virt_block, tc->origin_dev,
1372                              virt_block, data_dest, cell, bio,
1373                              pool->sectors_per_block);
1374
1375        else if (virt_block_begin < tc->origin_size)
1376                schedule_copy(tc, virt_block, tc->origin_dev,
1377                              virt_block, data_dest, cell, bio,
1378                              tc->origin_size - virt_block_begin);
1379
1380        else
1381                schedule_zero(tc, virt_block, data_dest, cell, bio);
1382}
1383
1384static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1385
1386static void check_for_space(struct pool *pool)
1387{
1388        int r;
1389        dm_block_t nr_free;
1390
1391        if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1392                return;
1393
1394        r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1395        if (r)
1396                return;
1397
1398        if (nr_free)
1399                set_pool_mode(pool, PM_WRITE);
1400}
1401
1402/*
1403 * A non-zero return indicates read_only or fail_io mode.
1404 * Many callers don't care about the return value.
1405 */
1406static int commit(struct pool *pool)
1407{
1408        int r;
1409
1410        if (get_pool_mode(pool) >= PM_READ_ONLY)
1411                return -EINVAL;
1412
1413        r = dm_pool_commit_metadata(pool->pmd);
1414        if (r)
1415                metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1416        else
1417                check_for_space(pool);
1418
1419        return r;
1420}
1421
1422static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1423{
1424        unsigned long flags;
1425
1426        if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1427                DMWARN("%s: reached low water mark for data device: sending event.",
1428                       dm_device_name(pool->pool_md));
1429                spin_lock_irqsave(&pool->lock, flags);
1430                pool->low_water_triggered = true;
1431                spin_unlock_irqrestore(&pool->lock, flags);
1432                dm_table_event(pool->ti->table);
1433        }
1434}
1435
1436static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1437{
1438        int r;
1439        dm_block_t free_blocks;
1440        struct pool *pool = tc->pool;
1441
1442        if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1443                return -EINVAL;
1444
1445        r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1446        if (r) {
1447                metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1448                return r;
1449        }
1450
1451        check_low_water_mark(pool, free_blocks);
1452
1453        if (!free_blocks) {
1454                /*
1455                 * Try to commit to see if that will free up some
1456                 * more space.
1457                 */
1458                r = commit(pool);
1459                if (r)
1460                        return r;
1461
1462                r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1463                if (r) {
1464                        metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1465                        return r;
1466                }
1467
1468                if (!free_blocks) {
1469                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1470                        return -ENOSPC;
1471                }
1472        }
1473
1474        r = dm_pool_alloc_data_block(pool->pmd, result);
1475        if (r) {
1476                metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1477                return r;
1478        }
1479
1480        return 0;
1481}
1482
1483/*
1484 * If we have run out of space, queue bios until the device is
1485 * resumed, presumably after having been reloaded with more space.
1486 */
1487static void retry_on_resume(struct bio *bio)
1488{
1489        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1490        struct thin_c *tc = h->tc;
1491        unsigned long flags;
1492
1493        spin_lock_irqsave(&tc->lock, flags);
1494        bio_list_add(&tc->retry_on_resume_list, bio);
1495        spin_unlock_irqrestore(&tc->lock, flags);
1496}
1497
1498static int should_error_unserviceable_bio(struct pool *pool)
1499{
1500        enum pool_mode m = get_pool_mode(pool);
1501
1502        switch (m) {
1503        case PM_WRITE:
1504                /* Shouldn't get here */
1505                DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1506                return -EIO;
1507
1508        case PM_OUT_OF_DATA_SPACE:
1509                return pool->pf.error_if_no_space ? -ENOSPC : 0;
1510
1511        case PM_READ_ONLY:
1512        case PM_FAIL:
1513                return -EIO;
1514        default:
1515                /* Shouldn't get here */
1516                DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1517                return -EIO;
1518        }
1519}
1520
1521static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1522{
1523        int error = should_error_unserviceable_bio(pool);
1524
1525        if (error) {
1526                bio->bi_error = error;
1527                bio_endio(bio);
1528        } else
1529                retry_on_resume(bio);
1530}
1531
1532static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1533{
1534        struct bio *bio;
1535        struct bio_list bios;
1536        int error;
1537
1538        error = should_error_unserviceable_bio(pool);
1539        if (error) {
1540                cell_error_with_code(pool, cell, error);
1541                return;
1542        }
1543
1544        bio_list_init(&bios);
1545        cell_release(pool, cell, &bios);
1546
1547        while ((bio = bio_list_pop(&bios)))
1548                retry_on_resume(bio);
1549}
1550
1551static void process_discard_cell_no_passdown(struct thin_c *tc,
1552                                             struct dm_bio_prison_cell *virt_cell)
1553{
1554        struct pool *pool = tc->pool;
1555        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1556
1557        /*
1558         * We don't need to lock the data blocks, since there's no
1559         * passdown.  We only lock data blocks for allocation and breaking sharing.
1560         */
1561        m->tc = tc;
1562        m->virt_begin = virt_cell->key.block_begin;
1563        m->virt_end = virt_cell->key.block_end;
1564        m->cell = virt_cell;
1565        m->bio = virt_cell->holder;
1566
1567        if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1568                pool->process_prepared_discard(m);
1569}
1570
1571static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1572                                 struct bio *bio)
1573{
1574        struct pool *pool = tc->pool;
1575
1576        int r;
1577        bool maybe_shared;
1578        struct dm_cell_key data_key;
1579        struct dm_bio_prison_cell *data_cell;
1580        struct dm_thin_new_mapping *m;
1581        dm_block_t virt_begin, virt_end, data_begin;
1582
1583        while (begin != end) {
1584                r = ensure_next_mapping(pool);
1585                if (r)
1586                        /* we did our best */
1587                        return;
1588
1589                r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1590                                              &data_begin, &maybe_shared);
1591                if (r)
1592                        /*
1593                         * Silently fail, letting any mappings we've
1594                         * created complete.
1595                         */
1596                        break;
1597
1598                build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1599                if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1600                        /* contention, we'll give up with this range */
1601                        begin = virt_end;
1602                        continue;
1603                }
1604
1605                /*
1606                 * IO may still be going to the destination block.  We must
1607                 * quiesce before we can do the removal.
1608                 */
1609                m = get_next_mapping(pool);
1610                m->tc = tc;
1611                m->maybe_shared = maybe_shared;
1612                m->virt_begin = virt_begin;
1613                m->virt_end = virt_end;
1614                m->data_block = data_begin;
1615                m->cell = data_cell;
1616                m->bio = bio;
1617
1618                /*
1619                 * The parent bio must not complete before sub discard bios are
1620                 * chained to it (see end_discard's bio_chain)!
1621                 *
1622                 * This per-mapping bi_remaining increment is paired with
1623                 * the implicit decrement that occurs via bio_endio() in
1624                 * end_discard().
1625                 */
1626                bio_inc_remaining(bio);
1627                if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1628                        pool->process_prepared_discard(m);
1629
1630                begin = virt_end;
1631        }
1632}
1633
1634static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1635{
1636        struct bio *bio = virt_cell->holder;
1637        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1638
1639        /*
1640         * The virt_cell will only get freed once the origin bio completes.
1641         * This means it will remain locked while all the individual
1642         * passdown bios are in flight.
1643         */
1644        h->cell = virt_cell;
1645        break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1646
1647        /*
1648         * We complete the bio now, knowing that the bi_remaining field
1649         * will prevent completion until the sub range discards have
1650         * completed.
1651         */
1652        bio_endio(bio);
1653}
1654
1655static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1656{
1657        dm_block_t begin, end;
1658        struct dm_cell_key virt_key;
1659        struct dm_bio_prison_cell *virt_cell;
1660
1661        get_bio_block_range(tc, bio, &begin, &end);
1662        if (begin == end) {
1663                /*
1664                 * The discard covers less than a block.
1665                 */
1666                bio_endio(bio);
1667                return;
1668        }
1669
1670        build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1671        if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1672                /*
1673                 * Potential starvation issue: We're relying on the
1674                 * fs/application being well behaved, and not trying to
1675                 * send IO to a region at the same time as discarding it.
1676                 * If they do this persistently then it's possible this
1677                 * cell will never be granted.
1678                 */
1679                return;
1680
1681        tc->pool->process_discard_cell(tc, virt_cell);
1682}
1683
1684static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1685                          struct dm_cell_key *key,
1686                          struct dm_thin_lookup_result *lookup_result,
1687                          struct dm_bio_prison_cell *cell)
1688{
1689        int r;
1690        dm_block_t data_block;
1691        struct pool *pool = tc->pool;
1692
1693        r = alloc_data_block(tc, &data_block);
1694        switch (r) {
1695        case 0:
1696                schedule_internal_copy(tc, block, lookup_result->block,
1697                                       data_block, cell, bio);
1698                break;
1699
1700        case -ENOSPC:
1701                retry_bios_on_resume(pool, cell);
1702                break;
1703
1704        default:
1705                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1706                            __func__, r);
1707                cell_error(pool, cell);
1708                break;
1709        }
1710}
1711
1712static void __remap_and_issue_shared_cell(void *context,
1713                                          struct dm_bio_prison_cell *cell)
1714{
1715        struct remap_info *info = context;
1716        struct bio *bio;
1717
1718        while ((bio = bio_list_pop(&cell->bios))) {
1719                if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1720                    bio_op(bio) == REQ_OP_DISCARD)
1721                        bio_list_add(&info->defer_bios, bio);
1722                else {
1723                        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1724
1725                        h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1726                        inc_all_io_entry(info->tc->pool, bio);
1727                        bio_list_add(&info->issue_bios, bio);
1728                }
1729        }
1730}
1731
1732static void remap_and_issue_shared_cell(struct thin_c *tc,
1733                                        struct dm_bio_prison_cell *cell,
1734                                        dm_block_t block)
1735{
1736        struct bio *bio;
1737        struct remap_info info;
1738
1739        info.tc = tc;
1740        bio_list_init(&info.defer_bios);
1741        bio_list_init(&info.issue_bios);
1742
1743        cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1744                           &info, cell);
1745
1746        while ((bio = bio_list_pop(&info.defer_bios)))
1747                thin_defer_bio(tc, bio);
1748
1749        while ((bio = bio_list_pop(&info.issue_bios)))
1750                remap_and_issue(tc, bio, block);
1751}
1752
1753static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1754                               dm_block_t block,
1755                               struct dm_thin_lookup_result *lookup_result,
1756                               struct dm_bio_prison_cell *virt_cell)
1757{
1758        struct dm_bio_prison_cell *data_cell;
1759        struct pool *pool = tc->pool;
1760        struct dm_cell_key key;
1761
1762        /*
1763         * If cell is already occupied, then sharing is already in the process
1764         * of being broken so we have nothing further to do here.
1765         */
1766        build_data_key(tc->td, lookup_result->block, &key);
1767        if (bio_detain(pool, &key, bio, &data_cell)) {
1768                cell_defer_no_holder(tc, virt_cell);
1769                return;
1770        }
1771
1772        if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1773                break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1774                cell_defer_no_holder(tc, virt_cell);
1775        } else {
1776                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1777
1778                h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1779                inc_all_io_entry(pool, bio);
1780                remap_and_issue(tc, bio, lookup_result->block);
1781
1782                remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1783                remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1784        }
1785}
1786
1787static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1788                            struct dm_bio_prison_cell *cell)
1789{
1790        int r;
1791        dm_block_t data_block;
1792        struct pool *pool = tc->pool;
1793
1794        /*
1795         * Remap empty bios (flushes) immediately, without provisioning.
1796         */
1797        if (!bio->bi_iter.bi_size) {
1798                inc_all_io_entry(pool, bio);
1799                cell_defer_no_holder(tc, cell);
1800
1801                remap_and_issue(tc, bio, 0);
1802                return;
1803        }
1804
1805        /*
1806         * Fill read bios with zeroes and complete them immediately.
1807         */
1808        if (bio_data_dir(bio) == READ) {
1809                zero_fill_bio(bio);
1810                cell_defer_no_holder(tc, cell);
1811                bio_endio(bio);
1812                return;
1813        }
1814
1815        r = alloc_data_block(tc, &data_block);
1816        switch (r) {
1817        case 0:
1818                if (tc->origin_dev)
1819                        schedule_external_copy(tc, block, data_block, cell, bio);
1820                else
1821                        schedule_zero(tc, block, data_block, cell, bio);
1822                break;
1823
1824        case -ENOSPC:
1825                retry_bios_on_resume(pool, cell);
1826                break;
1827
1828        default:
1829                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1830                            __func__, r);
1831                cell_error(pool, cell);
1832                break;
1833        }
1834}
1835
1836static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1837{
1838        int r;
1839        struct pool *pool = tc->pool;
1840        struct bio *bio = cell->holder;
1841        dm_block_t block = get_bio_block(tc, bio);
1842        struct dm_thin_lookup_result lookup_result;
1843
1844        if (tc->requeue_mode) {
1845                cell_requeue(pool, cell);
1846                return;
1847        }
1848
1849        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1850        switch (r) {
1851        case 0:
1852                if (lookup_result.shared)
1853                        process_shared_bio(tc, bio, block, &lookup_result, cell);
1854                else {
1855                        inc_all_io_entry(pool, bio);
1856                        remap_and_issue(tc, bio, lookup_result.block);
1857                        inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1858                }
1859                break;
1860
1861        case -ENODATA:
1862                if (bio_data_dir(bio) == READ && tc->origin_dev) {
1863                        inc_all_io_entry(pool, bio);
1864                        cell_defer_no_holder(tc, cell);
1865
1866                        if (bio_end_sector(bio) <= tc->origin_size)
1867                                remap_to_origin_and_issue(tc, bio);
1868
1869                        else if (bio->bi_iter.bi_sector < tc->origin_size) {
1870                                zero_fill_bio(bio);
1871                                bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1872                                remap_to_origin_and_issue(tc, bio);
1873
1874                        } else {
1875                                zero_fill_bio(bio);
1876                                bio_endio(bio);
1877                        }
1878                } else
1879                        provision_block(tc, bio, block, cell);
1880                break;
1881
1882        default:
1883                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1884                            __func__, r);
1885                cell_defer_no_holder(tc, cell);
1886                bio_io_error(bio);
1887                break;
1888        }
1889}
1890
1891static void process_bio(struct thin_c *tc, struct bio *bio)
1892{
1893        struct pool *pool = tc->pool;
1894        dm_block_t block = get_bio_block(tc, bio);
1895        struct dm_bio_prison_cell *cell;
1896        struct dm_cell_key key;
1897
1898        /*
1899         * If cell is already occupied, then the block is already
1900         * being provisioned so we have nothing further to do here.
1901         */
1902        build_virtual_key(tc->td, block, &key);
1903        if (bio_detain(pool, &key, bio, &cell))
1904                return;
1905
1906        process_cell(tc, cell);
1907}
1908
1909static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1910                                    struct dm_bio_prison_cell *cell)
1911{
1912        int r;
1913        int rw = bio_data_dir(bio);
1914        dm_block_t block = get_bio_block(tc, bio);
1915        struct dm_thin_lookup_result lookup_result;
1916
1917        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1918        switch (r) {
1919        case 0:
1920                if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1921                        handle_unserviceable_bio(tc->pool, bio);
1922                        if (cell)
1923                                cell_defer_no_holder(tc, cell);
1924                } else {
1925                        inc_all_io_entry(tc->pool, bio);
1926                        remap_and_issue(tc, bio, lookup_result.block);
1927                        if (cell)
1928                                inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1929                }
1930                break;
1931
1932        case -ENODATA:
1933                if (cell)
1934                        cell_defer_no_holder(tc, cell);
1935                if (rw != READ) {
1936                        handle_unserviceable_bio(tc->pool, bio);
1937                        break;
1938                }
1939
1940                if (tc->origin_dev) {
1941                        inc_all_io_entry(tc->pool, bio);
1942                        remap_to_origin_and_issue(tc, bio);
1943                        break;
1944                }
1945
1946                zero_fill_bio(bio);
1947                bio_endio(bio);
1948                break;
1949
1950        default:
1951                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1952                            __func__, r);
1953                if (cell)
1954                        cell_defer_no_holder(tc, cell);
1955                bio_io_error(bio);
1956                break;
1957        }
1958}
1959
1960static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1961{
1962        __process_bio_read_only(tc, bio, NULL);
1963}
1964
1965static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1966{
1967        __process_bio_read_only(tc, cell->holder, cell);
1968}
1969
1970static void process_bio_success(struct thin_c *tc, struct bio *bio)
1971{
1972        bio_endio(bio);
1973}
1974
1975static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1976{
1977        bio_io_error(bio);
1978}
1979
1980static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1981{
1982        cell_success(tc->pool, cell);
1983}
1984
1985static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1986{
1987        cell_error(tc->pool, cell);
1988}
1989
1990/*
1991 * FIXME: should we also commit due to size of transaction, measured in
1992 * metadata blocks?
1993 */
1994static int need_commit_due_to_time(struct pool *pool)
1995{
1996        return !time_in_range(jiffies, pool->last_commit_jiffies,
1997                              pool->last_commit_jiffies + COMMIT_PERIOD);
1998}
1999
2000#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2001#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2002
2003static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2004{
2005        struct rb_node **rbp, *parent;
2006        struct dm_thin_endio_hook *pbd;
2007        sector_t bi_sector = bio->bi_iter.bi_sector;
2008
2009        rbp = &tc->sort_bio_list.rb_node;
2010        parent = NULL;
2011        while (*rbp) {
2012                parent = *rbp;
2013                pbd = thin_pbd(parent);
2014
2015                if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2016                        rbp = &(*rbp)->rb_left;
2017                else
2018                        rbp = &(*rbp)->rb_right;
2019        }
2020
2021        pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2022        rb_link_node(&pbd->rb_node, parent, rbp);
2023        rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2024}
2025
2026static void __extract_sorted_bios(struct thin_c *tc)
2027{
2028        struct rb_node *node;
2029        struct dm_thin_endio_hook *pbd;
2030        struct bio *bio;
2031
2032        for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2033                pbd = thin_pbd(node);
2034                bio = thin_bio(pbd);
2035
2036                bio_list_add(&tc->deferred_bio_list, bio);
2037                rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2038        }
2039
2040        WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2041}
2042
2043static void __sort_thin_deferred_bios(struct thin_c *tc)
2044{
2045        struct bio *bio;
2046        struct bio_list bios;
2047
2048        bio_list_init(&bios);
2049        bio_list_merge(&bios, &tc->deferred_bio_list);
2050        bio_list_init(&tc->deferred_bio_list);
2051
2052        /* Sort deferred_bio_list using rb-tree */
2053        while ((bio = bio_list_pop(&bios)))
2054                __thin_bio_rb_add(tc, bio);
2055
2056        /*
2057         * Transfer the sorted bios in sort_bio_list back to
2058         * deferred_bio_list to allow lockless submission of
2059         * all bios.
2060         */
2061        __extract_sorted_bios(tc);
2062}
2063
2064static void process_thin_deferred_bios(struct thin_c *tc)
2065{
2066        struct pool *pool = tc->pool;
2067        unsigned long flags;
2068        struct bio *bio;
2069        struct bio_list bios;
2070        struct blk_plug plug;
2071        unsigned count = 0;
2072
2073        if (tc->requeue_mode) {
2074                error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2075                return;
2076        }
2077
2078        bio_list_init(&bios);
2079
2080        spin_lock_irqsave(&tc->lock, flags);
2081
2082        if (bio_list_empty(&tc->deferred_bio_list)) {
2083                spin_unlock_irqrestore(&tc->lock, flags);
2084                return;
2085        }
2086
2087        __sort_thin_deferred_bios(tc);
2088
2089        bio_list_merge(&bios, &tc->deferred_bio_list);
2090        bio_list_init(&tc->deferred_bio_list);
2091
2092        spin_unlock_irqrestore(&tc->lock, flags);
2093
2094        blk_start_plug(&plug);
2095        while ((bio = bio_list_pop(&bios))) {
2096                /*
2097                 * If we've got no free new_mapping structs, and processing
2098                 * this bio might require one, we pause until there are some
2099                 * prepared mappings to process.
2100                 */
2101                if (ensure_next_mapping(pool)) {
2102                        spin_lock_irqsave(&tc->lock, flags);
2103                        bio_list_add(&tc->deferred_bio_list, bio);
2104                        bio_list_merge(&tc->deferred_bio_list, &bios);
2105                        spin_unlock_irqrestore(&tc->lock, flags);
2106                        break;
2107                }
2108
2109                if (bio_op(bio) == REQ_OP_DISCARD)
2110                        pool->process_discard(tc, bio);
2111                else
2112                        pool->process_bio(tc, bio);
2113
2114                if ((count++ & 127) == 0) {
2115                        throttle_work_update(&pool->throttle);
2116                        dm_pool_issue_prefetches(pool->pmd);
2117                }
2118        }
2119        blk_finish_plug(&plug);
2120}
2121
2122static int cmp_cells(const void *lhs, const void *rhs)
2123{
2124        struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2125        struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2126
2127        BUG_ON(!lhs_cell->holder);
2128        BUG_ON(!rhs_cell->holder);
2129
2130        if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2131                return -1;
2132
2133        if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2134                return 1;
2135
2136        return 0;
2137}
2138
2139static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2140{
2141        unsigned count = 0;
2142        struct dm_bio_prison_cell *cell, *tmp;
2143
2144        list_for_each_entry_safe(cell, tmp, cells, user_list) {
2145                if (count >= CELL_SORT_ARRAY_SIZE)
2146                        break;
2147
2148                pool->cell_sort_array[count++] = cell;
2149                list_del(&cell->user_list);
2150        }
2151
2152        sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2153
2154        return count;
2155}
2156
2157static void process_thin_deferred_cells(struct thin_c *tc)
2158{
2159        struct pool *pool = tc->pool;
2160        unsigned long flags;
2161        struct list_head cells;
2162        struct dm_bio_prison_cell *cell;
2163        unsigned i, j, count;
2164
2165        INIT_LIST_HEAD(&cells);
2166
2167        spin_lock_irqsave(&tc->lock, flags);
2168        list_splice_init(&tc->deferred_cells, &cells);
2169        spin_unlock_irqrestore(&tc->lock, flags);
2170
2171        if (list_empty(&cells))
2172                return;
2173
2174        do {
2175                count = sort_cells(tc->pool, &cells);
2176
2177                for (i = 0; i < count; i++) {
2178                        cell = pool->cell_sort_array[i];
2179                        BUG_ON(!cell->holder);
2180
2181                        /*
2182                         * If we've got no free new_mapping structs, and processing
2183                         * this bio might require one, we pause until there are some
2184                         * prepared mappings to process.
2185                         */
2186                        if (ensure_next_mapping(pool)) {
2187                                for (j = i; j < count; j++)
2188                                        list_add(&pool->cell_sort_array[j]->user_list, &cells);
2189
2190                                spin_lock_irqsave(&tc->lock, flags);
2191                                list_splice(&cells, &tc->deferred_cells);
2192                                spin_unlock_irqrestore(&tc->lock, flags);
2193                                return;
2194                        }
2195
2196                        if (bio_op(cell->holder) == REQ_OP_DISCARD)
2197                                pool->process_discard_cell(tc, cell);
2198                        else
2199                                pool->process_cell(tc, cell);
2200                }
2201        } while (!list_empty(&cells));
2202}
2203
2204static void thin_get(struct thin_c *tc);
2205static void thin_put(struct thin_c *tc);
2206
2207/*
2208 * We can't hold rcu_read_lock() around code that can block.  So we
2209 * find a thin with the rcu lock held; bump a refcount; then drop
2210 * the lock.
2211 */
2212static struct thin_c *get_first_thin(struct pool *pool)
2213{
2214        struct thin_c *tc = NULL;
2215
2216        rcu_read_lock();
2217        if (!list_empty(&pool->active_thins)) {
2218                tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2219                thin_get(tc);
2220        }
2221        rcu_read_unlock();
2222
2223        return tc;
2224}
2225
2226static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2227{
2228        struct thin_c *old_tc = tc;
2229
2230        rcu_read_lock();
2231        list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2232                thin_get(tc);
2233                thin_put(old_tc);
2234                rcu_read_unlock();
2235                return tc;
2236        }
2237        thin_put(old_tc);
2238        rcu_read_unlock();
2239
2240        return NULL;
2241}
2242
2243static void process_deferred_bios(struct pool *pool)
2244{
2245        unsigned long flags;
2246        struct bio *bio;
2247        struct bio_list bios;
2248        struct thin_c *tc;
2249
2250        tc = get_first_thin(pool);
2251        while (tc) {
2252                process_thin_deferred_cells(tc);
2253                process_thin_deferred_bios(tc);
2254                tc = get_next_thin(pool, tc);
2255        }
2256
2257        /*
2258         * If there are any deferred flush bios, we must commit
2259         * the metadata before issuing them.
2260         */
2261        bio_list_init(&bios);
2262        spin_lock_irqsave(&pool->lock, flags);
2263        bio_list_merge(&bios, &pool->deferred_flush_bios);
2264        bio_list_init(&pool->deferred_flush_bios);
2265        spin_unlock_irqrestore(&pool->lock, flags);
2266
2267        if (bio_list_empty(&bios) &&
2268            !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2269                return;
2270
2271        if (commit(pool)) {
2272                while ((bio = bio_list_pop(&bios)))
2273                        bio_io_error(bio);
2274                return;
2275        }
2276        pool->last_commit_jiffies = jiffies;
2277
2278        while ((bio = bio_list_pop(&bios)))
2279                generic_make_request(bio);
2280}
2281
2282static void do_worker(struct work_struct *ws)
2283{
2284        struct pool *pool = container_of(ws, struct pool, worker);
2285
2286        throttle_work_start(&pool->throttle);
2287        dm_pool_issue_prefetches(pool->pmd);
2288        throttle_work_update(&pool->throttle);
2289        process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2290        throttle_work_update(&pool->throttle);
2291        process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2292        throttle_work_update(&pool->throttle);
2293        process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2294        throttle_work_update(&pool->throttle);
2295        process_deferred_bios(pool);
2296        throttle_work_complete(&pool->throttle);
2297}
2298
2299/*
2300 * We want to commit periodically so that not too much
2301 * unwritten data builds up.
2302 */
2303static void do_waker(struct work_struct *ws)
2304{
2305        struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2306        wake_worker(pool);
2307        queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2308}
2309
2310static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2311
2312/*
2313 * We're holding onto IO to allow userland time to react.  After the
2314 * timeout either the pool will have been resized (and thus back in
2315 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2316 */
2317static void do_no_space_timeout(struct work_struct *ws)
2318{
2319        struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2320                                         no_space_timeout);
2321
2322        if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2323                pool->pf.error_if_no_space = true;
2324                notify_of_pool_mode_change_to_oods(pool);
2325                error_retry_list_with_code(pool, -ENOSPC);
2326        }
2327}
2328
2329/*----------------------------------------------------------------*/
2330
2331struct pool_work {
2332        struct work_struct worker;
2333        struct completion complete;
2334};
2335
2336static struct pool_work *to_pool_work(struct work_struct *ws)
2337{
2338        return container_of(ws, struct pool_work, worker);
2339}
2340
2341static void pool_work_complete(struct pool_work *pw)
2342{
2343        complete(&pw->complete);
2344}
2345
2346static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2347                           void (*fn)(struct work_struct *))
2348{
2349        INIT_WORK_ONSTACK(&pw->worker, fn);
2350        init_completion(&pw->complete);
2351        queue_work(pool->wq, &pw->worker);
2352        wait_for_completion(&pw->complete);
2353}
2354
2355/*----------------------------------------------------------------*/
2356
2357struct noflush_work {
2358        struct pool_work pw;
2359        struct thin_c *tc;
2360};
2361
2362static struct noflush_work *to_noflush(struct work_struct *ws)
2363{
2364        return container_of(to_pool_work(ws), struct noflush_work, pw);
2365}
2366
2367static void do_noflush_start(struct work_struct *ws)
2368{
2369        struct noflush_work *w = to_noflush(ws);
2370        w->tc->requeue_mode = true;
2371        requeue_io(w->tc);
2372        pool_work_complete(&w->pw);
2373}
2374
2375static void do_noflush_stop(struct work_struct *ws)
2376{
2377        struct noflush_work *w = to_noflush(ws);
2378        w->tc->requeue_mode = false;
2379        pool_work_complete(&w->pw);
2380}
2381
2382static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2383{
2384        struct noflush_work w;
2385
2386        w.tc = tc;
2387        pool_work_wait(&w.pw, tc->pool, fn);
2388}
2389
2390/*----------------------------------------------------------------*/
2391
2392static enum pool_mode get_pool_mode(struct pool *pool)
2393{
2394        return pool->pf.mode;
2395}
2396
2397static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2398{
2399        dm_table_event(pool->ti->table);
2400        DMINFO("%s: switching pool to %s mode",
2401               dm_device_name(pool->pool_md), new_mode);
2402}
2403
2404static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2405{
2406        if (!pool->pf.error_if_no_space)
2407                notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2408        else
2409                notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2410}
2411
2412static bool passdown_enabled(struct pool_c *pt)
2413{
2414        return pt->adjusted_pf.discard_passdown;
2415}
2416
2417static void set_discard_callbacks(struct pool *pool)
2418{
2419        struct pool_c *pt = pool->ti->private;
2420
2421        if (passdown_enabled(pt)) {
2422                pool->process_discard_cell = process_discard_cell_passdown;
2423                pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2424                pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2425        } else {
2426                pool->process_discard_cell = process_discard_cell_no_passdown;
2427                pool->process_prepared_discard = process_prepared_discard_no_passdown;
2428        }
2429}
2430
2431static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2432{
2433        struct pool_c *pt = pool->ti->private;
2434        bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2435        enum pool_mode old_mode = get_pool_mode(pool);
2436        unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2437
2438        /*
2439         * Never allow the pool to transition to PM_WRITE mode if user
2440         * intervention is required to verify metadata and data consistency.
2441         */
2442        if (new_mode == PM_WRITE && needs_check) {
2443                DMERR("%s: unable to switch pool to write mode until repaired.",
2444                      dm_device_name(pool->pool_md));
2445                if (old_mode != new_mode)
2446                        new_mode = old_mode;
2447                else
2448                        new_mode = PM_READ_ONLY;
2449        }
2450        /*
2451         * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2452         * not going to recover without a thin_repair.  So we never let the
2453         * pool move out of the old mode.
2454         */
2455        if (old_mode == PM_FAIL)
2456                new_mode = old_mode;
2457
2458        switch (new_mode) {
2459        case PM_FAIL:
2460                if (old_mode != new_mode)
2461                        notify_of_pool_mode_change(pool, "failure");
2462                dm_pool_metadata_read_only(pool->pmd);
2463                pool->process_bio = process_bio_fail;
2464                pool->process_discard = process_bio_fail;
2465                pool->process_cell = process_cell_fail;
2466                pool->process_discard_cell = process_cell_fail;
2467                pool->process_prepared_mapping = process_prepared_mapping_fail;
2468                pool->process_prepared_discard = process_prepared_discard_fail;
2469
2470                error_retry_list(pool);
2471                break;
2472
2473        case PM_READ_ONLY:
2474                if (old_mode != new_mode)
2475                        notify_of_pool_mode_change(pool, "read-only");
2476                dm_pool_metadata_read_only(pool->pmd);
2477                pool->process_bio = process_bio_read_only;
2478                pool->process_discard = process_bio_success;
2479                pool->process_cell = process_cell_read_only;
2480                pool->process_discard_cell = process_cell_success;
2481                pool->process_prepared_mapping = process_prepared_mapping_fail;
2482                pool->process_prepared_discard = process_prepared_discard_success;
2483
2484                error_retry_list(pool);
2485                break;
2486
2487        case PM_OUT_OF_DATA_SPACE:
2488                /*
2489                 * Ideally we'd never hit this state; the low water mark
2490                 * would trigger userland to extend the pool before we
2491                 * completely run out of data space.  However, many small
2492                 * IOs to unprovisioned space can consume data space at an
2493                 * alarming rate.  Adjust your low water mark if you're
2494                 * frequently seeing this mode.
2495                 */
2496                if (old_mode != new_mode)
2497                        notify_of_pool_mode_change_to_oods(pool);
2498                pool->out_of_data_space = true;
2499                pool->process_bio = process_bio_read_only;
2500                pool->process_discard = process_discard_bio;
2501                pool->process_cell = process_cell_read_only;
2502                pool->process_prepared_mapping = process_prepared_mapping;
2503                set_discard_callbacks(pool);
2504
2505                if (!pool->pf.error_if_no_space && no_space_timeout)
2506                        queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2507                break;
2508
2509        case PM_WRITE:
2510                if (old_mode != new_mode)
2511                        notify_of_pool_mode_change(pool, "write");
2512                pool->out_of_data_space = false;
2513                pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2514                dm_pool_metadata_read_write(pool->pmd);
2515                pool->process_bio = process_bio;
2516                pool->process_discard = process_discard_bio;
2517                pool->process_cell = process_cell;
2518                pool->process_prepared_mapping = process_prepared_mapping;
2519                set_discard_callbacks(pool);
2520                break;
2521        }
2522
2523        pool->pf.mode = new_mode;
2524        /*
2525         * The pool mode may have changed, sync it so bind_control_target()
2526         * doesn't cause an unexpected mode transition on resume.
2527         */
2528        pt->adjusted_pf.mode = new_mode;
2529}
2530
2531static void abort_transaction(struct pool *pool)
2532{
2533        const char *dev_name = dm_device_name(pool->pool_md);
2534
2535        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2536        if (dm_pool_abort_metadata(pool->pmd)) {
2537                DMERR("%s: failed to abort metadata transaction", dev_name);
2538                set_pool_mode(pool, PM_FAIL);
2539        }
2540
2541        if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2542                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2543                set_pool_mode(pool, PM_FAIL);
2544        }
2545}
2546
2547static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2548{
2549        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2550                    dm_device_name(pool->pool_md), op, r);
2551
2552        abort_transaction(pool);
2553        set_pool_mode(pool, PM_READ_ONLY);
2554}
2555
2556/*----------------------------------------------------------------*/
2557
2558/*
2559 * Mapping functions.
2560 */
2561
2562/*
2563 * Called only while mapping a thin bio to hand it over to the workqueue.
2564 */
2565static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2566{
2567        unsigned long flags;
2568        struct pool *pool = tc->pool;
2569
2570        spin_lock_irqsave(&tc->lock, flags);
2571        bio_list_add(&tc->deferred_bio_list, bio);
2572        spin_unlock_irqrestore(&tc->lock, flags);
2573
2574        wake_worker(pool);
2575}
2576
2577static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2578{
2579        struct pool *pool = tc->pool;
2580
2581        throttle_lock(&pool->throttle);
2582        thin_defer_bio(tc, bio);
2583        throttle_unlock(&pool->throttle);
2584}
2585
2586static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2587{
2588        unsigned long flags;
2589        struct pool *pool = tc->pool;
2590
2591        throttle_lock(&pool->throttle);
2592        spin_lock_irqsave(&tc->lock, flags);
2593        list_add_tail(&cell->user_list, &tc->deferred_cells);
2594        spin_unlock_irqrestore(&tc->lock, flags);
2595        throttle_unlock(&pool->throttle);
2596
2597        wake_worker(pool);
2598}
2599
2600static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2601{
2602        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2603
2604        h->tc = tc;
2605        h->shared_read_entry = NULL;
2606        h->all_io_entry = NULL;
2607        h->overwrite_mapping = NULL;
2608        h->cell = NULL;
2609}
2610
2611/*
2612 * Non-blocking function called from the thin target's map function.
2613 */
2614static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2615{
2616        int r;
2617        struct thin_c *tc = ti->private;
2618        dm_block_t block = get_bio_block(tc, bio);
2619        struct dm_thin_device *td = tc->td;
2620        struct dm_thin_lookup_result result;
2621        struct dm_bio_prison_cell *virt_cell, *data_cell;
2622        struct dm_cell_key key;
2623
2624        thin_hook_bio(tc, bio);
2625
2626        if (tc->requeue_mode) {
2627                bio->bi_error = DM_ENDIO_REQUEUE;
2628                bio_endio(bio);
2629                return DM_MAPIO_SUBMITTED;
2630        }
2631
2632        if (get_pool_mode(tc->pool) == PM_FAIL) {
2633                bio_io_error(bio);
2634                return DM_MAPIO_SUBMITTED;
2635        }
2636
2637        if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2638                thin_defer_bio_with_throttle(tc, bio);
2639                return DM_MAPIO_SUBMITTED;
2640        }
2641
2642        /*
2643         * We must hold the virtual cell before doing the lookup, otherwise
2644         * there's a race with discard.
2645         */
2646        build_virtual_key(tc->td, block, &key);
2647        if (bio_detain(tc->pool, &key, bio, &virt_cell))
2648                return DM_MAPIO_SUBMITTED;
2649
2650        r = dm_thin_find_block(td, block, 0, &result);
2651
2652        /*
2653         * Note that we defer readahead too.
2654         */
2655        switch (r) {
2656        case 0:
2657                if (unlikely(result.shared)) {
2658                        /*
2659                         * We have a race condition here between the
2660                         * result.shared value returned by the lookup and
2661                         * snapshot creation, which may cause new
2662                         * sharing.
2663                         *
2664                         * To avoid this always quiesce the origin before
2665                         * taking the snap.  You want to do this anyway to
2666                         * ensure a consistent application view
2667                         * (i.e. lockfs).
2668                         *
2669                         * More distant ancestors are irrelevant. The
2670                         * shared flag will be set in their case.
2671                         */
2672                        thin_defer_cell(tc, virt_cell);
2673                        return DM_MAPIO_SUBMITTED;
2674                }
2675
2676                build_data_key(tc->td, result.block, &key);
2677                if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2678                        cell_defer_no_holder(tc, virt_cell);
2679                        return DM_MAPIO_SUBMITTED;
2680                }
2681
2682                inc_all_io_entry(tc->pool, bio);
2683                cell_defer_no_holder(tc, data_cell);
2684                cell_defer_no_holder(tc, virt_cell);
2685
2686                remap(tc, bio, result.block);
2687                return DM_MAPIO_REMAPPED;
2688
2689        case -ENODATA:
2690        case -EWOULDBLOCK:
2691                thin_defer_cell(tc, virt_cell);
2692                return DM_MAPIO_SUBMITTED;
2693
2694        default:
2695                /*
2696                 * Must always call bio_io_error on failure.
2697                 * dm_thin_find_block can fail with -EINVAL if the
2698                 * pool is switched to fail-io mode.
2699                 */
2700                bio_io_error(bio);
2701                cell_defer_no_holder(tc, virt_cell);
2702                return DM_MAPIO_SUBMITTED;
2703        }
2704}
2705
2706static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2707{
2708        struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2709        struct request_queue *q;
2710
2711        if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2712                return 1;
2713
2714        q = bdev_get_queue(pt->data_dev->bdev);
2715        return bdi_congested(q->backing_dev_info, bdi_bits);
2716}
2717
2718static void requeue_bios(struct pool *pool)
2719{
2720        unsigned long flags;
2721        struct thin_c *tc;
2722
2723        rcu_read_lock();
2724        list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2725                spin_lock_irqsave(&tc->lock, flags);
2726                bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2727                bio_list_init(&tc->retry_on_resume_list);
2728                spin_unlock_irqrestore(&tc->lock, flags);
2729        }
2730        rcu_read_unlock();
2731}
2732
2733/*----------------------------------------------------------------
2734 * Binding of control targets to a pool object
2735 *--------------------------------------------------------------*/
2736static bool data_dev_supports_discard(struct pool_c *pt)
2737{
2738        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2739
2740        return q && blk_queue_discard(q);
2741}
2742
2743static bool is_factor(sector_t block_size, uint32_t n)
2744{
2745        return !sector_div(block_size, n);
2746}
2747
2748/*
2749 * If discard_passdown was enabled verify that the data device
2750 * supports discards.  Disable discard_passdown if not.
2751 */
2752static void disable_passdown_if_not_supported(struct pool_c *pt)
2753{
2754        struct pool *pool = pt->pool;
2755        struct block_device *data_bdev = pt->data_dev->bdev;
2756        struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2757        const char *reason = NULL;
2758        char buf[BDEVNAME_SIZE];
2759
2760        if (!pt->adjusted_pf.discard_passdown)
2761                return;
2762
2763        if (!data_dev_supports_discard(pt))
2764                reason = "discard unsupported";
2765
2766        else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2767                reason = "max discard sectors smaller than a block";
2768
2769        if (reason) {
2770                DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2771                pt->adjusted_pf.discard_passdown = false;
2772        }
2773}
2774
2775static int bind_control_target(struct pool *pool, struct dm_target *ti)
2776{
2777        struct pool_c *pt = ti->private;
2778
2779        /*
2780         * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2781         */
2782        enum pool_mode old_mode = get_pool_mode(pool);
2783        enum pool_mode new_mode = pt->adjusted_pf.mode;
2784
2785        /*
2786         * Don't change the pool's mode until set_pool_mode() below.
2787         * Otherwise the pool's process_* function pointers may
2788         * not match the desired pool mode.
2789         */
2790        pt->adjusted_pf.mode = old_mode;
2791
2792        pool->ti = ti;
2793        pool->pf = pt->adjusted_pf;
2794        pool->low_water_blocks = pt->low_water_blocks;
2795
2796        set_pool_mode(pool, new_mode);
2797
2798        return 0;
2799}
2800
2801static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2802{
2803        if (pool->ti == ti)
2804                pool->ti = NULL;
2805}
2806
2807/*----------------------------------------------------------------
2808 * Pool creation
2809 *--------------------------------------------------------------*/
2810/* Initialize pool features. */
2811static void pool_features_init(struct pool_features *pf)
2812{
2813        pf->mode = PM_WRITE;
2814        pf->zero_new_blocks = true;
2815        pf->discard_enabled = true;
2816        pf->discard_passdown = true;
2817        pf->error_if_no_space = false;
2818}
2819
2820static void __pool_destroy(struct pool *pool)
2821{
2822        __pool_table_remove(pool);
2823
2824        vfree(pool->cell_sort_array);
2825        if (dm_pool_metadata_close(pool->pmd) < 0)
2826                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2827
2828        dm_bio_prison_destroy(pool->prison);
2829        dm_kcopyd_client_destroy(pool->copier);
2830
2831        if (pool->wq)
2832                destroy_workqueue(pool->wq);
2833
2834        if (pool->next_mapping)
2835                mempool_free(pool->next_mapping, pool->mapping_pool);
2836        mempool_destroy(pool->mapping_pool);
2837        dm_deferred_set_destroy(pool->shared_read_ds);
2838        dm_deferred_set_destroy(pool->all_io_ds);
2839        kfree(pool);
2840}
2841
2842static struct kmem_cache *_new_mapping_cache;
2843
2844static struct pool *pool_create(struct mapped_device *pool_md,
2845                                struct block_device *metadata_dev,
2846                                unsigned long block_size,
2847                                int read_only, char **error)
2848{
2849        int r;
2850        void *err_p;
2851        struct pool *pool;
2852        struct dm_pool_metadata *pmd;
2853        bool format_device = read_only ? false : true;
2854
2855        pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2856        if (IS_ERR(pmd)) {
2857                *error = "Error creating metadata object";
2858                return (struct pool *)pmd;
2859        }
2860
2861        pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2862        if (!pool) {
2863                *error = "Error allocating memory for pool";
2864                err_p = ERR_PTR(-ENOMEM);
2865                goto bad_pool;
2866        }
2867
2868        pool->pmd = pmd;
2869        pool->sectors_per_block = block_size;
2870        if (block_size & (block_size - 1))
2871                pool->sectors_per_block_shift = -1;
2872        else
2873                pool->sectors_per_block_shift = __ffs(block_size);
2874        pool->low_water_blocks = 0;
2875        pool_features_init(&pool->pf);
2876        pool->prison = dm_bio_prison_create();
2877        if (!pool->prison) {
2878                *error = "Error creating pool's bio prison";
2879                err_p = ERR_PTR(-ENOMEM);
2880                goto bad_prison;
2881        }
2882
2883        pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2884        if (IS_ERR(pool->copier)) {
2885                r = PTR_ERR(pool->copier);
2886                *error = "Error creating pool's kcopyd client";
2887                err_p = ERR_PTR(r);
2888                goto bad_kcopyd_client;
2889        }
2890
2891        /*
2892         * Create singlethreaded workqueue that will service all devices
2893         * that use this metadata.
2894         */
2895        pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2896        if (!pool->wq) {
2897                *error = "Error creating pool's workqueue";
2898                err_p = ERR_PTR(-ENOMEM);
2899                goto bad_wq;
2900        }
2901
2902        throttle_init(&pool->throttle);
2903        INIT_WORK(&pool->worker, do_worker);
2904        INIT_DELAYED_WORK(&pool->waker, do_waker);
2905        INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2906        spin_lock_init(&pool->lock);
2907        bio_list_init(&pool->deferred_flush_bios);
2908        INIT_LIST_HEAD(&pool->prepared_mappings);
2909        INIT_LIST_HEAD(&pool->prepared_discards);
2910        INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2911        INIT_LIST_HEAD(&pool->active_thins);
2912        pool->low_water_triggered = false;
2913        pool->suspended = true;
2914        pool->out_of_data_space = false;
2915
2916        pool->shared_read_ds = dm_deferred_set_create();
2917        if (!pool->shared_read_ds) {
2918                *error = "Error creating pool's shared read deferred set";
2919                err_p = ERR_PTR(-ENOMEM);
2920                goto bad_shared_read_ds;
2921        }
2922
2923        pool->all_io_ds = dm_deferred_set_create();
2924        if (!pool->all_io_ds) {
2925                *error = "Error creating pool's all io deferred set";
2926                err_p = ERR_PTR(-ENOMEM);
2927                goto bad_all_io_ds;
2928        }
2929
2930        pool->next_mapping = NULL;
2931        pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2932                                                      _new_mapping_cache);
2933        if (!pool->mapping_pool) {
2934                *error = "Error creating pool's mapping mempool";
2935                err_p = ERR_PTR(-ENOMEM);
2936                goto bad_mapping_pool;
2937        }
2938
2939        pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2940        if (!pool->cell_sort_array) {
2941                *error = "Error allocating cell sort array";
2942                err_p = ERR_PTR(-ENOMEM);
2943                goto bad_sort_array;
2944        }
2945
2946        pool->ref_count = 1;
2947        pool->last_commit_jiffies = jiffies;
2948        pool->pool_md = pool_md;
2949        pool->md_dev = metadata_dev;
2950        __pool_table_insert(pool);
2951
2952        return pool;
2953
2954bad_sort_array:
2955        mempool_destroy(pool->mapping_pool);
2956bad_mapping_pool:
2957        dm_deferred_set_destroy(pool->all_io_ds);
2958bad_all_io_ds:
2959        dm_deferred_set_destroy(pool->shared_read_ds);
2960bad_shared_read_ds:
2961        destroy_workqueue(pool->wq);
2962bad_wq:
2963        dm_kcopyd_client_destroy(pool->copier);
2964bad_kcopyd_client:
2965        dm_bio_prison_destroy(pool->prison);
2966bad_prison:
2967        kfree(pool);
2968bad_pool:
2969        if (dm_pool_metadata_close(pmd))
2970                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2971
2972        return err_p;
2973}
2974
2975static void __pool_inc(struct pool *pool)
2976{
2977        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2978        pool->ref_count++;
2979}
2980
2981static void __pool_dec(struct pool *pool)
2982{
2983        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2984        BUG_ON(!pool->ref_count);
2985        if (!--pool->ref_count)
2986                __pool_destroy(pool);
2987}
2988
2989static struct pool *__pool_find(struct mapped_device *pool_md,
2990                                struct block_device *metadata_dev,
2991                                unsigned long block_size, int read_only,
2992                                char **error, int *created)
2993{
2994        struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2995
2996        if (pool) {
2997                if (pool->pool_md != pool_md) {
2998                        *error = "metadata device already in use by a pool";
2999                        return ERR_PTR(-EBUSY);
3000                }
3001                __pool_inc(pool);
3002
3003        } else {
3004                pool = __pool_table_lookup(pool_md);
3005                if (pool) {
3006                        if (pool->md_dev != metadata_dev) {
3007                                *error = "different pool cannot replace a pool";
3008                                return ERR_PTR(-EINVAL);
3009                        }
3010                        __pool_inc(pool);
3011
3012                } else {
3013                        pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3014                        *created = 1;
3015                }
3016        }
3017
3018        return pool;
3019}
3020
3021/*----------------------------------------------------------------
3022 * Pool target methods
3023 *--------------------------------------------------------------*/
3024static void pool_dtr(struct dm_target *ti)
3025{
3026        struct pool_c *pt = ti->private;
3027
3028        mutex_lock(&dm_thin_pool_table.mutex);
3029
3030        unbind_control_target(pt->pool, ti);
3031        __pool_dec(pt->pool);
3032        dm_put_device(ti, pt->metadata_dev);
3033        dm_put_device(ti, pt->data_dev);
3034        kfree(pt);
3035
3036        mutex_unlock(&dm_thin_pool_table.mutex);
3037}
3038
3039static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3040                               struct dm_target *ti)
3041{
3042        int r;
3043        unsigned argc;
3044        const char *arg_name;
3045
3046        static struct dm_arg _args[] = {
3047                {0, 4, "Invalid number of pool feature arguments"},
3048        };
3049
3050        /*
3051         * No feature arguments supplied.
3052         */
3053        if (!as->argc)
3054                return 0;
3055
3056        r = dm_read_arg_group(_args, as, &argc, &ti->error);
3057        if (r)
3058                return -EINVAL;
3059
3060        while (argc && !r) {
3061                arg_name = dm_shift_arg(as);
3062                argc--;
3063
3064                if (!strcasecmp(arg_name, "skip_block_zeroing"))
3065                        pf->zero_new_blocks = false;
3066
3067                else if (!strcasecmp(arg_name, "ignore_discard"))
3068                        pf->discard_enabled = false;
3069
3070                else if (!strcasecmp(arg_name, "no_discard_passdown"))
3071                        pf->discard_passdown = false;
3072
3073                else if (!strcasecmp(arg_name, "read_only"))
3074                        pf->mode = PM_READ_ONLY;
3075
3076                else if (!strcasecmp(arg_name, "error_if_no_space"))
3077                        pf->error_if_no_space = true;
3078
3079                else {
3080                        ti->error = "Unrecognised pool feature requested";
3081                        r = -EINVAL;
3082                        break;
3083                }
3084        }
3085
3086        return r;
3087}
3088
3089static void metadata_low_callback(void *context)
3090{
3091        struct pool *pool = context;
3092
3093        DMWARN("%s: reached low water mark for metadata device: sending event.",
3094               dm_device_name(pool->pool_md));
3095
3096        dm_table_event(pool->ti->table);
3097}
3098
3099static sector_t get_dev_size(struct block_device *bdev)
3100{
3101        return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3102}
3103
3104static void warn_if_metadata_device_too_big(struct block_device *bdev)
3105{
3106        sector_t metadata_dev_size = get_dev_size(bdev);
3107        char buffer[BDEVNAME_SIZE];
3108
3109        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3110                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3111                       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3112}
3113
3114static sector_t get_metadata_dev_size(struct block_device *bdev)
3115{
3116        sector_t metadata_dev_size = get_dev_size(bdev);
3117
3118        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3119                metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3120
3121        return metadata_dev_size;
3122}
3123
3124static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3125{
3126        sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3127
3128        sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3129
3130        return metadata_dev_size;
3131}
3132
3133/*
3134 * When a metadata threshold is crossed a dm event is triggered, and
3135 * userland should respond by growing the metadata device.  We could let
3136 * userland set the threshold, like we do with the data threshold, but I'm
3137 * not sure they know enough to do this well.
3138 */
3139static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3140{
3141        /*
3142         * 4M is ample for all ops with the possible exception of thin
3143         * device deletion which is harmless if it fails (just retry the
3144         * delete after you've grown the device).
3145         */
3146        dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3147        return min((dm_block_t)1024ULL /* 4M */, quarter);
3148}
3149
3150/*
3151 * thin-pool <metadata dev> <data dev>
3152 *           <data block size (sectors)>
3153 *           <low water mark (blocks)>
3154 *           [<#feature args> [<arg>]*]
3155 *
3156 * Optional feature arguments are:
3157 *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3158 *           ignore_discard: disable discard
3159 *           no_discard_passdown: don't pass discards down to the data device
3160 *           read_only: Don't allow any changes to be made to the pool metadata.
3161 *           error_if_no_space: error IOs, instead of queueing, if no space.
3162 */
3163static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3164{
3165        int r, pool_created = 0;
3166        struct pool_c *pt;
3167        struct pool *pool;
3168        struct pool_features pf;
3169        struct dm_arg_set as;
3170        struct dm_dev *data_dev;
3171        unsigned long block_size;
3172        dm_block_t low_water_blocks;
3173        struct dm_dev *metadata_dev;
3174        fmode_t metadata_mode;
3175
3176        /*
3177         * FIXME Remove validation from scope of lock.
3178         */
3179        mutex_lock(&dm_thin_pool_table.mutex);
3180
3181        if (argc < 4) {
3182                ti->error = "Invalid argument count";
3183                r = -EINVAL;
3184                goto out_unlock;
3185        }
3186
3187        as.argc = argc;
3188        as.argv = argv;
3189
3190        /*
3191         * Set default pool features.
3192         */
3193        pool_features_init(&pf);
3194
3195        dm_consume_args(&as, 4);
3196        r = parse_pool_features(&as, &pf, ti);
3197        if (r)
3198                goto out_unlock;
3199
3200        metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3201        r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3202        if (r) {
3203                ti->error = "Error opening metadata block device";
3204                goto out_unlock;
3205        }
3206        warn_if_metadata_device_too_big(metadata_dev->bdev);
3207
3208        r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3209        if (r) {
3210                ti->error = "Error getting data device";
3211                goto out_metadata;
3212        }
3213
3214        if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3215            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3216            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3217            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3218                ti->error = "Invalid block size";
3219                r = -EINVAL;
3220                goto out;
3221        }
3222
3223        if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3224                ti->error = "Invalid low water mark";
3225                r = -EINVAL;
3226                goto out;
3227        }
3228
3229        pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3230        if (!pt) {
3231                r = -ENOMEM;
3232                goto out;
3233        }
3234
3235        pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3236                           block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3237        if (IS_ERR(pool)) {
3238                r = PTR_ERR(pool);
3239                goto out_free_pt;
3240        }
3241
3242        /*
3243         * 'pool_created' reflects whether this is the first table load.
3244         * Top level discard support is not allowed to be changed after
3245         * initial load.  This would require a pool reload to trigger thin
3246         * device changes.
3247         */
3248        if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3249                ti->error = "Discard support cannot be disabled once enabled";
3250                r = -EINVAL;
3251                goto out_flags_changed;
3252        }
3253
3254        pt->pool = pool;
3255        pt->ti = ti;
3256        pt->metadata_dev = metadata_dev;
3257        pt->data_dev = data_dev;
3258        pt->low_water_blocks = low_water_blocks;
3259        pt->adjusted_pf = pt->requested_pf = pf;
3260        ti->num_flush_bios = 1;
3261
3262        /*
3263         * Only need to enable discards if the pool should pass
3264         * them down to the data device.  The thin device's discard
3265         * processing will cause mappings to be removed from the btree.
3266         */
3267        if (pf.discard_enabled && pf.discard_passdown) {
3268                ti->num_discard_bios = 1;
3269
3270                /*
3271                 * Setting 'discards_supported' circumvents the normal
3272                 * stacking of discard limits (this keeps the pool and
3273                 * thin devices' discard limits consistent).
3274                 */
3275                ti->discards_supported = true;
3276        }
3277        ti->private = pt;
3278
3279        r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3280                                                calc_metadata_threshold(pt),
3281                                                metadata_low_callback,
3282                                                pool);
3283        if (r)
3284                goto out_flags_changed;
3285
3286        pt->callbacks.congested_fn = pool_is_congested;
3287        dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3288
3289        mutex_unlock(&dm_thin_pool_table.mutex);
3290
3291        return 0;
3292
3293out_flags_changed:
3294        __pool_dec(pool);
3295out_free_pt:
3296        kfree(pt);
3297out:
3298        dm_put_device(ti, data_dev);
3299out_metadata:
3300        dm_put_device(ti, metadata_dev);
3301out_unlock:
3302        mutex_unlock(&dm_thin_pool_table.mutex);
3303
3304        return r;
3305}
3306
3307static int pool_map(struct dm_target *ti, struct bio *bio)
3308{
3309        int r;
3310        struct pool_c *pt = ti->private;
3311        struct pool *pool = pt->pool;
3312        unsigned long flags;
3313
3314        /*
3315         * As this is a singleton target, ti->begin is always zero.
3316         */
3317        spin_lock_irqsave(&pool->lock, flags);
3318        bio->bi_bdev = pt->data_dev->bdev;
3319        r = DM_MAPIO_REMAPPED;
3320        spin_unlock_irqrestore(&pool->lock, flags);
3321
3322        return r;
3323}
3324
3325static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3326{
3327        int r;
3328        struct pool_c *pt = ti->private;
3329        struct pool *pool = pt->pool;
3330        sector_t data_size = ti->len;
3331        dm_block_t sb_data_size;
3332
3333        *need_commit = false;
3334
3335        (void) sector_div(data_size, pool->sectors_per_block);
3336
3337        r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3338        if (r) {
3339                DMERR("%s: failed to retrieve data device size",
3340                      dm_device_name(pool->pool_md));
3341                return r;
3342        }
3343
3344        if (data_size < sb_data_size) {
3345                DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3346                      dm_device_name(pool->pool_md),
3347                      (unsigned long long)data_size, sb_data_size);
3348                return -EINVAL;
3349
3350        } else if (data_size > sb_data_size) {
3351                if (dm_pool_metadata_needs_check(pool->pmd)) {
3352                        DMERR("%s: unable to grow the data device until repaired.",
3353                              dm_device_name(pool->pool_md));
3354                        return 0;
3355                }
3356
3357                if (sb_data_size)
3358                        DMINFO("%s: growing the data device from %llu to %llu blocks",
3359                               dm_device_name(pool->pool_md),
3360                               sb_data_size, (unsigned long long)data_size);
3361                r = dm_pool_resize_data_dev(pool->pmd, data_size);
3362                if (r) {
3363                        metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3364                        return r;
3365                }
3366
3367                *need_commit = true;
3368        }
3369
3370        return 0;
3371}
3372
3373static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3374{
3375        int r;
3376        struct pool_c *pt = ti->private;
3377        struct pool *pool = pt->pool;
3378        dm_block_t metadata_dev_size, sb_metadata_dev_size;
3379
3380        *need_commit = false;
3381
3382        metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3383
3384        r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3385        if (r) {
3386                DMERR("%s: failed to retrieve metadata device size",
3387                      dm_device_name(pool->pool_md));
3388                return r;
3389        }
3390
3391        if (metadata_dev_size < sb_metadata_dev_size) {
3392                DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3393                      dm_device_name(pool->pool_md),
3394                      metadata_dev_size, sb_metadata_dev_size);
3395                return -EINVAL;
3396
3397        } else if (metadata_dev_size > sb_metadata_dev_size) {
3398                if (dm_pool_metadata_needs_check(pool->pmd)) {
3399                        DMERR("%s: unable to grow the metadata device until repaired.",
3400                              dm_device_name(pool->pool_md));
3401                        return 0;
3402                }
3403
3404                warn_if_metadata_device_too_big(pool->md_dev);
3405                DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3406                       dm_device_name(pool->pool_md),
3407                       sb_metadata_dev_size, metadata_dev_size);
3408                r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3409                if (r) {
3410                        metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3411                        return r;
3412                }
3413
3414                *need_commit = true;
3415        }
3416
3417        return 0;
3418}
3419
3420/*
3421 * Retrieves the number of blocks of the data device from
3422 * the superblock and compares it to the actual device size,
3423 * thus resizing the data device in case it has grown.
3424 *
3425 * This both copes with opening preallocated data devices in the ctr
3426 * being followed by a resume
3427 * -and-
3428 * calling the resume method individually after userspace has
3429 * grown the data device in reaction to a table event.
3430 */
3431static int pool_preresume(struct dm_target *ti)
3432{
3433        int r;
3434        bool need_commit1, need_commit2;
3435        struct pool_c *pt = ti->private;
3436        struct pool *pool = pt->pool;
3437
3438        /*
3439         * Take control of the pool object.
3440         */
3441        r = bind_control_target(pool, ti);
3442        if (r)
3443                return r;
3444
3445        r = maybe_resize_data_dev(ti, &need_commit1);
3446        if (r)
3447                return r;
3448
3449        r = maybe_resize_metadata_dev(ti, &need_commit2);
3450        if (r)
3451                return r;
3452
3453        if (need_commit1 || need_commit2)
3454                (void) commit(pool);
3455
3456        return 0;
3457}
3458
3459static void pool_suspend_active_thins(struct pool *pool)
3460{
3461        struct thin_c *tc;
3462
3463        /* Suspend all active thin devices */
3464        tc = get_first_thin(pool);
3465        while (tc) {
3466                dm_internal_suspend_noflush(tc->thin_md);
3467                tc = get_next_thin(pool, tc);
3468        }
3469}
3470
3471static void pool_resume_active_thins(struct pool *pool)
3472{
3473        struct thin_c *tc;
3474
3475        /* Resume all active thin devices */
3476        tc = get_first_thin(pool);
3477        while (tc) {
3478                dm_internal_resume(tc->thin_md);
3479                tc = get_next_thin(pool, tc);
3480        }
3481}
3482
3483static void pool_resume(struct dm_target *ti)
3484{
3485        struct pool_c *pt = ti->private;
3486        struct pool *pool = pt->pool;
3487        unsigned long flags;
3488
3489        /*
3490         * Must requeue active_thins' bios and then resume
3491         * active_thins _before_ clearing 'suspend' flag.
3492         */
3493        requeue_bios(pool);
3494        pool_resume_active_thins(pool);
3495
3496        spin_lock_irqsave(&pool->lock, flags);
3497        pool->low_water_triggered = false;
3498        pool->suspended = false;
3499        spin_unlock_irqrestore(&pool->lock, flags);
3500
3501        do_waker(&pool->waker.work);
3502}
3503
3504static void pool_presuspend(struct dm_target *ti)
3505{
3506        struct pool_c *pt = ti->private;
3507        struct pool *pool = pt->pool;
3508        unsigned long flags;
3509
3510        spin_lock_irqsave(&pool->lock, flags);
3511        pool->suspended = true;
3512        spin_unlock_irqrestore(&pool->lock, flags);
3513
3514        pool_suspend_active_thins(pool);
3515}
3516
3517static void pool_presuspend_undo(struct dm_target *ti)
3518{
3519        struct pool_c *pt = ti->private;
3520        struct pool *pool = pt->pool;
3521        unsigned long flags;
3522
3523        pool_resume_active_thins(pool);
3524
3525        spin_lock_irqsave(&pool->lock, flags);
3526        pool->suspended = false;
3527        spin_unlock_irqrestore(&pool->lock, flags);
3528}
3529
3530static void pool_postsuspend(struct dm_target *ti)
3531{
3532        struct pool_c *pt = ti->private;
3533        struct pool *pool = pt->pool;
3534
3535        cancel_delayed_work_sync(&pool->waker);
3536        cancel_delayed_work_sync(&pool->no_space_timeout);
3537        flush_workqueue(pool->wq);
3538        (void) commit(pool);
3539}
3540
3541static int check_arg_count(unsigned argc, unsigned args_required)
3542{
3543        if (argc != args_required) {
3544                DMWARN("Message received with %u arguments instead of %u.",
3545                       argc, args_required);
3546                return -EINVAL;
3547        }
3548
3549        return 0;
3550}
3551
3552static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3553{
3554        if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3555            *dev_id <= MAX_DEV_ID)
3556                return 0;
3557
3558        if (warning)
3559                DMWARN("Message received with invalid device id: %s", arg);
3560
3561        return -EINVAL;
3562}
3563
3564static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3565{
3566        dm_thin_id dev_id;
3567        int r;
3568
3569        r = check_arg_count(argc, 2);
3570        if (r)
3571                return r;
3572
3573        r = read_dev_id(argv[1], &dev_id, 1);
3574        if (r)
3575                return r;
3576
3577        r = dm_pool_create_thin(pool->pmd, dev_id);
3578        if (r) {
3579                DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3580                       argv[1]);
3581                return r;
3582        }
3583
3584        return 0;
3585}
3586
3587static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588{
3589        dm_thin_id dev_id;
3590        dm_thin_id origin_dev_id;
3591        int r;
3592
3593        r = check_arg_count(argc, 3);
3594        if (r)
3595                return r;
3596
3597        r = read_dev_id(argv[1], &dev_id, 1);
3598        if (r)
3599                return r;
3600
3601        r = read_dev_id(argv[2], &origin_dev_id, 1);
3602        if (r)
3603                return r;
3604
3605        r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3606        if (r) {
3607                DMWARN("Creation of new snapshot %s of device %s failed.",
3608                       argv[1], argv[2]);
3609                return r;
3610        }
3611
3612        return 0;
3613}
3614
3615static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3616{
3617        dm_thin_id dev_id;
3618        int r;
3619
3620        r = check_arg_count(argc, 2);
3621        if (r)
3622                return r;
3623
3624        r = read_dev_id(argv[1], &dev_id, 1);
3625        if (r)
3626                return r;
3627
3628        r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3629        if (r)
3630                DMWARN("Deletion of thin device %s failed.", argv[1]);
3631
3632        return r;
3633}
3634
3635static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3636{
3637        dm_thin_id old_id, new_id;
3638        int r;
3639
3640        r = check_arg_count(argc, 3);
3641        if (r)
3642                return r;
3643
3644        if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3645                DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3646                return -EINVAL;
3647        }
3648
3649        if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3650                DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3651                return -EINVAL;
3652        }
3653
3654        r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3655        if (r) {
3656                DMWARN("Failed to change transaction id from %s to %s.",
3657                       argv[1], argv[2]);
3658                return r;
3659        }
3660
3661        return 0;
3662}
3663
3664static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3665{
3666        int r;
3667
3668        r = check_arg_count(argc, 1);
3669        if (r)
3670                return r;
3671
3672        (void) commit(pool);
3673
3674        r = dm_pool_reserve_metadata_snap(pool->pmd);
3675        if (r)
3676                DMWARN("reserve_metadata_snap message failed.");
3677
3678        return r;
3679}
3680
3681static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3682{
3683        int r;
3684
3685        r = check_arg_count(argc, 1);
3686        if (r)
3687                return r;
3688
3689        r = dm_pool_release_metadata_snap(pool->pmd);
3690        if (r)
3691                DMWARN("release_metadata_snap message failed.");
3692
3693        return r;
3694}
3695
3696/*
3697 * Messages supported:
3698 *   create_thin        <dev_id>
3699 *   create_snap        <dev_id> <origin_id>
3700 *   delete             <dev_id>
3701 *   set_transaction_id <current_trans_id> <new_trans_id>
3702 *   reserve_metadata_snap
3703 *   release_metadata_snap
3704 */
3705static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3706{
3707        int r = -EINVAL;
3708        struct pool_c *pt = ti->private;
3709        struct pool *pool = pt->pool;
3710
3711        if (get_pool_mode(pool) >= PM_READ_ONLY) {
3712                DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3713                      dm_device_name(pool->pool_md));
3714                return -EOPNOTSUPP;
3715        }
3716
3717        if (!strcasecmp(argv[0], "create_thin"))
3718                r = process_create_thin_mesg(argc, argv, pool);
3719
3720        else if (!strcasecmp(argv[0], "create_snap"))
3721                r = process_create_snap_mesg(argc, argv, pool);
3722
3723        else if (!strcasecmp(argv[0], "delete"))
3724                r = process_delete_mesg(argc, argv, pool);
3725
3726        else if (!strcasecmp(argv[0], "set_transaction_id"))
3727                r = process_set_transaction_id_mesg(argc, argv, pool);
3728
3729        else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3730                r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3731
3732        else if (!strcasecmp(argv[0], "release_metadata_snap"))
3733                r = process_release_metadata_snap_mesg(argc, argv, pool);
3734
3735        else
3736                DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3737
3738        if (!r)
3739                (void) commit(pool);
3740
3741        return r;
3742}
3743
3744static void emit_flags(struct pool_features *pf, char *result,
3745                       unsigned sz, unsigned maxlen)
3746{
3747        unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3748                !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3749                pf->error_if_no_space;
3750        DMEMIT("%u ", count);
3751
3752        if (!pf->zero_new_blocks)
3753                DMEMIT("skip_block_zeroing ");
3754
3755        if (!pf->discard_enabled)
3756                DMEMIT("ignore_discard ");
3757
3758        if (!pf->discard_passdown)
3759                DMEMIT("no_discard_passdown ");
3760
3761        if (pf->mode == PM_READ_ONLY)
3762                DMEMIT("read_only ");
3763
3764        if (pf->error_if_no_space)
3765                DMEMIT("error_if_no_space ");
3766}
3767
3768/*
3769 * Status line is:
3770 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3771 *    <used data sectors>/<total data sectors> <held metadata root>
3772 *    <pool mode> <discard config> <no space config> <needs_check>
3773 */
3774static void pool_status(struct dm_target *ti, status_type_t type,
3775                        unsigned status_flags, char *result, unsigned maxlen)
3776{
3777        int r;
3778        unsigned sz = 0;
3779        uint64_t transaction_id;
3780        dm_block_t nr_free_blocks_data;
3781        dm_block_t nr_free_blocks_metadata;
3782        dm_block_t nr_blocks_data;
3783        dm_block_t nr_blocks_metadata;
3784        dm_block_t held_root;
3785        char buf[BDEVNAME_SIZE];
3786        char buf2[BDEVNAME_SIZE];
3787        struct pool_c *pt = ti->private;
3788        struct pool *pool = pt->pool;
3789
3790        switch (type) {
3791        case STATUSTYPE_INFO:
3792                if (get_pool_mode(pool) == PM_FAIL) {
3793                        DMEMIT("Fail");
3794                        break;
3795                }
3796
3797                /* Commit to ensure statistics aren't out-of-date */
3798                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3799                        (void) commit(pool);
3800
3801                r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3802                if (r) {
3803                        DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3804                              dm_device_name(pool->pool_md), r);
3805                        goto err;
3806                }
3807
3808                r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3809                if (r) {
3810                        DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3811                              dm_device_name(pool->pool_md), r);
3812                        goto err;
3813                }
3814
3815                r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3816                if (r) {
3817                        DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3818                              dm_device_name(pool->pool_md), r);
3819                        goto err;
3820                }
3821
3822                r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3823                if (r) {
3824                        DMERR("%s: dm_pool_get_free_block_count returned %d",
3825                              dm_device_name(pool->pool_md), r);
3826                        goto err;
3827                }
3828
3829                r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3830                if (r) {
3831                        DMERR("%s: dm_pool_get_data_dev_size returned %d",
3832                              dm_device_name(pool->pool_md), r);
3833                        goto err;
3834                }
3835
3836                r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3837                if (r) {
3838                        DMERR("%s: dm_pool_get_metadata_snap returned %d",
3839                              dm_device_name(pool->pool_md), r);
3840                        goto err;
3841                }
3842
3843                DMEMIT("%llu %llu/%llu %llu/%llu ",
3844                       (unsigned long long)transaction_id,
3845                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3846                       (unsigned long long)nr_blocks_metadata,
3847                       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3848                       (unsigned long long)nr_blocks_data);
3849
3850                if (held_root)
3851                        DMEMIT("%llu ", held_root);
3852                else
3853                        DMEMIT("- ");
3854
3855                if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3856                        DMEMIT("out_of_data_space ");
3857                else if (pool->pf.mode == PM_READ_ONLY)
3858                        DMEMIT("ro ");
3859                else
3860                        DMEMIT("rw ");
3861
3862                if (!pool->pf.discard_enabled)
3863                        DMEMIT("ignore_discard ");
3864                else if (pool->pf.discard_passdown)
3865                        DMEMIT("discard_passdown ");
3866                else
3867                        DMEMIT("no_discard_passdown ");
3868
3869                if (pool->pf.error_if_no_space)
3870                        DMEMIT("error_if_no_space ");
3871                else
3872                        DMEMIT("queue_if_no_space ");
3873
3874                if (dm_pool_metadata_needs_check(pool->pmd))
3875                        DMEMIT("needs_check ");
3876                else
3877                        DMEMIT("- ");
3878
3879                break;
3880
3881        case STATUSTYPE_TABLE:
3882                DMEMIT("%s %s %lu %llu ",
3883                       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3884                       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3885                       (unsigned long)pool->sectors_per_block,
3886                       (unsigned long long)pt->low_water_blocks);
3887                emit_flags(&pt->requested_pf, result, sz, maxlen);
3888                break;
3889        }
3890        return;
3891
3892err:
3893        DMEMIT("Error");
3894}
3895
3896static int pool_iterate_devices(struct dm_target *ti,
3897                                iterate_devices_callout_fn fn, void *data)
3898{
3899        struct pool_c *pt = ti->private;
3900
3901        return fn(ti, pt->data_dev, 0, ti->len, data);
3902}
3903
3904static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3905{
3906        struct pool_c *pt = ti->private;
3907        struct pool *pool = pt->pool;
3908        sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3909
3910        /*
3911         * If max_sectors is smaller than pool->sectors_per_block adjust it
3912         * to the highest possible power-of-2 factor of pool->sectors_per_block.
3913         * This is especially beneficial when the pool's data device is a RAID
3914         * device that has a full stripe width that matches pool->sectors_per_block
3915         * -- because even though partial RAID stripe-sized IOs will be issued to a
3916         *    single RAID stripe; when aggregated they will end on a full RAID stripe
3917         *    boundary.. which avoids additional partial RAID stripe writes cascading
3918         */
3919        if (limits->max_sectors < pool->sectors_per_block) {
3920                while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3921                        if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3922                                limits->max_sectors--;
3923                        limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3924                }
3925        }
3926
3927        /*
3928         * If the system-determined stacked limits are compatible with the
3929         * pool's blocksize (io_opt is a factor) do not override them.
3930         */
3931        if (io_opt_sectors < pool->sectors_per_block ||
3932            !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3933                if (is_factor(pool->sectors_per_block, limits->max_sectors))
3934                        blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3935                else
3936                        blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3937                blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938        }
3939
3940        /*
3941         * pt->adjusted_pf is a staging area for the actual features to use.
3942         * They get transferred to the live pool in bind_control_target()
3943         * called from pool_preresume().
3944         */
3945        if (!pt->adjusted_pf.discard_enabled) {
3946                /*
3947                 * Must explicitly disallow stacking discard limits otherwise the
3948                 * block layer will stack them if pool's data device has support.
3949                 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3950                 * user to see that, so make sure to set all discard limits to 0.
3951                 */
3952                limits->discard_granularity = 0;
3953                return;
3954        }
3955
3956        disable_passdown_if_not_supported(pt);
3957
3958        /*
3959         * The pool uses the same discard limits as the underlying data
3960         * device.  DM core has already set this up.
3961         */
3962}
3963
3964static struct target_type pool_target = {
3965        .name = "thin-pool",
3966        .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3967                    DM_TARGET_IMMUTABLE,
3968        .version = {1, 19, 0},
3969        .module = THIS_MODULE,
3970        .ctr = pool_ctr,
3971        .dtr = pool_dtr,
3972        .map = pool_map,
3973        .presuspend = pool_presuspend,
3974        .presuspend_undo = pool_presuspend_undo,
3975        .postsuspend = pool_postsuspend,
3976        .preresume = pool_preresume,
3977        .resume = pool_resume,
3978        .message = pool_message,
3979        .status = pool_status,
3980        .iterate_devices = pool_iterate_devices,
3981        .io_hints = pool_io_hints,
3982};
3983
3984/*----------------------------------------------------------------
3985 * Thin target methods
3986 *--------------------------------------------------------------*/
3987static void thin_get(struct thin_c *tc)
3988{
3989        atomic_inc(&tc->refcount);
3990}
3991
3992static void thin_put(struct thin_c *tc)
3993{
3994        if (atomic_dec_and_test(&tc->refcount))
3995                complete(&tc->can_destroy);
3996}
3997
3998static void thin_dtr(struct dm_target *ti)
3999{
4000        struct thin_c *tc = ti->private;
4001        unsigned long flags;
4002
4003        spin_lock_irqsave(&tc->pool->lock, flags);
4004        list_del_rcu(&tc->list);
4005        spin_unlock_irqrestore(&tc->pool->lock, flags);
4006        synchronize_rcu();
4007
4008        thin_put(tc);
4009        wait_for_completion(&tc->can_destroy);
4010
4011        mutex_lock(&dm_thin_pool_table.mutex);
4012
4013        __pool_dec(tc->pool);
4014        dm_pool_close_thin_device(tc->td);
4015        dm_put_device(ti, tc->pool_dev);
4016        if (tc->origin_dev)
4017                dm_put_device(ti, tc->origin_dev);
4018        kfree(tc);
4019
4020        mutex_unlock(&dm_thin_pool_table.mutex);
4021}
4022
4023/*
4024 * Thin target parameters:
4025 *
4026 * <pool_dev> <dev_id> [origin_dev]
4027 *
4028 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4029 * dev_id: the internal device identifier
4030 * origin_dev: a device external to the pool that should act as the origin
4031 *
4032 * If the pool device has discards disabled, they get disabled for the thin
4033 * device as well.
4034 */
4035static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4036{
4037        int r;
4038        struct thin_c *tc;
4039        struct dm_dev *pool_dev, *origin_dev;
4040        struct mapped_device *pool_md;
4041        unsigned long flags;
4042
4043        mutex_lock(&dm_thin_pool_table.mutex);
4044
4045        if (argc != 2 && argc != 3) {
4046                ti->error = "Invalid argument count";
4047                r = -EINVAL;
4048                goto out_unlock;
4049        }
4050
4051        tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4052        if (!tc) {
4053                ti->error = "Out of memory";
4054                r = -ENOMEM;
4055                goto out_unlock;
4056        }
4057        tc->thin_md = dm_table_get_md(ti->table);
4058        spin_lock_init(&tc->lock);
4059        INIT_LIST_HEAD(&tc->deferred_cells);
4060        bio_list_init(&tc->deferred_bio_list);
4061        bio_list_init(&tc->retry_on_resume_list);
4062        tc->sort_bio_list = RB_ROOT;
4063
4064        if (argc == 3) {
4065                r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4066                if (r) {
4067                        ti->error = "Error opening origin device";
4068                        goto bad_origin_dev;
4069                }
4070                tc->origin_dev = origin_dev;
4071        }
4072
4073        r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4074        if (r) {
4075                ti->error = "Error opening pool device";
4076                goto bad_pool_dev;
4077        }
4078        tc->pool_dev = pool_dev;
4079
4080        if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4081                ti->error = "Invalid device id";
4082                r = -EINVAL;
4083                goto bad_common;
4084        }
4085
4086        pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4087        if (!pool_md) {
4088                ti->error = "Couldn't get pool mapped device";
4089                r = -EINVAL;
4090                goto bad_common;
4091        }
4092
4093        tc->pool = __pool_table_lookup(pool_md);
4094        if (!tc->pool) {
4095                ti->error = "Couldn't find pool object";
4096                r = -EINVAL;
4097                goto bad_pool_lookup;
4098        }
4099        __pool_inc(tc->pool);
4100
4101        if (get_pool_mode(tc->pool) == PM_FAIL) {
4102                ti->error = "Couldn't open thin device, Pool is in fail mode";
4103                r = -EINVAL;
4104                goto bad_pool;
4105        }
4106
4107        r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4108        if (r) {
4109                ti->error = "Couldn't open thin internal device";
4110                goto bad_pool;
4111        }
4112
4113        r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4114        if (r)
4115                goto bad;
4116
4117        ti->num_flush_bios = 1;
4118        ti->flush_supported = true;
4119        ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4120
4121        /* In case the pool supports discards, pass them on. */
4122        if (tc->pool->pf.discard_enabled) {
4123                ti->discards_supported = true;
4124                ti->num_discard_bios = 1;
4125                ti->split_discard_bios = false;
4126        }
4127
4128        mutex_unlock(&dm_thin_pool_table.mutex);
4129
4130        spin_lock_irqsave(&tc->pool->lock, flags);
4131        if (tc->pool->suspended) {
4132                spin_unlock_irqrestore(&tc->pool->lock, flags);
4133                mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4134                ti->error = "Unable to activate thin device while pool is suspended";
4135                r = -EINVAL;
4136                goto bad;
4137        }
4138        atomic_set(&tc->refcount, 1);
4139        init_completion(&tc->can_destroy);
4140        list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4141        spin_unlock_irqrestore(&tc->pool->lock, flags);
4142        /*
4143         * This synchronize_rcu() call is needed here otherwise we risk a
4144         * wake_worker() call finding no bios to process (because the newly
4145         * added tc isn't yet visible).  So this reduces latency since we
4146         * aren't then dependent on the periodic commit to wake_worker().
4147         */
4148        synchronize_rcu();
4149
4150        dm_put(pool_md);
4151
4152        return 0;
4153
4154bad:
4155        dm_pool_close_thin_device(tc->td);
4156bad_pool:
4157        __pool_dec(tc->pool);
4158bad_pool_lookup:
4159        dm_put(pool_md);
4160bad_common:
4161        dm_put_device(ti, tc->pool_dev);
4162bad_pool_dev:
4163        if (tc->origin_dev)
4164                dm_put_device(ti, tc->origin_dev);
4165bad_origin_dev:
4166        kfree(tc);
4167out_unlock:
4168        mutex_unlock(&dm_thin_pool_table.mutex);
4169
4170        return r;
4171}
4172
4173static int thin_map(struct dm_target *ti, struct bio *bio)
4174{
4175        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4176
4177        return thin_bio_map(ti, bio);
4178}
4179
4180static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4181{
4182        unsigned long flags;
4183        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4184        struct list_head work;
4185        struct dm_thin_new_mapping *m, *tmp;
4186        struct pool *pool = h->tc->pool;
4187
4188        if (h->shared_read_entry) {
4189                INIT_LIST_HEAD(&work);
4190                dm_deferred_entry_dec(h->shared_read_entry, &work);
4191
4192                spin_lock_irqsave(&pool->lock, flags);
4193                list_for_each_entry_safe(m, tmp, &work, list) {
4194                        list_del(&m->list);
4195                        __complete_mapping_preparation(m);
4196                }
4197                spin_unlock_irqrestore(&pool->lock, flags);
4198        }
4199
4200        if (h->all_io_entry) {
4201                INIT_LIST_HEAD(&work);
4202                dm_deferred_entry_dec(h->all_io_entry, &work);
4203                if (!list_empty(&work)) {
4204                        spin_lock_irqsave(&pool->lock, flags);
4205                        list_for_each_entry_safe(m, tmp, &work, list)
4206                                list_add_tail(&m->list, &pool->prepared_discards);
4207                        spin_unlock_irqrestore(&pool->lock, flags);
4208                        wake_worker(pool);
4209                }
4210        }
4211
4212        if (h->cell)
4213                cell_defer_no_holder(h->tc, h->cell);
4214
4215        return 0;
4216}
4217
4218static void thin_presuspend(struct dm_target *ti)
4219{
4220        struct thin_c *tc = ti->private;
4221
4222        if (dm_noflush_suspending(ti))
4223                noflush_work(tc, do_noflush_start);
4224}
4225
4226static void thin_postsuspend(struct dm_target *ti)
4227{
4228        struct thin_c *tc = ti->private;
4229
4230        /*
4231         * The dm_noflush_suspending flag has been cleared by now, so
4232         * unfortunately we must always run this.
4233         */
4234        noflush_work(tc, do_noflush_stop);
4235}
4236
4237static int thin_preresume(struct dm_target *ti)
4238{
4239        struct thin_c *tc = ti->private;
4240
4241        if (tc->origin_dev)
4242                tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4243
4244        return 0;
4245}
4246
4247/*
4248 * <nr mapped sectors> <highest mapped sector>
4249 */
4250static void thin_status(struct dm_target *ti, status_type_t type,
4251                        unsigned status_flags, char *result, unsigned maxlen)
4252{
4253        int r;
4254        ssize_t sz = 0;
4255        dm_block_t mapped, highest;
4256        char buf[BDEVNAME_SIZE];
4257        struct thin_c *tc = ti->private;
4258
4259        if (get_pool_mode(tc->pool) == PM_FAIL) {
4260                DMEMIT("Fail");
4261                return;
4262        }
4263
4264        if (!tc->td)
4265                DMEMIT("-");
4266        else {
4267                switch (type) {
4268                case STATUSTYPE_INFO:
4269                        r = dm_thin_get_mapped_count(tc->td, &mapped);
4270                        if (r) {
4271                                DMERR("dm_thin_get_mapped_count returned %d", r);
4272                                goto err;
4273                        }
4274
4275                        r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4276                        if (r < 0) {
4277                                DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4278                                goto err;
4279                        }
4280
4281                        DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4282                        if (r)
4283                                DMEMIT("%llu", ((highest + 1) *
4284                                                tc->pool->sectors_per_block) - 1);
4285                        else
4286                                DMEMIT("-");
4287                        break;
4288
4289                case STATUSTYPE_TABLE:
4290                        DMEMIT("%s %lu",
4291                               format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4292                               (unsigned long) tc->dev_id);
4293                        if (tc->origin_dev)
4294                                DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4295                        break;
4296                }
4297        }
4298
4299        return;
4300
4301err:
4302        DMEMIT("Error");
4303}
4304
4305static int thin_iterate_devices(struct dm_target *ti,
4306                                iterate_devices_callout_fn fn, void *data)
4307{
4308        sector_t blocks;
4309        struct thin_c *tc = ti->private;
4310        struct pool *pool = tc->pool;
4311
4312        /*
4313         * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4314         * we follow a more convoluted path through to the pool's target.
4315         */
4316        if (!pool->ti)
4317                return 0;       /* nothing is bound */
4318
4319        blocks = pool->ti->len;
4320        (void) sector_div(blocks, pool->sectors_per_block);
4321        if (blocks)
4322                return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4323
4324        return 0;
4325}
4326
4327static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4328{
4329        struct thin_c *tc = ti->private;
4330        struct pool *pool = tc->pool;
4331
4332        if (!pool->pf.discard_enabled)
4333                return;
4334
4335        limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4336        limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4337}
4338
4339static struct target_type thin_target = {
4340        .name = "thin",
4341        .version = {1, 19, 0},
4342        .module = THIS_MODULE,
4343        .ctr = thin_ctr,
4344        .dtr = thin_dtr,
4345        .map = thin_map,
4346        .end_io = thin_endio,
4347        .preresume = thin_preresume,
4348        .presuspend = thin_presuspend,
4349        .postsuspend = thin_postsuspend,
4350        .status = thin_status,
4351        .iterate_devices = thin_iterate_devices,
4352        .io_hints = thin_io_hints,
4353};
4354
4355/*----------------------------------------------------------------*/
4356
4357static int __init dm_thin_init(void)
4358{
4359        int r;
4360
4361        pool_table_init();
4362
4363        r = dm_register_target(&thin_target);
4364        if (r)
4365                return r;
4366
4367        r = dm_register_target(&pool_target);
4368        if (r)
4369                goto bad_pool_target;
4370
4371        r = -ENOMEM;
4372
4373        _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4374        if (!_new_mapping_cache)
4375                goto bad_new_mapping_cache;
4376
4377        return 0;
4378
4379bad_new_mapping_cache:
4380        dm_unregister_target(&pool_target);
4381bad_pool_target:
4382        dm_unregister_target(&thin_target);
4383
4384        return r;
4385}
4386
4387static void dm_thin_exit(void)
4388{
4389        dm_unregister_target(&thin_target);
4390        dm_unregister_target(&pool_target);
4391
4392        kmem_cache_destroy(_new_mapping_cache);
4393}
4394
4395module_init(dm_thin_init);
4396module_exit(dm_thin_exit);
4397
4398module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4399MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4400
4401MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4402MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4403MODULE_LICENSE("GPL");
4404