linux/drivers/md/raid5.c
<<
>>
Prefs
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *         Copyright (C) 1999, 2000 Ingo Molnar
   5 *         Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/module.h>
  51#include <linux/async.h>
  52#include <linux/seq_file.h>
  53#include <linux/cpu.h>
  54#include <linux/slab.h>
  55#include <linux/ratelimit.h>
  56#include <linux/nodemask.h>
  57#include <linux/flex_array.h>
  58#include <linux/sched/signal.h>
  59
  60#include <trace/events/block.h>
  61#include <linux/list_sort.h>
  62
  63#include "md.h"
  64#include "raid5.h"
  65#include "raid0.h"
  66#include "bitmap.h"
  67#include "raid5-log.h"
  68
  69#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
  70
  71#define cpu_to_group(cpu) cpu_to_node(cpu)
  72#define ANY_GROUP NUMA_NO_NODE
  73
  74static bool devices_handle_discard_safely = false;
  75module_param(devices_handle_discard_safely, bool, 0644);
  76MODULE_PARM_DESC(devices_handle_discard_safely,
  77                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  78static struct workqueue_struct *raid5_wq;
  79
  80static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  81{
  82        int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  83        return &conf->stripe_hashtbl[hash];
  84}
  85
  86static inline int stripe_hash_locks_hash(sector_t sect)
  87{
  88        return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  89}
  90
  91static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  92{
  93        spin_lock_irq(conf->hash_locks + hash);
  94        spin_lock(&conf->device_lock);
  95}
  96
  97static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  98{
  99        spin_unlock(&conf->device_lock);
 100        spin_unlock_irq(conf->hash_locks + hash);
 101}
 102
 103static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
 104{
 105        int i;
 106        spin_lock_irq(conf->hash_locks);
 107        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
 108                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
 109        spin_lock(&conf->device_lock);
 110}
 111
 112static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 113{
 114        int i;
 115        spin_unlock(&conf->device_lock);
 116        for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 117                spin_unlock(conf->hash_locks + i);
 118        spin_unlock_irq(conf->hash_locks);
 119}
 120
 121/* Find first data disk in a raid6 stripe */
 122static inline int raid6_d0(struct stripe_head *sh)
 123{
 124        if (sh->ddf_layout)
 125                /* ddf always start from first device */
 126                return 0;
 127        /* md starts just after Q block */
 128        if (sh->qd_idx == sh->disks - 1)
 129                return 0;
 130        else
 131                return sh->qd_idx + 1;
 132}
 133static inline int raid6_next_disk(int disk, int raid_disks)
 134{
 135        disk++;
 136        return (disk < raid_disks) ? disk : 0;
 137}
 138
 139/* When walking through the disks in a raid5, starting at raid6_d0,
 140 * We need to map each disk to a 'slot', where the data disks are slot
 141 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 142 * is raid_disks-1.  This help does that mapping.
 143 */
 144static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 145                             int *count, int syndrome_disks)
 146{
 147        int slot = *count;
 148
 149        if (sh->ddf_layout)
 150                (*count)++;
 151        if (idx == sh->pd_idx)
 152                return syndrome_disks;
 153        if (idx == sh->qd_idx)
 154                return syndrome_disks + 1;
 155        if (!sh->ddf_layout)
 156                (*count)++;
 157        return slot;
 158}
 159
 160static void print_raid5_conf (struct r5conf *conf);
 161
 162static int stripe_operations_active(struct stripe_head *sh)
 163{
 164        return sh->check_state || sh->reconstruct_state ||
 165               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 166               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 167}
 168
 169static bool stripe_is_lowprio(struct stripe_head *sh)
 170{
 171        return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 172                test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 173               !test_bit(STRIPE_R5C_CACHING, &sh->state);
 174}
 175
 176static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 177{
 178        struct r5conf *conf = sh->raid_conf;
 179        struct r5worker_group *group;
 180        int thread_cnt;
 181        int i, cpu = sh->cpu;
 182
 183        if (!cpu_online(cpu)) {
 184                cpu = cpumask_any(cpu_online_mask);
 185                sh->cpu = cpu;
 186        }
 187
 188        if (list_empty(&sh->lru)) {
 189                struct r5worker_group *group;
 190                group = conf->worker_groups + cpu_to_group(cpu);
 191                if (stripe_is_lowprio(sh))
 192                        list_add_tail(&sh->lru, &group->loprio_list);
 193                else
 194                        list_add_tail(&sh->lru, &group->handle_list);
 195                group->stripes_cnt++;
 196                sh->group = group;
 197        }
 198
 199        if (conf->worker_cnt_per_group == 0) {
 200                md_wakeup_thread(conf->mddev->thread);
 201                return;
 202        }
 203
 204        group = conf->worker_groups + cpu_to_group(sh->cpu);
 205
 206        group->workers[0].working = true;
 207        /* at least one worker should run to avoid race */
 208        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 209
 210        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 211        /* wakeup more workers */
 212        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 213                if (group->workers[i].working == false) {
 214                        group->workers[i].working = true;
 215                        queue_work_on(sh->cpu, raid5_wq,
 216                                      &group->workers[i].work);
 217                        thread_cnt--;
 218                }
 219        }
 220}
 221
 222static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 223                              struct list_head *temp_inactive_list)
 224{
 225        int i;
 226        int injournal = 0;      /* number of date pages with R5_InJournal */
 227
 228        BUG_ON(!list_empty(&sh->lru));
 229        BUG_ON(atomic_read(&conf->active_stripes)==0);
 230
 231        if (r5c_is_writeback(conf->log))
 232                for (i = sh->disks; i--; )
 233                        if (test_bit(R5_InJournal, &sh->dev[i].flags))
 234                                injournal++;
 235        /*
 236         * In the following cases, the stripe cannot be released to cached
 237         * lists. Therefore, we make the stripe write out and set
 238         * STRIPE_HANDLE:
 239         *   1. when quiesce in r5c write back;
 240         *   2. when resync is requested fot the stripe.
 241         */
 242        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 243            (conf->quiesce && r5c_is_writeback(conf->log) &&
 244             !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 245                if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 246                        r5c_make_stripe_write_out(sh);
 247                set_bit(STRIPE_HANDLE, &sh->state);
 248        }
 249
 250        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 251                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 252                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 253                        list_add_tail(&sh->lru, &conf->delayed_list);
 254                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 255                           sh->bm_seq - conf->seq_write > 0)
 256                        list_add_tail(&sh->lru, &conf->bitmap_list);
 257                else {
 258                        clear_bit(STRIPE_DELAYED, &sh->state);
 259                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 260                        if (conf->worker_cnt_per_group == 0) {
 261                                if (stripe_is_lowprio(sh))
 262                                        list_add_tail(&sh->lru,
 263                                                        &conf->loprio_list);
 264                                else
 265                                        list_add_tail(&sh->lru,
 266                                                        &conf->handle_list);
 267                        } else {
 268                                raid5_wakeup_stripe_thread(sh);
 269                                return;
 270                        }
 271                }
 272                md_wakeup_thread(conf->mddev->thread);
 273        } else {
 274                BUG_ON(stripe_operations_active(sh));
 275                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 276                        if (atomic_dec_return(&conf->preread_active_stripes)
 277                            < IO_THRESHOLD)
 278                                md_wakeup_thread(conf->mddev->thread);
 279                atomic_dec(&conf->active_stripes);
 280                if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 281                        if (!r5c_is_writeback(conf->log))
 282                                list_add_tail(&sh->lru, temp_inactive_list);
 283                        else {
 284                                WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 285                                if (injournal == 0)
 286                                        list_add_tail(&sh->lru, temp_inactive_list);
 287                                else if (injournal == conf->raid_disks - conf->max_degraded) {
 288                                        /* full stripe */
 289                                        if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 290                                                atomic_inc(&conf->r5c_cached_full_stripes);
 291                                        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 292                                                atomic_dec(&conf->r5c_cached_partial_stripes);
 293                                        list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 294                                        r5c_check_cached_full_stripe(conf);
 295                                } else
 296                                        /*
 297                                         * STRIPE_R5C_PARTIAL_STRIPE is set in
 298                                         * r5c_try_caching_write(). No need to
 299                                         * set it again.
 300                                         */
 301                                        list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 302                        }
 303                }
 304        }
 305}
 306
 307static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 308                             struct list_head *temp_inactive_list)
 309{
 310        if (atomic_dec_and_test(&sh->count))
 311                do_release_stripe(conf, sh, temp_inactive_list);
 312}
 313
 314/*
 315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 316 *
 317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 318 * given time. Adding stripes only takes device lock, while deleting stripes
 319 * only takes hash lock.
 320 */
 321static void release_inactive_stripe_list(struct r5conf *conf,
 322                                         struct list_head *temp_inactive_list,
 323                                         int hash)
 324{
 325        int size;
 326        bool do_wakeup = false;
 327        unsigned long flags;
 328
 329        if (hash == NR_STRIPE_HASH_LOCKS) {
 330                size = NR_STRIPE_HASH_LOCKS;
 331                hash = NR_STRIPE_HASH_LOCKS - 1;
 332        } else
 333                size = 1;
 334        while (size) {
 335                struct list_head *list = &temp_inactive_list[size - 1];
 336
 337                /*
 338                 * We don't hold any lock here yet, raid5_get_active_stripe() might
 339                 * remove stripes from the list
 340                 */
 341                if (!list_empty_careful(list)) {
 342                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 343                        if (list_empty(conf->inactive_list + hash) &&
 344                            !list_empty(list))
 345                                atomic_dec(&conf->empty_inactive_list_nr);
 346                        list_splice_tail_init(list, conf->inactive_list + hash);
 347                        do_wakeup = true;
 348                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 349                }
 350                size--;
 351                hash--;
 352        }
 353
 354        if (do_wakeup) {
 355                wake_up(&conf->wait_for_stripe);
 356                if (atomic_read(&conf->active_stripes) == 0)
 357                        wake_up(&conf->wait_for_quiescent);
 358                if (conf->retry_read_aligned)
 359                        md_wakeup_thread(conf->mddev->thread);
 360        }
 361}
 362
 363/* should hold conf->device_lock already */
 364static int release_stripe_list(struct r5conf *conf,
 365                               struct list_head *temp_inactive_list)
 366{
 367        struct stripe_head *sh, *t;
 368        int count = 0;
 369        struct llist_node *head;
 370
 371        head = llist_del_all(&conf->released_stripes);
 372        head = llist_reverse_order(head);
 373        llist_for_each_entry_safe(sh, t, head, release_list) {
 374                int hash;
 375
 376                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 377                smp_mb();
 378                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 379                /*
 380                 * Don't worry the bit is set here, because if the bit is set
 381                 * again, the count is always > 1. This is true for
 382                 * STRIPE_ON_UNPLUG_LIST bit too.
 383                 */
 384                hash = sh->hash_lock_index;
 385                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 386                count++;
 387        }
 388
 389        return count;
 390}
 391
 392void raid5_release_stripe(struct stripe_head *sh)
 393{
 394        struct r5conf *conf = sh->raid_conf;
 395        unsigned long flags;
 396        struct list_head list;
 397        int hash;
 398        bool wakeup;
 399
 400        /* Avoid release_list until the last reference.
 401         */
 402        if (atomic_add_unless(&sh->count, -1, 1))
 403                return;
 404
 405        if (unlikely(!conf->mddev->thread) ||
 406                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 407                goto slow_path;
 408        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 409        if (wakeup)
 410                md_wakeup_thread(conf->mddev->thread);
 411        return;
 412slow_path:
 413        local_irq_save(flags);
 414        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 415        if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
 416                INIT_LIST_HEAD(&list);
 417                hash = sh->hash_lock_index;
 418                do_release_stripe(conf, sh, &list);
 419                spin_unlock(&conf->device_lock);
 420                release_inactive_stripe_list(conf, &list, hash);
 421        }
 422        local_irq_restore(flags);
 423}
 424
 425static inline void remove_hash(struct stripe_head *sh)
 426{
 427        pr_debug("remove_hash(), stripe %llu\n",
 428                (unsigned long long)sh->sector);
 429
 430        hlist_del_init(&sh->hash);
 431}
 432
 433static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 434{
 435        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 436
 437        pr_debug("insert_hash(), stripe %llu\n",
 438                (unsigned long long)sh->sector);
 439
 440        hlist_add_head(&sh->hash, hp);
 441}
 442
 443/* find an idle stripe, make sure it is unhashed, and return it. */
 444static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 445{
 446        struct stripe_head *sh = NULL;
 447        struct list_head *first;
 448
 449        if (list_empty(conf->inactive_list + hash))
 450                goto out;
 451        first = (conf->inactive_list + hash)->next;
 452        sh = list_entry(first, struct stripe_head, lru);
 453        list_del_init(first);
 454        remove_hash(sh);
 455        atomic_inc(&conf->active_stripes);
 456        BUG_ON(hash != sh->hash_lock_index);
 457        if (list_empty(conf->inactive_list + hash))
 458                atomic_inc(&conf->empty_inactive_list_nr);
 459out:
 460        return sh;
 461}
 462
 463static void shrink_buffers(struct stripe_head *sh)
 464{
 465        struct page *p;
 466        int i;
 467        int num = sh->raid_conf->pool_size;
 468
 469        for (i = 0; i < num ; i++) {
 470                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 471                p = sh->dev[i].page;
 472                if (!p)
 473                        continue;
 474                sh->dev[i].page = NULL;
 475                put_page(p);
 476        }
 477}
 478
 479static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 480{
 481        int i;
 482        int num = sh->raid_conf->pool_size;
 483
 484        for (i = 0; i < num; i++) {
 485                struct page *page;
 486
 487                if (!(page = alloc_page(gfp))) {
 488                        return 1;
 489                }
 490                sh->dev[i].page = page;
 491                sh->dev[i].orig_page = page;
 492        }
 493
 494        return 0;
 495}
 496
 497static void raid5_build_block(struct stripe_head *sh, int i, int previous);
 498static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 499                            struct stripe_head *sh);
 500
 501static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 502{
 503        struct r5conf *conf = sh->raid_conf;
 504        int i, seq;
 505
 506        BUG_ON(atomic_read(&sh->count) != 0);
 507        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 508        BUG_ON(stripe_operations_active(sh));
 509        BUG_ON(sh->batch_head);
 510
 511        pr_debug("init_stripe called, stripe %llu\n",
 512                (unsigned long long)sector);
 513retry:
 514        seq = read_seqcount_begin(&conf->gen_lock);
 515        sh->generation = conf->generation - previous;
 516        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 517        sh->sector = sector;
 518        stripe_set_idx(sector, conf, previous, sh);
 519        sh->state = 0;
 520
 521        for (i = sh->disks; i--; ) {
 522                struct r5dev *dev = &sh->dev[i];
 523
 524                if (dev->toread || dev->read || dev->towrite || dev->written ||
 525                    test_bit(R5_LOCKED, &dev->flags)) {
 526                        pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 527                               (unsigned long long)sh->sector, i, dev->toread,
 528                               dev->read, dev->towrite, dev->written,
 529                               test_bit(R5_LOCKED, &dev->flags));
 530                        WARN_ON(1);
 531                }
 532                dev->flags = 0;
 533                raid5_build_block(sh, i, previous);
 534        }
 535        if (read_seqcount_retry(&conf->gen_lock, seq))
 536                goto retry;
 537        sh->overwrite_disks = 0;
 538        insert_hash(conf, sh);
 539        sh->cpu = smp_processor_id();
 540        set_bit(STRIPE_BATCH_READY, &sh->state);
 541}
 542
 543static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 544                                         short generation)
 545{
 546        struct stripe_head *sh;
 547
 548        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 549        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 550                if (sh->sector == sector && sh->generation == generation)
 551                        return sh;
 552        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 553        return NULL;
 554}
 555
 556/*
 557 * Need to check if array has failed when deciding whether to:
 558 *  - start an array
 559 *  - remove non-faulty devices
 560 *  - add a spare
 561 *  - allow a reshape
 562 * This determination is simple when no reshape is happening.
 563 * However if there is a reshape, we need to carefully check
 564 * both the before and after sections.
 565 * This is because some failed devices may only affect one
 566 * of the two sections, and some non-in_sync devices may
 567 * be insync in the section most affected by failed devices.
 568 */
 569int raid5_calc_degraded(struct r5conf *conf)
 570{
 571        int degraded, degraded2;
 572        int i;
 573
 574        rcu_read_lock();
 575        degraded = 0;
 576        for (i = 0; i < conf->previous_raid_disks; i++) {
 577                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 578                if (rdev && test_bit(Faulty, &rdev->flags))
 579                        rdev = rcu_dereference(conf->disks[i].replacement);
 580                if (!rdev || test_bit(Faulty, &rdev->flags))
 581                        degraded++;
 582                else if (test_bit(In_sync, &rdev->flags))
 583                        ;
 584                else
 585                        /* not in-sync or faulty.
 586                         * If the reshape increases the number of devices,
 587                         * this is being recovered by the reshape, so
 588                         * this 'previous' section is not in_sync.
 589                         * If the number of devices is being reduced however,
 590                         * the device can only be part of the array if
 591                         * we are reverting a reshape, so this section will
 592                         * be in-sync.
 593                         */
 594                        if (conf->raid_disks >= conf->previous_raid_disks)
 595                                degraded++;
 596        }
 597        rcu_read_unlock();
 598        if (conf->raid_disks == conf->previous_raid_disks)
 599                return degraded;
 600        rcu_read_lock();
 601        degraded2 = 0;
 602        for (i = 0; i < conf->raid_disks; i++) {
 603                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 604                if (rdev && test_bit(Faulty, &rdev->flags))
 605                        rdev = rcu_dereference(conf->disks[i].replacement);
 606                if (!rdev || test_bit(Faulty, &rdev->flags))
 607                        degraded2++;
 608                else if (test_bit(In_sync, &rdev->flags))
 609                        ;
 610                else
 611                        /* not in-sync or faulty.
 612                         * If reshape increases the number of devices, this
 613                         * section has already been recovered, else it
 614                         * almost certainly hasn't.
 615                         */
 616                        if (conf->raid_disks <= conf->previous_raid_disks)
 617                                degraded2++;
 618        }
 619        rcu_read_unlock();
 620        if (degraded2 > degraded)
 621                return degraded2;
 622        return degraded;
 623}
 624
 625static int has_failed(struct r5conf *conf)
 626{
 627        int degraded;
 628
 629        if (conf->mddev->reshape_position == MaxSector)
 630                return conf->mddev->degraded > conf->max_degraded;
 631
 632        degraded = raid5_calc_degraded(conf);
 633        if (degraded > conf->max_degraded)
 634                return 1;
 635        return 0;
 636}
 637
 638struct stripe_head *
 639raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 640                        int previous, int noblock, int noquiesce)
 641{
 642        struct stripe_head *sh;
 643        int hash = stripe_hash_locks_hash(sector);
 644        int inc_empty_inactive_list_flag;
 645
 646        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 647
 648        spin_lock_irq(conf->hash_locks + hash);
 649
 650        do {
 651                wait_event_lock_irq(conf->wait_for_quiescent,
 652                                    conf->quiesce == 0 || noquiesce,
 653                                    *(conf->hash_locks + hash));
 654                sh = __find_stripe(conf, sector, conf->generation - previous);
 655                if (!sh) {
 656                        if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 657                                sh = get_free_stripe(conf, hash);
 658                                if (!sh && !test_bit(R5_DID_ALLOC,
 659                                                     &conf->cache_state))
 660                                        set_bit(R5_ALLOC_MORE,
 661                                                &conf->cache_state);
 662                        }
 663                        if (noblock && sh == NULL)
 664                                break;
 665
 666                        r5c_check_stripe_cache_usage(conf);
 667                        if (!sh) {
 668                                set_bit(R5_INACTIVE_BLOCKED,
 669                                        &conf->cache_state);
 670                                r5l_wake_reclaim(conf->log, 0);
 671                                wait_event_lock_irq(
 672                                        conf->wait_for_stripe,
 673                                        !list_empty(conf->inactive_list + hash) &&
 674                                        (atomic_read(&conf->active_stripes)
 675                                         < (conf->max_nr_stripes * 3 / 4)
 676                                         || !test_bit(R5_INACTIVE_BLOCKED,
 677                                                      &conf->cache_state)),
 678                                        *(conf->hash_locks + hash));
 679                                clear_bit(R5_INACTIVE_BLOCKED,
 680                                          &conf->cache_state);
 681                        } else {
 682                                init_stripe(sh, sector, previous);
 683                                atomic_inc(&sh->count);
 684                        }
 685                } else if (!atomic_inc_not_zero(&sh->count)) {
 686                        spin_lock(&conf->device_lock);
 687                        if (!atomic_read(&sh->count)) {
 688                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 689                                        atomic_inc(&conf->active_stripes);
 690                                BUG_ON(list_empty(&sh->lru) &&
 691                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 692                                inc_empty_inactive_list_flag = 0;
 693                                if (!list_empty(conf->inactive_list + hash))
 694                                        inc_empty_inactive_list_flag = 1;
 695                                list_del_init(&sh->lru);
 696                                if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 697                                        atomic_inc(&conf->empty_inactive_list_nr);
 698                                if (sh->group) {
 699                                        sh->group->stripes_cnt--;
 700                                        sh->group = NULL;
 701                                }
 702                        }
 703                        atomic_inc(&sh->count);
 704                        spin_unlock(&conf->device_lock);
 705                }
 706        } while (sh == NULL);
 707
 708        spin_unlock_irq(conf->hash_locks + hash);
 709        return sh;
 710}
 711
 712static bool is_full_stripe_write(struct stripe_head *sh)
 713{
 714        BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 715        return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 716}
 717
 718static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 719{
 720        if (sh1 > sh2) {
 721                spin_lock_irq(&sh2->stripe_lock);
 722                spin_lock_nested(&sh1->stripe_lock, 1);
 723        } else {
 724                spin_lock_irq(&sh1->stripe_lock);
 725                spin_lock_nested(&sh2->stripe_lock, 1);
 726        }
 727}
 728
 729static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 730{
 731        spin_unlock(&sh1->stripe_lock);
 732        spin_unlock_irq(&sh2->stripe_lock);
 733}
 734
 735/* Only freshly new full stripe normal write stripe can be added to a batch list */
 736static bool stripe_can_batch(struct stripe_head *sh)
 737{
 738        struct r5conf *conf = sh->raid_conf;
 739
 740        if (conf->log || raid5_has_ppl(conf))
 741                return false;
 742        return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 743                !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 744                is_full_stripe_write(sh);
 745}
 746
 747/* we only do back search */
 748static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 749{
 750        struct stripe_head *head;
 751        sector_t head_sector, tmp_sec;
 752        int hash;
 753        int dd_idx;
 754        int inc_empty_inactive_list_flag;
 755
 756        /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 757        tmp_sec = sh->sector;
 758        if (!sector_div(tmp_sec, conf->chunk_sectors))
 759                return;
 760        head_sector = sh->sector - STRIPE_SECTORS;
 761
 762        hash = stripe_hash_locks_hash(head_sector);
 763        spin_lock_irq(conf->hash_locks + hash);
 764        head = __find_stripe(conf, head_sector, conf->generation);
 765        if (head && !atomic_inc_not_zero(&head->count)) {
 766                spin_lock(&conf->device_lock);
 767                if (!atomic_read(&head->count)) {
 768                        if (!test_bit(STRIPE_HANDLE, &head->state))
 769                                atomic_inc(&conf->active_stripes);
 770                        BUG_ON(list_empty(&head->lru) &&
 771                               !test_bit(STRIPE_EXPANDING, &head->state));
 772                        inc_empty_inactive_list_flag = 0;
 773                        if (!list_empty(conf->inactive_list + hash))
 774                                inc_empty_inactive_list_flag = 1;
 775                        list_del_init(&head->lru);
 776                        if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 777                                atomic_inc(&conf->empty_inactive_list_nr);
 778                        if (head->group) {
 779                                head->group->stripes_cnt--;
 780                                head->group = NULL;
 781                        }
 782                }
 783                atomic_inc(&head->count);
 784                spin_unlock(&conf->device_lock);
 785        }
 786        spin_unlock_irq(conf->hash_locks + hash);
 787
 788        if (!head)
 789                return;
 790        if (!stripe_can_batch(head))
 791                goto out;
 792
 793        lock_two_stripes(head, sh);
 794        /* clear_batch_ready clear the flag */
 795        if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 796                goto unlock_out;
 797
 798        if (sh->batch_head)
 799                goto unlock_out;
 800
 801        dd_idx = 0;
 802        while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 803                dd_idx++;
 804        if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 805            bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 806                goto unlock_out;
 807
 808        if (head->batch_head) {
 809                spin_lock(&head->batch_head->batch_lock);
 810                /* This batch list is already running */
 811                if (!stripe_can_batch(head)) {
 812                        spin_unlock(&head->batch_head->batch_lock);
 813                        goto unlock_out;
 814                }
 815
 816                /*
 817                 * at this point, head's BATCH_READY could be cleared, but we
 818                 * can still add the stripe to batch list
 819                 */
 820                list_add(&sh->batch_list, &head->batch_list);
 821                spin_unlock(&head->batch_head->batch_lock);
 822
 823                sh->batch_head = head->batch_head;
 824        } else {
 825                head->batch_head = head;
 826                sh->batch_head = head->batch_head;
 827                spin_lock(&head->batch_lock);
 828                list_add_tail(&sh->batch_list, &head->batch_list);
 829                spin_unlock(&head->batch_lock);
 830        }
 831
 832        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 833                if (atomic_dec_return(&conf->preread_active_stripes)
 834                    < IO_THRESHOLD)
 835                        md_wakeup_thread(conf->mddev->thread);
 836
 837        if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 838                int seq = sh->bm_seq;
 839                if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 840                    sh->batch_head->bm_seq > seq)
 841                        seq = sh->batch_head->bm_seq;
 842                set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 843                sh->batch_head->bm_seq = seq;
 844        }
 845
 846        atomic_inc(&sh->count);
 847unlock_out:
 848        unlock_two_stripes(head, sh);
 849out:
 850        raid5_release_stripe(head);
 851}
 852
 853/* Determine if 'data_offset' or 'new_data_offset' should be used
 854 * in this stripe_head.
 855 */
 856static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 857{
 858        sector_t progress = conf->reshape_progress;
 859        /* Need a memory barrier to make sure we see the value
 860         * of conf->generation, or ->data_offset that was set before
 861         * reshape_progress was updated.
 862         */
 863        smp_rmb();
 864        if (progress == MaxSector)
 865                return 0;
 866        if (sh->generation == conf->generation - 1)
 867                return 0;
 868        /* We are in a reshape, and this is a new-generation stripe,
 869         * so use new_data_offset.
 870         */
 871        return 1;
 872}
 873
 874static void dispatch_bio_list(struct bio_list *tmp)
 875{
 876        struct bio *bio;
 877
 878        while ((bio = bio_list_pop(tmp)))
 879                generic_make_request(bio);
 880}
 881
 882static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
 883{
 884        const struct r5pending_data *da = list_entry(a,
 885                                struct r5pending_data, sibling);
 886        const struct r5pending_data *db = list_entry(b,
 887                                struct r5pending_data, sibling);
 888        if (da->sector > db->sector)
 889                return 1;
 890        if (da->sector < db->sector)
 891                return -1;
 892        return 0;
 893}
 894
 895static void dispatch_defer_bios(struct r5conf *conf, int target,
 896                                struct bio_list *list)
 897{
 898        struct r5pending_data *data;
 899        struct list_head *first, *next = NULL;
 900        int cnt = 0;
 901
 902        if (conf->pending_data_cnt == 0)
 903                return;
 904
 905        list_sort(NULL, &conf->pending_list, cmp_stripe);
 906
 907        first = conf->pending_list.next;
 908
 909        /* temporarily move the head */
 910        if (conf->next_pending_data)
 911                list_move_tail(&conf->pending_list,
 912                                &conf->next_pending_data->sibling);
 913
 914        while (!list_empty(&conf->pending_list)) {
 915                data = list_first_entry(&conf->pending_list,
 916                        struct r5pending_data, sibling);
 917                if (&data->sibling == first)
 918                        first = data->sibling.next;
 919                next = data->sibling.next;
 920
 921                bio_list_merge(list, &data->bios);
 922                list_move(&data->sibling, &conf->free_list);
 923                cnt++;
 924                if (cnt >= target)
 925                        break;
 926        }
 927        conf->pending_data_cnt -= cnt;
 928        BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
 929
 930        if (next != &conf->pending_list)
 931                conf->next_pending_data = list_entry(next,
 932                                struct r5pending_data, sibling);
 933        else
 934                conf->next_pending_data = NULL;
 935        /* list isn't empty */
 936        if (first != &conf->pending_list)
 937                list_move_tail(&conf->pending_list, first);
 938}
 939
 940static void flush_deferred_bios(struct r5conf *conf)
 941{
 942        struct bio_list tmp = BIO_EMPTY_LIST;
 943
 944        if (conf->pending_data_cnt == 0)
 945                return;
 946
 947        spin_lock(&conf->pending_bios_lock);
 948        dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
 949        BUG_ON(conf->pending_data_cnt != 0);
 950        spin_unlock(&conf->pending_bios_lock);
 951
 952        dispatch_bio_list(&tmp);
 953}
 954
 955static void defer_issue_bios(struct r5conf *conf, sector_t sector,
 956                                struct bio_list *bios)
 957{
 958        struct bio_list tmp = BIO_EMPTY_LIST;
 959        struct r5pending_data *ent;
 960
 961        spin_lock(&conf->pending_bios_lock);
 962        ent = list_first_entry(&conf->free_list, struct r5pending_data,
 963                                                        sibling);
 964        list_move_tail(&ent->sibling, &conf->pending_list);
 965        ent->sector = sector;
 966        bio_list_init(&ent->bios);
 967        bio_list_merge(&ent->bios, bios);
 968        conf->pending_data_cnt++;
 969        if (conf->pending_data_cnt >= PENDING_IO_MAX)
 970                dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
 971
 972        spin_unlock(&conf->pending_bios_lock);
 973
 974        dispatch_bio_list(&tmp);
 975}
 976
 977static void
 978raid5_end_read_request(struct bio *bi);
 979static void
 980raid5_end_write_request(struct bio *bi);
 981
 982static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 983{
 984        struct r5conf *conf = sh->raid_conf;
 985        int i, disks = sh->disks;
 986        struct stripe_head *head_sh = sh;
 987        struct bio_list pending_bios = BIO_EMPTY_LIST;
 988        bool should_defer;
 989
 990        might_sleep();
 991
 992        if (log_stripe(sh, s) == 0)
 993                return;
 994
 995        should_defer = conf->batch_bio_dispatch && conf->group_cnt;
 996
 997        for (i = disks; i--; ) {
 998                int op, op_flags = 0;
 999                int replace_only = 0;
1000                struct bio *bi, *rbi;
1001                struct md_rdev *rdev, *rrdev = NULL;
1002
1003                sh = head_sh;
1004                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1005                        op = REQ_OP_WRITE;
1006                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1007                                op_flags = REQ_FUA;
1008                        if (test_bit(R5_Discard, &sh->dev[i].flags))
1009                                op = REQ_OP_DISCARD;
1010                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1011                        op = REQ_OP_READ;
1012                else if (test_and_clear_bit(R5_WantReplace,
1013                                            &sh->dev[i].flags)) {
1014                        op = REQ_OP_WRITE;
1015                        replace_only = 1;
1016                } else
1017                        continue;
1018                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1019                        op_flags |= REQ_SYNC;
1020
1021again:
1022                bi = &sh->dev[i].req;
1023                rbi = &sh->dev[i].rreq; /* For writing to replacement */
1024
1025                rcu_read_lock();
1026                rrdev = rcu_dereference(conf->disks[i].replacement);
1027                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1028                rdev = rcu_dereference(conf->disks[i].rdev);
1029                if (!rdev) {
1030                        rdev = rrdev;
1031                        rrdev = NULL;
1032                }
1033                if (op_is_write(op)) {
1034                        if (replace_only)
1035                                rdev = NULL;
1036                        if (rdev == rrdev)
1037                                /* We raced and saw duplicates */
1038                                rrdev = NULL;
1039                } else {
1040                        if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1041                                rdev = rrdev;
1042                        rrdev = NULL;
1043                }
1044
1045                if (rdev && test_bit(Faulty, &rdev->flags))
1046                        rdev = NULL;
1047                if (rdev)
1048                        atomic_inc(&rdev->nr_pending);
1049                if (rrdev && test_bit(Faulty, &rrdev->flags))
1050                        rrdev = NULL;
1051                if (rrdev)
1052                        atomic_inc(&rrdev->nr_pending);
1053                rcu_read_unlock();
1054
1055                /* We have already checked bad blocks for reads.  Now
1056                 * need to check for writes.  We never accept write errors
1057                 * on the replacement, so we don't to check rrdev.
1058                 */
1059                while (op_is_write(op) && rdev &&
1060                       test_bit(WriteErrorSeen, &rdev->flags)) {
1061                        sector_t first_bad;
1062                        int bad_sectors;
1063                        int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1064                                              &first_bad, &bad_sectors);
1065                        if (!bad)
1066                                break;
1067
1068                        if (bad < 0) {
1069                                set_bit(BlockedBadBlocks, &rdev->flags);
1070                                if (!conf->mddev->external &&
1071                                    conf->mddev->sb_flags) {
1072                                        /* It is very unlikely, but we might
1073                                         * still need to write out the
1074                                         * bad block log - better give it
1075                                         * a chance*/
1076                                        md_check_recovery(conf->mddev);
1077                                }
1078                                /*
1079                                 * Because md_wait_for_blocked_rdev
1080                                 * will dec nr_pending, we must
1081                                 * increment it first.
1082                                 */
1083                                atomic_inc(&rdev->nr_pending);
1084                                md_wait_for_blocked_rdev(rdev, conf->mddev);
1085                        } else {
1086                                /* Acknowledged bad block - skip the write */
1087                                rdev_dec_pending(rdev, conf->mddev);
1088                                rdev = NULL;
1089                        }
1090                }
1091
1092                if (rdev) {
1093                        if (s->syncing || s->expanding || s->expanded
1094                            || s->replacing)
1095                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1096
1097                        set_bit(STRIPE_IO_STARTED, &sh->state);
1098
1099                        bi->bi_bdev = rdev->bdev;
1100                        bio_set_op_attrs(bi, op, op_flags);
1101                        bi->bi_end_io = op_is_write(op)
1102                                ? raid5_end_write_request
1103                                : raid5_end_read_request;
1104                        bi->bi_private = sh;
1105
1106                        pr_debug("%s: for %llu schedule op %d on disc %d\n",
1107                                __func__, (unsigned long long)sh->sector,
1108                                bi->bi_opf, i);
1109                        atomic_inc(&sh->count);
1110                        if (sh != head_sh)
1111                                atomic_inc(&head_sh->count);
1112                        if (use_new_offset(conf, sh))
1113                                bi->bi_iter.bi_sector = (sh->sector
1114                                                 + rdev->new_data_offset);
1115                        else
1116                                bi->bi_iter.bi_sector = (sh->sector
1117                                                 + rdev->data_offset);
1118                        if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1119                                bi->bi_opf |= REQ_NOMERGE;
1120
1121                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1122                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1123
1124                        if (!op_is_write(op) &&
1125                            test_bit(R5_InJournal, &sh->dev[i].flags))
1126                                /*
1127                                 * issuing read for a page in journal, this
1128                                 * must be preparing for prexor in rmw; read
1129                                 * the data into orig_page
1130                                 */
1131                                sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1132                        else
1133                                sh->dev[i].vec.bv_page = sh->dev[i].page;
1134                        bi->bi_vcnt = 1;
1135                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1136                        bi->bi_io_vec[0].bv_offset = 0;
1137                        bi->bi_iter.bi_size = STRIPE_SIZE;
1138                        /*
1139                         * If this is discard request, set bi_vcnt 0. We don't
1140                         * want to confuse SCSI because SCSI will replace payload
1141                         */
1142                        if (op == REQ_OP_DISCARD)
1143                                bi->bi_vcnt = 0;
1144                        if (rrdev)
1145                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147                        if (conf->mddev->gendisk)
1148                                trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1149                                                      bi, disk_devt(conf->mddev->gendisk),
1150                                                      sh->dev[i].sector);
1151                        if (should_defer && op_is_write(op))
1152                                bio_list_add(&pending_bios, bi);
1153                        else
1154                                generic_make_request(bi);
1155                }
1156                if (rrdev) {
1157                        if (s->syncing || s->expanding || s->expanded
1158                            || s->replacing)
1159                                md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161                        set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163                        rbi->bi_bdev = rrdev->bdev;
1164                        bio_set_op_attrs(rbi, op, op_flags);
1165                        BUG_ON(!op_is_write(op));
1166                        rbi->bi_end_io = raid5_end_write_request;
1167                        rbi->bi_private = sh;
1168
1169                        pr_debug("%s: for %llu schedule op %d on "
1170                                 "replacement disc %d\n",
1171                                __func__, (unsigned long long)sh->sector,
1172                                rbi->bi_opf, i);
1173                        atomic_inc(&sh->count);
1174                        if (sh != head_sh)
1175                                atomic_inc(&head_sh->count);
1176                        if (use_new_offset(conf, sh))
1177                                rbi->bi_iter.bi_sector = (sh->sector
1178                                                  + rrdev->new_data_offset);
1179                        else
1180                                rbi->bi_iter.bi_sector = (sh->sector
1181                                                  + rrdev->data_offset);
1182                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185                        rbi->bi_vcnt = 1;
1186                        rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187                        rbi->bi_io_vec[0].bv_offset = 0;
1188                        rbi->bi_iter.bi_size = STRIPE_SIZE;
1189                        /*
1190                         * If this is discard request, set bi_vcnt 0. We don't
1191                         * want to confuse SCSI because SCSI will replace payload
1192                         */
1193                        if (op == REQ_OP_DISCARD)
1194                                rbi->bi_vcnt = 0;
1195                        if (conf->mddev->gendisk)
1196                                trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1197                                                      rbi, disk_devt(conf->mddev->gendisk),
1198                                                      sh->dev[i].sector);
1199                        if (should_defer && op_is_write(op))
1200                                bio_list_add(&pending_bios, rbi);
1201                        else
1202                                generic_make_request(rbi);
1203                }
1204                if (!rdev && !rrdev) {
1205                        if (op_is_write(op))
1206                                set_bit(STRIPE_DEGRADED, &sh->state);
1207                        pr_debug("skip op %d on disc %d for sector %llu\n",
1208                                bi->bi_opf, i, (unsigned long long)sh->sector);
1209                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210                        set_bit(STRIPE_HANDLE, &sh->state);
1211                }
1212
1213                if (!head_sh->batch_head)
1214                        continue;
1215                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1216                                      batch_list);
1217                if (sh != head_sh)
1218                        goto again;
1219        }
1220
1221        if (should_defer && !bio_list_empty(&pending_bios))
1222                defer_issue_bios(conf, head_sh->sector, &pending_bios);
1223}
1224
1225static struct dma_async_tx_descriptor *
1226async_copy_data(int frombio, struct bio *bio, struct page **page,
1227        sector_t sector, struct dma_async_tx_descriptor *tx,
1228        struct stripe_head *sh, int no_skipcopy)
1229{
1230        struct bio_vec bvl;
1231        struct bvec_iter iter;
1232        struct page *bio_page;
1233        int page_offset;
1234        struct async_submit_ctl submit;
1235        enum async_tx_flags flags = 0;
1236
1237        if (bio->bi_iter.bi_sector >= sector)
1238                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1239        else
1240                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1241
1242        if (frombio)
1243                flags |= ASYNC_TX_FENCE;
1244        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1245
1246        bio_for_each_segment(bvl, bio, iter) {
1247                int len = bvl.bv_len;
1248                int clen;
1249                int b_offset = 0;
1250
1251                if (page_offset < 0) {
1252                        b_offset = -page_offset;
1253                        page_offset += b_offset;
1254                        len -= b_offset;
1255                }
1256
1257                if (len > 0 && page_offset + len > STRIPE_SIZE)
1258                        clen = STRIPE_SIZE - page_offset;
1259                else
1260                        clen = len;
1261
1262                if (clen > 0) {
1263                        b_offset += bvl.bv_offset;
1264                        bio_page = bvl.bv_page;
1265                        if (frombio) {
1266                                if (sh->raid_conf->skip_copy &&
1267                                    b_offset == 0 && page_offset == 0 &&
1268                                    clen == STRIPE_SIZE &&
1269                                    !no_skipcopy)
1270                                        *page = bio_page;
1271                                else
1272                                        tx = async_memcpy(*page, bio_page, page_offset,
1273                                                  b_offset, clen, &submit);
1274                        } else
1275                                tx = async_memcpy(bio_page, *page, b_offset,
1276                                                  page_offset, clen, &submit);
1277                }
1278                /* chain the operations */
1279                submit.depend_tx = tx;
1280
1281                if (clen < len) /* hit end of page */
1282                        break;
1283                page_offset +=  len;
1284        }
1285
1286        return tx;
1287}
1288
1289static void ops_complete_biofill(void *stripe_head_ref)
1290{
1291        struct stripe_head *sh = stripe_head_ref;
1292        int i;
1293
1294        pr_debug("%s: stripe %llu\n", __func__,
1295                (unsigned long long)sh->sector);
1296
1297        /* clear completed biofills */
1298        for (i = sh->disks; i--; ) {
1299                struct r5dev *dev = &sh->dev[i];
1300
1301                /* acknowledge completion of a biofill operation */
1302                /* and check if we need to reply to a read request,
1303                 * new R5_Wantfill requests are held off until
1304                 * !STRIPE_BIOFILL_RUN
1305                 */
1306                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1307                        struct bio *rbi, *rbi2;
1308
1309                        BUG_ON(!dev->read);
1310                        rbi = dev->read;
1311                        dev->read = NULL;
1312                        while (rbi && rbi->bi_iter.bi_sector <
1313                                dev->sector + STRIPE_SECTORS) {
1314                                rbi2 = r5_next_bio(rbi, dev->sector);
1315                                bio_endio(rbi);
1316                                rbi = rbi2;
1317                        }
1318                }
1319        }
1320        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1321
1322        set_bit(STRIPE_HANDLE, &sh->state);
1323        raid5_release_stripe(sh);
1324}
1325
1326static void ops_run_biofill(struct stripe_head *sh)
1327{
1328        struct dma_async_tx_descriptor *tx = NULL;
1329        struct async_submit_ctl submit;
1330        int i;
1331
1332        BUG_ON(sh->batch_head);
1333        pr_debug("%s: stripe %llu\n", __func__,
1334                (unsigned long long)sh->sector);
1335
1336        for (i = sh->disks; i--; ) {
1337                struct r5dev *dev = &sh->dev[i];
1338                if (test_bit(R5_Wantfill, &dev->flags)) {
1339                        struct bio *rbi;
1340                        spin_lock_irq(&sh->stripe_lock);
1341                        dev->read = rbi = dev->toread;
1342                        dev->toread = NULL;
1343                        spin_unlock_irq(&sh->stripe_lock);
1344                        while (rbi && rbi->bi_iter.bi_sector <
1345                                dev->sector + STRIPE_SECTORS) {
1346                                tx = async_copy_data(0, rbi, &dev->page,
1347                                                     dev->sector, tx, sh, 0);
1348                                rbi = r5_next_bio(rbi, dev->sector);
1349                        }
1350                }
1351        }
1352
1353        atomic_inc(&sh->count);
1354        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1355        async_trigger_callback(&submit);
1356}
1357
1358static void mark_target_uptodate(struct stripe_head *sh, int target)
1359{
1360        struct r5dev *tgt;
1361
1362        if (target < 0)
1363                return;
1364
1365        tgt = &sh->dev[target];
1366        set_bit(R5_UPTODATE, &tgt->flags);
1367        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368        clear_bit(R5_Wantcompute, &tgt->flags);
1369}
1370
1371static void ops_complete_compute(void *stripe_head_ref)
1372{
1373        struct stripe_head *sh = stripe_head_ref;
1374
1375        pr_debug("%s: stripe %llu\n", __func__,
1376                (unsigned long long)sh->sector);
1377
1378        /* mark the computed target(s) as uptodate */
1379        mark_target_uptodate(sh, sh->ops.target);
1380        mark_target_uptodate(sh, sh->ops.target2);
1381
1382        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1383        if (sh->check_state == check_state_compute_run)
1384                sh->check_state = check_state_compute_result;
1385        set_bit(STRIPE_HANDLE, &sh->state);
1386        raid5_release_stripe(sh);
1387}
1388
1389/* return a pointer to the address conversion region of the scribble buffer */
1390static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1391                                 struct raid5_percpu *percpu, int i)
1392{
1393        void *addr;
1394
1395        addr = flex_array_get(percpu->scribble, i);
1396        return addr + sizeof(struct page *) * (sh->disks + 2);
1397}
1398
1399/* return a pointer to the address conversion region of the scribble buffer */
1400static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1401{
1402        void *addr;
1403
1404        addr = flex_array_get(percpu->scribble, i);
1405        return addr;
1406}
1407
1408static struct dma_async_tx_descriptor *
1409ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1410{
1411        int disks = sh->disks;
1412        struct page **xor_srcs = to_addr_page(percpu, 0);
1413        int target = sh->ops.target;
1414        struct r5dev *tgt = &sh->dev[target];
1415        struct page *xor_dest = tgt->page;
1416        int count = 0;
1417        struct dma_async_tx_descriptor *tx;
1418        struct async_submit_ctl submit;
1419        int i;
1420
1421        BUG_ON(sh->batch_head);
1422
1423        pr_debug("%s: stripe %llu block: %d\n",
1424                __func__, (unsigned long long)sh->sector, target);
1425        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426
1427        for (i = disks; i--; )
1428                if (i != target)
1429                        xor_srcs[count++] = sh->dev[i].page;
1430
1431        atomic_inc(&sh->count);
1432
1433        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1434                          ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1435        if (unlikely(count == 1))
1436                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1437        else
1438                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1439
1440        return tx;
1441}
1442
1443/* set_syndrome_sources - populate source buffers for gen_syndrome
1444 * @srcs - (struct page *) array of size sh->disks
1445 * @sh - stripe_head to parse
1446 *
1447 * Populates srcs in proper layout order for the stripe and returns the
1448 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1449 * destination buffer is recorded in srcs[count] and the Q destination
1450 * is recorded in srcs[count+1]].
1451 */
1452static int set_syndrome_sources(struct page **srcs,
1453                                struct stripe_head *sh,
1454                                int srctype)
1455{
1456        int disks = sh->disks;
1457        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458        int d0_idx = raid6_d0(sh);
1459        int count;
1460        int i;
1461
1462        for (i = 0; i < disks; i++)
1463                srcs[i] = NULL;
1464
1465        count = 0;
1466        i = d0_idx;
1467        do {
1468                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1469                struct r5dev *dev = &sh->dev[i];
1470
1471                if (i == sh->qd_idx || i == sh->pd_idx ||
1472                    (srctype == SYNDROME_SRC_ALL) ||
1473                    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1474                     (test_bit(R5_Wantdrain, &dev->flags) ||
1475                      test_bit(R5_InJournal, &dev->flags))) ||
1476                    (srctype == SYNDROME_SRC_WRITTEN &&
1477                     (dev->written ||
1478                      test_bit(R5_InJournal, &dev->flags)))) {
1479                        if (test_bit(R5_InJournal, &dev->flags))
1480                                srcs[slot] = sh->dev[i].orig_page;
1481                        else
1482                                srcs[slot] = sh->dev[i].page;
1483                }
1484                i = raid6_next_disk(i, disks);
1485        } while (i != d0_idx);
1486
1487        return syndrome_disks;
1488}
1489
1490static struct dma_async_tx_descriptor *
1491ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492{
1493        int disks = sh->disks;
1494        struct page **blocks = to_addr_page(percpu, 0);
1495        int target;
1496        int qd_idx = sh->qd_idx;
1497        struct dma_async_tx_descriptor *tx;
1498        struct async_submit_ctl submit;
1499        struct r5dev *tgt;
1500        struct page *dest;
1501        int i;
1502        int count;
1503
1504        BUG_ON(sh->batch_head);
1505        if (sh->ops.target < 0)
1506                target = sh->ops.target2;
1507        else if (sh->ops.target2 < 0)
1508                target = sh->ops.target;
1509        else
1510                /* we should only have one valid target */
1511                BUG();
1512        BUG_ON(target < 0);
1513        pr_debug("%s: stripe %llu block: %d\n",
1514                __func__, (unsigned long long)sh->sector, target);
1515
1516        tgt = &sh->dev[target];
1517        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518        dest = tgt->page;
1519
1520        atomic_inc(&sh->count);
1521
1522        if (target == qd_idx) {
1523                count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1524                blocks[count] = NULL; /* regenerating p is not necessary */
1525                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1526                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527                                  ops_complete_compute, sh,
1528                                  to_addr_conv(sh, percpu, 0));
1529                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530        } else {
1531                /* Compute any data- or p-drive using XOR */
1532                count = 0;
1533                for (i = disks; i-- ; ) {
1534                        if (i == target || i == qd_idx)
1535                                continue;
1536                        blocks[count++] = sh->dev[i].page;
1537                }
1538
1539                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540                                  NULL, ops_complete_compute, sh,
1541                                  to_addr_conv(sh, percpu, 0));
1542                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543        }
1544
1545        return tx;
1546}
1547
1548static struct dma_async_tx_descriptor *
1549ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550{
1551        int i, count, disks = sh->disks;
1552        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553        int d0_idx = raid6_d0(sh);
1554        int faila = -1, failb = -1;
1555        int target = sh->ops.target;
1556        int target2 = sh->ops.target2;
1557        struct r5dev *tgt = &sh->dev[target];
1558        struct r5dev *tgt2 = &sh->dev[target2];
1559        struct dma_async_tx_descriptor *tx;
1560        struct page **blocks = to_addr_page(percpu, 0);
1561        struct async_submit_ctl submit;
1562
1563        BUG_ON(sh->batch_head);
1564        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565                 __func__, (unsigned long long)sh->sector, target, target2);
1566        BUG_ON(target < 0 || target2 < 0);
1567        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569
1570        /* we need to open-code set_syndrome_sources to handle the
1571         * slot number conversion for 'faila' and 'failb'
1572         */
1573        for (i = 0; i < disks ; i++)
1574                blocks[i] = NULL;
1575        count = 0;
1576        i = d0_idx;
1577        do {
1578                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579
1580                blocks[slot] = sh->dev[i].page;
1581
1582                if (i == target)
1583                        faila = slot;
1584                if (i == target2)
1585                        failb = slot;
1586                i = raid6_next_disk(i, disks);
1587        } while (i != d0_idx);
1588
1589        BUG_ON(faila == failb);
1590        if (failb < faila)
1591                swap(faila, failb);
1592        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593                 __func__, (unsigned long long)sh->sector, faila, failb);
1594
1595        atomic_inc(&sh->count);
1596
1597        if (failb == syndrome_disks+1) {
1598                /* Q disk is one of the missing disks */
1599                if (faila == syndrome_disks) {
1600                        /* Missing P+Q, just recompute */
1601                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602                                          ops_complete_compute, sh,
1603                                          to_addr_conv(sh, percpu, 0));
1604                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1605                                                  STRIPE_SIZE, &submit);
1606                } else {
1607                        struct page *dest;
1608                        int data_target;
1609                        int qd_idx = sh->qd_idx;
1610
1611                        /* Missing D+Q: recompute D from P, then recompute Q */
1612                        if (target == qd_idx)
1613                                data_target = target2;
1614                        else
1615                                data_target = target;
1616
1617                        count = 0;
1618                        for (i = disks; i-- ; ) {
1619                                if (i == data_target || i == qd_idx)
1620                                        continue;
1621                                blocks[count++] = sh->dev[i].page;
1622                        }
1623                        dest = sh->dev[data_target].page;
1624                        init_async_submit(&submit,
1625                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626                                          NULL, NULL, NULL,
1627                                          to_addr_conv(sh, percpu, 0));
1628                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629                                       &submit);
1630
1631                        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1632                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633                                          ops_complete_compute, sh,
1634                                          to_addr_conv(sh, percpu, 0));
1635                        return async_gen_syndrome(blocks, 0, count+2,
1636                                                  STRIPE_SIZE, &submit);
1637                }
1638        } else {
1639                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640                                  ops_complete_compute, sh,
1641                                  to_addr_conv(sh, percpu, 0));
1642                if (failb == syndrome_disks) {
1643                        /* We're missing D+P. */
1644                        return async_raid6_datap_recov(syndrome_disks+2,
1645                                                       STRIPE_SIZE, faila,
1646                                                       blocks, &submit);
1647                } else {
1648                        /* We're missing D+D. */
1649                        return async_raid6_2data_recov(syndrome_disks+2,
1650                                                       STRIPE_SIZE, faila, failb,
1651                                                       blocks, &submit);
1652                }
1653        }
1654}
1655
1656static void ops_complete_prexor(void *stripe_head_ref)
1657{
1658        struct stripe_head *sh = stripe_head_ref;
1659
1660        pr_debug("%s: stripe %llu\n", __func__,
1661                (unsigned long long)sh->sector);
1662
1663        if (r5c_is_writeback(sh->raid_conf->log))
1664                /*
1665                 * raid5-cache write back uses orig_page during prexor.
1666                 * After prexor, it is time to free orig_page
1667                 */
1668                r5c_release_extra_page(sh);
1669}
1670
1671static struct dma_async_tx_descriptor *
1672ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673                struct dma_async_tx_descriptor *tx)
1674{
1675        int disks = sh->disks;
1676        struct page **xor_srcs = to_addr_page(percpu, 0);
1677        int count = 0, pd_idx = sh->pd_idx, i;
1678        struct async_submit_ctl submit;
1679
1680        /* existing parity data subtracted */
1681        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682
1683        BUG_ON(sh->batch_head);
1684        pr_debug("%s: stripe %llu\n", __func__,
1685                (unsigned long long)sh->sector);
1686
1687        for (i = disks; i--; ) {
1688                struct r5dev *dev = &sh->dev[i];
1689                /* Only process blocks that are known to be uptodate */
1690                if (test_bit(R5_InJournal, &dev->flags))
1691                        xor_srcs[count++] = dev->orig_page;
1692                else if (test_bit(R5_Wantdrain, &dev->flags))
1693                        xor_srcs[count++] = dev->page;
1694        }
1695
1696        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1697                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1698        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1699
1700        return tx;
1701}
1702
1703static struct dma_async_tx_descriptor *
1704ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705                struct dma_async_tx_descriptor *tx)
1706{
1707        struct page **blocks = to_addr_page(percpu, 0);
1708        int count;
1709        struct async_submit_ctl submit;
1710
1711        pr_debug("%s: stripe %llu\n", __func__,
1712                (unsigned long long)sh->sector);
1713
1714        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715
1716        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1719
1720        return tx;
1721}
1722
1723static struct dma_async_tx_descriptor *
1724ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1725{
1726        struct r5conf *conf = sh->raid_conf;
1727        int disks = sh->disks;
1728        int i;
1729        struct stripe_head *head_sh = sh;
1730
1731        pr_debug("%s: stripe %llu\n", __func__,
1732                (unsigned long long)sh->sector);
1733
1734        for (i = disks; i--; ) {
1735                struct r5dev *dev;
1736                struct bio *chosen;
1737
1738                sh = head_sh;
1739                if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1740                        struct bio *wbi;
1741
1742again:
1743                        dev = &sh->dev[i];
1744                        /*
1745                         * clear R5_InJournal, so when rewriting a page in
1746                         * journal, it is not skipped by r5l_log_stripe()
1747                         */
1748                        clear_bit(R5_InJournal, &dev->flags);
1749                        spin_lock_irq(&sh->stripe_lock);
1750                        chosen = dev->towrite;
1751                        dev->towrite = NULL;
1752                        sh->overwrite_disks = 0;
1753                        BUG_ON(dev->written);
1754                        wbi = dev->written = chosen;
1755                        spin_unlock_irq(&sh->stripe_lock);
1756                        WARN_ON(dev->page != dev->orig_page);
1757
1758                        while (wbi && wbi->bi_iter.bi_sector <
1759                                dev->sector + STRIPE_SECTORS) {
1760                                if (wbi->bi_opf & REQ_FUA)
1761                                        set_bit(R5_WantFUA, &dev->flags);
1762                                if (wbi->bi_opf & REQ_SYNC)
1763                                        set_bit(R5_SyncIO, &dev->flags);
1764                                if (bio_op(wbi) == REQ_OP_DISCARD)
1765                                        set_bit(R5_Discard, &dev->flags);
1766                                else {
1767                                        tx = async_copy_data(1, wbi, &dev->page,
1768                                                             dev->sector, tx, sh,
1769                                                             r5c_is_writeback(conf->log));
1770                                        if (dev->page != dev->orig_page &&
1771                                            !r5c_is_writeback(conf->log)) {
1772                                                set_bit(R5_SkipCopy, &dev->flags);
1773                                                clear_bit(R5_UPTODATE, &dev->flags);
1774                                                clear_bit(R5_OVERWRITE, &dev->flags);
1775                                        }
1776                                }
1777                                wbi = r5_next_bio(wbi, dev->sector);
1778                        }
1779
1780                        if (head_sh->batch_head) {
1781                                sh = list_first_entry(&sh->batch_list,
1782                                                      struct stripe_head,
1783                                                      batch_list);
1784                                if (sh == head_sh)
1785                                        continue;
1786                                goto again;
1787                        }
1788                }
1789        }
1790
1791        return tx;
1792}
1793
1794static void ops_complete_reconstruct(void *stripe_head_ref)
1795{
1796        struct stripe_head *sh = stripe_head_ref;
1797        int disks = sh->disks;
1798        int pd_idx = sh->pd_idx;
1799        int qd_idx = sh->qd_idx;
1800        int i;
1801        bool fua = false, sync = false, discard = false;
1802
1803        pr_debug("%s: stripe %llu\n", __func__,
1804                (unsigned long long)sh->sector);
1805
1806        for (i = disks; i--; ) {
1807                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1808                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1809                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1810        }
1811
1812        for (i = disks; i--; ) {
1813                struct r5dev *dev = &sh->dev[i];
1814
1815                if (dev->written || i == pd_idx || i == qd_idx) {
1816                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1817                                set_bit(R5_UPTODATE, &dev->flags);
1818                        if (fua)
1819                                set_bit(R5_WantFUA, &dev->flags);
1820                        if (sync)
1821                                set_bit(R5_SyncIO, &dev->flags);
1822                }
1823        }
1824
1825        if (sh->reconstruct_state == reconstruct_state_drain_run)
1826                sh->reconstruct_state = reconstruct_state_drain_result;
1827        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1828                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1829        else {
1830                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1831                sh->reconstruct_state = reconstruct_state_result;
1832        }
1833
1834        set_bit(STRIPE_HANDLE, &sh->state);
1835        raid5_release_stripe(sh);
1836}
1837
1838static void
1839ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1840                     struct dma_async_tx_descriptor *tx)
1841{
1842        int disks = sh->disks;
1843        struct page **xor_srcs;
1844        struct async_submit_ctl submit;
1845        int count, pd_idx = sh->pd_idx, i;
1846        struct page *xor_dest;
1847        int prexor = 0;
1848        unsigned long flags;
1849        int j = 0;
1850        struct stripe_head *head_sh = sh;
1851        int last_stripe;
1852
1853        pr_debug("%s: stripe %llu\n", __func__,
1854                (unsigned long long)sh->sector);
1855
1856        for (i = 0; i < sh->disks; i++) {
1857                if (pd_idx == i)
1858                        continue;
1859                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1860                        break;
1861        }
1862        if (i >= sh->disks) {
1863                atomic_inc(&sh->count);
1864                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1865                ops_complete_reconstruct(sh);
1866                return;
1867        }
1868again:
1869        count = 0;
1870        xor_srcs = to_addr_page(percpu, j);
1871        /* check if prexor is active which means only process blocks
1872         * that are part of a read-modify-write (written)
1873         */
1874        if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1875                prexor = 1;
1876                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1877                for (i = disks; i--; ) {
1878                        struct r5dev *dev = &sh->dev[i];
1879                        if (head_sh->dev[i].written ||
1880                            test_bit(R5_InJournal, &head_sh->dev[i].flags))
1881                                xor_srcs[count++] = dev->page;
1882                }
1883        } else {
1884                xor_dest = sh->dev[pd_idx].page;
1885                for (i = disks; i--; ) {
1886                        struct r5dev *dev = &sh->dev[i];
1887                        if (i != pd_idx)
1888                                xor_srcs[count++] = dev->page;
1889                }
1890        }
1891
1892        /* 1/ if we prexor'd then the dest is reused as a source
1893         * 2/ if we did not prexor then we are redoing the parity
1894         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1895         * for the synchronous xor case
1896         */
1897        last_stripe = !head_sh->batch_head ||
1898                list_first_entry(&sh->batch_list,
1899                                 struct stripe_head, batch_list) == head_sh;
1900        if (last_stripe) {
1901                flags = ASYNC_TX_ACK |
1902                        (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903
1904                atomic_inc(&head_sh->count);
1905                init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1906                                  to_addr_conv(sh, percpu, j));
1907        } else {
1908                flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1909                init_async_submit(&submit, flags, tx, NULL, NULL,
1910                                  to_addr_conv(sh, percpu, j));
1911        }
1912
1913        if (unlikely(count == 1))
1914                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1915        else
1916                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1917        if (!last_stripe) {
1918                j++;
1919                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1920                                      batch_list);
1921                goto again;
1922        }
1923}
1924
1925static void
1926ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1927                     struct dma_async_tx_descriptor *tx)
1928{
1929        struct async_submit_ctl submit;
1930        struct page **blocks;
1931        int count, i, j = 0;
1932        struct stripe_head *head_sh = sh;
1933        int last_stripe;
1934        int synflags;
1935        unsigned long txflags;
1936
1937        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938
1939        for (i = 0; i < sh->disks; i++) {
1940                if (sh->pd_idx == i || sh->qd_idx == i)
1941                        continue;
1942                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1943                        break;
1944        }
1945        if (i >= sh->disks) {
1946                atomic_inc(&sh->count);
1947                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1948                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1949                ops_complete_reconstruct(sh);
1950                return;
1951        }
1952
1953again:
1954        blocks = to_addr_page(percpu, j);
1955
1956        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1957                synflags = SYNDROME_SRC_WRITTEN;
1958                txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1959        } else {
1960                synflags = SYNDROME_SRC_ALL;
1961                txflags = ASYNC_TX_ACK;
1962        }
1963
1964        count = set_syndrome_sources(blocks, sh, synflags);
1965        last_stripe = !head_sh->batch_head ||
1966                list_first_entry(&sh->batch_list,
1967                                 struct stripe_head, batch_list) == head_sh;
1968
1969        if (last_stripe) {
1970                atomic_inc(&head_sh->count);
1971                init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1972                                  head_sh, to_addr_conv(sh, percpu, j));
1973        } else
1974                init_async_submit(&submit, 0, tx, NULL, NULL,
1975                                  to_addr_conv(sh, percpu, j));
1976        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1977        if (!last_stripe) {
1978                j++;
1979                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1980                                      batch_list);
1981                goto again;
1982        }
1983}
1984
1985static void ops_complete_check(void *stripe_head_ref)
1986{
1987        struct stripe_head *sh = stripe_head_ref;
1988
1989        pr_debug("%s: stripe %llu\n", __func__,
1990                (unsigned long long)sh->sector);
1991
1992        sh->check_state = check_state_check_result;
1993        set_bit(STRIPE_HANDLE, &sh->state);
1994        raid5_release_stripe(sh);
1995}
1996
1997static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1998{
1999        int disks = sh->disks;
2000        int pd_idx = sh->pd_idx;
2001        int qd_idx = sh->qd_idx;
2002        struct page *xor_dest;
2003        struct page **xor_srcs = to_addr_page(percpu, 0);
2004        struct dma_async_tx_descriptor *tx;
2005        struct async_submit_ctl submit;
2006        int count;
2007        int i;
2008
2009        pr_debug("%s: stripe %llu\n", __func__,
2010                (unsigned long long)sh->sector);
2011
2012        BUG_ON(sh->batch_head);
2013        count = 0;
2014        xor_dest = sh->dev[pd_idx].page;
2015        xor_srcs[count++] = xor_dest;
2016        for (i = disks; i--; ) {
2017                if (i == pd_idx || i == qd_idx)
2018                        continue;
2019                xor_srcs[count++] = sh->dev[i].page;
2020        }
2021
2022        init_async_submit(&submit, 0, NULL, NULL, NULL,
2023                          to_addr_conv(sh, percpu, 0));
2024        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2025                           &sh->ops.zero_sum_result, &submit);
2026
2027        atomic_inc(&sh->count);
2028        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2029        tx = async_trigger_callback(&submit);
2030}
2031
2032static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033{
2034        struct page **srcs = to_addr_page(percpu, 0);
2035        struct async_submit_ctl submit;
2036        int count;
2037
2038        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2039                (unsigned long long)sh->sector, checkp);
2040
2041        BUG_ON(sh->batch_head);
2042        count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2043        if (!checkp)
2044                srcs[count] = NULL;
2045
2046        atomic_inc(&sh->count);
2047        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2048                          sh, to_addr_conv(sh, percpu, 0));
2049        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2050                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2051}
2052
2053static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2054{
2055        int overlap_clear = 0, i, disks = sh->disks;
2056        struct dma_async_tx_descriptor *tx = NULL;
2057        struct r5conf *conf = sh->raid_conf;
2058        int level = conf->level;
2059        struct raid5_percpu *percpu;
2060        unsigned long cpu;
2061
2062        cpu = get_cpu();
2063        percpu = per_cpu_ptr(conf->percpu, cpu);
2064        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2065                ops_run_biofill(sh);
2066                overlap_clear++;
2067        }
2068
2069        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2070                if (level < 6)
2071                        tx = ops_run_compute5(sh, percpu);
2072                else {
2073                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
2074                                tx = ops_run_compute6_1(sh, percpu);
2075                        else
2076                                tx = ops_run_compute6_2(sh, percpu);
2077                }
2078                /* terminate the chain if reconstruct is not set to be run */
2079                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2080                        async_tx_ack(tx);
2081        }
2082
2083        if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2084                if (level < 6)
2085                        tx = ops_run_prexor5(sh, percpu, tx);
2086                else
2087                        tx = ops_run_prexor6(sh, percpu, tx);
2088        }
2089
2090        if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2091                tx = ops_run_partial_parity(sh, percpu, tx);
2092
2093        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2094                tx = ops_run_biodrain(sh, tx);
2095                overlap_clear++;
2096        }
2097
2098        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2099                if (level < 6)
2100                        ops_run_reconstruct5(sh, percpu, tx);
2101                else
2102                        ops_run_reconstruct6(sh, percpu, tx);
2103        }
2104
2105        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2106                if (sh->check_state == check_state_run)
2107                        ops_run_check_p(sh, percpu);
2108                else if (sh->check_state == check_state_run_q)
2109                        ops_run_check_pq(sh, percpu, 0);
2110                else if (sh->check_state == check_state_run_pq)
2111                        ops_run_check_pq(sh, percpu, 1);
2112                else
2113                        BUG();
2114        }
2115
2116        if (overlap_clear && !sh->batch_head)
2117                for (i = disks; i--; ) {
2118                        struct r5dev *dev = &sh->dev[i];
2119                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
2120                                wake_up(&sh->raid_conf->wait_for_overlap);
2121                }
2122        put_cpu();
2123}
2124
2125static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2126{
2127        if (sh->ppl_page)
2128                __free_page(sh->ppl_page);
2129        kmem_cache_free(sc, sh);
2130}
2131
2132static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2133        int disks, struct r5conf *conf)
2134{
2135        struct stripe_head *sh;
2136        int i;
2137
2138        sh = kmem_cache_zalloc(sc, gfp);
2139        if (sh) {
2140                spin_lock_init(&sh->stripe_lock);
2141                spin_lock_init(&sh->batch_lock);
2142                INIT_LIST_HEAD(&sh->batch_list);
2143                INIT_LIST_HEAD(&sh->lru);
2144                INIT_LIST_HEAD(&sh->r5c);
2145                INIT_LIST_HEAD(&sh->log_list);
2146                atomic_set(&sh->count, 1);
2147                sh->raid_conf = conf;
2148                sh->log_start = MaxSector;
2149                for (i = 0; i < disks; i++) {
2150                        struct r5dev *dev = &sh->dev[i];
2151
2152                        bio_init(&dev->req, &dev->vec, 1);
2153                        bio_init(&dev->rreq, &dev->rvec, 1);
2154                }
2155
2156                if (raid5_has_ppl(conf)) {
2157                        sh->ppl_page = alloc_page(gfp);
2158                        if (!sh->ppl_page) {
2159                                free_stripe(sc, sh);
2160                                sh = NULL;
2161                        }
2162                }
2163        }
2164        return sh;
2165}
2166static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2167{
2168        struct stripe_head *sh;
2169
2170        sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2171        if (!sh)
2172                return 0;
2173
2174        if (grow_buffers(sh, gfp)) {
2175                shrink_buffers(sh);
2176                free_stripe(conf->slab_cache, sh);
2177                return 0;
2178        }
2179        sh->hash_lock_index =
2180                conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2181        /* we just created an active stripe so... */
2182        atomic_inc(&conf->active_stripes);
2183
2184        raid5_release_stripe(sh);
2185        conf->max_nr_stripes++;
2186        return 1;
2187}
2188
2189static int grow_stripes(struct r5conf *conf, int num)
2190{
2191        struct kmem_cache *sc;
2192        int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194        if (conf->mddev->gendisk)
2195                sprintf(conf->cache_name[0],
2196                        "raid%d-%s", conf->level, mdname(conf->mddev));
2197        else
2198                sprintf(conf->cache_name[0],
2199                        "raid%d-%p", conf->level, conf->mddev);
2200        sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2201
2202        conf->active_name = 0;
2203        sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205                               0, 0, NULL);
2206        if (!sc)
2207                return 1;
2208        conf->slab_cache = sc;
2209        conf->pool_size = devs;
2210        while (num--)
2211                if (!grow_one_stripe(conf, GFP_KERNEL))
2212                        return 1;
2213
2214        return 0;
2215}
2216
2217/**
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2220 *
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 *    (dma_map_page()) or page (page_address()) address.
2225 *
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2229 */
2230static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2231{
2232        struct flex_array *ret;
2233        size_t len;
2234
2235        len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2236        ret = flex_array_alloc(len, cnt, flags);
2237        if (!ret)
2238                return NULL;
2239        /* always prealloc all elements, so no locking is required */
2240        if (flex_array_prealloc(ret, 0, cnt, flags)) {
2241                flex_array_free(ret);
2242                return NULL;
2243        }
2244        return ret;
2245}
2246
2247static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2248{
2249        unsigned long cpu;
2250        int err = 0;
2251
2252        /*
2253         * Never shrink. And mddev_suspend() could deadlock if this is called
2254         * from raid5d. In that case, scribble_disks and scribble_sectors
2255         * should equal to new_disks and new_sectors
2256         */
2257        if (conf->scribble_disks >= new_disks &&
2258            conf->scribble_sectors >= new_sectors)
2259                return 0;
2260        mddev_suspend(conf->mddev);
2261        get_online_cpus();
2262        for_each_present_cpu(cpu) {
2263                struct raid5_percpu *percpu;
2264                struct flex_array *scribble;
2265
2266                percpu = per_cpu_ptr(conf->percpu, cpu);
2267                scribble = scribble_alloc(new_disks,
2268                                          new_sectors / STRIPE_SECTORS,
2269                                          GFP_NOIO);
2270
2271                if (scribble) {
2272                        flex_array_free(percpu->scribble);
2273                        percpu->scribble = scribble;
2274                } else {
2275                        err = -ENOMEM;
2276                        break;
2277                }
2278        }
2279        put_online_cpus();
2280        mddev_resume(conf->mddev);
2281        if (!err) {
2282                conf->scribble_disks = new_disks;
2283                conf->scribble_sectors = new_sectors;
2284        }
2285        return err;
2286}
2287
2288static int resize_stripes(struct r5conf *conf, int newsize)
2289{
2290        /* Make all the stripes able to hold 'newsize' devices.
2291         * New slots in each stripe get 'page' set to a new page.
2292         *
2293         * This happens in stages:
2294         * 1/ create a new kmem_cache and allocate the required number of
2295         *    stripe_heads.
2296         * 2/ gather all the old stripe_heads and transfer the pages across
2297         *    to the new stripe_heads.  This will have the side effect of
2298         *    freezing the array as once all stripe_heads have been collected,
2299         *    no IO will be possible.  Old stripe heads are freed once their
2300         *    pages have been transferred over, and the old kmem_cache is
2301         *    freed when all stripes are done.
2302         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2303         *    we simple return a failure status - no need to clean anything up.
2304         * 4/ allocate new pages for the new slots in the new stripe_heads.
2305         *    If this fails, we don't bother trying the shrink the
2306         *    stripe_heads down again, we just leave them as they are.
2307         *    As each stripe_head is processed the new one is released into
2308         *    active service.
2309         *
2310         * Once step2 is started, we cannot afford to wait for a write,
2311         * so we use GFP_NOIO allocations.
2312         */
2313        struct stripe_head *osh, *nsh;
2314        LIST_HEAD(newstripes);
2315        struct disk_info *ndisks;
2316        int err = 0;
2317        struct kmem_cache *sc;
2318        int i;
2319        int hash, cnt;
2320
2321        md_allow_write(conf->mddev);
2322
2323        /* Step 1 */
2324        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2325                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2326                               0, 0, NULL);
2327        if (!sc)
2328                return -ENOMEM;
2329
2330        /* Need to ensure auto-resizing doesn't interfere */
2331        mutex_lock(&conf->cache_size_mutex);
2332
2333        for (i = conf->max_nr_stripes; i; i--) {
2334                nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2335                if (!nsh)
2336                        break;
2337
2338                list_add(&nsh->lru, &newstripes);
2339        }
2340        if (i) {
2341                /* didn't get enough, give up */
2342                while (!list_empty(&newstripes)) {
2343                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
2344                        list_del(&nsh->lru);
2345                        free_stripe(sc, nsh);
2346                }
2347                kmem_cache_destroy(sc);
2348                mutex_unlock(&conf->cache_size_mutex);
2349                return -ENOMEM;
2350        }
2351        /* Step 2 - Must use GFP_NOIO now.
2352         * OK, we have enough stripes, start collecting inactive
2353         * stripes and copying them over
2354         */
2355        hash = 0;
2356        cnt = 0;
2357        list_for_each_entry(nsh, &newstripes, lru) {
2358                lock_device_hash_lock(conf, hash);
2359                wait_event_cmd(conf->wait_for_stripe,
2360                                    !list_empty(conf->inactive_list + hash),
2361                                    unlock_device_hash_lock(conf, hash),
2362                                    lock_device_hash_lock(conf, hash));
2363                osh = get_free_stripe(conf, hash);
2364                unlock_device_hash_lock(conf, hash);
2365
2366                for(i=0; i<conf->pool_size; i++) {
2367                        nsh->dev[i].page = osh->dev[i].page;
2368                        nsh->dev[i].orig_page = osh->dev[i].page;
2369                }
2370                nsh->hash_lock_index = hash;
2371                free_stripe(conf->slab_cache, osh);
2372                cnt++;
2373                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2374                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2375                        hash++;
2376                        cnt = 0;
2377                }
2378        }
2379        kmem_cache_destroy(conf->slab_cache);
2380
2381        /* Step 3.
2382         * At this point, we are holding all the stripes so the array
2383         * is completely stalled, so now is a good time to resize
2384         * conf->disks and the scribble region
2385         */
2386        ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2387        if (ndisks) {
2388                for (i = 0; i < conf->pool_size; i++)
2389                        ndisks[i] = conf->disks[i];
2390
2391                for (i = conf->pool_size; i < newsize; i++) {
2392                        ndisks[i].extra_page = alloc_page(GFP_NOIO);
2393                        if (!ndisks[i].extra_page)
2394                                err = -ENOMEM;
2395                }
2396
2397                if (err) {
2398                        for (i = conf->pool_size; i < newsize; i++)
2399                                if (ndisks[i].extra_page)
2400                                        put_page(ndisks[i].extra_page);
2401                        kfree(ndisks);
2402                } else {
2403                        kfree(conf->disks);
2404                        conf->disks = ndisks;
2405                }
2406        } else
2407                err = -ENOMEM;
2408
2409        mutex_unlock(&conf->cache_size_mutex);
2410
2411        conf->slab_cache = sc;
2412        conf->active_name = 1-conf->active_name;
2413
2414        /* Step 4, return new stripes to service */
2415        while(!list_empty(&newstripes)) {
2416                nsh = list_entry(newstripes.next, struct stripe_head, lru);
2417                list_del_init(&nsh->lru);
2418
2419                for (i=conf->raid_disks; i < newsize; i++)
2420                        if (nsh->dev[i].page == NULL) {
2421                                struct page *p = alloc_page(GFP_NOIO);
2422                                nsh->dev[i].page = p;
2423                                nsh->dev[i].orig_page = p;
2424                                if (!p)
2425                                        err = -ENOMEM;
2426                        }
2427                raid5_release_stripe(nsh);
2428        }
2429        /* critical section pass, GFP_NOIO no longer needed */
2430
2431        if (!err)
2432                conf->pool_size = newsize;
2433        return err;
2434}
2435
2436static int drop_one_stripe(struct r5conf *conf)
2437{
2438        struct stripe_head *sh;
2439        int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2440
2441        spin_lock_irq(conf->hash_locks + hash);
2442        sh = get_free_stripe(conf, hash);
2443        spin_unlock_irq(conf->hash_locks + hash);
2444        if (!sh)
2445                return 0;
2446        BUG_ON(atomic_read(&sh->count));
2447        shrink_buffers(sh);
2448        free_stripe(conf->slab_cache, sh);
2449        atomic_dec(&conf->active_stripes);
2450        conf->max_nr_stripes--;
2451        return 1;
2452}
2453
2454static void shrink_stripes(struct r5conf *conf)
2455{
2456        while (conf->max_nr_stripes &&
2457               drop_one_stripe(conf))
2458                ;
2459
2460        kmem_cache_destroy(conf->slab_cache);
2461        conf->slab_cache = NULL;
2462}
2463
2464static void raid5_end_read_request(struct bio * bi)
2465{
2466        struct stripe_head *sh = bi->bi_private;
2467        struct r5conf *conf = sh->raid_conf;
2468        int disks = sh->disks, i;
2469        char b[BDEVNAME_SIZE];
2470        struct md_rdev *rdev = NULL;
2471        sector_t s;
2472
2473        for (i=0 ; i<disks; i++)
2474                if (bi == &sh->dev[i].req)
2475                        break;
2476
2477        pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2478                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2479                bi->bi_error);
2480        if (i == disks) {
2481                bio_reset(bi);
2482                BUG();
2483                return;
2484        }
2485        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2486                /* If replacement finished while this request was outstanding,
2487                 * 'replacement' might be NULL already.
2488                 * In that case it moved down to 'rdev'.
2489                 * rdev is not removed until all requests are finished.
2490                 */
2491                rdev = conf->disks[i].replacement;
2492        if (!rdev)
2493                rdev = conf->disks[i].rdev;
2494
2495        if (use_new_offset(conf, sh))
2496                s = sh->sector + rdev->new_data_offset;
2497        else
2498                s = sh->sector + rdev->data_offset;
2499        if (!bi->bi_error) {
2500                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2501                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2502                        /* Note that this cannot happen on a
2503                         * replacement device.  We just fail those on
2504                         * any error
2505                         */
2506                        pr_info_ratelimited(
2507                                "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2508                                mdname(conf->mddev), STRIPE_SECTORS,
2509                                (unsigned long long)s,
2510                                bdevname(rdev->bdev, b));
2511                        atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2512                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2513                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2514                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2515                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2516
2517                if (test_bit(R5_InJournal, &sh->dev[i].flags))
2518                        /*
2519                         * end read for a page in journal, this
2520                         * must be preparing for prexor in rmw
2521                         */
2522                        set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2523
2524                if (atomic_read(&rdev->read_errors))
2525                        atomic_set(&rdev->read_errors, 0);
2526        } else {
2527                const char *bdn = bdevname(rdev->bdev, b);
2528                int retry = 0;
2529                int set_bad = 0;
2530
2531                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2532                atomic_inc(&rdev->read_errors);
2533                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2534                        pr_warn_ratelimited(
2535                                "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2536                                mdname(conf->mddev),
2537                                (unsigned long long)s,
2538                                bdn);
2539                else if (conf->mddev->degraded >= conf->max_degraded) {
2540                        set_bad = 1;
2541                        pr_warn_ratelimited(
2542                                "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2543                                mdname(conf->mddev),
2544                                (unsigned long long)s,
2545                                bdn);
2546                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2547                        /* Oh, no!!! */
2548                        set_bad = 1;
2549                        pr_warn_ratelimited(
2550                                "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2551                                mdname(conf->mddev),
2552                                (unsigned long long)s,
2553                                bdn);
2554                } else if (atomic_read(&rdev->read_errors)
2555                         > conf->max_nr_stripes)
2556                        pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2557                               mdname(conf->mddev), bdn);
2558                else
2559                        retry = 1;
2560                if (set_bad && test_bit(In_sync, &rdev->flags)
2561                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2562                        retry = 1;
2563                if (retry)
2564                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2565                                set_bit(R5_ReadError, &sh->dev[i].flags);
2566                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2567                        } else
2568                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2569                else {
2570                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2571                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2572                        if (!(set_bad
2573                              && test_bit(In_sync, &rdev->flags)
2574                              && rdev_set_badblocks(
2575                                      rdev, sh->sector, STRIPE_SECTORS, 0)))
2576                                md_error(conf->mddev, rdev);
2577                }
2578        }
2579        rdev_dec_pending(rdev, conf->mddev);
2580        bio_reset(bi);
2581        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2582        set_bit(STRIPE_HANDLE, &sh->state);
2583        raid5_release_stripe(sh);
2584}
2585
2586static void raid5_end_write_request(struct bio *bi)
2587{
2588        struct stripe_head *sh = bi->bi_private;
2589        struct r5conf *conf = sh->raid_conf;
2590        int disks = sh->disks, i;
2591        struct md_rdev *uninitialized_var(rdev);
2592        sector_t first_bad;
2593        int bad_sectors;
2594        int replacement = 0;
2595
2596        for (i = 0 ; i < disks; i++) {
2597                if (bi == &sh->dev[i].req) {
2598                        rdev = conf->disks[i].rdev;
2599                        break;
2600                }
2601                if (bi == &sh->dev[i].rreq) {
2602                        rdev = conf->disks[i].replacement;
2603                        if (rdev)
2604                                replacement = 1;
2605                        else
2606                                /* rdev was removed and 'replacement'
2607                                 * replaced it.  rdev is not removed
2608                                 * until all requests are finished.
2609                                 */
2610                                rdev = conf->disks[i].rdev;
2611                        break;
2612                }
2613        }
2614        pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2615                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2616                bi->bi_error);
2617        if (i == disks) {
2618                bio_reset(bi);
2619                BUG();
2620                return;
2621        }
2622
2623        if (replacement) {
2624                if (bi->bi_error)
2625                        md_error(conf->mddev, rdev);
2626                else if (is_badblock(rdev, sh->sector,
2627                                     STRIPE_SECTORS,
2628                                     &first_bad, &bad_sectors))
2629                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2630        } else {
2631                if (bi->bi_error) {
2632                        set_bit(STRIPE_DEGRADED, &sh->state);
2633                        set_bit(WriteErrorSeen, &rdev->flags);
2634                        set_bit(R5_WriteError, &sh->dev[i].flags);
2635                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2636                                set_bit(MD_RECOVERY_NEEDED,
2637                                        &rdev->mddev->recovery);
2638                } else if (is_badblock(rdev, sh->sector,
2639                                       STRIPE_SECTORS,
2640                                       &first_bad, &bad_sectors)) {
2641                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2642                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2643                                /* That was a successful write so make
2644                                 * sure it looks like we already did
2645                                 * a re-write.
2646                                 */
2647                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2648                }
2649        }
2650        rdev_dec_pending(rdev, conf->mddev);
2651
2652        if (sh->batch_head && bi->bi_error && !replacement)
2653                set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2654
2655        bio_reset(bi);
2656        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2657                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2658        set_bit(STRIPE_HANDLE, &sh->state);
2659        raid5_release_stripe(sh);
2660
2661        if (sh->batch_head && sh != sh->batch_head)
2662                raid5_release_stripe(sh->batch_head);
2663}
2664
2665static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2666{
2667        struct r5dev *dev = &sh->dev[i];
2668
2669        dev->flags = 0;
2670        dev->sector = raid5_compute_blocknr(sh, i, previous);
2671}
2672
2673static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674{
2675        char b[BDEVNAME_SIZE];
2676        struct r5conf *conf = mddev->private;
2677        unsigned long flags;
2678        pr_debug("raid456: error called\n");
2679
2680        spin_lock_irqsave(&conf->device_lock, flags);
2681        clear_bit(In_sync, &rdev->flags);
2682        mddev->degraded = raid5_calc_degraded(conf);
2683        spin_unlock_irqrestore(&conf->device_lock, flags);
2684        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685
2686        set_bit(Blocked, &rdev->flags);
2687        set_bit(Faulty, &rdev->flags);
2688        set_mask_bits(&mddev->sb_flags, 0,
2689                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690        pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691                "md/raid:%s: Operation continuing on %d devices.\n",
2692                mdname(mddev),
2693                bdevname(rdev->bdev, b),
2694                mdname(mddev),
2695                conf->raid_disks - mddev->degraded);
2696        r5c_update_on_rdev_error(mddev, rdev);
2697}
2698
2699/*
2700 * Input: a 'big' sector number,
2701 * Output: index of the data and parity disk, and the sector # in them.
2702 */
2703sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704                              int previous, int *dd_idx,
2705                              struct stripe_head *sh)
2706{
2707        sector_t stripe, stripe2;
2708        sector_t chunk_number;
2709        unsigned int chunk_offset;
2710        int pd_idx, qd_idx;
2711        int ddf_layout = 0;
2712        sector_t new_sector;
2713        int algorithm = previous ? conf->prev_algo
2714                                 : conf->algorithm;
2715        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716                                         : conf->chunk_sectors;
2717        int raid_disks = previous ? conf->previous_raid_disks
2718                                  : conf->raid_disks;
2719        int data_disks = raid_disks - conf->max_degraded;
2720
2721        /* First compute the information on this sector */
2722
2723        /*
2724         * Compute the chunk number and the sector offset inside the chunk
2725         */
2726        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727        chunk_number = r_sector;
2728
2729        /*
2730         * Compute the stripe number
2731         */
2732        stripe = chunk_number;
2733        *dd_idx = sector_div(stripe, data_disks);
2734        stripe2 = stripe;
2735        /*
2736         * Select the parity disk based on the user selected algorithm.
2737         */
2738        pd_idx = qd_idx = -1;
2739        switch(conf->level) {
2740        case 4:
2741                pd_idx = data_disks;
2742                break;
2743        case 5:
2744                switch (algorithm) {
2745                case ALGORITHM_LEFT_ASYMMETRIC:
2746                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747                        if (*dd_idx >= pd_idx)
2748                                (*dd_idx)++;
2749                        break;
2750                case ALGORITHM_RIGHT_ASYMMETRIC:
2751                        pd_idx = sector_div(stripe2, raid_disks);
2752                        if (*dd_idx >= pd_idx)
2753                                (*dd_idx)++;
2754                        break;
2755                case ALGORITHM_LEFT_SYMMETRIC:
2756                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758                        break;
2759                case ALGORITHM_RIGHT_SYMMETRIC:
2760                        pd_idx = sector_div(stripe2, raid_disks);
2761                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762                        break;
2763                case ALGORITHM_PARITY_0:
2764                        pd_idx = 0;
2765                        (*dd_idx)++;
2766                        break;
2767                case ALGORITHM_PARITY_N:
2768                        pd_idx = data_disks;
2769                        break;
2770                default:
2771                        BUG();
2772                }
2773                break;
2774        case 6:
2775
2776                switch (algorithm) {
2777                case ALGORITHM_LEFT_ASYMMETRIC:
2778                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779                        qd_idx = pd_idx + 1;
2780                        if (pd_idx == raid_disks-1) {
2781                                (*dd_idx)++;    /* Q D D D P */
2782                                qd_idx = 0;
2783                        } else if (*dd_idx >= pd_idx)
2784                                (*dd_idx) += 2; /* D D P Q D */
2785                        break;
2786                case ALGORITHM_RIGHT_ASYMMETRIC:
2787                        pd_idx = sector_div(stripe2, raid_disks);
2788                        qd_idx = pd_idx + 1;
2789                        if (pd_idx == raid_disks-1) {
2790                                (*dd_idx)++;    /* Q D D D P */
2791                                qd_idx = 0;
2792                        } else if (*dd_idx >= pd_idx)
2793                                (*dd_idx) += 2; /* D D P Q D */
2794                        break;
2795                case ALGORITHM_LEFT_SYMMETRIC:
2796                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797                        qd_idx = (pd_idx + 1) % raid_disks;
2798                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799                        break;
2800                case ALGORITHM_RIGHT_SYMMETRIC:
2801                        pd_idx = sector_div(stripe2, raid_disks);
2802                        qd_idx = (pd_idx + 1) % raid_disks;
2803                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804                        break;
2805
2806                case ALGORITHM_PARITY_0:
2807                        pd_idx = 0;
2808                        qd_idx = 1;
2809                        (*dd_idx) += 2;
2810                        break;
2811                case ALGORITHM_PARITY_N:
2812                        pd_idx = data_disks;
2813                        qd_idx = data_disks + 1;
2814                        break;
2815
2816                case ALGORITHM_ROTATING_ZERO_RESTART:
2817                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818                         * of blocks for computing Q is different.
2819                         */
2820                        pd_idx = sector_div(stripe2, raid_disks);
2821                        qd_idx = pd_idx + 1;
2822                        if (pd_idx == raid_disks-1) {
2823                                (*dd_idx)++;    /* Q D D D P */
2824                                qd_idx = 0;
2825                        } else if (*dd_idx >= pd_idx)
2826                                (*dd_idx) += 2; /* D D P Q D */
2827                        ddf_layout = 1;
2828                        break;
2829
2830                case ALGORITHM_ROTATING_N_RESTART:
2831                        /* Same a left_asymmetric, by first stripe is
2832                         * D D D P Q  rather than
2833                         * Q D D D P
2834                         */
2835                        stripe2 += 1;
2836                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837                        qd_idx = pd_idx + 1;
2838                        if (pd_idx == raid_disks-1) {
2839                                (*dd_idx)++;    /* Q D D D P */
2840                                qd_idx = 0;
2841                        } else if (*dd_idx >= pd_idx)
2842                                (*dd_idx) += 2; /* D D P Q D */
2843                        ddf_layout = 1;
2844                        break;
2845
2846                case ALGORITHM_ROTATING_N_CONTINUE:
2847                        /* Same as left_symmetric but Q is before P */
2848                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851                        ddf_layout = 1;
2852                        break;
2853
2854                case ALGORITHM_LEFT_ASYMMETRIC_6:
2855                        /* RAID5 left_asymmetric, with Q on last device */
2856                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857                        if (*dd_idx >= pd_idx)
2858                                (*dd_idx)++;
2859                        qd_idx = raid_disks - 1;
2860                        break;
2861
2862                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863                        pd_idx = sector_div(stripe2, raid_disks-1);
2864                        if (*dd_idx >= pd_idx)
2865                                (*dd_idx)++;
2866                        qd_idx = raid_disks - 1;
2867                        break;
2868
2869                case ALGORITHM_LEFT_SYMMETRIC_6:
2870                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872                        qd_idx = raid_disks - 1;
2873                        break;
2874
2875                case ALGORITHM_RIGHT_SYMMETRIC_6:
2876                        pd_idx = sector_div(stripe2, raid_disks-1);
2877                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878                        qd_idx = raid_disks - 1;
2879                        break;
2880
2881                case ALGORITHM_PARITY_0_6:
2882                        pd_idx = 0;
2883                        (*dd_idx)++;
2884                        qd_idx = raid_disks - 1;
2885                        break;
2886
2887                default:
2888                        BUG();
2889                }
2890                break;
2891        }
2892
2893        if (sh) {
2894                sh->pd_idx = pd_idx;
2895                sh->qd_idx = qd_idx;
2896                sh->ddf_layout = ddf_layout;
2897        }
2898        /*
2899         * Finally, compute the new sector number
2900         */
2901        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902        return new_sector;
2903}
2904
2905sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906{
2907        struct r5conf *conf = sh->raid_conf;
2908        int raid_disks = sh->disks;
2909        int data_disks = raid_disks - conf->max_degraded;
2910        sector_t new_sector = sh->sector, check;
2911        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912                                         : conf->chunk_sectors;
2913        int algorithm = previous ? conf->prev_algo
2914                                 : conf->algorithm;
2915        sector_t stripe;
2916        int chunk_offset;
2917        sector_t chunk_number;
2918        int dummy1, dd_idx = i;
2919        sector_t r_sector;
2920        struct stripe_head sh2;
2921
2922        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923        stripe = new_sector;
2924
2925        if (i == sh->pd_idx)
2926                return 0;
2927        switch(conf->level) {
2928        case 4: break;
2929        case 5:
2930                switch (algorithm) {
2931                case ALGORITHM_LEFT_ASYMMETRIC:
2932                case ALGORITHM_RIGHT_ASYMMETRIC:
2933                        if (i > sh->pd_idx)
2934                                i--;
2935                        break;
2936                case ALGORITHM_LEFT_SYMMETRIC:
2937                case ALGORITHM_RIGHT_SYMMETRIC:
2938                        if (i < sh->pd_idx)
2939                                i += raid_disks;
2940                        i -= (sh->pd_idx + 1);
2941                        break;
2942                case ALGORITHM_PARITY_0:
2943                        i -= 1;
2944                        break;
2945                case ALGORITHM_PARITY_N:
2946                        break;
2947                default:
2948                        BUG();
2949                }
2950                break;
2951        case 6:
2952                if (i == sh->qd_idx)
2953                        return 0; /* It is the Q disk */
2954                switch (algorithm) {
2955                case ALGORITHM_LEFT_ASYMMETRIC:
2956                case ALGORITHM_RIGHT_ASYMMETRIC:
2957                case ALGORITHM_ROTATING_ZERO_RESTART:
2958                case ALGORITHM_ROTATING_N_RESTART:
2959                        if (sh->pd_idx == raid_disks-1)
2960                                i--;    /* Q D D D P */
2961                        else if (i > sh->pd_idx)
2962                                i -= 2; /* D D P Q D */
2963                        break;
2964                case ALGORITHM_LEFT_SYMMETRIC:
2965                case ALGORITHM_RIGHT_SYMMETRIC:
2966                        if (sh->pd_idx == raid_disks-1)
2967                                i--; /* Q D D D P */
2968                        else {
2969                                /* D D P Q D */
2970                                if (i < sh->pd_idx)
2971                                        i += raid_disks;
2972                                i -= (sh->pd_idx + 2);
2973                        }
2974                        break;
2975                case ALGORITHM_PARITY_0:
2976                        i -= 2;
2977                        break;
2978                case ALGORITHM_PARITY_N:
2979                        break;
2980                case ALGORITHM_ROTATING_N_CONTINUE:
2981                        /* Like left_symmetric, but P is before Q */
2982                        if (sh->pd_idx == 0)
2983                                i--;    /* P D D D Q */
2984                        else {
2985                                /* D D Q P D */
2986                                if (i < sh->pd_idx)
2987                                        i += raid_disks;
2988                                i -= (sh->pd_idx + 1);
2989                        }
2990                        break;
2991                case ALGORITHM_LEFT_ASYMMETRIC_6:
2992                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993                        if (i > sh->pd_idx)
2994                                i--;
2995                        break;
2996                case ALGORITHM_LEFT_SYMMETRIC_6:
2997                case ALGORITHM_RIGHT_SYMMETRIC_6:
2998                        if (i < sh->pd_idx)
2999                                i += data_disks + 1;
3000                        i -= (sh->pd_idx + 1);
3001                        break;
3002                case ALGORITHM_PARITY_0_6:
3003                        i -= 1;
3004                        break;
3005                default:
3006                        BUG();
3007                }
3008                break;
3009        }
3010
3011        chunk_number = stripe * data_disks + i;
3012        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013
3014        check = raid5_compute_sector(conf, r_sector,
3015                                     previous, &dummy1, &sh2);
3016        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017                || sh2.qd_idx != sh->qd_idx) {
3018                pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019                        mdname(conf->mddev));
3020                return 0;
3021        }
3022        return r_sector;
3023}
3024
3025/*
3026 * There are cases where we want handle_stripe_dirtying() and
3027 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028 *
3029 * This function checks whether we want to delay the towrite. Specifically,
3030 * we delay the towrite when:
3031 *
3032 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3033 *      stripe has data in journal (for other devices).
3034 *
3035 *      In this case, when reading data for the non-overwrite dev, it is
3036 *      necessary to handle complex rmw of write back cache (prexor with
3037 *      orig_page, and xor with page). To keep read path simple, we would
3038 *      like to flush data in journal to RAID disks first, so complex rmw
3039 *      is handled in the write patch (handle_stripe_dirtying).
3040 *
3041 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042 *
3043 *      It is important to be able to flush all stripes in raid5-cache.
3044 *      Therefore, we need reserve some space on the journal device for
3045 *      these flushes. If flush operation includes pending writes to the
3046 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047 *      for the flush out. If we exclude these pending writes from flush
3048 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3049 *      Therefore, excluding pending writes in these cases enables more
3050 *      efficient use of the journal device.
3051 *
3052 *      Note: To make sure the stripe makes progress, we only delay
3053 *      towrite for stripes with data already in journal (injournal > 0).
3054 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055 *      no_space_stripes list.
3056 *
3057 *   3. during journal failure
3058 *      In journal failure, we try to flush all cached data to raid disks
3059 *      based on data in stripe cache. The array is read-only to upper
3060 *      layers, so we would skip all pending writes.
3061 *
3062 */
3063static inline bool delay_towrite(struct r5conf *conf,
3064                                 struct r5dev *dev,
3065                                 struct stripe_head_state *s)
3066{
3067        /* case 1 above */
3068        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069            !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070                return true;
3071        /* case 2 above */
3072        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073            s->injournal > 0)
3074                return true;
3075        /* case 3 above */
3076        if (s->log_failed && s->injournal)
3077                return true;
3078        return false;
3079}
3080
3081static void
3082schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083                         int rcw, int expand)
3084{
3085        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086        struct r5conf *conf = sh->raid_conf;
3087        int level = conf->level;
3088
3089        if (rcw) {
3090                /*
3091                 * In some cases, handle_stripe_dirtying initially decided to
3092                 * run rmw and allocates extra page for prexor. However, rcw is
3093                 * cheaper later on. We need to free the extra page now,
3094                 * because we won't be able to do that in ops_complete_prexor().
3095                 */
3096                r5c_release_extra_page(sh);
3097
3098                for (i = disks; i--; ) {
3099                        struct r5dev *dev = &sh->dev[i];
3100
3101                        if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102                                set_bit(R5_LOCKED, &dev->flags);
3103                                set_bit(R5_Wantdrain, &dev->flags);
3104                                if (!expand)
3105                                        clear_bit(R5_UPTODATE, &dev->flags);
3106                                s->locked++;
3107                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3108                                set_bit(R5_LOCKED, &dev->flags);
3109                                s->locked++;
3110                        }
3111                }
3112                /* if we are not expanding this is a proper write request, and
3113                 * there will be bios with new data to be drained into the
3114                 * stripe cache
3115                 */
3116                if (!expand) {
3117                        if (!s->locked)
3118                                /* False alarm, nothing to do */
3119                                return;
3120                        sh->reconstruct_state = reconstruct_state_drain_run;
3121                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122                } else
3123                        sh->reconstruct_state = reconstruct_state_run;
3124
3125                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
3127                if (s->locked + conf->max_degraded == disks)
3128                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129                                atomic_inc(&conf->pending_full_writes);
3130        } else {
3131                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133                BUG_ON(level == 6 &&
3134                        (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135                           test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136
3137                for (i = disks; i--; ) {
3138                        struct r5dev *dev = &sh->dev[i];
3139                        if (i == pd_idx || i == qd_idx)
3140                                continue;
3141
3142                        if (dev->towrite &&
3143                            (test_bit(R5_UPTODATE, &dev->flags) ||
3144                             test_bit(R5_Wantcompute, &dev->flags))) {
3145                                set_bit(R5_Wantdrain, &dev->flags);
3146                                set_bit(R5_LOCKED, &dev->flags);
3147                                clear_bit(R5_UPTODATE, &dev->flags);
3148                                s->locked++;
3149                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3150                                set_bit(R5_LOCKED, &dev->flags);
3151                                s->locked++;
3152                        }
3153                }
3154                if (!s->locked)
3155                        /* False alarm - nothing to do */
3156                        return;
3157                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161        }
3162
3163        /* keep the parity disk(s) locked while asynchronous operations
3164         * are in flight
3165         */
3166        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168        s->locked++;
3169
3170        if (level == 6) {
3171                int qd_idx = sh->qd_idx;
3172                struct r5dev *dev = &sh->dev[qd_idx];
3173
3174                set_bit(R5_LOCKED, &dev->flags);
3175                clear_bit(R5_UPTODATE, &dev->flags);
3176                s->locked++;
3177        }
3178
3179        if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180            test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181            !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182            test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183                set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
3185        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186                __func__, (unsigned long long)sh->sector,
3187                s->locked, s->ops_request);
3188}
3189
3190/*
3191 * Each stripe/dev can have one or more bion attached.
3192 * toread/towrite point to the first in a chain.
3193 * The bi_next chain must be in order.
3194 */
3195static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196                          int forwrite, int previous)
3197{
3198        struct bio **bip;
3199        struct r5conf *conf = sh->raid_conf;
3200        int firstwrite=0;
3201
3202        pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203                (unsigned long long)bi->bi_iter.bi_sector,
3204                (unsigned long long)sh->sector);
3205
3206        spin_lock_irq(&sh->stripe_lock);
3207        /* Don't allow new IO added to stripes in batch list */
3208        if (sh->batch_head)
3209                goto overlap;
3210        if (forwrite) {
3211                bip = &sh->dev[dd_idx].towrite;
3212                if (*bip == NULL)
3213                        firstwrite = 1;
3214        } else
3215                bip = &sh->dev[dd_idx].toread;
3216        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218                        goto overlap;
3219                bip = & (*bip)->bi_next;
3220        }
3221        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222                goto overlap;
3223
3224        if (forwrite && raid5_has_ppl(conf)) {
3225                /*
3226                 * With PPL only writes to consecutive data chunks within a
3227                 * stripe are allowed because for a single stripe_head we can
3228                 * only have one PPL entry at a time, which describes one data
3229                 * range. Not really an overlap, but wait_for_overlap can be
3230                 * used to handle this.
3231                 */
3232                sector_t sector;
3233                sector_t first = 0;
3234                sector_t last = 0;
3235                int count = 0;
3236                int i;
3237
3238                for (i = 0; i < sh->disks; i++) {
3239                        if (i != sh->pd_idx &&
3240                            (i == dd_idx || sh->dev[i].towrite)) {
3241                                sector = sh->dev[i].sector;
3242                                if (count == 0 || sector < first)
3243                                        first = sector;
3244                                if (sector > last)
3245                                        last = sector;
3246                                count++;
3247                        }
3248                }
3249
3250                if (first + conf->chunk_sectors * (count - 1) != last)
3251                        goto overlap;
3252        }
3253
3254        if (!forwrite || previous)
3255                clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
3257        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258        if (*bip)
3259                bi->bi_next = *bip;
3260        *bip = bi;
3261        bio_inc_remaining(bi);
3262        md_write_inc(conf->mddev, bi);
3263
3264        if (forwrite) {
3265                /* check if page is covered */
3266                sector_t sector = sh->dev[dd_idx].sector;
3267                for (bi=sh->dev[dd_idx].towrite;
3268                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269                             bi && bi->bi_iter.bi_sector <= sector;
3270                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271                        if (bio_end_sector(bi) >= sector)
3272                                sector = bio_end_sector(bi);
3273                }
3274                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275                        if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276                                sh->overwrite_disks++;
3277        }
3278
3279        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280                (unsigned long long)(*bip)->bi_iter.bi_sector,
3281                (unsigned long long)sh->sector, dd_idx);
3282
3283        if (conf->mddev->bitmap && firstwrite) {
3284                /* Cannot hold spinlock over bitmap_startwrite,
3285                 * but must ensure this isn't added to a batch until
3286                 * we have added to the bitmap and set bm_seq.
3287                 * So set STRIPE_BITMAP_PENDING to prevent
3288                 * batching.
3289                 * If multiple add_stripe_bio() calls race here they
3290                 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3291                 * to complete "bitmap_startwrite" gets to set
3292                 * STRIPE_BIT_DELAY.  This is important as once a stripe
3293                 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294                 * any more.
3295                 */
3296                set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297                spin_unlock_irq(&sh->stripe_lock);
3298                bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299                                  STRIPE_SECTORS, 0);
3300                spin_lock_irq(&sh->stripe_lock);
3301                clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302                if (!sh->batch_head) {
3303                        sh->bm_seq = conf->seq_flush+1;
3304                        set_bit(STRIPE_BIT_DELAY, &sh->state);
3305                }
3306        }
3307        spin_unlock_irq(&sh->stripe_lock);
3308
3309        if (stripe_can_batch(sh))
3310                stripe_add_to_batch_list(conf, sh);
3311        return 1;
3312
3313 overlap:
3314        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315        spin_unlock_irq(&sh->stripe_lock);
3316        return 0;
3317}
3318
3319static void end_reshape(struct r5conf *conf);
3320
3321static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322                            struct stripe_head *sh)
3323{
3324        int sectors_per_chunk =
3325                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326        int dd_idx;
3327        int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329
3330        raid5_compute_sector(conf,
3331                             stripe * (disks - conf->max_degraded)
3332                             *sectors_per_chunk + chunk_offset,
3333                             previous,
3334                             &dd_idx, sh);
3335}
3336
3337static void
3338handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339                     struct stripe_head_state *s, int disks)
3340{
3341        int i;
3342        BUG_ON(sh->batch_head);
3343        for (i = disks; i--; ) {
3344                struct bio *bi;
3345                int bitmap_end = 0;
3346
3347                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348                        struct md_rdev *rdev;
3349                        rcu_read_lock();
3350                        rdev = rcu_dereference(conf->disks[i].rdev);
3351                        if (rdev && test_bit(In_sync, &rdev->flags) &&
3352                            !test_bit(Faulty, &rdev->flags))
3353                                atomic_inc(&rdev->nr_pending);
3354                        else
3355                                rdev = NULL;
3356                        rcu_read_unlock();
3357                        if (rdev) {
3358                                if (!rdev_set_badblocks(
3359                                            rdev,
3360                                            sh->sector,
3361                                            STRIPE_SECTORS, 0))
3362                                        md_error(conf->mddev, rdev);
3363                                rdev_dec_pending(rdev, conf->mddev);
3364                        }
3365                }
3366                spin_lock_irq(&sh->stripe_lock);
3367                /* fail all writes first */
3368                bi = sh->dev[i].towrite;
3369                sh->dev[i].towrite = NULL;
3370                sh->overwrite_disks = 0;
3371                spin_unlock_irq(&sh->stripe_lock);
3372                if (bi)
3373                        bitmap_end = 1;
3374
3375                log_stripe_write_finished(sh);
3376
3377                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378                        wake_up(&conf->wait_for_overlap);
3379
3380                while (bi && bi->bi_iter.bi_sector <
3381                        sh->dev[i].sector + STRIPE_SECTORS) {
3382                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383
3384                        bi->bi_error = -EIO;
3385                        md_write_end(conf->mddev);
3386                        bio_endio(bi);
3387                        bi = nextbi;
3388                }
3389                if (bitmap_end)
3390                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3391                                STRIPE_SECTORS, 0, 0);
3392                bitmap_end = 0;
3393                /* and fail all 'written' */
3394                bi = sh->dev[i].written;
3395                sh->dev[i].written = NULL;
3396                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3397                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3398                        sh->dev[i].page = sh->dev[i].orig_page;
3399                }
3400
3401                if (bi) bitmap_end = 1;
3402                while (bi && bi->bi_iter.bi_sector <
3403                       sh->dev[i].sector + STRIPE_SECTORS) {
3404                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3405
3406                        bi->bi_error = -EIO;
3407                        md_write_end(conf->mddev);
3408                        bio_endio(bi);
3409                        bi = bi2;
3410                }
3411
3412                /* fail any reads if this device is non-operational and
3413                 * the data has not reached the cache yet.
3414                 */
3415                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3416                    s->failed > conf->max_degraded &&
3417                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3418                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3419                        spin_lock_irq(&sh->stripe_lock);
3420                        bi = sh->dev[i].toread;
3421                        sh->dev[i].toread = NULL;
3422                        spin_unlock_irq(&sh->stripe_lock);
3423                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3424                                wake_up(&conf->wait_for_overlap);
3425                        if (bi)
3426                                s->to_read--;
3427                        while (bi && bi->bi_iter.bi_sector <
3428                               sh->dev[i].sector + STRIPE_SECTORS) {
3429                                struct bio *nextbi =
3430                                        r5_next_bio(bi, sh->dev[i].sector);
3431
3432                                bi->bi_error = -EIO;
3433                                bio_endio(bi);
3434                                bi = nextbi;
3435                        }
3436                }
3437                if (bitmap_end)
3438                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3439                                        STRIPE_SECTORS, 0, 0);
3440                /* If we were in the middle of a write the parity block might
3441                 * still be locked - so just clear all R5_LOCKED flags
3442                 */
3443                clear_bit(R5_LOCKED, &sh->dev[i].flags);
3444        }
3445        s->to_write = 0;
3446        s->written = 0;
3447
3448        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3449                if (atomic_dec_and_test(&conf->pending_full_writes))
3450                        md_wakeup_thread(conf->mddev->thread);
3451}
3452
3453static void
3454handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3455                   struct stripe_head_state *s)
3456{
3457        int abort = 0;
3458        int i;
3459
3460        BUG_ON(sh->batch_head);
3461        clear_bit(STRIPE_SYNCING, &sh->state);
3462        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3463                wake_up(&conf->wait_for_overlap);
3464        s->syncing = 0;
3465        s->replacing = 0;
3466        /* There is nothing more to do for sync/check/repair.
3467         * Don't even need to abort as that is handled elsewhere
3468         * if needed, and not always wanted e.g. if there is a known
3469         * bad block here.
3470         * For recover/replace we need to record a bad block on all
3471         * non-sync devices, or abort the recovery
3472         */
3473        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3474                /* During recovery devices cannot be removed, so
3475                 * locking and refcounting of rdevs is not needed
3476                 */
3477                rcu_read_lock();
3478                for (i = 0; i < conf->raid_disks; i++) {
3479                        struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3480                        if (rdev
3481                            && !test_bit(Faulty, &rdev->flags)
3482                            && !test_bit(In_sync, &rdev->flags)
3483                            && !rdev_set_badblocks(rdev, sh->sector,
3484                                                   STRIPE_SECTORS, 0))
3485                                abort = 1;
3486                        rdev = rcu_dereference(conf->disks[i].replacement);
3487                        if (rdev
3488                            && !test_bit(Faulty, &rdev->flags)
3489                            && !test_bit(In_sync, &rdev->flags)
3490                            && !rdev_set_badblocks(rdev, sh->sector,
3491                                                   STRIPE_SECTORS, 0))
3492                                abort = 1;
3493                }
3494                rcu_read_unlock();
3495                if (abort)
3496                        conf->recovery_disabled =
3497                                conf->mddev->recovery_disabled;
3498        }
3499        md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3500}
3501
3502static int want_replace(struct stripe_head *sh, int disk_idx)
3503{
3504        struct md_rdev *rdev;
3505        int rv = 0;
3506
3507        rcu_read_lock();
3508        rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3509        if (rdev
3510            && !test_bit(Faulty, &rdev->flags)
3511            && !test_bit(In_sync, &rdev->flags)
3512            && (rdev->recovery_offset <= sh->sector
3513                || rdev->mddev->recovery_cp <= sh->sector))
3514                rv = 1;
3515        rcu_read_unlock();
3516        return rv;
3517}
3518
3519static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3520                           int disk_idx, int disks)
3521{
3522        struct r5dev *dev = &sh->dev[disk_idx];
3523        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3524                                  &sh->dev[s->failed_num[1]] };
3525        int i;
3526
3527
3528        if (test_bit(R5_LOCKED, &dev->flags) ||
3529            test_bit(R5_UPTODATE, &dev->flags))
3530                /* No point reading this as we already have it or have
3531                 * decided to get it.
3532                 */
3533                return 0;
3534
3535        if (dev->toread ||
3536            (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3537                /* We need this block to directly satisfy a request */
3538                return 1;
3539
3540        if (s->syncing || s->expanding ||
3541            (s->replacing && want_replace(sh, disk_idx)))
3542                /* When syncing, or expanding we read everything.
3543                 * When replacing, we need the replaced block.
3544                 */
3545                return 1;
3546
3547        if ((s->failed >= 1 && fdev[0]->toread) ||
3548            (s->failed >= 2 && fdev[1]->toread))
3549                /* If we want to read from a failed device, then
3550                 * we need to actually read every other device.
3551                 */
3552                return 1;
3553
3554        /* Sometimes neither read-modify-write nor reconstruct-write
3555         * cycles can work.  In those cases we read every block we
3556         * can.  Then the parity-update is certain to have enough to
3557         * work with.
3558         * This can only be a problem when we need to write something,
3559         * and some device has failed.  If either of those tests
3560         * fail we need look no further.
3561         */
3562        if (!s->failed || !s->to_write)
3563                return 0;
3564
3565        if (test_bit(R5_Insync, &dev->flags) &&
3566            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3567                /* Pre-reads at not permitted until after short delay
3568                 * to gather multiple requests.  However if this
3569                 * device is no Insync, the block could only be computed
3570                 * and there is no need to delay that.
3571                 */
3572                return 0;
3573
3574        for (i = 0; i < s->failed && i < 2; i++) {
3575                if (fdev[i]->towrite &&
3576                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3577                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3578                        /* If we have a partial write to a failed
3579                         * device, then we will need to reconstruct
3580                         * the content of that device, so all other
3581                         * devices must be read.
3582                         */
3583                        return 1;
3584        }
3585
3586        /* If we are forced to do a reconstruct-write, either because
3587         * the current RAID6 implementation only supports that, or
3588         * because parity cannot be trusted and we are currently
3589         * recovering it, there is extra need to be careful.
3590         * If one of the devices that we would need to read, because
3591         * it is not being overwritten (and maybe not written at all)
3592         * is missing/faulty, then we need to read everything we can.
3593         */
3594        if (sh->raid_conf->level != 6 &&
3595            sh->sector < sh->raid_conf->mddev->recovery_cp)
3596                /* reconstruct-write isn't being forced */
3597                return 0;
3598        for (i = 0; i < s->failed && i < 2; i++) {
3599                if (s->failed_num[i] != sh->pd_idx &&
3600                    s->failed_num[i] != sh->qd_idx &&
3601                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3602                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3603                        return 1;
3604        }
3605
3606        return 0;
3607}
3608
3609/* fetch_block - checks the given member device to see if its data needs
3610 * to be read or computed to satisfy a request.
3611 *
3612 * Returns 1 when no more member devices need to be checked, otherwise returns
3613 * 0 to tell the loop in handle_stripe_fill to continue
3614 */
3615static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3616                       int disk_idx, int disks)
3617{
3618        struct r5dev *dev = &sh->dev[disk_idx];
3619
3620        /* is the data in this block needed, and can we get it? */
3621        if (need_this_block(sh, s, disk_idx, disks)) {
3622                /* we would like to get this block, possibly by computing it,
3623                 * otherwise read it if the backing disk is insync
3624                 */
3625                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3626                BUG_ON(test_bit(R5_Wantread, &dev->flags));
3627                BUG_ON(sh->batch_head);
3628
3629                /*
3630                 * In the raid6 case if the only non-uptodate disk is P
3631                 * then we already trusted P to compute the other failed
3632                 * drives. It is safe to compute rather than re-read P.
3633                 * In other cases we only compute blocks from failed
3634                 * devices, otherwise check/repair might fail to detect
3635                 * a real inconsistency.
3636                 */
3637
3638                if ((s->uptodate == disks - 1) &&
3639                    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3640                    (s->failed && (disk_idx == s->failed_num[0] ||
3641                                   disk_idx == s->failed_num[1])))) {
3642                        /* have disk failed, and we're requested to fetch it;
3643                         * do compute it
3644                         */
3645                        pr_debug("Computing stripe %llu block %d\n",
3646                               (unsigned long long)sh->sector, disk_idx);
3647                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3648                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3649                        set_bit(R5_Wantcompute, &dev->flags);
3650                        sh->ops.target = disk_idx;
3651                        sh->ops.target2 = -1; /* no 2nd target */
3652                        s->req_compute = 1;
3653                        /* Careful: from this point on 'uptodate' is in the eye
3654                         * of raid_run_ops which services 'compute' operations
3655                         * before writes. R5_Wantcompute flags a block that will
3656                         * be R5_UPTODATE by the time it is needed for a
3657                         * subsequent operation.
3658                         */
3659                        s->uptodate++;
3660                        return 1;
3661                } else if (s->uptodate == disks-2 && s->failed >= 2) {
3662                        /* Computing 2-failure is *very* expensive; only
3663                         * do it if failed >= 2
3664                         */
3665                        int other;
3666                        for (other = disks; other--; ) {
3667                                if (other == disk_idx)
3668                                        continue;
3669                                if (!test_bit(R5_UPTODATE,
3670                                      &sh->dev[other].flags))
3671                                        break;
3672                        }
3673                        BUG_ON(other < 0);
3674                        pr_debug("Computing stripe %llu blocks %d,%d\n",
3675                               (unsigned long long)sh->sector,
3676                               disk_idx, other);
3677                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3678                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3679                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3680                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
3681                        sh->ops.target = disk_idx;
3682                        sh->ops.target2 = other;
3683                        s->uptodate += 2;
3684                        s->req_compute = 1;
3685                        return 1;
3686                } else if (test_bit(R5_Insync, &dev->flags)) {
3687                        set_bit(R5_LOCKED, &dev->flags);
3688                        set_bit(R5_Wantread, &dev->flags);
3689                        s->locked++;
3690                        pr_debug("Reading block %d (sync=%d)\n",
3691                                disk_idx, s->syncing);
3692                }
3693        }
3694
3695        return 0;
3696}
3697
3698/**
3699 * handle_stripe_fill - read or compute data to satisfy pending requests.
3700 */
3701static void handle_stripe_fill(struct stripe_head *sh,
3702                               struct stripe_head_state *s,
3703                               int disks)
3704{
3705        int i;
3706
3707        /* look for blocks to read/compute, skip this if a compute
3708         * is already in flight, or if the stripe contents are in the
3709         * midst of changing due to a write
3710         */
3711        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3712            !sh->reconstruct_state) {
3713
3714                /*
3715                 * For degraded stripe with data in journal, do not handle
3716                 * read requests yet, instead, flush the stripe to raid
3717                 * disks first, this avoids handling complex rmw of write
3718                 * back cache (prexor with orig_page, and then xor with
3719                 * page) in the read path
3720                 */
3721                if (s->injournal && s->failed) {
3722                        if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3723                                r5c_make_stripe_write_out(sh);
3724                        goto out;
3725                }
3726
3727                for (i = disks; i--; )
3728                        if (fetch_block(sh, s, i, disks))
3729                                break;
3730        }
3731out:
3732        set_bit(STRIPE_HANDLE, &sh->state);
3733}
3734
3735static void break_stripe_batch_list(struct stripe_head *head_sh,
3736                                    unsigned long handle_flags);
3737/* handle_stripe_clean_event
3738 * any written block on an uptodate or failed drive can be returned.
3739 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3740 * never LOCKED, so we don't need to test 'failed' directly.
3741 */
3742static void handle_stripe_clean_event(struct r5conf *conf,
3743        struct stripe_head *sh, int disks)
3744{
3745        int i;
3746        struct r5dev *dev;
3747        int discard_pending = 0;
3748        struct stripe_head *head_sh = sh;
3749        bool do_endio = false;
3750
3751        for (i = disks; i--; )
3752                if (sh->dev[i].written) {
3753                        dev = &sh->dev[i];
3754                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3755                            (test_bit(R5_UPTODATE, &dev->flags) ||
3756                             test_bit(R5_Discard, &dev->flags) ||
3757                             test_bit(R5_SkipCopy, &dev->flags))) {
3758                                /* We can return any write requests */
3759                                struct bio *wbi, *wbi2;
3760                                pr_debug("Return write for disc %d\n", i);
3761                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3762                                        clear_bit(R5_UPTODATE, &dev->flags);
3763                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3764                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3765                                }
3766                                do_endio = true;
3767
3768returnbi:
3769                                dev->page = dev->orig_page;
3770                                wbi = dev->written;
3771                                dev->written = NULL;
3772                                while (wbi && wbi->bi_iter.bi_sector <
3773                                        dev->sector + STRIPE_SECTORS) {
3774                                        wbi2 = r5_next_bio(wbi, dev->sector);
3775                                        md_write_end(conf->mddev);
3776                                        bio_endio(wbi);
3777                                        wbi = wbi2;
3778                                }
3779                                bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3780                                                STRIPE_SECTORS,
3781                                         !test_bit(STRIPE_DEGRADED, &sh->state),
3782                                                0);
3783                                if (head_sh->batch_head) {
3784                                        sh = list_first_entry(&sh->batch_list,
3785                                                              struct stripe_head,
3786                                                              batch_list);
3787                                        if (sh != head_sh) {
3788                                                dev = &sh->dev[i];
3789                                                goto returnbi;
3790                                        }
3791                                }
3792                                sh = head_sh;
3793                                dev = &sh->dev[i];
3794                        } else if (test_bit(R5_Discard, &dev->flags))
3795                                discard_pending = 1;
3796                }
3797
3798        log_stripe_write_finished(sh);
3799
3800        if (!discard_pending &&
3801            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3802                int hash;
3803                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3804                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3805                if (sh->qd_idx >= 0) {
3806                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3807                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3808                }
3809                /* now that discard is done we can proceed with any sync */
3810                clear_bit(STRIPE_DISCARD, &sh->state);
3811                /*
3812                 * SCSI discard will change some bio fields and the stripe has
3813                 * no updated data, so remove it from hash list and the stripe
3814                 * will be reinitialized
3815                 */
3816unhash:
3817                hash = sh->hash_lock_index;
3818                spin_lock_irq(conf->hash_locks + hash);
3819                remove_hash(sh);
3820                spin_unlock_irq(conf->hash_locks + hash);
3821                if (head_sh->batch_head) {
3822                        sh = list_first_entry(&sh->batch_list,
3823                                              struct stripe_head, batch_list);
3824                        if (sh != head_sh)
3825                                        goto unhash;
3826                }
3827                sh = head_sh;
3828
3829                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3830                        set_bit(STRIPE_HANDLE, &sh->state);
3831
3832        }
3833
3834        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3835                if (atomic_dec_and_test(&conf->pending_full_writes))
3836                        md_wakeup_thread(conf->mddev->thread);
3837
3838        if (head_sh->batch_head && do_endio)
3839                break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3840}
3841
3842/*
3843 * For RMW in write back cache, we need extra page in prexor to store the
3844 * old data. This page is stored in dev->orig_page.
3845 *
3846 * This function checks whether we have data for prexor. The exact logic
3847 * is:
3848 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3849 */
3850static inline bool uptodate_for_rmw(struct r5dev *dev)
3851{
3852        return (test_bit(R5_UPTODATE, &dev->flags)) &&
3853                (!test_bit(R5_InJournal, &dev->flags) ||
3854                 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3855}
3856
3857static int handle_stripe_dirtying(struct r5conf *conf,
3858                                  struct stripe_head *sh,
3859                                  struct stripe_head_state *s,
3860                                  int disks)
3861{
3862        int rmw = 0, rcw = 0, i;
3863        sector_t recovery_cp = conf->mddev->recovery_cp;
3864
3865        /* Check whether resync is now happening or should start.
3866         * If yes, then the array is dirty (after unclean shutdown or
3867         * initial creation), so parity in some stripes might be inconsistent.
3868         * In this case, we need to always do reconstruct-write, to ensure
3869         * that in case of drive failure or read-error correction, we
3870         * generate correct data from the parity.
3871         */
3872        if (conf->rmw_level == PARITY_DISABLE_RMW ||
3873            (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3874             s->failed == 0)) {
3875                /* Calculate the real rcw later - for now make it
3876                 * look like rcw is cheaper
3877                 */
3878                rcw = 1; rmw = 2;
3879                pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3880                         conf->rmw_level, (unsigned long long)recovery_cp,
3881                         (unsigned long long)sh->sector);
3882        } else for (i = disks; i--; ) {
3883                /* would I have to read this buffer for read_modify_write */
3884                struct r5dev *dev = &sh->dev[i];
3885                if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3886                     i == sh->pd_idx || i == sh->qd_idx ||
3887                     test_bit(R5_InJournal, &dev->flags)) &&
3888                    !test_bit(R5_LOCKED, &dev->flags) &&
3889                    !(uptodate_for_rmw(dev) ||
3890                      test_bit(R5_Wantcompute, &dev->flags))) {
3891                        if (test_bit(R5_Insync, &dev->flags))
3892                                rmw++;
3893                        else
3894                                rmw += 2*disks;  /* cannot read it */
3895                }
3896                /* Would I have to read this buffer for reconstruct_write */
3897                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3898                    i != sh->pd_idx && i != sh->qd_idx &&
3899                    !test_bit(R5_LOCKED, &dev->flags) &&
3900                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3901                      test_bit(R5_Wantcompute, &dev->flags))) {
3902                        if (test_bit(R5_Insync, &dev->flags))
3903                                rcw++;
3904                        else
3905                                rcw += 2*disks;
3906                }
3907        }
3908
3909        pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3910                 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3911        set_bit(STRIPE_HANDLE, &sh->state);
3912        if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3913                /* prefer read-modify-write, but need to get some data */
3914                if (conf->mddev->queue)
3915                        blk_add_trace_msg(conf->mddev->queue,
3916                                          "raid5 rmw %llu %d",
3917                                          (unsigned long long)sh->sector, rmw);
3918                for (i = disks; i--; ) {
3919                        struct r5dev *dev = &sh->dev[i];
3920                        if (test_bit(R5_InJournal, &dev->flags) &&
3921                            dev->page == dev->orig_page &&
3922                            !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3923                                /* alloc page for prexor */
3924                                struct page *p = alloc_page(GFP_NOIO);
3925
3926                                if (p) {
3927                                        dev->orig_page = p;
3928                                        continue;
3929                                }
3930
3931                                /*
3932                                 * alloc_page() failed, try use
3933                                 * disk_info->extra_page
3934                                 */
3935                                if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3936                                                      &conf->cache_state)) {
3937                                        r5c_use_extra_page(sh);
3938                                        break;
3939                                }
3940
3941                                /* extra_page in use, add to delayed_list */
3942                                set_bit(STRIPE_DELAYED, &sh->state);
3943                                s->waiting_extra_page = 1;
3944                                return -EAGAIN;
3945                        }
3946                }
3947
3948                for (i = disks; i--; ) {
3949                        struct r5dev *dev = &sh->dev[i];
3950                        if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3951                             i == sh->pd_idx || i == sh->qd_idx ||
3952                             test_bit(R5_InJournal, &dev->flags)) &&
3953                            !test_bit(R5_LOCKED, &dev->flags) &&
3954                            !(uptodate_for_rmw(dev) ||
3955                              test_bit(R5_Wantcompute, &dev->flags)) &&
3956                            test_bit(R5_Insync, &dev->flags)) {
3957                                if (test_bit(STRIPE_PREREAD_ACTIVE,
3958                                             &sh->state)) {
3959                                        pr_debug("Read_old block %d for r-m-w\n",
3960                                                 i);
3961                                        set_bit(R5_LOCKED, &dev->flags);
3962                                        set_bit(R5_Wantread, &dev->flags);
3963                                        s->locked++;
3964                                } else {
3965                                        set_bit(STRIPE_DELAYED, &sh->state);
3966                                        set_bit(STRIPE_HANDLE, &sh->state);
3967                                }
3968                        }
3969                }
3970        }
3971        if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3972                /* want reconstruct write, but need to get some data */
3973                int qread =0;
3974                rcw = 0;
3975                for (i = disks; i--; ) {
3976                        struct r5dev *dev = &sh->dev[i];
3977                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3978                            i != sh->pd_idx && i != sh->qd_idx &&
3979                            !test_bit(R5_LOCKED, &dev->flags) &&
3980                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3981                              test_bit(R5_Wantcompute, &dev->flags))) {
3982                                rcw++;
3983                                if (test_bit(R5_Insync, &dev->flags) &&
3984                                    test_bit(STRIPE_PREREAD_ACTIVE,
3985                                             &sh->state)) {
3986                                        pr_debug("Read_old block "
3987                                                "%d for Reconstruct\n", i);
3988                                        set_bit(R5_LOCKED, &dev->flags);
3989                                        set_bit(R5_Wantread, &dev->flags);
3990                                        s->locked++;
3991                                        qread++;
3992                                } else {
3993                                        set_bit(STRIPE_DELAYED, &sh->state);
3994                                        set_bit(STRIPE_HANDLE, &sh->state);
3995                                }
3996                        }
3997                }
3998                if (rcw && conf->mddev->queue)
3999                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4000                                          (unsigned long long)sh->sector,
4001                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4002        }
4003
4004        if (rcw > disks && rmw > disks &&
4005            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4006                set_bit(STRIPE_DELAYED, &sh->state);
4007
4008        /* now if nothing is locked, and if we have enough data,
4009         * we can start a write request
4010         */
4011        /* since handle_stripe can be called at any time we need to handle the
4012         * case where a compute block operation has been submitted and then a
4013         * subsequent call wants to start a write request.  raid_run_ops only
4014         * handles the case where compute block and reconstruct are requested
4015         * simultaneously.  If this is not the case then new writes need to be
4016         * held off until the compute completes.
4017         */
4018        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4019            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4020             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4021                schedule_reconstruction(sh, s, rcw == 0, 0);
4022        return 0;
4023}
4024
4025static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4026                                struct stripe_head_state *s, int disks)
4027{
4028        struct r5dev *dev = NULL;
4029
4030        BUG_ON(sh->batch_head);
4031        set_bit(STRIPE_HANDLE, &sh->state);
4032
4033        switch (sh->check_state) {
4034        case check_state_idle:
4035                /* start a new check operation if there are no failures */
4036                if (s->failed == 0) {
4037                        BUG_ON(s->uptodate != disks);
4038                        sh->check_state = check_state_run;
4039                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4040                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4041                        s->uptodate--;
4042                        break;
4043                }
4044                dev = &sh->dev[s->failed_num[0]];
4045                /* fall through */
4046        case check_state_compute_result:
4047                sh->check_state = check_state_idle;
4048                if (!dev)
4049                        dev = &sh->dev[sh->pd_idx];
4050
4051                /* check that a write has not made the stripe insync */
4052                if (test_bit(STRIPE_INSYNC, &sh->state))
4053                        break;
4054
4055                /* either failed parity check, or recovery is happening */
4056                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4057                BUG_ON(s->uptodate != disks);
4058
4059                set_bit(R5_LOCKED, &dev->flags);
4060                s->locked++;
4061                set_bit(R5_Wantwrite, &dev->flags);
4062
4063                clear_bit(STRIPE_DEGRADED, &sh->state);
4064                set_bit(STRIPE_INSYNC, &sh->state);
4065                break;
4066        case check_state_run:
4067                break; /* we will be called again upon completion */
4068        case check_state_check_result:
4069                sh->check_state = check_state_idle;
4070
4071                /* if a failure occurred during the check operation, leave
4072                 * STRIPE_INSYNC not set and let the stripe be handled again
4073                 */
4074                if (s->failed)
4075                        break;
4076
4077                /* handle a successful check operation, if parity is correct
4078                 * we are done.  Otherwise update the mismatch count and repair
4079                 * parity if !MD_RECOVERY_CHECK
4080                 */
4081                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4082                        /* parity is correct (on disc,
4083                         * not in buffer any more)
4084                         */
4085                        set_bit(STRIPE_INSYNC, &sh->state);
4086                else {
4087                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4088                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4089                                /* don't try to repair!! */
4090                                set_bit(STRIPE_INSYNC, &sh->state);
4091                                pr_warn_ratelimited("%s: mismatch sector in range "
4092                                                    "%llu-%llu\n", mdname(conf->mddev),
4093                                                    (unsigned long long) sh->sector,
4094                                                    (unsigned long long) sh->sector +
4095                                                    STRIPE_SECTORS);
4096                        } else {
4097                                sh->check_state = check_state_compute_run;
4098                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4099                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4100                                set_bit(R5_Wantcompute,
4101                                        &sh->dev[sh->pd_idx].flags);
4102                                sh->ops.target = sh->pd_idx;
4103                                sh->ops.target2 = -1;
4104                                s->uptodate++;
4105                        }
4106                }
4107                break;
4108        case check_state_compute_run:
4109                break;
4110        default:
4111                pr_err("%s: unknown check_state: %d sector: %llu\n",
4112                       __func__, sh->check_state,
4113                       (unsigned long long) sh->sector);
4114                BUG();
4115        }
4116}
4117
4118static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4119                                  struct stripe_head_state *s,
4120                                  int disks)
4121{
4122        int pd_idx = sh->pd_idx;
4123        int qd_idx = sh->qd_idx;
4124        struct r5dev *dev;
4125
4126        BUG_ON(sh->batch_head);
4127        set_bit(STRIPE_HANDLE, &sh->state);
4128
4129        BUG_ON(s->failed > 2);
4130
4131        /* Want to check and possibly repair P and Q.
4132         * However there could be one 'failed' device, in which
4133         * case we can only check one of them, possibly using the
4134         * other to generate missing data
4135         */
4136
4137        switch (sh->check_state) {
4138        case check_state_idle:
4139                /* start a new check operation if there are < 2 failures */
4140                if (s->failed == s->q_failed) {
4141                        /* The only possible failed device holds Q, so it
4142                         * makes sense to check P (If anything else were failed,
4143                         * we would have used P to recreate it).
4144                         */
4145                        sh->check_state = check_state_run;
4146                }
4147                if (!s->q_failed && s->failed < 2) {
4148                        /* Q is not failed, and we didn't use it to generate
4149                         * anything, so it makes sense to check it
4150                         */
4151                        if (sh->check_state == check_state_run)
4152                                sh->check_state = check_state_run_pq;
4153                        else
4154                                sh->check_state = check_state_run_q;
4155                }
4156
4157                /* discard potentially stale zero_sum_result */
4158                sh->ops.zero_sum_result = 0;
4159
4160                if (sh->check_state == check_state_run) {
4161                        /* async_xor_zero_sum destroys the contents of P */
4162                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4163                        s->uptodate--;
4164                }
4165                if (sh->check_state >= check_state_run &&
4166                    sh->check_state <= check_state_run_pq) {
4167                        /* async_syndrome_zero_sum preserves P and Q, so
4168                         * no need to mark them !uptodate here
4169                         */
4170                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4171                        break;
4172                }
4173
4174                /* we have 2-disk failure */
4175                BUG_ON(s->failed != 2);
4176                /* fall through */
4177        case check_state_compute_result:
4178                sh->check_state = check_state_idle;
4179
4180                /* check that a write has not made the stripe insync */
4181                if (test_bit(STRIPE_INSYNC, &sh->state))
4182                        break;
4183
4184                /* now write out any block on a failed drive,
4185                 * or P or Q if they were recomputed
4186                 */
4187                BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4188                if (s->failed == 2) {
4189                        dev = &sh->dev[s->failed_num[1]];
4190                        s->locked++;
4191                        set_bit(R5_LOCKED, &dev->flags);
4192                        set_bit(R5_Wantwrite, &dev->flags);
4193                }
4194                if (s->failed >= 1) {
4195                        dev = &sh->dev[s->failed_num[0]];
4196                        s->locked++;
4197                        set_bit(R5_LOCKED, &dev->flags);
4198                        set_bit(R5_Wantwrite, &dev->flags);
4199                }
4200                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4201                        dev = &sh->dev[pd_idx];
4202                        s->locked++;
4203                        set_bit(R5_LOCKED, &dev->flags);
4204                        set_bit(R5_Wantwrite, &dev->flags);
4205                }
4206                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4207                        dev = &sh->dev[qd_idx];
4208                        s->locked++;
4209                        set_bit(R5_LOCKED, &dev->flags);
4210                        set_bit(R5_Wantwrite, &dev->flags);
4211                }
4212                clear_bit(STRIPE_DEGRADED, &sh->state);
4213
4214                set_bit(STRIPE_INSYNC, &sh->state);
4215                break;
4216        case check_state_run:
4217        case check_state_run_q:
4218        case check_state_run_pq:
4219                break; /* we will be called again upon completion */
4220        case check_state_check_result:
4221                sh->check_state = check_state_idle;
4222
4223                /* handle a successful check operation, if parity is correct
4224                 * we are done.  Otherwise update the mismatch count and repair
4225                 * parity if !MD_RECOVERY_CHECK
4226                 */
4227                if (sh->ops.zero_sum_result == 0) {
4228                        /* both parities are correct */
4229                        if (!s->failed)
4230                                set_bit(STRIPE_INSYNC, &sh->state);
4231                        else {
4232                                /* in contrast to the raid5 case we can validate
4233                                 * parity, but still have a failure to write
4234                                 * back
4235                                 */
4236                                sh->check_state = check_state_compute_result;
4237                                /* Returning at this point means that we may go
4238                                 * off and bring p and/or q uptodate again so
4239                                 * we make sure to check zero_sum_result again
4240                                 * to verify if p or q need writeback
4241                                 */
4242                        }
4243                } else {
4244                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4245                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4246                                /* don't try to repair!! */
4247                                set_bit(STRIPE_INSYNC, &sh->state);
4248                                pr_warn_ratelimited("%s: mismatch sector in range "
4249                                                    "%llu-%llu\n", mdname(conf->mddev),
4250                                                    (unsigned long long) sh->sector,
4251                                                    (unsigned long long) sh->sector +
4252                                                    STRIPE_SECTORS);
4253                        } else {
4254                                int *target = &sh->ops.target;
4255
4256                                sh->ops.target = -1;
4257                                sh->ops.target2 = -1;
4258                                sh->check_state = check_state_compute_run;
4259                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4260                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4261                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4262                                        set_bit(R5_Wantcompute,
4263                                                &sh->dev[pd_idx].flags);
4264                                        *target = pd_idx;
4265                                        target = &sh->ops.target2;
4266                                        s->uptodate++;
4267                                }
4268                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4269                                        set_bit(R5_Wantcompute,
4270                                                &sh->dev[qd_idx].flags);
4271                                        *target = qd_idx;
4272                                        s->uptodate++;
4273                                }
4274                        }
4275                }
4276                break;
4277        case check_state_compute_run:
4278                break;
4279        default:
4280                pr_warn("%s: unknown check_state: %d sector: %llu\n",
4281                        __func__, sh->check_state,
4282                        (unsigned long long) sh->sector);
4283                BUG();
4284        }
4285}
4286
4287static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4288{
4289        int i;
4290
4291        /* We have read all the blocks in this stripe and now we need to
4292         * copy some of them into a target stripe for expand.
4293         */
4294        struct dma_async_tx_descriptor *tx = NULL;
4295        BUG_ON(sh->batch_head);
4296        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4297        for (i = 0; i < sh->disks; i++)
4298                if (i != sh->pd_idx && i != sh->qd_idx) {
4299                        int dd_idx, j;
4300                        struct stripe_head *sh2;
4301                        struct async_submit_ctl submit;
4302
4303                        sector_t bn = raid5_compute_blocknr(sh, i, 1);
4304                        sector_t s = raid5_compute_sector(conf, bn, 0,
4305                                                          &dd_idx, NULL);
4306                        sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4307                        if (sh2 == NULL)
4308                                /* so far only the early blocks of this stripe
4309                                 * have been requested.  When later blocks
4310                                 * get requested, we will try again
4311                                 */
4312                                continue;
4313                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4314                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4315                                /* must have already done this block */
4316                                raid5_release_stripe(sh2);
4317                                continue;
4318                        }
4319
4320                        /* place all the copies on one channel */
4321                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4322                        tx = async_memcpy(sh2->dev[dd_idx].page,
4323                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
4324                                          &submit);
4325
4326                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4327                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4328                        for (j = 0; j < conf->raid_disks; j++)
4329                                if (j != sh2->pd_idx &&
4330                                    j != sh2->qd_idx &&
4331                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4332                                        break;
4333                        if (j == conf->raid_disks) {
4334                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
4335                                set_bit(STRIPE_HANDLE, &sh2->state);
4336                        }
4337                        raid5_release_stripe(sh2);
4338
4339                }
4340        /* done submitting copies, wait for them to complete */
4341        async_tx_quiesce(&tx);
4342}
4343
4344/*
4345 * handle_stripe - do things to a stripe.
4346 *
4347 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4348 * state of various bits to see what needs to be done.
4349 * Possible results:
4350 *    return some read requests which now have data
4351 *    return some write requests which are safely on storage
4352 *    schedule a read on some buffers
4353 *    schedule a write of some buffers
4354 *    return confirmation of parity correctness
4355 *
4356 */
4357
4358static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4359{
4360        struct r5conf *conf = sh->raid_conf;
4361        int disks = sh->disks;
4362        struct r5dev *dev;
4363        int i;
4364        int do_recovery = 0;
4365
4366        memset(s, 0, sizeof(*s));
4367
4368        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4369        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4370        s->failed_num[0] = -1;
4371        s->failed_num[1] = -1;
4372        s->log_failed = r5l_log_disk_error(conf);
4373
4374        /* Now to look around and see what can be done */
4375        rcu_read_lock();
4376        for (i=disks; i--; ) {
4377                struct md_rdev *rdev;
4378                sector_t first_bad;
4379                int bad_sectors;
4380                int is_bad = 0;
4381
4382                dev = &sh->dev[i];
4383
4384                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4385                         i, dev->flags,
4386                         dev->toread, dev->towrite, dev->written);
4387                /* maybe we can reply to a read
4388                 *
4389                 * new wantfill requests are only permitted while
4390                 * ops_complete_biofill is guaranteed to be inactive
4391                 */
4392                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4393                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4394                        set_bit(R5_Wantfill, &dev->flags);
4395
4396                /* now count some things */
4397                if (test_bit(R5_LOCKED, &dev->flags))
4398                        s->locked++;
4399                if (test_bit(R5_UPTODATE, &dev->flags))
4400                        s->uptodate++;
4401                if (test_bit(R5_Wantcompute, &dev->flags)) {
4402                        s->compute++;
4403                        BUG_ON(s->compute > 2);
4404                }
4405
4406                if (test_bit(R5_Wantfill, &dev->flags))
4407                        s->to_fill++;
4408                else if (dev->toread)
4409                        s->to_read++;
4410                if (dev->towrite) {
4411                        s->to_write++;
4412                        if (!test_bit(R5_OVERWRITE, &dev->flags))
4413                                s->non_overwrite++;
4414                }
4415                if (dev->written)
4416                        s->written++;
4417                /* Prefer to use the replacement for reads, but only
4418                 * if it is recovered enough and has no bad blocks.
4419                 */
4420                rdev = rcu_dereference(conf->disks[i].replacement);
4421                if (rdev && !test_bit(Faulty, &rdev->flags) &&
4422                    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4423                    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4424                                 &first_bad, &bad_sectors))
4425                        set_bit(R5_ReadRepl, &dev->flags);
4426                else {
4427                        if (rdev && !test_bit(Faulty, &rdev->flags))
4428                                set_bit(R5_NeedReplace, &dev->flags);
4429                        else
4430                                clear_bit(R5_NeedReplace, &dev->flags);
4431                        rdev = rcu_dereference(conf->disks[i].rdev);
4432                        clear_bit(R5_ReadRepl, &dev->flags);
4433                }
4434                if (rdev && test_bit(Faulty, &rdev->flags))
4435                        rdev = NULL;
4436                if (rdev) {
4437                        is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4438                                             &first_bad, &bad_sectors);
4439                        if (s->blocked_rdev == NULL
4440                            && (test_bit(Blocked, &rdev->flags)
4441                                || is_bad < 0)) {
4442                                if (is_bad < 0)
4443                                        set_bit(BlockedBadBlocks,
4444                                                &rdev->flags);
4445                                s->blocked_rdev = rdev;
4446                                atomic_inc(&rdev->nr_pending);
4447                        }
4448                }
4449                clear_bit(R5_Insync, &dev->flags);
4450                if (!rdev)
4451                        /* Not in-sync */;
4452                else if (is_bad) {
4453                        /* also not in-sync */
4454                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4455                            test_bit(R5_UPTODATE, &dev->flags)) {
4456                                /* treat as in-sync, but with a read error
4457                                 * which we can now try to correct
4458                                 */
4459                                set_bit(R5_Insync, &dev->flags);
4460                                set_bit(R5_ReadError, &dev->flags);
4461                        }
4462                } else if (test_bit(In_sync, &rdev->flags))
4463                        set_bit(R5_Insync, &dev->flags);
4464                else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4465                        /* in sync if before recovery_offset */
4466                        set_bit(R5_Insync, &dev->flags);
4467                else if (test_bit(R5_UPTODATE, &dev->flags) &&
4468                         test_bit(R5_Expanded, &dev->flags))
4469                        /* If we've reshaped into here, we assume it is Insync.
4470                         * We will shortly update recovery_offset to make
4471                         * it official.
4472                         */
4473                        set_bit(R5_Insync, &dev->flags);
4474
4475                if (test_bit(R5_WriteError, &dev->flags)) {
4476                        /* This flag does not apply to '.replacement'
4477                         * only to .rdev, so make sure to check that*/
4478                        struct md_rdev *rdev2 = rcu_dereference(
4479                                conf->disks[i].rdev);
4480                        if (rdev2 == rdev)
4481                                clear_bit(R5_Insync, &dev->flags);
4482                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4483                                s->handle_bad_blocks = 1;
4484                                atomic_inc(&rdev2->nr_pending);
4485                        } else
4486                                clear_bit(R5_WriteError, &dev->flags);
4487                }
4488                if (test_bit(R5_MadeGood, &dev->flags)) {
4489                        /* This flag does not apply to '.replacement'
4490                         * only to .rdev, so make sure to check that*/
4491                        struct md_rdev *rdev2 = rcu_dereference(
4492                                conf->disks[i].rdev);
4493                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4494                                s->handle_bad_blocks = 1;
4495                                atomic_inc(&rdev2->nr_pending);
4496                        } else
4497                                clear_bit(R5_MadeGood, &dev->flags);
4498                }
4499                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4500                        struct md_rdev *rdev2 = rcu_dereference(
4501                                conf->disks[i].replacement);
4502                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4503                                s->handle_bad_blocks = 1;
4504                                atomic_inc(&rdev2->nr_pending);
4505                        } else
4506                                clear_bit(R5_MadeGoodRepl, &dev->flags);
4507                }
4508                if (!test_bit(R5_Insync, &dev->flags)) {
4509                        /* The ReadError flag will just be confusing now */
4510                        clear_bit(R5_ReadError, &dev->flags);
4511                        clear_bit(R5_ReWrite, &dev->flags);
4512                }
4513                if (test_bit(R5_ReadError, &dev->flags))
4514                        clear_bit(R5_Insync, &dev->flags);
4515                if (!test_bit(R5_Insync, &dev->flags)) {
4516                        if (s->failed < 2)
4517                                s->failed_num[s->failed] = i;
4518                        s->failed++;
4519                        if (rdev && !test_bit(Faulty, &rdev->flags))
4520                                do_recovery = 1;
4521                }
4522
4523                if (test_bit(R5_InJournal, &dev->flags))
4524                        s->injournal++;
4525                if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4526                        s->just_cached++;
4527        }
4528        if (test_bit(STRIPE_SYNCING, &sh->state)) {
4529                /* If there is a failed device being replaced,
4530                 *     we must be recovering.
4531                 * else if we are after recovery_cp, we must be syncing
4532                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4533                 * else we can only be replacing
4534                 * sync and recovery both need to read all devices, and so
4535                 * use the same flag.
4536                 */
4537                if (do_recovery ||
4538                    sh->sector >= conf->mddev->recovery_cp ||
4539                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4540                        s->syncing = 1;
4541                else
4542                        s->replacing = 1;
4543        }
4544        rcu_read_unlock();
4545}
4546
4547static int clear_batch_ready(struct stripe_head *sh)
4548{
4549        /* Return '1' if this is a member of batch, or
4550         * '0' if it is a lone stripe or a head which can now be
4551         * handled.
4552         */
4553        struct stripe_head *tmp;
4554        if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4555                return (sh->batch_head && sh->batch_head != sh);
4556        spin_lock(&sh->stripe_lock);
4557        if (!sh->batch_head) {
4558                spin_unlock(&sh->stripe_lock);
4559                return 0;
4560        }
4561
4562        /*
4563         * this stripe could be added to a batch list before we check
4564         * BATCH_READY, skips it
4565         */
4566        if (sh->batch_head != sh) {
4567                spin_unlock(&sh->stripe_lock);
4568                return 1;
4569        }
4570        spin_lock(&sh->batch_lock);
4571        list_for_each_entry(tmp, &sh->batch_list, batch_list)
4572                clear_bit(STRIPE_BATCH_READY, &tmp->state);
4573        spin_unlock(&sh->batch_lock);
4574        spin_unlock(&sh->stripe_lock);
4575
4576        /*
4577         * BATCH_READY is cleared, no new stripes can be added.
4578         * batch_list can be accessed without lock
4579         */
4580        return 0;
4581}
4582
4583static void break_stripe_batch_list(struct stripe_head *head_sh,
4584                                    unsigned long handle_flags)
4585{
4586        struct stripe_head *sh, *next;
4587        int i;
4588        int do_wakeup = 0;
4589
4590        list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4591
4592                list_del_init(&sh->batch_list);
4593
4594                WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4595                                          (1 << STRIPE_SYNCING) |
4596                                          (1 << STRIPE_REPLACED) |
4597                                          (1 << STRIPE_DELAYED) |
4598                                          (1 << STRIPE_BIT_DELAY) |
4599                                          (1 << STRIPE_FULL_WRITE) |
4600                                          (1 << STRIPE_BIOFILL_RUN) |
4601                                          (1 << STRIPE_COMPUTE_RUN)  |
4602                                          (1 << STRIPE_OPS_REQ_PENDING) |
4603                                          (1 << STRIPE_DISCARD) |
4604                                          (1 << STRIPE_BATCH_READY) |
4605                                          (1 << STRIPE_BATCH_ERR) |
4606                                          (1 << STRIPE_BITMAP_PENDING)),
4607                        "stripe state: %lx\n", sh->state);
4608                WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4609                                              (1 << STRIPE_REPLACED)),
4610                        "head stripe state: %lx\n", head_sh->state);
4611
4612                set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4613                                            (1 << STRIPE_PREREAD_ACTIVE) |
4614                                            (1 << STRIPE_DEGRADED)),
4615                              head_sh->state & (1 << STRIPE_INSYNC));
4616
4617                sh->check_state = head_sh->check_state;
4618                sh->reconstruct_state = head_sh->reconstruct_state;
4619                for (i = 0; i < sh->disks; i++) {
4620                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4621                                do_wakeup = 1;
4622                        sh->dev[i].flags = head_sh->dev[i].flags &
4623                                (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4624                }
4625                spin_lock_irq(&sh->stripe_lock);
4626                sh->batch_head = NULL;
4627                spin_unlock_irq(&sh->stripe_lock);
4628                if (handle_flags == 0 ||
4629                    sh->state & handle_flags)
4630                        set_bit(STRIPE_HANDLE, &sh->state);
4631                raid5_release_stripe(sh);
4632        }
4633        spin_lock_irq(&head_sh->stripe_lock);
4634        head_sh->batch_head = NULL;
4635        spin_unlock_irq(&head_sh->stripe_lock);
4636        for (i = 0; i < head_sh->disks; i++)
4637                if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4638                        do_wakeup = 1;
4639        if (head_sh->state & handle_flags)
4640                set_bit(STRIPE_HANDLE, &head_sh->state);
4641
4642        if (do_wakeup)
4643                wake_up(&head_sh->raid_conf->wait_for_overlap);
4644}
4645
4646static void handle_stripe(struct stripe_head *sh)
4647{
4648        struct stripe_head_state s;
4649        struct r5conf *conf = sh->raid_conf;
4650        int i;
4651        int prexor;
4652        int disks = sh->disks;
4653        struct r5dev *pdev, *qdev;
4654
4655        clear_bit(STRIPE_HANDLE, &sh->state);
4656        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4657                /* already being handled, ensure it gets handled
4658                 * again when current action finishes */
4659                set_bit(STRIPE_HANDLE, &sh->state);
4660                return;
4661        }
4662
4663        if (clear_batch_ready(sh) ) {
4664                clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4665                return;
4666        }
4667
4668        if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4669                break_stripe_batch_list(sh, 0);
4670
4671        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4672                spin_lock(&sh->stripe_lock);
4673                /*
4674                 * Cannot process 'sync' concurrently with 'discard'.
4675                 * Flush data in r5cache before 'sync'.
4676                 */
4677                if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4678                    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4679                    !test_bit(STRIPE_DISCARD, &sh->state) &&
4680                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4681                        set_bit(STRIPE_SYNCING, &sh->state);
4682                        clear_bit(STRIPE_INSYNC, &sh->state);
4683                        clear_bit(STRIPE_REPLACED, &sh->state);
4684                }
4685                spin_unlock(&sh->stripe_lock);
4686        }
4687        clear_bit(STRIPE_DELAYED, &sh->state);
4688
4689        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4690                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4691               (unsigned long long)sh->sector, sh->state,
4692               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4693               sh->check_state, sh->reconstruct_state);
4694
4695        analyse_stripe(sh, &s);
4696
4697        if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4698                goto finish;
4699
4700        if (s.handle_bad_blocks ||
4701            test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4702                set_bit(STRIPE_HANDLE, &sh->state);
4703                goto finish;
4704        }
4705
4706        if (unlikely(s.blocked_rdev)) {
4707                if (s.syncing || s.expanding || s.expanded ||
4708                    s.replacing || s.to_write || s.written) {
4709                        set_bit(STRIPE_HANDLE, &sh->state);
4710                        goto finish;
4711                }
4712                /* There is nothing for the blocked_rdev to block */
4713                rdev_dec_pending(s.blocked_rdev, conf->mddev);
4714                s.blocked_rdev = NULL;
4715        }
4716
4717        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4718                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4719                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4720        }
4721
4722        pr_debug("locked=%d uptodate=%d to_read=%d"
4723               " to_write=%d failed=%d failed_num=%d,%d\n",
4724               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4725               s.failed_num[0], s.failed_num[1]);
4726        /*
4727         * check if the array has lost more than max_degraded devices and,
4728         * if so, some requests might need to be failed.
4729         *
4730         * When journal device failed (log_failed), we will only process
4731         * the stripe if there is data need write to raid disks
4732         */
4733        if (s.failed > conf->max_degraded ||
4734            (s.log_failed && s.injournal == 0)) {
4735                sh->check_state = 0;
4736                sh->reconstruct_state = 0;
4737                break_stripe_batch_list(sh, 0);
4738                if (s.to_read+s.to_write+s.written)
4739                        handle_failed_stripe(conf, sh, &s, disks);
4740                if (s.syncing + s.replacing)
4741                        handle_failed_sync(conf, sh, &s);
4742        }
4743
4744        /* Now we check to see if any write operations have recently
4745         * completed
4746         */
4747        prexor = 0;
4748        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4749                prexor = 1;
4750        if (sh->reconstruct_state == reconstruct_state_drain_result ||
4751            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4752                sh->reconstruct_state = reconstruct_state_idle;
4753
4754                /* All the 'written' buffers and the parity block are ready to
4755                 * be written back to disk
4756                 */
4757                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4758                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4759                BUG_ON(sh->qd_idx >= 0 &&
4760                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4761                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4762                for (i = disks; i--; ) {
4763                        struct r5dev *dev = &sh->dev[i];
4764                        if (test_bit(R5_LOCKED, &dev->flags) &&
4765                                (i == sh->pd_idx || i == sh->qd_idx ||
4766                                 dev->written || test_bit(R5_InJournal,
4767                                                          &dev->flags))) {
4768                                pr_debug("Writing block %d\n", i);
4769                                set_bit(R5_Wantwrite, &dev->flags);
4770                                if (prexor)
4771                                        continue;
4772                                if (s.failed > 1)
4773                                        continue;
4774                                if (!test_bit(R5_Insync, &dev->flags) ||
4775                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4776                                     s.failed == 0))
4777                                        set_bit(STRIPE_INSYNC, &sh->state);
4778                        }
4779                }
4780                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4781                        s.dec_preread_active = 1;
4782        }
4783
4784        /*
4785         * might be able to return some write requests if the parity blocks
4786         * are safe, or on a failed drive
4787         */
4788        pdev = &sh->dev[sh->pd_idx];
4789        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4790                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4791        qdev = &sh->dev[sh->qd_idx];
4792        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4793                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4794                || conf->level < 6;
4795
4796        if (s.written &&
4797            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4798                             && !test_bit(R5_LOCKED, &pdev->flags)
4799                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
4800                                 test_bit(R5_Discard, &pdev->flags))))) &&
4801            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4802                             && !test_bit(R5_LOCKED, &qdev->flags)
4803                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
4804                                 test_bit(R5_Discard, &qdev->flags))))))
4805                handle_stripe_clean_event(conf, sh, disks);
4806
4807        if (s.just_cached)
4808                r5c_handle_cached_data_endio(conf, sh, disks);
4809        log_stripe_write_finished(sh);
4810
4811        /* Now we might consider reading some blocks, either to check/generate
4812         * parity, or to satisfy requests
4813         * or to load a block that is being partially written.
4814         */
4815        if (s.to_read || s.non_overwrite
4816            || (conf->level == 6 && s.to_write && s.failed)
4817            || (s.syncing && (s.uptodate + s.compute < disks))
4818            || s.replacing
4819            || s.expanding)
4820                handle_stripe_fill(sh, &s, disks);
4821
4822        /*
4823         * When the stripe finishes full journal write cycle (write to journal
4824         * and raid disk), this is the clean up procedure so it is ready for
4825         * next operation.
4826         */
4827        r5c_finish_stripe_write_out(conf, sh, &s);
4828
4829        /*
4830         * Now to consider new write requests, cache write back and what else,
4831         * if anything should be read.  We do not handle new writes when:
4832         * 1/ A 'write' operation (copy+xor) is already in flight.
4833         * 2/ A 'check' operation is in flight, as it may clobber the parity
4834         *    block.
4835         * 3/ A r5c cache log write is in flight.
4836         */
4837
4838        if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4839                if (!r5c_is_writeback(conf->log)) {
4840                        if (s.to_write)
4841                                handle_stripe_dirtying(conf, sh, &s, disks);
4842                } else { /* write back cache */
4843                        int ret = 0;
4844
4845                        /* First, try handle writes in caching phase */
4846                        if (s.to_write)
4847                                ret = r5c_try_caching_write(conf, sh, &s,
4848                                                            disks);
4849                        /*
4850                         * If caching phase failed: ret == -EAGAIN
4851                         *    OR
4852                         * stripe under reclaim: !caching && injournal
4853                         *
4854                         * fall back to handle_stripe_dirtying()
4855                         */
4856                        if (ret == -EAGAIN ||
4857                            /* stripe under reclaim: !caching && injournal */
4858                            (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4859                             s.injournal > 0)) {
4860                                ret = handle_stripe_dirtying(conf, sh, &s,
4861                                                             disks);
4862                                if (ret == -EAGAIN)
4863                                        goto finish;
4864                        }
4865                }
4866        }
4867
4868        /* maybe we need to check and possibly fix the parity for this stripe
4869         * Any reads will already have been scheduled, so we just see if enough
4870         * data is available.  The parity check is held off while parity
4871         * dependent operations are in flight.
4872         */
4873        if (sh->check_state ||
4874            (s.syncing && s.locked == 0 &&
4875             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4876             !test_bit(STRIPE_INSYNC, &sh->state))) {
4877                if (conf->level == 6)
4878                        handle_parity_checks6(conf, sh, &s, disks);
4879                else
4880                        handle_parity_checks5(conf, sh, &s, disks);
4881        }
4882
4883        if ((s.replacing || s.syncing) && s.locked == 0
4884            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4885            && !test_bit(STRIPE_REPLACED, &sh->state)) {
4886                /* Write out to replacement devices where possible */
4887                for (i = 0; i < conf->raid_disks; i++)
4888                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4889                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4890                                set_bit(R5_WantReplace, &sh->dev[i].flags);
4891                                set_bit(R5_LOCKED, &sh->dev[i].flags);
4892                                s.locked++;
4893                        }
4894                if (s.replacing)
4895                        set_bit(STRIPE_INSYNC, &sh->state);
4896                set_bit(STRIPE_REPLACED, &sh->state);
4897        }
4898        if ((s.syncing || s.replacing) && s.locked == 0 &&
4899            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4900            test_bit(STRIPE_INSYNC, &sh->state)) {
4901                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4902                clear_bit(STRIPE_SYNCING, &sh->state);
4903                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4904                        wake_up(&conf->wait_for_overlap);
4905        }
4906
4907        /* If the failed drives are just a ReadError, then we might need
4908         * to progress the repair/check process
4909         */
4910        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4911                for (i = 0; i < s.failed; i++) {
4912                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
4913                        if (test_bit(R5_ReadError, &dev->flags)
4914                            && !test_bit(R5_LOCKED, &dev->flags)
4915                            && test_bit(R5_UPTODATE, &dev->flags)
4916                                ) {
4917                                if (!test_bit(R5_ReWrite, &dev->flags)) {
4918                                        set_bit(R5_Wantwrite, &dev->flags);
4919                                        set_bit(R5_ReWrite, &dev->flags);
4920                                        set_bit(R5_LOCKED, &dev->flags);
4921                                        s.locked++;
4922                                } else {
4923                                        /* let's read it back */
4924                                        set_bit(R5_Wantread, &dev->flags);
4925                                        set_bit(R5_LOCKED, &dev->flags);
4926                                        s.locked++;
4927                                }
4928                        }
4929                }
4930
4931        /* Finish reconstruct operations initiated by the expansion process */
4932        if (sh->reconstruct_state == reconstruct_state_result) {
4933                struct stripe_head *sh_src
4934                        = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4935                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4936                        /* sh cannot be written until sh_src has been read.
4937                         * so arrange for sh to be delayed a little
4938                         */
4939                        set_bit(STRIPE_DELAYED, &sh->state);
4940                        set_bit(STRIPE_HANDLE, &sh->state);
4941                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4942                                              &sh_src->state))
4943                                atomic_inc(&conf->preread_active_stripes);
4944                        raid5_release_stripe(sh_src);
4945                        goto finish;
4946                }
4947                if (sh_src)
4948                        raid5_release_stripe(sh_src);
4949
4950                sh->reconstruct_state = reconstruct_state_idle;
4951                clear_bit(STRIPE_EXPANDING, &sh->state);
4952                for (i = conf->raid_disks; i--; ) {
4953                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
4954                        set_bit(R5_LOCKED, &sh->dev[i].flags);
4955                        s.locked++;
4956                }
4957        }
4958
4959        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4960            !sh->reconstruct_state) {
4961                /* Need to write out all blocks after computing parity */
4962                sh->disks = conf->raid_disks;
4963                stripe_set_idx(sh->sector, conf, 0, sh);
4964                schedule_reconstruction(sh, &s, 1, 1);
4965        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4966                clear_bit(STRIPE_EXPAND_READY, &sh->state);
4967                atomic_dec(&conf->reshape_stripes);
4968                wake_up(&conf->wait_for_overlap);
4969                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4970        }
4971
4972        if (s.expanding && s.locked == 0 &&
4973            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4974                handle_stripe_expansion(conf, sh);
4975
4976finish:
4977        /* wait for this device to become unblocked */
4978        if (unlikely(s.blocked_rdev)) {
4979                if (conf->mddev->external)
4980                        md_wait_for_blocked_rdev(s.blocked_rdev,
4981                                                 conf->mddev);
4982                else
4983                        /* Internal metadata will immediately
4984                         * be written by raid5d, so we don't
4985                         * need to wait here.
4986                         */
4987                        rdev_dec_pending(s.blocked_rdev,
4988                                         conf->mddev);
4989        }
4990
4991        if (s.handle_bad_blocks)
4992                for (i = disks; i--; ) {
4993                        struct md_rdev *rdev;
4994                        struct r5dev *dev = &sh->dev[i];
4995                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4996                                /* We own a safe reference to the rdev */
4997                                rdev = conf->disks[i].rdev;
4998                                if (!rdev_set_badblocks(rdev, sh->sector,
4999                                                        STRIPE_SECTORS, 0))
5000                                        md_error(conf->mddev, rdev);
5001                                rdev_dec_pending(rdev, conf->mddev);
5002                        }
5003                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5004                                rdev = conf->disks[i].rdev;
5005                                rdev_clear_badblocks(rdev, sh->sector,
5006                                                     STRIPE_SECTORS, 0);
5007                                rdev_dec_pending(rdev, conf->mddev);
5008                        }
5009                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5010                                rdev = conf->disks[i].replacement;
5011                                if (!rdev)
5012                                        /* rdev have been moved down */
5013                                        rdev = conf->disks[i].rdev;
5014                                rdev_clear_badblocks(rdev, sh->sector,
5015                                                     STRIPE_SECTORS, 0);
5016                                rdev_dec_pending(rdev, conf->mddev);
5017                        }
5018                }
5019
5020        if (s.ops_request)
5021                raid_run_ops(sh, s.ops_request);
5022
5023        ops_run_io(sh, &s);
5024
5025        if (s.dec_preread_active) {
5026                /* We delay this until after ops_run_io so that if make_request
5027                 * is waiting on a flush, it won't continue until the writes
5028                 * have actually been submitted.
5029                 */
5030                atomic_dec(&conf->preread_active_stripes);
5031                if (atomic_read(&conf->preread_active_stripes) <
5032                    IO_THRESHOLD)
5033                        md_wakeup_thread(conf->mddev->thread);
5034        }
5035
5036        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5037}
5038
5039static void raid5_activate_delayed(struct r5conf *conf)
5040{
5041        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5042                while (!list_empty(&conf->delayed_list)) {
5043                        struct list_head *l = conf->delayed_list.next;
5044                        struct stripe_head *sh;
5045                        sh = list_entry(l, struct stripe_head, lru);
5046                        list_del_init(l);
5047                        clear_bit(STRIPE_DELAYED, &sh->state);
5048                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5049                                atomic_inc(&conf->preread_active_stripes);
5050                        list_add_tail(&sh->lru, &conf->hold_list);
5051                        raid5_wakeup_stripe_thread(sh);
5052                }
5053        }
5054}
5055
5056static void activate_bit_delay(struct r5conf *conf,
5057        struct list_head *temp_inactive_list)
5058{
5059        /* device_lock is held */
5060        struct list_head head;
5061        list_add(&head, &conf->bitmap_list);
5062        list_del_init(&conf->bitmap_list);
5063        while (!list_empty(&head)) {
5064                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5065                int hash;
5066                list_del_init(&sh->lru);
5067                atomic_inc(&sh->count);
5068                hash = sh->hash_lock_index;
5069                __release_stripe(conf, sh, &temp_inactive_list[hash]);
5070        }
5071}
5072
5073static int raid5_congested(struct mddev *mddev, int bits)
5074{
5075        struct r5conf *conf = mddev->private;
5076
5077        /* No difference between reads and writes.  Just check
5078         * how busy the stripe_cache is
5079         */
5080
5081        if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5082                return 1;
5083
5084        /* Also checks whether there is pressure on r5cache log space */
5085        if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5086                return 1;
5087        if (conf->quiesce)
5088                return 1;
5089        if (atomic_read(&conf->empty_inactive_list_nr))
5090                return 1;
5091
5092        return 0;
5093}
5094
5095static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5096{
5097        struct r5conf *conf = mddev->private;
5098        sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5099        unsigned int chunk_sectors;
5100        unsigned int bio_sectors = bio_sectors(bio);
5101
5102        chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5103        return  chunk_sectors >=
5104                ((sector & (chunk_sectors - 1)) + bio_sectors);
5105}
5106
5107/*
5108 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5109 *  later sampled by raid5d.
5110 */
5111static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5112{
5113        unsigned long flags;
5114
5115        spin_lock_irqsave(&conf->device_lock, flags);
5116
5117        bi->bi_next = conf->retry_read_aligned_list;
5118        conf->retry_read_aligned_list = bi;
5119
5120        spin_unlock_irqrestore(&conf->device_lock, flags);
5121        md_wakeup_thread(conf->mddev->thread);
5122}
5123
5124static struct bio *remove_bio_from_retry(struct r5conf *conf,
5125                                         unsigned int *offset)
5126{
5127        struct bio *bi;
5128
5129        bi = conf->retry_read_aligned;
5130        if (bi) {
5131                *offset = conf->retry_read_offset;
5132                conf->retry_read_aligned = NULL;
5133                return bi;
5134        }
5135        bi = conf->retry_read_aligned_list;
5136        if(bi) {
5137                conf->retry_read_aligned_list = bi->bi_next;
5138                bi->bi_next = NULL;
5139                *offset = 0;
5140        }
5141
5142        return bi;
5143}
5144
5145/*
5146 *  The "raid5_align_endio" should check if the read succeeded and if it
5147 *  did, call bio_endio on the original bio (having bio_put the new bio
5148 *  first).
5149 *  If the read failed..
5150 */
5151static void raid5_align_endio(struct bio *bi)
5152{
5153        struct bio* raid_bi  = bi->bi_private;
5154        struct mddev *mddev;
5155        struct r5conf *conf;
5156        struct md_rdev *rdev;
5157        int error = bi->bi_error;
5158
5159        bio_put(bi);
5160
5161        rdev = (void*)raid_bi->bi_next;
5162        raid_bi->bi_next = NULL;
5163        mddev = rdev->mddev;
5164        conf = mddev->private;
5165
5166        rdev_dec_pending(rdev, conf->mddev);
5167
5168        if (!error) {
5169                bio_endio(raid_bi);
5170                if (atomic_dec_and_test(&conf->active_aligned_reads))
5171                        wake_up(&conf->wait_for_quiescent);
5172                return;
5173        }
5174
5175        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5176
5177        add_bio_to_retry(raid_bi, conf);
5178}
5179
5180static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5181{
5182        struct r5conf *conf = mddev->private;
5183        int dd_idx;
5184        struct bio* align_bi;
5185        struct md_rdev *rdev;
5186        sector_t end_sector;
5187
5188        if (!in_chunk_boundary(mddev, raid_bio)) {
5189                pr_debug("%s: non aligned\n", __func__);
5190                return 0;
5191        }
5192        /*
5193         * use bio_clone_fast to make a copy of the bio
5194         */
5195        align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5196        if (!align_bi)
5197                return 0;
5198        /*
5199         *   set bi_end_io to a new function, and set bi_private to the
5200         *     original bio.
5201         */
5202        align_bi->bi_end_io  = raid5_align_endio;
5203        align_bi->bi_private = raid_bio;
5204        /*
5205         *      compute position
5206         */
5207        align_bi->bi_iter.bi_sector =
5208                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5209                                     0, &dd_idx, NULL);
5210
5211        end_sector = bio_end_sector(align_bi);
5212        rcu_read_lock();
5213        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5214        if (!rdev || test_bit(Faulty, &rdev->flags) ||
5215            rdev->recovery_offset < end_sector) {
5216                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217                if (rdev &&
5218                    (test_bit(Faulty, &rdev->flags) ||
5219                    !(test_bit(In_sync, &rdev->flags) ||
5220                      rdev->recovery_offset >= end_sector)))
5221                        rdev = NULL;
5222        }
5223
5224        if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5225                rcu_read_unlock();
5226                bio_put(align_bi);
5227                return 0;
5228        }
5229
5230        if (rdev) {
5231                sector_t first_bad;
5232                int bad_sectors;
5233
5234                atomic_inc(&rdev->nr_pending);
5235                rcu_read_unlock();
5236                raid_bio->bi_next = (void*)rdev;
5237                align_bi->bi_bdev =  rdev->bdev;
5238                bio_clear_flag(align_bi, BIO_SEG_VALID);
5239
5240                if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5241                                bio_sectors(align_bi),
5242                                &first_bad, &bad_sectors)) {
5243                        bio_put(align_bi);
5244                        rdev_dec_pending(rdev, mddev);
5245                        return 0;
5246                }
5247
5248                /* No reshape active, so we can trust rdev->data_offset */
5249                align_bi->bi_iter.bi_sector += rdev->data_offset;
5250
5251                spin_lock_irq(&conf->device_lock);
5252                wait_event_lock_irq(conf->wait_for_quiescent,
5253                                    conf->quiesce == 0,
5254                                    conf->device_lock);
5255                atomic_inc(&conf->active_aligned_reads);
5256                spin_unlock_irq(&conf->device_lock);
5257
5258                if (mddev->gendisk)
5259                        trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5260                                              align_bi, disk_devt(mddev->gendisk),
5261                                              raid_bio->bi_iter.bi_sector);
5262                generic_make_request(align_bi);
5263                return 1;
5264        } else {
5265                rcu_read_unlock();
5266                bio_put(align_bi);
5267                return 0;
5268        }
5269}
5270
5271static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5272{
5273        struct bio *split;
5274        sector_t sector = raid_bio->bi_iter.bi_sector;
5275        unsigned chunk_sects = mddev->chunk_sectors;
5276        unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5277
5278        if (sectors < bio_sectors(raid_bio)) {
5279                struct r5conf *conf = mddev->private;
5280                split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5281                bio_chain(split, raid_bio);
5282                generic_make_request(raid_bio);
5283                raid_bio = split;
5284        }
5285
5286        if (!raid5_read_one_chunk(mddev, raid_bio))
5287                return raid_bio;
5288
5289        return NULL;
5290}
5291
5292/* __get_priority_stripe - get the next stripe to process
5293 *
5294 * Full stripe writes are allowed to pass preread active stripes up until
5295 * the bypass_threshold is exceeded.  In general the bypass_count
5296 * increments when the handle_list is handled before the hold_list; however, it
5297 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298 * stripe with in flight i/o.  The bypass_count will be reset when the
5299 * head of the hold_list has changed, i.e. the head was promoted to the
5300 * handle_list.
5301 */
5302static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5303{
5304        struct stripe_head *sh, *tmp;
5305        struct list_head *handle_list = NULL;
5306        struct r5worker_group *wg;
5307        bool second_try = !r5c_is_writeback(conf->log) &&
5308                !r5l_log_disk_error(conf);
5309        bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5310                r5l_log_disk_error(conf);
5311
5312again:
5313        wg = NULL;
5314        sh = NULL;
5315        if (conf->worker_cnt_per_group == 0) {
5316                handle_list = try_loprio ? &conf->loprio_list :
5317                                        &conf->handle_list;
5318        } else if (group != ANY_GROUP) {
5319                handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5320                                &conf->worker_groups[group].handle_list;
5321                wg = &conf->worker_groups[group];
5322        } else {
5323                int i;
5324                for (i = 0; i < conf->group_cnt; i++) {
5325                        handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5326                                &conf->worker_groups[i].handle_list;
5327                        wg = &conf->worker_groups[i];
5328                        if (!list_empty(handle_list))
5329                                break;
5330                }
5331        }
5332
5333        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334                  __func__,
5335                  list_empty(handle_list) ? "empty" : "busy",
5336                  list_empty(&conf->hold_list) ? "empty" : "busy",
5337                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338
5339        if (!list_empty(handle_list)) {
5340                sh = list_entry(handle_list->next, typeof(*sh), lru);
5341
5342                if (list_empty(&conf->hold_list))
5343                        conf->bypass_count = 0;
5344                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5345                        if (conf->hold_list.next == conf->last_hold)
5346                                conf->bypass_count++;
5347                        else {
5348                                conf->last_hold = conf->hold_list.next;
5349                                conf->bypass_count -= conf->bypass_threshold;
5350                                if (conf->bypass_count < 0)
5351                                        conf->bypass_count = 0;
5352                        }
5353                }
5354        } else if (!list_empty(&conf->hold_list) &&
5355                   ((conf->bypass_threshold &&
5356                     conf->bypass_count > conf->bypass_threshold) ||
5357                    atomic_read(&conf->pending_full_writes) == 0)) {
5358
5359                list_for_each_entry(tmp, &conf->hold_list,  lru) {
5360                        if (conf->worker_cnt_per_group == 0 ||
5361                            group == ANY_GROUP ||
5362                            !cpu_online(tmp->cpu) ||
5363                            cpu_to_group(tmp->cpu) == group) {
5364                                sh = tmp;
5365                                break;
5366                        }
5367                }
5368
5369                if (sh) {
5370                        conf->bypass_count -= conf->bypass_threshold;
5371                        if (conf->bypass_count < 0)
5372                                conf->bypass_count = 0;
5373                }
5374                wg = NULL;
5375        }
5376
5377        if (!sh) {
5378                if (second_try)
5379                        return NULL;
5380                second_try = true;
5381                try_loprio = !try_loprio;
5382                goto again;
5383        }
5384
5385        if (wg) {
5386                wg->stripes_cnt--;
5387                sh->group = NULL;
5388        }
5389        list_del_init(&sh->lru);
5390        BUG_ON(atomic_inc_return(&sh->count) != 1);
5391        return sh;
5392}
5393
5394struct raid5_plug_cb {
5395        struct blk_plug_cb      cb;
5396        struct list_head        list;
5397        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5398};
5399
5400static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401{
5402        struct raid5_plug_cb *cb = container_of(
5403                blk_cb, struct raid5_plug_cb, cb);
5404        struct stripe_head *sh;
5405        struct mddev *mddev = cb->cb.data;
5406        struct r5conf *conf = mddev->private;
5407        int cnt = 0;
5408        int hash;
5409
5410        if (cb->list.next && !list_empty(&cb->list)) {
5411                spin_lock_irq(&conf->device_lock);
5412                while (!list_empty(&cb->list)) {
5413                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
5414                        list_del_init(&sh->lru);
5415                        /*
5416                         * avoid race release_stripe_plug() sees
5417                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418                         * is still in our list
5419                         */
5420                        smp_mb__before_atomic();
5421                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5422                        /*
5423                         * STRIPE_ON_RELEASE_LIST could be set here. In that
5424                         * case, the count is always > 1 here
5425                         */
5426                        hash = sh->hash_lock_index;
5427                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5428                        cnt++;
5429                }
5430                spin_unlock_irq(&conf->device_lock);
5431        }
5432        release_inactive_stripe_list(conf, cb->temp_inactive_list,
5433                                     NR_STRIPE_HASH_LOCKS);
5434        if (mddev->queue)
5435                trace_block_unplug(mddev->queue, cnt, !from_schedule);
5436        kfree(cb);
5437}
5438
5439static void release_stripe_plug(struct mddev *mddev,
5440                                struct stripe_head *sh)
5441{
5442        struct blk_plug_cb *blk_cb = blk_check_plugged(
5443                raid5_unplug, mddev,
5444                sizeof(struct raid5_plug_cb));
5445        struct raid5_plug_cb *cb;
5446
5447        if (!blk_cb) {
5448                raid5_release_stripe(sh);
5449                return;
5450        }
5451
5452        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453
5454        if (cb->list.next == NULL) {
5455                int i;
5456                INIT_LIST_HEAD(&cb->list);
5457                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5458                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
5459        }
5460
5461        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5462                list_add_tail(&sh->lru, &cb->list);
5463        else
5464                raid5_release_stripe(sh);
5465}
5466
5467static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468{
5469        struct r5conf *conf = mddev->private;
5470        sector_t logical_sector, last_sector;
5471        struct stripe_head *sh;
5472        int stripe_sectors;
5473
5474        if (mddev->reshape_position != MaxSector)
5475                /* Skip discard while reshape is happening */
5476                return;
5477
5478        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5479        last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5480
5481        bi->bi_next = NULL;
5482        md_write_start(mddev, bi);
5483
5484        stripe_sectors = conf->chunk_sectors *
5485                (conf->raid_disks - conf->max_degraded);
5486        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5487                                               stripe_sectors);
5488        sector_div(last_sector, stripe_sectors);
5489
5490        logical_sector *= conf->chunk_sectors;
5491        last_sector *= conf->chunk_sectors;
5492
5493        for (; logical_sector < last_sector;
5494             logical_sector += STRIPE_SECTORS) {
5495                DEFINE_WAIT(w);
5496                int d;
5497        again:
5498                sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5499                prepare_to_wait(&conf->wait_for_overlap, &w,
5500                                TASK_UNINTERRUPTIBLE);
5501                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5502                if (test_bit(STRIPE_SYNCING, &sh->state)) {
5503                        raid5_release_stripe(sh);
5504                        schedule();
5505                        goto again;
5506                }
5507                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5508                spin_lock_irq(&sh->stripe_lock);
5509                for (d = 0; d < conf->raid_disks; d++) {
5510                        if (d == sh->pd_idx || d == sh->qd_idx)
5511                                continue;
5512                        if (sh->dev[d].towrite || sh->dev[d].toread) {
5513                                set_bit(R5_Overlap, &sh->dev[d].flags);
5514                                spin_unlock_irq(&sh->stripe_lock);
5515                                raid5_release_stripe(sh);
5516                                schedule();
5517                                goto again;
5518                        }
5519                }
5520                set_bit(STRIPE_DISCARD, &sh->state);
5521                finish_wait(&conf->wait_for_overlap, &w);
5522                sh->overwrite_disks = 0;
5523                for (d = 0; d < conf->raid_disks; d++) {
5524                        if (d == sh->pd_idx || d == sh->qd_idx)
5525                                continue;
5526                        sh->dev[d].towrite = bi;
5527                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5528                        bio_inc_remaining(bi);
5529                        md_write_inc(mddev, bi);
5530                        sh->overwrite_disks++;
5531                }
5532                spin_unlock_irq(&sh->stripe_lock);
5533                if (conf->mddev->bitmap) {
5534                        for (d = 0;
5535                             d < conf->raid_disks - conf->max_degraded;
5536                             d++)
5537                                bitmap_startwrite(mddev->bitmap,
5538                                                  sh->sector,
5539                                                  STRIPE_SECTORS,
5540                                                  0);
5541                        sh->bm_seq = conf->seq_flush + 1;
5542                        set_bit(STRIPE_BIT_DELAY, &sh->state);
5543                }
5544
5545                set_bit(STRIPE_HANDLE, &sh->state);
5546                clear_bit(STRIPE_DELAYED, &sh->state);
5547                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5548                        atomic_inc(&conf->preread_active_stripes);
5549                release_stripe_plug(mddev, sh);
5550        }
5551
5552        md_write_end(mddev);
5553        bio_endio(bi);
5554}
5555
5556static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5557{
5558        struct r5conf *conf = mddev->private;
5559        int dd_idx;
5560        sector_t new_sector;
5561        sector_t logical_sector, last_sector;
5562        struct stripe_head *sh;
5563        const int rw = bio_data_dir(bi);
5564        DEFINE_WAIT(w);
5565        bool do_prepare;
5566        bool do_flush = false;
5567
5568        if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5569                int ret = r5l_handle_flush_request(conf->log, bi);
5570
5571                if (ret == 0)
5572                        return;
5573                if (ret == -ENODEV) {
5574                        md_flush_request(mddev, bi);
5575                        return;
5576                }
5577                /* ret == -EAGAIN, fallback */
5578                /*
5579                 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5580                 * we need to flush journal device
5581                 */
5582                do_flush = bi->bi_opf & REQ_PREFLUSH;
5583        }
5584
5585        /*
5586         * If array is degraded, better not do chunk aligned read because
5587         * later we might have to read it again in order to reconstruct
5588         * data on failed drives.
5589         */
5590        if (rw == READ && mddev->degraded == 0 &&
5591            mddev->reshape_position == MaxSector) {
5592                bi = chunk_aligned_read(mddev, bi);
5593                if (!bi)
5594                        return;
5595        }
5596
5597        if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5598                make_discard_request(mddev, bi);
5599                return;
5600        }
5601
5602        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5603        last_sector = bio_end_sector(bi);
5604        bi->bi_next = NULL;
5605        md_write_start(mddev, bi);
5606
5607        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5608        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5609                int previous;
5610                int seq;
5611
5612                do_prepare = false;
5613        retry:
5614                seq = read_seqcount_begin(&conf->gen_lock);
5615                previous = 0;
5616                if (do_prepare)
5617                        prepare_to_wait(&conf->wait_for_overlap, &w,
5618                                TASK_UNINTERRUPTIBLE);
5619                if (unlikely(conf->reshape_progress != MaxSector)) {
5620                        /* spinlock is needed as reshape_progress may be
5621                         * 64bit on a 32bit platform, and so it might be
5622                         * possible to see a half-updated value
5623                         * Of course reshape_progress could change after
5624                         * the lock is dropped, so once we get a reference
5625                         * to the stripe that we think it is, we will have
5626                         * to check again.
5627                         */
5628                        spin_lock_irq(&conf->device_lock);
5629                        if (mddev->reshape_backwards
5630                            ? logical_sector < conf->reshape_progress
5631                            : logical_sector >= conf->reshape_progress) {
5632                                previous = 1;
5633                        } else {
5634                                if (mddev->reshape_backwards
5635                                    ? logical_sector < conf->reshape_safe
5636                                    : logical_sector >= conf->reshape_safe) {
5637                                        spin_unlock_irq(&conf->device_lock);
5638                                        schedule();
5639                                        do_prepare = true;
5640                                        goto retry;
5641                                }
5642                        }
5643                        spin_unlock_irq(&conf->device_lock);
5644                }
5645
5646                new_sector = raid5_compute_sector(conf, logical_sector,
5647                                                  previous,
5648                                                  &dd_idx, NULL);
5649                pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5650                        (unsigned long long)new_sector,
5651                        (unsigned long long)logical_sector);
5652
5653                sh = raid5_get_active_stripe(conf, new_sector, previous,
5654                                       (bi->bi_opf & REQ_RAHEAD), 0);
5655                if (sh) {
5656                        if (unlikely(previous)) {
5657                                /* expansion might have moved on while waiting for a
5658                                 * stripe, so we must do the range check again.
5659                                 * Expansion could still move past after this
5660                                 * test, but as we are holding a reference to
5661                                 * 'sh', we know that if that happens,
5662                                 *  STRIPE_EXPANDING will get set and the expansion
5663                                 * won't proceed until we finish with the stripe.
5664                                 */
5665                                int must_retry = 0;
5666                                spin_lock_irq(&conf->device_lock);
5667                                if (mddev->reshape_backwards
5668                                    ? logical_sector >= conf->reshape_progress
5669                                    : logical_sector < conf->reshape_progress)
5670                                        /* mismatch, need to try again */
5671                                        must_retry = 1;
5672                                spin_unlock_irq(&conf->device_lock);
5673                                if (must_retry) {
5674                                        raid5_release_stripe(sh);
5675                                        schedule();
5676                                        do_prepare = true;
5677                                        goto retry;
5678                                }
5679                        }
5680                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
5681                                /* Might have got the wrong stripe_head
5682                                 * by accident
5683                                 */
5684                                raid5_release_stripe(sh);
5685                                goto retry;
5686                        }
5687
5688                        if (rw == WRITE &&
5689                            logical_sector >= mddev->suspend_lo &&
5690                            logical_sector < mddev->suspend_hi) {
5691                                raid5_release_stripe(sh);
5692                                /* As the suspend_* range is controlled by
5693                                 * userspace, we want an interruptible
5694                                 * wait.
5695                                 */
5696                                flush_signals(current);
5697                                prepare_to_wait(&conf->wait_for_overlap,
5698                                                &w, TASK_INTERRUPTIBLE);
5699                                if (logical_sector >= mddev->suspend_lo &&
5700                                    logical_sector < mddev->suspend_hi) {
5701                                        schedule();
5702                                        do_prepare = true;
5703                                }
5704                                goto retry;
5705                        }
5706
5707                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5708                            !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5709                                /* Stripe is busy expanding or
5710                                 * add failed due to overlap.  Flush everything
5711                                 * and wait a while
5712                                 */
5713                                md_wakeup_thread(mddev->thread);
5714                                raid5_release_stripe(sh);
5715                                schedule();
5716                                do_prepare = true;
5717                                goto retry;
5718                        }
5719                        if (do_flush) {
5720                                set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5721                                /* we only need flush for one stripe */
5722                                do_flush = false;
5723                        }
5724
5725                        set_bit(STRIPE_HANDLE, &sh->state);
5726                        clear_bit(STRIPE_DELAYED, &sh->state);
5727                        if ((!sh->batch_head || sh == sh->batch_head) &&
5728                            (bi->bi_opf & REQ_SYNC) &&
5729                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5730                                atomic_inc(&conf->preread_active_stripes);
5731                        release_stripe_plug(mddev, sh);
5732                } else {
5733                        /* cannot get stripe for read-ahead, just give-up */
5734                        bi->bi_error = -EIO;
5735                        break;
5736                }
5737        }
5738        finish_wait(&conf->wait_for_overlap, &w);
5739
5740        if (rw == WRITE)
5741                md_write_end(mddev);
5742        bio_endio(bi);
5743}
5744
5745static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5746
5747static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5748{
5749        /* reshaping is quite different to recovery/resync so it is
5750         * handled quite separately ... here.
5751         *
5752         * On each call to sync_request, we gather one chunk worth of
5753         * destination stripes and flag them as expanding.
5754         * Then we find all the source stripes and request reads.
5755         * As the reads complete, handle_stripe will copy the data
5756         * into the destination stripe and release that stripe.
5757         */
5758        struct r5conf *conf = mddev->private;
5759        struct stripe_head *sh;
5760        sector_t first_sector, last_sector;
5761        int raid_disks = conf->previous_raid_disks;
5762        int data_disks = raid_disks - conf->max_degraded;
5763        int new_data_disks = conf->raid_disks - conf->max_degraded;
5764        int i;
5765        int dd_idx;
5766        sector_t writepos, readpos, safepos;
5767        sector_t stripe_addr;
5768        int reshape_sectors;
5769        struct list_head stripes;
5770        sector_t retn;
5771
5772        if (sector_nr == 0) {
5773                /* If restarting in the middle, skip the initial sectors */
5774                if (mddev->reshape_backwards &&
5775                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5776                        sector_nr = raid5_size(mddev, 0, 0)
5777                                - conf->reshape_progress;
5778                } else if (mddev->reshape_backwards &&
5779                           conf->reshape_progress == MaxSector) {
5780                        /* shouldn't happen, but just in case, finish up.*/
5781                        sector_nr = MaxSector;
5782                } else if (!mddev->reshape_backwards &&
5783                           conf->reshape_progress > 0)
5784                        sector_nr = conf->reshape_progress;
5785                sector_div(sector_nr, new_data_disks);
5786                if (sector_nr) {
5787                        mddev->curr_resync_completed = sector_nr;
5788                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5789                        *skipped = 1;
5790                        retn = sector_nr;
5791                        goto finish;
5792                }
5793        }
5794
5795        /* We need to process a full chunk at a time.
5796         * If old and new chunk sizes differ, we need to process the
5797         * largest of these
5798         */
5799
5800        reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5801
5802        /* We update the metadata at least every 10 seconds, or when
5803         * the data about to be copied would over-write the source of
5804         * the data at the front of the range.  i.e. one new_stripe
5805         * along from reshape_progress new_maps to after where
5806         * reshape_safe old_maps to
5807         */
5808        writepos = conf->reshape_progress;
5809        sector_div(writepos, new_data_disks);
5810        readpos = conf->reshape_progress;
5811        sector_div(readpos, data_disks);
5812        safepos = conf->reshape_safe;
5813        sector_div(safepos, data_disks);
5814        if (mddev->reshape_backwards) {
5815                BUG_ON(writepos < reshape_sectors);
5816                writepos -= reshape_sectors;
5817                readpos += reshape_sectors;
5818                safepos += reshape_sectors;
5819        } else {
5820                writepos += reshape_sectors;
5821                /* readpos and safepos are worst-case calculations.
5822                 * A negative number is overly pessimistic, and causes
5823                 * obvious problems for unsigned storage.  So clip to 0.
5824                 */
5825                readpos -= min_t(sector_t, reshape_sectors, readpos);
5826                safepos -= min_t(sector_t, reshape_sectors, safepos);
5827        }
5828
5829        /* Having calculated the 'writepos' possibly use it
5830         * to set 'stripe_addr' which is where we will write to.
5831         */
5832        if (mddev->reshape_backwards) {
5833                BUG_ON(conf->reshape_progress == 0);
5834                stripe_addr = writepos;
5835                BUG_ON((mddev->dev_sectors &
5836                        ~((sector_t)reshape_sectors - 1))
5837                       - reshape_sectors - stripe_addr
5838                       != sector_nr);
5839        } else {
5840                BUG_ON(writepos != sector_nr + reshape_sectors);
5841                stripe_addr = sector_nr;
5842        }
5843
5844        /* 'writepos' is the most advanced device address we might write.
5845         * 'readpos' is the least advanced device address we might read.
5846         * 'safepos' is the least address recorded in the metadata as having
5847         *     been reshaped.
5848         * If there is a min_offset_diff, these are adjusted either by
5849         * increasing the safepos/readpos if diff is negative, or
5850         * increasing writepos if diff is positive.
5851         * If 'readpos' is then behind 'writepos', there is no way that we can
5852         * ensure safety in the face of a crash - that must be done by userspace
5853         * making a backup of the data.  So in that case there is no particular
5854         * rush to update metadata.
5855         * Otherwise if 'safepos' is behind 'writepos', then we really need to
5856         * update the metadata to advance 'safepos' to match 'readpos' so that
5857         * we can be safe in the event of a crash.
5858         * So we insist on updating metadata if safepos is behind writepos and
5859         * readpos is beyond writepos.
5860         * In any case, update the metadata every 10 seconds.
5861         * Maybe that number should be configurable, but I'm not sure it is
5862         * worth it.... maybe it could be a multiple of safemode_delay???
5863         */
5864        if (conf->min_offset_diff < 0) {
5865                safepos += -conf->min_offset_diff;
5866                readpos += -conf->min_offset_diff;
5867        } else
5868                writepos += conf->min_offset_diff;
5869
5870        if ((mddev->reshape_backwards
5871             ? (safepos > writepos && readpos < writepos)
5872             : (safepos < writepos && readpos > writepos)) ||
5873            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5874                /* Cannot proceed until we've updated the superblock... */
5875                wait_event(conf->wait_for_overlap,
5876                           atomic_read(&conf->reshape_stripes)==0
5877                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5878                if (atomic_read(&conf->reshape_stripes) != 0)
5879                        return 0;
5880                mddev->reshape_position = conf->reshape_progress;
5881                mddev->curr_resync_completed = sector_nr;
5882                conf->reshape_checkpoint = jiffies;
5883                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5884                md_wakeup_thread(mddev->thread);
5885                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5886                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5887                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5888                        return 0;
5889                spin_lock_irq(&conf->device_lock);
5890                conf->reshape_safe = mddev->reshape_position;
5891                spin_unlock_irq(&conf->device_lock);
5892                wake_up(&conf->wait_for_overlap);
5893                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5894        }
5895
5896        INIT_LIST_HEAD(&stripes);
5897        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5898                int j;
5899                int skipped_disk = 0;
5900                sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5901                set_bit(STRIPE_EXPANDING, &sh->state);
5902                atomic_inc(&conf->reshape_stripes);
5903                /* If any of this stripe is beyond the end of the old
5904                 * array, then we need to zero those blocks
5905                 */
5906                for (j=sh->disks; j--;) {
5907                        sector_t s;
5908                        if (j == sh->pd_idx)
5909                                continue;
5910                        if (conf->level == 6 &&
5911                            j == sh->qd_idx)
5912                                continue;
5913                        s = raid5_compute_blocknr(sh, j, 0);
5914                        if (s < raid5_size(mddev, 0, 0)) {
5915                                skipped_disk = 1;
5916                                continue;
5917                        }
5918                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5919                        set_bit(R5_Expanded, &sh->dev[j].flags);
5920                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
5921                }
5922                if (!skipped_disk) {
5923                        set_bit(STRIPE_EXPAND_READY, &sh->state);
5924                        set_bit(STRIPE_HANDLE, &sh->state);
5925                }
5926                list_add(&sh->lru, &stripes);
5927        }
5928        spin_lock_irq(&conf->device_lock);
5929        if (mddev->reshape_backwards)
5930                conf->reshape_progress -= reshape_sectors * new_data_disks;
5931        else
5932                conf->reshape_progress += reshape_sectors * new_data_disks;
5933        spin_unlock_irq(&conf->device_lock);
5934        /* Ok, those stripe are ready. We can start scheduling
5935         * reads on the source stripes.
5936         * The source stripes are determined by mapping the first and last
5937         * block on the destination stripes.
5938         */
5939        first_sector =
5940                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5941                                     1, &dd_idx, NULL);
5942        last_sector =
5943                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5944                                            * new_data_disks - 1),
5945                                     1, &dd_idx, NULL);
5946        if (last_sector >= mddev->dev_sectors)
5947                last_sector = mddev->dev_sectors - 1;
5948        while (first_sector <= last_sector) {
5949                sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5950                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5951                set_bit(STRIPE_HANDLE, &sh->state);
5952                raid5_release_stripe(sh);
5953                first_sector += STRIPE_SECTORS;
5954        }
5955        /* Now that the sources are clearly marked, we can release
5956         * the destination stripes
5957         */
5958        while (!list_empty(&stripes)) {
5959                sh = list_entry(stripes.next, struct stripe_head, lru);
5960                list_del_init(&sh->lru);
5961                raid5_release_stripe(sh);
5962        }
5963        /* If this takes us to the resync_max point where we have to pause,
5964         * then we need to write out the superblock.
5965         */
5966        sector_nr += reshape_sectors;
5967        retn = reshape_sectors;
5968finish:
5969        if (mddev->curr_resync_completed > mddev->resync_max ||
5970            (sector_nr - mddev->curr_resync_completed) * 2
5971            >= mddev->resync_max - mddev->curr_resync_completed) {
5972                /* Cannot proceed until we've updated the superblock... */
5973                wait_event(conf->wait_for_overlap,
5974                           atomic_read(&conf->reshape_stripes) == 0
5975                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5976                if (atomic_read(&conf->reshape_stripes) != 0)
5977                        goto ret;
5978                mddev->reshape_position = conf->reshape_progress;
5979                mddev->curr_resync_completed = sector_nr;
5980                conf->reshape_checkpoint = jiffies;
5981                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5982                md_wakeup_thread(mddev->thread);
5983                wait_event(mddev->sb_wait,
5984                           !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5985                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5986                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5987                        goto ret;
5988                spin_lock_irq(&conf->device_lock);
5989                conf->reshape_safe = mddev->reshape_position;
5990                spin_unlock_irq(&conf->device_lock);
5991                wake_up(&conf->wait_for_overlap);
5992                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5993        }
5994ret:
5995        return retn;
5996}
5997
5998static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5999                                          int *skipped)
6000{
6001        struct r5conf *conf = mddev->private;
6002        struct stripe_head *sh;
6003        sector_t max_sector = mddev->dev_sectors;
6004        sector_t sync_blocks;
6005        int still_degraded = 0;
6006        int i;
6007
6008        if (sector_nr >= max_sector) {
6009                /* just being told to finish up .. nothing much to do */
6010
6011                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6012                        end_reshape(conf);
6013                        return 0;
6014                }
6015
6016                if (mddev->curr_resync < max_sector) /* aborted */
6017                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6018                                        &sync_blocks, 1);
6019                else /* completed sync */
6020                        conf->fullsync = 0;
6021                bitmap_close_sync(mddev->bitmap);
6022
6023                return 0;
6024        }
6025
6026        /* Allow raid5_quiesce to complete */
6027        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6028
6029        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6030                return reshape_request(mddev, sector_nr, skipped);
6031
6032        /* No need to check resync_max as we never do more than one
6033         * stripe, and as resync_max will always be on a chunk boundary,
6034         * if the check in md_do_sync didn't fire, there is no chance
6035         * of overstepping resync_max here
6036         */
6037
6038        /* if there is too many failed drives and we are trying
6039         * to resync, then assert that we are finished, because there is
6040         * nothing we can do.
6041         */
6042        if (mddev->degraded >= conf->max_degraded &&
6043            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6044                sector_t rv = mddev->dev_sectors - sector_nr;
6045                *skipped = 1;
6046                return rv;
6047        }
6048        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6049            !conf->fullsync &&
6050            !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6051            sync_blocks >= STRIPE_SECTORS) {
6052                /* we can skip this block, and probably more */
6053                sync_blocks /= STRIPE_SECTORS;
6054                *skipped = 1;
6055                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6056        }
6057
6058        bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6059
6060        sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6061        if (sh == NULL) {
6062                sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6063                /* make sure we don't swamp the stripe cache if someone else
6064                 * is trying to get access
6065                 */
6066                schedule_timeout_uninterruptible(1);
6067        }
6068        /* Need to check if array will still be degraded after recovery/resync
6069         * Note in case of > 1 drive failures it's possible we're rebuilding
6070         * one drive while leaving another faulty drive in array.
6071         */
6072        rcu_read_lock();
6073        for (i = 0; i < conf->raid_disks; i++) {
6074                struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6075
6076                if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6077                        still_degraded = 1;
6078        }
6079        rcu_read_unlock();
6080
6081        bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6082
6083        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6084        set_bit(STRIPE_HANDLE, &sh->state);
6085
6086        raid5_release_stripe(sh);
6087
6088        return STRIPE_SECTORS;
6089}
6090
6091static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6092                               unsigned int offset)
6093{
6094        /* We may not be able to submit a whole bio at once as there
6095         * may not be enough stripe_heads available.
6096         * We cannot pre-allocate enough stripe_heads as we may need
6097         * more than exist in the cache (if we allow ever large chunks).
6098         * So we do one stripe head at a time and record in
6099         * ->bi_hw_segments how many have been done.
6100         *
6101         * We *know* that this entire raid_bio is in one chunk, so
6102         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6103         */
6104        struct stripe_head *sh;
6105        int dd_idx;
6106        sector_t sector, logical_sector, last_sector;
6107        int scnt = 0;
6108        int handled = 0;
6109
6110        logical_sector = raid_bio->bi_iter.bi_sector &
6111                ~((sector_t)STRIPE_SECTORS-1);
6112        sector = raid5_compute_sector(conf, logical_sector,
6113                                      0, &dd_idx, NULL);
6114        last_sector = bio_end_sector(raid_bio);
6115
6116        for (; logical_sector < last_sector;
6117             logical_sector += STRIPE_SECTORS,
6118                     sector += STRIPE_SECTORS,
6119                     scnt++) {
6120
6121                if (scnt < offset)
6122                        /* already done this stripe */
6123                        continue;
6124
6125                sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6126
6127                if (!sh) {
6128                        /* failed to get a stripe - must wait */
6129                        conf->retry_read_aligned = raid_bio;
6130                        conf->retry_read_offset = scnt;
6131                        return handled;
6132                }
6133
6134                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6135                        raid5_release_stripe(sh);
6136                        conf->retry_read_aligned = raid_bio;
6137                        conf->retry_read_offset = scnt;
6138                        return handled;
6139                }
6140
6141                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6142                handle_stripe(sh);
6143                raid5_release_stripe(sh);
6144                handled++;
6145        }
6146
6147        bio_endio(raid_bio);
6148
6149        if (atomic_dec_and_test(&conf->active_aligned_reads))
6150                wake_up(&conf->wait_for_quiescent);
6151        return handled;
6152}
6153
6154static int handle_active_stripes(struct r5conf *conf, int group,
6155                                 struct r5worker *worker,
6156                                 struct list_head *temp_inactive_list)
6157{
6158        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6159        int i, batch_size = 0, hash;
6160        bool release_inactive = false;
6161
6162        while (batch_size < MAX_STRIPE_BATCH &&
6163                        (sh = __get_priority_stripe(conf, group)) != NULL)
6164                batch[batch_size++] = sh;
6165
6166        if (batch_size == 0) {
6167                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6168                        if (!list_empty(temp_inactive_list + i))
6169                                break;
6170                if (i == NR_STRIPE_HASH_LOCKS) {
6171                        spin_unlock_irq(&conf->device_lock);
6172                        r5l_flush_stripe_to_raid(conf->log);
6173                        spin_lock_irq(&conf->device_lock);
6174                        return batch_size;
6175                }
6176                release_inactive = true;
6177        }
6178        spin_unlock_irq(&conf->device_lock);
6179
6180        release_inactive_stripe_list(conf, temp_inactive_list,
6181                                     NR_STRIPE_HASH_LOCKS);
6182
6183        r5l_flush_stripe_to_raid(conf->log);
6184        if (release_inactive) {
6185                spin_lock_irq(&conf->device_lock);
6186                return 0;
6187        }
6188
6189        for (i = 0; i < batch_size; i++)
6190                handle_stripe(batch[i]);
6191        log_write_stripe_run(conf);
6192
6193        cond_resched();
6194
6195        spin_lock_irq(&conf->device_lock);
6196        for (i = 0; i < batch_size; i++) {
6197                hash = batch[i]->hash_lock_index;
6198                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6199        }
6200        return batch_size;
6201}
6202
6203static void raid5_do_work(struct work_struct *work)
6204{
6205        struct r5worker *worker = container_of(work, struct r5worker, work);
6206        struct r5worker_group *group = worker->group;
6207        struct r5conf *conf = group->conf;
6208        struct mddev *mddev = conf->mddev;
6209        int group_id = group - conf->worker_groups;
6210        int handled;
6211        struct blk_plug plug;
6212
6213        pr_debug("+++ raid5worker active\n");
6214
6215        blk_start_plug(&plug);
6216        handled = 0;
6217        spin_lock_irq(&conf->device_lock);
6218        while (1) {
6219                int batch_size, released;
6220
6221                released = release_stripe_list(conf, worker->temp_inactive_list);
6222
6223                batch_size = handle_active_stripes(conf, group_id, worker,
6224                                                   worker->temp_inactive_list);
6225                worker->working = false;
6226                if (!batch_size && !released)
6227                        break;
6228                handled += batch_size;
6229                wait_event_lock_irq(mddev->sb_wait,
6230                        !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6231                        conf->device_lock);
6232        }
6233        pr_debug("%d stripes handled\n", handled);
6234
6235        spin_unlock_irq(&conf->device_lock);
6236        blk_finish_plug(&plug);
6237
6238        pr_debug("--- raid5worker inactive\n");
6239}
6240
6241/*
6242 * This is our raid5 kernel thread.
6243 *
6244 * We scan the hash table for stripes which can be handled now.
6245 * During the scan, completed stripes are saved for us by the interrupt
6246 * handler, so that they will not have to wait for our next wakeup.
6247 */
6248static void raid5d(struct md_thread *thread)
6249{
6250        struct mddev *mddev = thread->mddev;
6251        struct r5conf *conf = mddev->private;
6252        int handled;
6253        struct blk_plug plug;
6254
6255        pr_debug("+++ raid5d active\n");
6256
6257        md_check_recovery(mddev);
6258
6259        blk_start_plug(&plug);
6260        handled = 0;
6261        spin_lock_irq(&conf->device_lock);
6262        while (1) {
6263                struct bio *bio;
6264                int batch_size, released;
6265                unsigned int offset;
6266
6267                released = release_stripe_list(conf, conf->temp_inactive_list);
6268                if (released)
6269                        clear_bit(R5_DID_ALLOC, &conf->cache_state);
6270
6271                if (
6272                    !list_empty(&conf->bitmap_list)) {
6273                        /* Now is a good time to flush some bitmap updates */
6274                        conf->seq_flush++;
6275                        spin_unlock_irq(&conf->device_lock);
6276                        bitmap_unplug(mddev->bitmap);
6277                        spin_lock_irq(&conf->device_lock);
6278                        conf->seq_write = conf->seq_flush;
6279                        activate_bit_delay(conf, conf->temp_inactive_list);
6280                }
6281                raid5_activate_delayed(conf);
6282
6283                while ((bio = remove_bio_from_retry(conf, &offset))) {
6284                        int ok;
6285                        spin_unlock_irq(&conf->device_lock);
6286                        ok = retry_aligned_read(conf, bio, offset);
6287                        spin_lock_irq(&conf->device_lock);
6288                        if (!ok)
6289                                break;
6290                        handled++;
6291                }
6292
6293                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6294                                                   conf->temp_inactive_list);
6295                if (!batch_size && !released)
6296                        break;
6297                handled += batch_size;
6298
6299                if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6300                        spin_unlock_irq(&conf->device_lock);
6301                        md_check_recovery(mddev);
6302                        spin_lock_irq(&conf->device_lock);
6303                }
6304        }
6305        pr_debug("%d stripes handled\n", handled);
6306
6307        spin_unlock_irq(&conf->device_lock);
6308        if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6309            mutex_trylock(&conf->cache_size_mutex)) {
6310                grow_one_stripe(conf, __GFP_NOWARN);
6311                /* Set flag even if allocation failed.  This helps
6312                 * slow down allocation requests when mem is short
6313                 */
6314                set_bit(R5_DID_ALLOC, &conf->cache_state);
6315                mutex_unlock(&conf->cache_size_mutex);
6316        }
6317
6318        flush_deferred_bios(conf);
6319
6320        r5l_flush_stripe_to_raid(conf->log);
6321
6322        async_tx_issue_pending_all();
6323        blk_finish_plug(&plug);
6324
6325        pr_debug("--- raid5d inactive\n");
6326}
6327
6328static ssize_t
6329raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6330{
6331        struct r5conf *conf;
6332        int ret = 0;
6333        spin_lock(&mddev->lock);
6334        conf = mddev->private;
6335        if (conf)
6336                ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6337        spin_unlock(&mddev->lock);
6338        return ret;
6339}
6340
6341int
6342raid5_set_cache_size(struct mddev *mddev, int size)
6343{
6344        struct r5conf *conf = mddev->private;
6345
6346        if (size <= 16 || size > 32768)
6347                return -EINVAL;
6348
6349        conf->min_nr_stripes = size;
6350        mutex_lock(&conf->cache_size_mutex);
6351        while (size < conf->max_nr_stripes &&
6352               drop_one_stripe(conf))
6353                ;
6354        mutex_unlock(&conf->cache_size_mutex);
6355
6356        md_allow_write(mddev);
6357
6358        mutex_lock(&conf->cache_size_mutex);
6359        while (size > conf->max_nr_stripes)
6360                if (!grow_one_stripe(conf, GFP_KERNEL))
6361                        break;
6362        mutex_unlock(&conf->cache_size_mutex);
6363
6364        return 0;
6365}
6366EXPORT_SYMBOL(raid5_set_cache_size);
6367
6368static ssize_t
6369raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6370{
6371        struct r5conf *conf;
6372        unsigned long new;
6373        int err;
6374
6375        if (len >= PAGE_SIZE)
6376                return -EINVAL;
6377        if (kstrtoul(page, 10, &new))
6378                return -EINVAL;
6379        err = mddev_lock(mddev);
6380        if (err)
6381                return err;
6382        conf = mddev->private;
6383        if (!conf)
6384                err = -ENODEV;
6385        else
6386                err = raid5_set_cache_size(mddev, new);
6387        mddev_unlock(mddev);
6388
6389        return err ?: len;
6390}
6391
6392static struct md_sysfs_entry
6393raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6394                                raid5_show_stripe_cache_size,
6395                                raid5_store_stripe_cache_size);
6396
6397static ssize_t
6398raid5_show_rmw_level(struct mddev  *mddev, char *page)
6399{
6400        struct r5conf *conf = mddev->private;
6401        if (conf)
6402                return sprintf(page, "%d\n", conf->rmw_level);
6403        else
6404                return 0;
6405}
6406
6407static ssize_t
6408raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6409{
6410        struct r5conf *conf = mddev->private;
6411        unsigned long new;
6412
6413        if (!conf)
6414                return -ENODEV;
6415
6416        if (len >= PAGE_SIZE)
6417                return -EINVAL;
6418
6419        if (kstrtoul(page, 10, &new))
6420                return -EINVAL;
6421
6422        if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6423                return -EINVAL;
6424
6425        if (new != PARITY_DISABLE_RMW &&
6426            new != PARITY_ENABLE_RMW &&
6427            new != PARITY_PREFER_RMW)
6428                return -EINVAL;
6429
6430        conf->rmw_level = new;
6431        return len;
6432}
6433
6434static struct md_sysfs_entry
6435raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6436                         raid5_show_rmw_level,
6437                         raid5_store_rmw_level);
6438
6439
6440static ssize_t
6441raid5_show_preread_threshold(struct mddev *mddev, char *page)
6442{
6443        struct r5conf *conf;
6444        int ret = 0;
6445        spin_lock(&mddev->lock);
6446        conf = mddev->private;
6447        if (conf)
6448                ret = sprintf(page, "%d\n", conf->bypass_threshold);
6449        spin_unlock(&mddev->lock);
6450        return ret;
6451}
6452
6453static ssize_t
6454raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6455{
6456        struct r5conf *conf;
6457        unsigned long new;
6458        int err;
6459
6460        if (len >= PAGE_SIZE)
6461                return -EINVAL;
6462        if (kstrtoul(page, 10, &new))
6463                return -EINVAL;
6464
6465        err = mddev_lock(mddev);
6466        if (err)
6467                return err;
6468        conf = mddev->private;
6469        if (!conf)
6470                err = -ENODEV;
6471        else if (new > conf->min_nr_stripes)
6472                err = -EINVAL;
6473        else
6474                conf->bypass_threshold = new;
6475        mddev_unlock(mddev);
6476        return err ?: len;
6477}
6478
6479static struct md_sysfs_entry
6480raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6481                                        S_IRUGO | S_IWUSR,
6482                                        raid5_show_preread_threshold,
6483                                        raid5_store_preread_threshold);
6484
6485static ssize_t
6486raid5_show_skip_copy(struct mddev *mddev, char *page)
6487{
6488        struct r5conf *conf;
6489        int ret = 0;
6490        spin_lock(&mddev->lock);
6491        conf = mddev->private;
6492        if (conf)
6493                ret = sprintf(page, "%d\n", conf->skip_copy);
6494        spin_unlock(&mddev->lock);
6495        return ret;
6496}
6497
6498static ssize_t
6499raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6500{
6501        struct r5conf *conf;
6502        unsigned long new;
6503        int err;
6504
6505        if (len >= PAGE_SIZE)
6506                return -EINVAL;
6507        if (kstrtoul(page, 10, &new))
6508                return -EINVAL;
6509        new = !!new;
6510
6511        err = mddev_lock(mddev);
6512        if (err)
6513                return err;
6514        conf = mddev->private;
6515        if (!conf)
6516                err = -ENODEV;
6517        else if (new != conf->skip_copy) {
6518                mddev_suspend(mddev);
6519                conf->skip_copy = new;
6520                if (new)
6521                        mddev->queue->backing_dev_info->capabilities |=
6522                                BDI_CAP_STABLE_WRITES;
6523                else
6524                        mddev->queue->backing_dev_info->capabilities &=
6525                                ~BDI_CAP_STABLE_WRITES;
6526                mddev_resume(mddev);
6527        }
6528        mddev_unlock(mddev);
6529        return err ?: len;
6530}
6531
6532static struct md_sysfs_entry
6533raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6534                                        raid5_show_skip_copy,
6535                                        raid5_store_skip_copy);
6536
6537static ssize_t
6538stripe_cache_active_show(struct mddev *mddev, char *page)
6539{
6540        struct r5conf *conf = mddev->private;
6541        if (conf)
6542                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6543        else
6544                return 0;
6545}
6546
6547static struct md_sysfs_entry
6548raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6549
6550static ssize_t
6551raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6552{
6553        struct r5conf *conf;
6554        int ret = 0;
6555        spin_lock(&mddev->lock);
6556        conf = mddev->private;
6557        if (conf)
6558                ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6559        spin_unlock(&mddev->lock);
6560        return ret;
6561}
6562
6563static int alloc_thread_groups(struct r5conf *conf, int cnt,
6564                               int *group_cnt,
6565                               int *worker_cnt_per_group,
6566                               struct r5worker_group **worker_groups);
6567static ssize_t
6568raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6569{
6570        struct r5conf *conf;
6571        unsigned long new;
6572        int err;
6573        struct r5worker_group *new_groups, *old_groups;
6574        int group_cnt, worker_cnt_per_group;
6575
6576        if (len >= PAGE_SIZE)
6577                return -EINVAL;
6578        if (kstrtoul(page, 10, &new))
6579                return -EINVAL;
6580
6581        err = mddev_lock(mddev);
6582        if (err)
6583                return err;
6584        conf = mddev->private;
6585        if (!conf)
6586                err = -ENODEV;
6587        else if (new != conf->worker_cnt_per_group) {
6588                mddev_suspend(mddev);
6589
6590                old_groups = conf->worker_groups;
6591                if (old_groups)
6592                        flush_workqueue(raid5_wq);
6593
6594                err = alloc_thread_groups(conf, new,
6595                                          &group_cnt, &worker_cnt_per_group,
6596                                          &new_groups);
6597                if (!err) {
6598                        spin_lock_irq(&conf->device_lock);
6599                        conf->group_cnt = group_cnt;
6600                        conf->worker_cnt_per_group = worker_cnt_per_group;
6601                        conf->worker_groups = new_groups;
6602                        spin_unlock_irq(&conf->device_lock);
6603
6604                        if (old_groups)
6605                                kfree(old_groups[0].workers);
6606                        kfree(old_groups);
6607                }
6608                mddev_resume(mddev);
6609        }
6610        mddev_unlock(mddev);
6611
6612        return err ?: len;
6613}
6614
6615static struct md_sysfs_entry
6616raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6617                                raid5_show_group_thread_cnt,
6618                                raid5_store_group_thread_cnt);
6619
6620static struct attribute *raid5_attrs[] =  {
6621        &raid5_stripecache_size.attr,
6622        &raid5_stripecache_active.attr,
6623        &raid5_preread_bypass_threshold.attr,
6624        &raid5_group_thread_cnt.attr,
6625        &raid5_skip_copy.attr,
6626        &raid5_rmw_level.attr,
6627        &r5c_journal_mode.attr,
6628        NULL,
6629};
6630static struct attribute_group raid5_attrs_group = {
6631        .name = NULL,
6632        .attrs = raid5_attrs,
6633};
6634
6635static int alloc_thread_groups(struct r5conf *conf, int cnt,
6636                               int *group_cnt,
6637                               int *worker_cnt_per_group,
6638                               struct r5worker_group **worker_groups)
6639{
6640        int i, j, k;
6641        ssize_t size;
6642        struct r5worker *workers;
6643
6644        *worker_cnt_per_group = cnt;
6645        if (cnt == 0) {
6646                *group_cnt = 0;
6647                *worker_groups = NULL;
6648                return 0;
6649        }
6650        *group_cnt = num_possible_nodes();
6651        size = sizeof(struct r5worker) * cnt;
6652        workers = kzalloc(size * *group_cnt, GFP_NOIO);
6653        *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6654                                *group_cnt, GFP_NOIO);
6655        if (!*worker_groups || !workers) {
6656                kfree(workers);
6657                kfree(*worker_groups);
6658                return -ENOMEM;
6659        }
6660
6661        for (i = 0; i < *group_cnt; i++) {
6662                struct r5worker_group *group;
6663
6664                group = &(*worker_groups)[i];
6665                INIT_LIST_HEAD(&group->handle_list);
6666                INIT_LIST_HEAD(&group->loprio_list);
6667                group->conf = conf;
6668                group->workers = workers + i * cnt;
6669
6670                for (j = 0; j < cnt; j++) {
6671                        struct r5worker *worker = group->workers + j;
6672                        worker->group = group;
6673                        INIT_WORK(&worker->work, raid5_do_work);
6674
6675                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6676                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
6677                }
6678        }
6679
6680        return 0;
6681}
6682
6683static void free_thread_groups(struct r5conf *conf)
6684{
6685        if (conf->worker_groups)
6686                kfree(conf->worker_groups[0].workers);
6687        kfree(conf->worker_groups);
6688        conf->worker_groups = NULL;
6689}
6690
6691static sector_t
6692raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6693{
6694        struct r5conf *conf = mddev->private;
6695
6696        if (!sectors)
6697                sectors = mddev->dev_sectors;
6698        if (!raid_disks)
6699                /* size is defined by the smallest of previous and new size */
6700                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6701
6702        sectors &= ~((sector_t)conf->chunk_sectors - 1);
6703        sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6704        return sectors * (raid_disks - conf->max_degraded);
6705}
6706
6707static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6708{
6709        safe_put_page(percpu->spare_page);
6710        if (percpu->scribble)
6711                flex_array_free(percpu->scribble);
6712        percpu->spare_page = NULL;
6713        percpu->scribble = NULL;
6714}
6715
6716static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6717{
6718        if (conf->level == 6 && !percpu->spare_page)
6719                percpu->spare_page = alloc_page(GFP_KERNEL);
6720        if (!percpu->scribble)
6721                percpu->scribble = scribble_alloc(max(conf->raid_disks,
6722                                                      conf->previous_raid_disks),
6723                                                  max(conf->chunk_sectors,
6724                                                      conf->prev_chunk_sectors)
6725                                                   / STRIPE_SECTORS,
6726                                                  GFP_KERNEL);
6727
6728        if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6729                free_scratch_buffer(conf, percpu);
6730                return -ENOMEM;
6731        }
6732
6733        return 0;
6734}
6735
6736static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6737{
6738        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6739
6740        free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6741        return 0;
6742}
6743
6744static void raid5_free_percpu(struct r5conf *conf)
6745{
6746        if (!conf->percpu)
6747                return;
6748
6749        cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6750        free_percpu(conf->percpu);
6751}
6752
6753static void free_conf(struct r5conf *conf)
6754{
6755        int i;
6756
6757        log_exit(conf);
6758
6759        if (conf->shrinker.nr_deferred)
6760                unregister_shrinker(&conf->shrinker);
6761
6762        free_thread_groups(conf);
6763        shrink_stripes(conf);
6764        raid5_free_percpu(conf);
6765        for (i = 0; i < conf->pool_size; i++)
6766                if (conf->disks[i].extra_page)
6767                        put_page(conf->disks[i].extra_page);
6768        kfree(conf->disks);
6769        if (conf->bio_split)
6770                bioset_free(conf->bio_split);
6771        kfree(conf->stripe_hashtbl);
6772        kfree(conf->pending_data);
6773        kfree(conf);
6774}
6775
6776static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6777{
6778        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6779        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6780
6781        if (alloc_scratch_buffer(conf, percpu)) {
6782                pr_warn("%s: failed memory allocation for cpu%u\n",
6783                        __func__, cpu);
6784                return -ENOMEM;
6785        }
6786        return 0;
6787}
6788
6789static int raid5_alloc_percpu(struct r5conf *conf)
6790{
6791        int err = 0;
6792
6793        conf->percpu = alloc_percpu(struct raid5_percpu);
6794        if (!conf->percpu)
6795                return -ENOMEM;
6796
6797        err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6798        if (!err) {
6799                conf->scribble_disks = max(conf->raid_disks,
6800                        conf->previous_raid_disks);
6801                conf->scribble_sectors = max(conf->chunk_sectors,
6802                        conf->prev_chunk_sectors);
6803        }
6804        return err;
6805}
6806
6807static unsigned long raid5_cache_scan(struct shrinker *shrink,
6808                                      struct shrink_control *sc)
6809{
6810        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6811        unsigned long ret = SHRINK_STOP;
6812
6813        if (mutex_trylock(&conf->cache_size_mutex)) {
6814                ret= 0;
6815                while (ret < sc->nr_to_scan &&
6816                       conf->max_nr_stripes > conf->min_nr_stripes) {
6817                        if (drop_one_stripe(conf) == 0) {
6818                                ret = SHRINK_STOP;
6819                                break;
6820                        }
6821                        ret++;
6822                }
6823                mutex_unlock(&conf->cache_size_mutex);
6824        }
6825        return ret;
6826}
6827
6828static unsigned long raid5_cache_count(struct shrinker *shrink,
6829                                       struct shrink_control *sc)
6830{
6831        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6832
6833        if (conf->max_nr_stripes < conf->min_nr_stripes)
6834                /* unlikely, but not impossible */
6835                return 0;
6836        return conf->max_nr_stripes - conf->min_nr_stripes;
6837}
6838
6839static struct r5conf *setup_conf(struct mddev *mddev)
6840{
6841        struct r5conf *conf;
6842        int raid_disk, memory, max_disks;
6843        struct md_rdev *rdev;
6844        struct disk_info *disk;
6845        char pers_name[6];
6846        int i;
6847        int group_cnt, worker_cnt_per_group;
6848        struct r5worker_group *new_group;
6849
6850        if (mddev->new_level != 5
6851            && mddev->new_level != 4
6852            && mddev->new_level != 6) {
6853                pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6854                        mdname(mddev), mddev->new_level);
6855                return ERR_PTR(-EIO);
6856        }
6857        if ((mddev->new_level == 5
6858             && !algorithm_valid_raid5(mddev->new_layout)) ||
6859            (mddev->new_level == 6
6860             && !algorithm_valid_raid6(mddev->new_layout))) {
6861                pr_warn("md/raid:%s: layout %d not supported\n",
6862                        mdname(mddev), mddev->new_layout);
6863                return ERR_PTR(-EIO);
6864        }
6865        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6866                pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6867                        mdname(mddev), mddev->raid_disks);
6868                return ERR_PTR(-EINVAL);
6869        }
6870
6871        if (!mddev->new_chunk_sectors ||
6872            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6873            !is_power_of_2(mddev->new_chunk_sectors)) {
6874                pr_warn("md/raid:%s: invalid chunk size %d\n",
6875                        mdname(mddev), mddev->new_chunk_sectors << 9);
6876                return ERR_PTR(-EINVAL);
6877        }
6878
6879        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6880        if (conf == NULL)
6881                goto abort;
6882        INIT_LIST_HEAD(&conf->free_list);
6883        INIT_LIST_HEAD(&conf->pending_list);
6884        conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6885                PENDING_IO_MAX, GFP_KERNEL);
6886        if (!conf->pending_data)
6887                goto abort;
6888        for (i = 0; i < PENDING_IO_MAX; i++)
6889                list_add(&conf->pending_data[i].sibling, &conf->free_list);
6890        /* Don't enable multi-threading by default*/
6891        if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6892                                 &new_group)) {
6893                conf->group_cnt = group_cnt;
6894                conf->worker_cnt_per_group = worker_cnt_per_group;
6895                conf->worker_groups = new_group;
6896        } else
6897                goto abort;
6898        spin_lock_init(&conf->device_lock);
6899        seqcount_init(&conf->gen_lock);
6900        mutex_init(&conf->cache_size_mutex);
6901        init_waitqueue_head(&conf->wait_for_quiescent);
6902        init_waitqueue_head(&conf->wait_for_stripe);
6903        init_waitqueue_head(&conf->wait_for_overlap);
6904        INIT_LIST_HEAD(&conf->handle_list);
6905        INIT_LIST_HEAD(&conf->loprio_list);
6906        INIT_LIST_HEAD(&conf->hold_list);
6907        INIT_LIST_HEAD(&conf->delayed_list);
6908        INIT_LIST_HEAD(&conf->bitmap_list);
6909        init_llist_head(&conf->released_stripes);
6910        atomic_set(&conf->active_stripes, 0);
6911        atomic_set(&conf->preread_active_stripes, 0);
6912        atomic_set(&conf->active_aligned_reads, 0);
6913        spin_lock_init(&conf->pending_bios_lock);
6914        conf->batch_bio_dispatch = true;
6915        rdev_for_each(rdev, mddev) {
6916                if (test_bit(Journal, &rdev->flags))
6917                        continue;
6918                if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6919                        conf->batch_bio_dispatch = false;
6920                        break;
6921                }
6922        }
6923
6924        conf->bypass_threshold = BYPASS_THRESHOLD;
6925        conf->recovery_disabled = mddev->recovery_disabled - 1;
6926
6927        conf->raid_disks = mddev->raid_disks;
6928        if (mddev->reshape_position == MaxSector)
6929                conf->previous_raid_disks = mddev->raid_disks;
6930        else
6931                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6932        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6933
6934        conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6935                              GFP_KERNEL);
6936
6937        if (!conf->disks)
6938                goto abort;
6939
6940        for (i = 0; i < max_disks; i++) {
6941                conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6942                if (!conf->disks[i].extra_page)
6943                        goto abort;
6944        }
6945
6946        conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
6947        if (!conf->bio_split)
6948                goto abort;
6949        conf->mddev = mddev;
6950
6951        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6952                goto abort;
6953
6954        /* We init hash_locks[0] separately to that it can be used
6955         * as the reference lock in the spin_lock_nest_lock() call
6956         * in lock_all_device_hash_locks_irq in order to convince
6957         * lockdep that we know what we are doing.
6958         */
6959        spin_lock_init(conf->hash_locks);
6960        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6961                spin_lock_init(conf->hash_locks + i);
6962
6963        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6964                INIT_LIST_HEAD(conf->inactive_list + i);
6965
6966        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6967                INIT_LIST_HEAD(conf->temp_inactive_list + i);
6968
6969        atomic_set(&conf->r5c_cached_full_stripes, 0);
6970        INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6971        atomic_set(&conf->r5c_cached_partial_stripes, 0);
6972        INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6973        atomic_set(&conf->r5c_flushing_full_stripes, 0);
6974        atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6975
6976        conf->level = mddev->new_level;
6977        conf->chunk_sectors = mddev->new_chunk_sectors;
6978        if (raid5_alloc_percpu(conf) != 0)
6979                goto abort;
6980
6981        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6982
6983        rdev_for_each(rdev, mddev) {
6984                raid_disk = rdev->raid_disk;
6985                if (raid_disk >= max_disks
6986                    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6987                        continue;
6988                disk = conf->disks + raid_disk;
6989
6990                if (test_bit(Replacement, &rdev->flags)) {
6991                        if (disk->replacement)
6992                                goto abort;
6993                        disk->replacement = rdev;
6994                } else {
6995                        if (disk->rdev)
6996                                goto abort;
6997                        disk->rdev = rdev;
6998                }
6999
7000                if (test_bit(In_sync, &rdev->flags)) {
7001                        char b[BDEVNAME_SIZE];
7002                        pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7003                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7004                } else if (rdev->saved_raid_disk != raid_disk)
7005                        /* Cannot rely on bitmap to complete recovery */
7006                        conf->fullsync = 1;
7007        }
7008
7009        conf->level = mddev->new_level;
7010        if (conf->level == 6) {
7011                conf->max_degraded = 2;
7012                if (raid6_call.xor_syndrome)
7013                        conf->rmw_level = PARITY_ENABLE_RMW;
7014                else
7015                        conf->rmw_level = PARITY_DISABLE_RMW;
7016        } else {
7017                conf->max_degraded = 1;
7018                conf->rmw_level = PARITY_ENABLE_RMW;
7019        }
7020        conf->algorithm = mddev->new_layout;
7021        conf->reshape_progress = mddev->reshape_position;
7022        if (conf->reshape_progress != MaxSector) {
7023                conf->prev_chunk_sectors = mddev->chunk_sectors;
7024                conf->prev_algo = mddev->layout;
7025        } else {
7026                conf->prev_chunk_sectors = conf->chunk_sectors;
7027                conf->prev_algo = conf->algorithm;
7028        }
7029
7030        conf->min_nr_stripes = NR_STRIPES;
7031        if (mddev->reshape_position != MaxSector) {
7032                int stripes = max_t(int,
7033                        ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7034                        ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7035                conf->min_nr_stripes = max(NR_STRIPES, stripes);
7036                if (conf->min_nr_stripes != NR_STRIPES)
7037                        pr_info("md/raid:%s: force stripe size %d for reshape\n",
7038                                mdname(mddev), conf->min_nr_stripes);
7039        }
7040        memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7041                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7042        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7043        if (grow_stripes(conf, conf->min_nr_stripes)) {
7044                pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7045                        mdname(mddev), memory);
7046                goto abort;
7047        } else
7048                pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7049        /*
7050         * Losing a stripe head costs more than the time to refill it,
7051         * it reduces the queue depth and so can hurt throughput.
7052         * So set it rather large, scaled by number of devices.
7053         */
7054        conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7055        conf->shrinker.scan_objects = raid5_cache_scan;
7056        conf->shrinker.count_objects = raid5_cache_count;
7057        conf->shrinker.batch = 128;
7058        conf->shrinker.flags = 0;
7059        if (register_shrinker(&conf->shrinker)) {
7060                pr_warn("md/raid:%s: couldn't register shrinker.\n",
7061                        mdname(mddev));
7062                goto abort;
7063        }
7064
7065        sprintf(pers_name, "raid%d", mddev->new_level);
7066        conf->thread = md_register_thread(raid5d, mddev, pers_name);
7067        if (!conf->thread) {
7068                pr_warn("md/raid:%s: couldn't allocate thread.\n",
7069                        mdname(mddev));
7070                goto abort;
7071        }
7072
7073        return conf;
7074
7075 abort:
7076        if (conf) {
7077                free_conf(conf);
7078                return ERR_PTR(-EIO);
7079        } else
7080                return ERR_PTR(-ENOMEM);
7081}
7082
7083static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7084{
7085        switch (algo) {
7086        case ALGORITHM_PARITY_0:
7087                if (raid_disk < max_degraded)
7088                        return 1;
7089                break;
7090        case ALGORITHM_PARITY_N:
7091                if (raid_disk >= raid_disks - max_degraded)
7092                        return 1;
7093                break;
7094        case ALGORITHM_PARITY_0_6:
7095                if (raid_disk == 0 ||
7096                    raid_disk == raid_disks - 1)
7097                        return 1;
7098                break;
7099        case ALGORITHM_LEFT_ASYMMETRIC_6:
7100        case ALGORITHM_RIGHT_ASYMMETRIC_6:
7101        case ALGORITHM_LEFT_SYMMETRIC_6:
7102        case ALGORITHM_RIGHT_SYMMETRIC_6:
7103                if (raid_disk == raid_disks - 1)
7104                        return 1;
7105        }
7106        return 0;
7107}
7108
7109static int raid5_run(struct mddev *mddev)
7110{
7111        struct r5conf *conf;
7112        int working_disks = 0;
7113        int dirty_parity_disks = 0;
7114        struct md_rdev *rdev;
7115        struct md_rdev *journal_dev = NULL;
7116        sector_t reshape_offset = 0;
7117        int i;
7118        long long min_offset_diff = 0;
7119        int first = 1;
7120
7121        if (mddev_init_writes_pending(mddev) < 0)
7122                return -ENOMEM;
7123
7124        if (mddev->recovery_cp != MaxSector)
7125                pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7126                          mdname(mddev));
7127
7128        rdev_for_each(rdev, mddev) {
7129                long long diff;
7130
7131                if (test_bit(Journal, &rdev->flags)) {
7132                        journal_dev = rdev;
7133                        continue;
7134                }
7135                if (rdev->raid_disk < 0)
7136                        continue;
7137                diff = (rdev->new_data_offset - rdev->data_offset);
7138                if (first) {
7139                        min_offset_diff = diff;
7140                        first = 0;
7141                } else if (mddev->reshape_backwards &&
7142                         diff < min_offset_diff)
7143                        min_offset_diff = diff;
7144                else if (!mddev->reshape_backwards &&
7145                         diff > min_offset_diff)
7146                        min_offset_diff = diff;
7147        }
7148
7149        if (mddev->reshape_position != MaxSector) {
7150                /* Check that we can continue the reshape.
7151                 * Difficulties arise if the stripe we would write to
7152                 * next is at or after the stripe we would read from next.
7153                 * For a reshape that changes the number of devices, this
7154                 * is only possible for a very short time, and mdadm makes
7155                 * sure that time appears to have past before assembling
7156                 * the array.  So we fail if that time hasn't passed.
7157                 * For a reshape that keeps the number of devices the same
7158                 * mdadm must be monitoring the reshape can keeping the
7159                 * critical areas read-only and backed up.  It will start
7160                 * the array in read-only mode, so we check for that.
7161                 */
7162                sector_t here_new, here_old;
7163                int old_disks;
7164                int max_degraded = (mddev->level == 6 ? 2 : 1);
7165                int chunk_sectors;
7166                int new_data_disks;
7167
7168                if (journal_dev) {
7169                        pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7170                                mdname(mddev));
7171                        return -EINVAL;
7172                }
7173
7174                if (mddev->new_level != mddev->level) {
7175                        pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7176                                mdname(mddev));
7177                        return -EINVAL;
7178                }
7179                old_disks = mddev->raid_disks - mddev->delta_disks;
7180                /* reshape_position must be on a new-stripe boundary, and one
7181                 * further up in new geometry must map after here in old
7182                 * geometry.
7183                 * If the chunk sizes are different, then as we perform reshape
7184                 * in units of the largest of the two, reshape_position needs
7185                 * be a multiple of the largest chunk size times new data disks.
7186                 */
7187                here_new = mddev->reshape_position;
7188                chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7189                new_data_disks = mddev->raid_disks - max_degraded;
7190                if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7191                        pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7192                                mdname(mddev));
7193                        return -EINVAL;
7194                }
7195                reshape_offset = here_new * chunk_sectors;
7196                /* here_new is the stripe we will write to */
7197                here_old = mddev->reshape_position;
7198                sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7199                /* here_old is the first stripe that we might need to read
7200                 * from */
7201                if (mddev->delta_disks == 0) {
7202                        /* We cannot be sure it is safe to start an in-place
7203                         * reshape.  It is only safe if user-space is monitoring
7204                         * and taking constant backups.
7205                         * mdadm always starts a situation like this in
7206                         * readonly mode so it can take control before
7207                         * allowing any writes.  So just check for that.
7208                         */
7209                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7210                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
7211                                /* not really in-place - so OK */;
7212                        else if (mddev->ro == 0) {
7213                                pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7214                                        mdname(mddev));
7215                                return -EINVAL;
7216                        }
7217                } else if (mddev->reshape_backwards
7218                    ? (here_new * chunk_sectors + min_offset_diff <=
7219                       here_old * chunk_sectors)
7220                    : (here_new * chunk_sectors >=
7221                       here_old * chunk_sectors + (-min_offset_diff))) {
7222                        /* Reading from the same stripe as writing to - bad */
7223                        pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7224                                mdname(mddev));
7225                        return -EINVAL;
7226                }
7227                pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7228                /* OK, we should be able to continue; */
7229        } else {
7230                BUG_ON(mddev->level != mddev->new_level);
7231                BUG_ON(mddev->layout != mddev->new_layout);
7232                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7233                BUG_ON(mddev->delta_disks != 0);
7234        }
7235
7236        if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7237            test_bit(MD_HAS_PPL, &mddev->flags)) {
7238                pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7239                        mdname(mddev));
7240                clear_bit(MD_HAS_PPL, &mddev->flags);
7241        }
7242
7243        if (mddev->private == NULL)
7244                conf = setup_conf(mddev);
7245        else
7246                conf = mddev->private;
7247
7248        if (IS_ERR(conf))
7249                return PTR_ERR(conf);
7250
7251        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7252                if (!journal_dev) {
7253                        pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7254                                mdname(mddev));
7255                        mddev->ro = 1;
7256                        set_disk_ro(mddev->gendisk, 1);
7257                } else if (mddev->recovery_cp == MaxSector)
7258                        set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7259        }
7260
7261        conf->min_offset_diff = min_offset_diff;
7262        mddev->thread = conf->thread;
7263        conf->thread = NULL;
7264        mddev->private = conf;
7265
7266        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7267             i++) {
7268                rdev = conf->disks[i].rdev;
7269                if (!rdev && conf->disks[i].replacement) {
7270                        /* The replacement is all we have yet */
7271                        rdev = conf->disks[i].replacement;
7272                        conf->disks[i].replacement = NULL;
7273                        clear_bit(Replacement, &rdev->flags);
7274                        conf->disks[i].rdev = rdev;
7275                }
7276                if (!rdev)
7277                        continue;
7278                if (conf->disks[i].replacement &&
7279                    conf->reshape_progress != MaxSector) {
7280                        /* replacements and reshape simply do not mix. */
7281                        pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7282                        goto abort;
7283                }
7284                if (test_bit(In_sync, &rdev->flags)) {
7285                        working_disks++;
7286                        continue;
7287                }
7288                /* This disc is not fully in-sync.  However if it
7289                 * just stored parity (beyond the recovery_offset),
7290                 * when we don't need to be concerned about the
7291                 * array being dirty.
7292                 * When reshape goes 'backwards', we never have
7293                 * partially completed devices, so we only need
7294                 * to worry about reshape going forwards.
7295                 */
7296                /* Hack because v0.91 doesn't store recovery_offset properly. */
7297                if (mddev->major_version == 0 &&
7298                    mddev->minor_version > 90)
7299                        rdev->recovery_offset = reshape_offset;
7300
7301                if (rdev->recovery_offset < reshape_offset) {
7302                        /* We need to check old and new layout */
7303                        if (!only_parity(rdev->raid_disk,
7304                                         conf->algorithm,
7305                                         conf->raid_disks,
7306                                         conf->max_degraded))
7307                                continue;
7308                }
7309                if (!only_parity(rdev->raid_disk,
7310                                 conf->prev_algo,
7311                                 conf->previous_raid_disks,
7312                                 conf->max_degraded))
7313                        continue;
7314                dirty_parity_disks++;
7315        }
7316
7317        /*
7318         * 0 for a fully functional array, 1 or 2 for a degraded array.
7319         */
7320        mddev->degraded = raid5_calc_degraded(conf);
7321
7322        if (has_failed(conf)) {
7323                pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7324                        mdname(mddev), mddev->degraded, conf->raid_disks);
7325                goto abort;
7326        }
7327
7328        /* device size must be a multiple of chunk size */
7329        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7330        mddev->resync_max_sectors = mddev->dev_sectors;
7331
7332        if (mddev->degraded > dirty_parity_disks &&
7333            mddev->recovery_cp != MaxSector) {
7334                if (test_bit(MD_HAS_PPL, &mddev->flags))
7335                        pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7336                                mdname(mddev));
7337                else if (mddev->ok_start_degraded)
7338                        pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7339                                mdname(mddev));
7340                else {
7341                        pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7342                                mdname(mddev));
7343                        goto abort;
7344                }
7345        }
7346
7347        pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7348                mdname(mddev), conf->level,
7349                mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7350                mddev->new_layout);
7351
7352        print_raid5_conf(conf);
7353
7354        if (conf->reshape_progress != MaxSector) {
7355                conf->reshape_safe = conf->reshape_progress;
7356                atomic_set(&conf->reshape_stripes, 0);
7357                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7358                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7359                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7360                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7361                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7362                                                        "reshape");
7363        }
7364
7365        /* Ok, everything is just fine now */
7366        if (mddev->to_remove == &raid5_attrs_group)
7367                mddev->to_remove = NULL;
7368        else if (mddev->kobj.sd &&
7369            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7370                pr_warn("raid5: failed to create sysfs attributes for %s\n",
7371                        mdname(mddev));
7372        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7373
7374        if (mddev->queue) {
7375                int chunk_size;
7376                /* read-ahead size must cover two whole stripes, which
7377                 * is 2 * (datadisks) * chunksize where 'n' is the
7378                 * number of raid devices
7379                 */
7380                int data_disks = conf->previous_raid_disks - conf->max_degraded;
7381                int stripe = data_disks *
7382                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7383                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7384                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7385
7386                chunk_size = mddev->chunk_sectors << 9;
7387                blk_queue_io_min(mddev->queue, chunk_size);
7388                blk_queue_io_opt(mddev->queue, chunk_size *
7389                                 (conf->raid_disks - conf->max_degraded));
7390                mddev->queue->limits.raid_partial_stripes_expensive = 1;
7391                /*
7392                 * We can only discard a whole stripe. It doesn't make sense to
7393                 * discard data disk but write parity disk
7394                 */
7395                stripe = stripe * PAGE_SIZE;
7396                /* Round up to power of 2, as discard handling
7397                 * currently assumes that */
7398                while ((stripe-1) & stripe)
7399                        stripe = (stripe | (stripe-1)) + 1;
7400                mddev->queue->limits.discard_alignment = stripe;
7401                mddev->queue->limits.discard_granularity = stripe;
7402
7403                blk_queue_max_write_same_sectors(mddev->queue, 0);
7404                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7405
7406                rdev_for_each(rdev, mddev) {
7407                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7408                                          rdev->data_offset << 9);
7409                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7410                                          rdev->new_data_offset << 9);
7411                }
7412
7413                /*
7414                 * zeroing is required, otherwise data
7415                 * could be lost. Consider a scenario: discard a stripe
7416                 * (the stripe could be inconsistent if
7417                 * discard_zeroes_data is 0); write one disk of the
7418                 * stripe (the stripe could be inconsistent again
7419                 * depending on which disks are used to calculate
7420                 * parity); the disk is broken; The stripe data of this
7421                 * disk is lost.
7422                 *
7423                 * We only allow DISCARD if the sysadmin has confirmed that
7424                 * only safe devices are in use by setting a module parameter.
7425                 * A better idea might be to turn DISCARD into WRITE_ZEROES
7426                 * requests, as that is required to be safe.
7427                 */
7428                if (devices_handle_discard_safely &&
7429                    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7430                    mddev->queue->limits.discard_granularity >= stripe)
7431                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7432                                                mddev->queue);
7433                else
7434                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7435                                                mddev->queue);
7436
7437                blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7438        }
7439
7440        if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7441                goto abort;
7442
7443        return 0;
7444abort:
7445        md_unregister_thread(&mddev->thread);
7446        print_raid5_conf(conf);
7447        free_conf(conf);
7448        mddev->private = NULL;
7449        pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7450        return -EIO;
7451}
7452
7453static void raid5_free(struct mddev *mddev, void *priv)
7454{
7455        struct r5conf *conf = priv;
7456
7457        free_conf(conf);
7458        mddev->to_remove = &raid5_attrs_group;
7459}
7460
7461static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7462{
7463        struct r5conf *conf = mddev->private;
7464        int i;
7465
7466        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7467                conf->chunk_sectors / 2, mddev->layout);
7468        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7469        rcu_read_lock();
7470        for (i = 0; i < conf->raid_disks; i++) {
7471                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7472                seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7473        }
7474        rcu_read_unlock();
7475        seq_printf (seq, "]");
7476}
7477
7478static void print_raid5_conf (struct r5conf *conf)
7479{
7480        int i;
7481        struct disk_info *tmp;
7482
7483        pr_debug("RAID conf printout:\n");
7484        if (!conf) {
7485                pr_debug("(conf==NULL)\n");
7486                return;
7487        }
7488        pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7489               conf->raid_disks,
7490               conf->raid_disks - conf->mddev->degraded);
7491
7492        for (i = 0; i < conf->raid_disks; i++) {
7493                char b[BDEVNAME_SIZE];
7494                tmp = conf->disks + i;
7495                if (tmp->rdev)
7496                        pr_debug(" disk %d, o:%d, dev:%s\n",
7497                               i, !test_bit(Faulty, &tmp->rdev->flags),
7498                               bdevname(tmp->rdev->bdev, b));
7499        }
7500}
7501
7502static int raid5_spare_active(struct mddev *mddev)
7503{
7504        int i;
7505        struct r5conf *conf = mddev->private;
7506        struct disk_info *tmp;
7507        int count = 0;
7508        unsigned long flags;
7509
7510        for (i = 0; i < conf->raid_disks; i++) {
7511                tmp = conf->disks + i;
7512                if (tmp->replacement
7513                    && tmp->replacement->recovery_offset == MaxSector
7514                    && !test_bit(Faulty, &tmp->replacement->flags)
7515                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7516                        /* Replacement has just become active. */
7517                        if (!tmp->rdev
7518                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7519                                count++;
7520                        if (tmp->rdev) {
7521                                /* Replaced device not technically faulty,
7522                                 * but we need to be sure it gets removed
7523                                 * and never re-added.
7524                                 */
7525                                set_bit(Faulty, &tmp->rdev->flags);
7526                                sysfs_notify_dirent_safe(
7527                                        tmp->rdev->sysfs_state);
7528                        }
7529                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7530                } else if (tmp->rdev
7531                    && tmp->rdev->recovery_offset == MaxSector
7532                    && !test_bit(Faulty, &tmp->rdev->flags)
7533                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7534                        count++;
7535                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7536                }
7537        }
7538        spin_lock_irqsave(&conf->device_lock, flags);
7539        mddev->degraded = raid5_calc_degraded(conf);
7540        spin_unlock_irqrestore(&conf->device_lock, flags);
7541        print_raid5_conf(conf);
7542        return count;
7543}
7544
7545static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7546{
7547        struct r5conf *conf = mddev->private;
7548        int err = 0;
7549        int number = rdev->raid_disk;
7550        struct md_rdev **rdevp;
7551        struct disk_info *p = conf->disks + number;
7552
7553        print_raid5_conf(conf);
7554        if (test_bit(Journal, &rdev->flags) && conf->log) {
7555                /*
7556                 * we can't wait pending write here, as this is called in
7557                 * raid5d, wait will deadlock.
7558                 * neilb: there is no locking about new writes here,
7559                 * so this cannot be safe.
7560                 */
7561                if (atomic_read(&conf->active_stripes) ||
7562                    atomic_read(&conf->r5c_cached_full_stripes) ||
7563                    atomic_read(&conf->r5c_cached_partial_stripes)) {
7564                        return -EBUSY;
7565                }
7566                log_exit(conf);
7567                return 0;
7568        }
7569        if (rdev == p->rdev)
7570                rdevp = &p->rdev;
7571        else if (rdev == p->replacement)
7572                rdevp = &p->replacement;
7573        else
7574                return 0;
7575
7576        if (number >= conf->raid_disks &&
7577            conf->reshape_progress == MaxSector)
7578                clear_bit(In_sync, &rdev->flags);
7579
7580        if (test_bit(In_sync, &rdev->flags) ||
7581            atomic_read(&rdev->nr_pending)) {
7582                err = -EBUSY;
7583                goto abort;
7584        }
7585        /* Only remove non-faulty devices if recovery
7586         * isn't possible.
7587         */
7588        if (!test_bit(Faulty, &rdev->flags) &&
7589            mddev->recovery_disabled != conf->recovery_disabled &&
7590            !has_failed(conf) &&
7591            (!p->replacement || p->replacement == rdev) &&
7592            number < conf->raid_disks) {
7593                err = -EBUSY;
7594                goto abort;
7595        }
7596        *rdevp = NULL;
7597        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7598                synchronize_rcu();
7599                if (atomic_read(&rdev->nr_pending)) {
7600                        /* lost the race, try later */
7601                        err = -EBUSY;
7602                        *rdevp = rdev;
7603                }
7604        }
7605        if (!err) {
7606                err = log_modify(conf, rdev, false);
7607                if (err)
7608                        goto abort;
7609        }
7610        if (p->replacement) {
7611                /* We must have just cleared 'rdev' */
7612                p->rdev = p->replacement;
7613                clear_bit(Replacement, &p->replacement->flags);
7614                smp_mb(); /* Make sure other CPUs may see both as identical
7615                           * but will never see neither - if they are careful
7616                           */
7617                p->replacement = NULL;
7618
7619                if (!err)
7620                        err = log_modify(conf, p->rdev, true);
7621        }
7622
7623        clear_bit(WantReplacement, &rdev->flags);
7624abort:
7625
7626        print_raid5_conf(conf);
7627        return err;
7628}
7629
7630static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7631{
7632        struct r5conf *conf = mddev->private;
7633        int err = -EEXIST;
7634        int disk;
7635        struct disk_info *p;
7636        int first = 0;
7637        int last = conf->raid_disks - 1;
7638
7639        if (test_bit(Journal, &rdev->flags)) {
7640                if (conf->log)
7641                        return -EBUSY;
7642
7643                rdev->raid_disk = 0;
7644                /*
7645                 * The array is in readonly mode if journal is missing, so no
7646                 * write requests running. We should be safe
7647                 */
7648                log_init(conf, rdev, false);
7649                return 0;
7650        }
7651        if (mddev->recovery_disabled == conf->recovery_disabled)
7652                return -EBUSY;
7653
7654        if (rdev->saved_raid_disk < 0 && has_failed(conf))
7655                /* no point adding a device */
7656                return -EINVAL;
7657
7658        if (rdev->raid_disk >= 0)
7659                first = last = rdev->raid_disk;
7660
7661        /*
7662         * find the disk ... but prefer rdev->saved_raid_disk
7663         * if possible.
7664         */
7665        if (rdev->saved_raid_disk >= 0 &&
7666            rdev->saved_raid_disk >= first &&
7667            conf->disks[rdev->saved_raid_disk].rdev == NULL)
7668                first = rdev->saved_raid_disk;
7669
7670        for (disk = first; disk <= last; disk++) {
7671                p = conf->disks + disk;
7672                if (p->rdev == NULL) {
7673                        clear_bit(In_sync, &rdev->flags);
7674                        rdev->raid_disk = disk;
7675                        if (rdev->saved_raid_disk != disk)
7676                                conf->fullsync = 1;
7677                        rcu_assign_pointer(p->rdev, rdev);
7678
7679                        err = log_modify(conf, rdev, true);
7680
7681                        goto out;
7682                }
7683        }
7684        for (disk = first; disk <= last; disk++) {
7685                p = conf->disks + disk;
7686                if (test_bit(WantReplacement, &p->rdev->flags) &&
7687                    p->replacement == NULL) {
7688                        clear_bit(In_sync, &rdev->flags);
7689                        set_bit(Replacement, &rdev->flags);
7690                        rdev->raid_disk = disk;
7691                        err = 0;
7692                        conf->fullsync = 1;
7693                        rcu_assign_pointer(p->replacement, rdev);
7694                        break;
7695                }
7696        }
7697out:
7698        print_raid5_conf(conf);
7699        return err;
7700}
7701
7702static int raid5_resize(struct mddev *mddev, sector_t sectors)
7703{
7704        /* no resync is happening, and there is enough space
7705         * on all devices, so we can resize.
7706         * We need to make sure resync covers any new space.
7707         * If the array is shrinking we should possibly wait until
7708         * any io in the removed space completes, but it hardly seems
7709         * worth it.
7710         */
7711        sector_t newsize;
7712        struct r5conf *conf = mddev->private;
7713
7714        if (conf->log || raid5_has_ppl(conf))
7715                return -EINVAL;
7716        sectors &= ~((sector_t)conf->chunk_sectors - 1);
7717        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7718        if (mddev->external_size &&
7719            mddev->array_sectors > newsize)
7720                return -EINVAL;
7721        if (mddev->bitmap) {
7722                int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7723                if (ret)
7724                        return ret;
7725        }
7726        md_set_array_sectors(mddev, newsize);
7727        if (sectors > mddev->dev_sectors &&
7728            mddev->recovery_cp > mddev->dev_sectors) {
7729                mddev->recovery_cp = mddev->dev_sectors;
7730                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7731        }
7732        mddev->dev_sectors = sectors;
7733        mddev->resync_max_sectors = sectors;
7734        return 0;
7735}
7736
7737static int check_stripe_cache(struct mddev *mddev)
7738{
7739        /* Can only proceed if there are plenty of stripe_heads.
7740         * We need a minimum of one full stripe,, and for sensible progress
7741         * it is best to have about 4 times that.
7742         * If we require 4 times, then the default 256 4K stripe_heads will
7743         * allow for chunk sizes up to 256K, which is probably OK.
7744         * If the chunk size is greater, user-space should request more
7745         * stripe_heads first.
7746         */
7747        struct r5conf *conf = mddev->private;
7748        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7749            > conf->min_nr_stripes ||
7750            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7751            > conf->min_nr_stripes) {
7752                pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7753                        mdname(mddev),
7754                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7755                         / STRIPE_SIZE)*4);
7756                return 0;
7757        }
7758        return 1;
7759}
7760
7761static int check_reshape(struct mddev *mddev)
7762{
7763        struct r5conf *conf = mddev->private;
7764
7765        if (conf->log || raid5_has_ppl(conf))
7766                return -EINVAL;
7767        if (mddev->delta_disks == 0 &&
7768            mddev->new_layout == mddev->layout &&
7769            mddev->new_chunk_sectors == mddev->chunk_sectors)
7770                return 0; /* nothing to do */
7771        if (has_failed(conf))
7772                return -EINVAL;
7773        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7774                /* We might be able to shrink, but the devices must
7775                 * be made bigger first.
7776                 * For raid6, 4 is the minimum size.
7777                 * Otherwise 2 is the minimum
7778                 */
7779                int min = 2;
7780                if (mddev->level == 6)
7781                        min = 4;
7782                if (mddev->raid_disks + mddev->delta_disks < min)
7783                        return -EINVAL;
7784        }
7785
7786        if (!check_stripe_cache(mddev))
7787                return -ENOSPC;
7788
7789        if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7790            mddev->delta_disks > 0)
7791                if (resize_chunks(conf,
7792                                  conf->previous_raid_disks
7793                                  + max(0, mddev->delta_disks),
7794                                  max(mddev->new_chunk_sectors,
7795                                      mddev->chunk_sectors)
7796                            ) < 0)
7797                        return -ENOMEM;
7798
7799        if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7800                return 0; /* never bother to shrink */
7801        return resize_stripes(conf, (conf->previous_raid_disks
7802                                     + mddev->delta_disks));
7803}
7804
7805static int raid5_start_reshape(struct mddev *mddev)
7806{
7807        struct r5conf *conf = mddev->private;
7808        struct md_rdev *rdev;
7809        int spares = 0;
7810        unsigned long flags;
7811
7812        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7813                return -EBUSY;
7814
7815        if (!check_stripe_cache(mddev))
7816                return -ENOSPC;
7817
7818        if (has_failed(conf))
7819                return -EINVAL;
7820
7821        rdev_for_each(rdev, mddev) {
7822                if (!test_bit(In_sync, &rdev->flags)
7823                    && !test_bit(Faulty, &rdev->flags))
7824                        spares++;
7825        }
7826
7827        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7828                /* Not enough devices even to make a degraded array
7829                 * of that size
7830                 */
7831                return -EINVAL;
7832
7833        /* Refuse to reduce size of the array.  Any reductions in
7834         * array size must be through explicit setting of array_size
7835         * attribute.
7836         */
7837        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7838            < mddev->array_sectors) {
7839                pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7840                        mdname(mddev));
7841                return -EINVAL;
7842        }
7843
7844        atomic_set(&conf->reshape_stripes, 0);
7845        spin_lock_irq(&conf->device_lock);
7846        write_seqcount_begin(&conf->gen_lock);
7847        conf->previous_raid_disks = conf->raid_disks;
7848        conf->raid_disks += mddev->delta_disks;
7849        conf->prev_chunk_sectors = conf->chunk_sectors;
7850        conf->chunk_sectors = mddev->new_chunk_sectors;
7851        conf->prev_algo = conf->algorithm;
7852        conf->algorithm = mddev->new_layout;
7853        conf->generation++;
7854        /* Code that selects data_offset needs to see the generation update
7855         * if reshape_progress has been set - so a memory barrier needed.
7856         */
7857        smp_mb();
7858        if (mddev->reshape_backwards)
7859                conf->reshape_progress = raid5_size(mddev, 0, 0);
7860        else
7861                conf->reshape_progress = 0;
7862        conf->reshape_safe = conf->reshape_progress;
7863        write_seqcount_end(&conf->gen_lock);
7864        spin_unlock_irq(&conf->device_lock);
7865
7866        /* Now make sure any requests that proceeded on the assumption
7867         * the reshape wasn't running - like Discard or Read - have
7868         * completed.
7869         */
7870        mddev_suspend(mddev);
7871        mddev_resume(mddev);
7872
7873        /* Add some new drives, as many as will fit.
7874         * We know there are enough to make the newly sized array work.
7875         * Don't add devices if we are reducing the number of
7876         * devices in the array.  This is because it is not possible
7877         * to correctly record the "partially reconstructed" state of
7878         * such devices during the reshape and confusion could result.
7879         */
7880        if (mddev->delta_disks >= 0) {
7881                rdev_for_each(rdev, mddev)
7882                        if (rdev->raid_disk < 0 &&
7883                            !test_bit(Faulty, &rdev->flags)) {
7884                                if (raid5_add_disk(mddev, rdev) == 0) {
7885                                        if (rdev->raid_disk
7886                                            >= conf->previous_raid_disks)
7887                                                set_bit(In_sync, &rdev->flags);
7888                                        else
7889                                                rdev->recovery_offset = 0;
7890
7891                                        if (sysfs_link_rdev(mddev, rdev))
7892                                                /* Failure here is OK */;
7893                                }
7894                        } else if (rdev->raid_disk >= conf->previous_raid_disks
7895                                   && !test_bit(Faulty, &rdev->flags)) {
7896                                /* This is a spare that was manually added */
7897                                set_bit(In_sync, &rdev->flags);
7898                        }
7899
7900                /* When a reshape changes the number of devices,
7901                 * ->degraded is measured against the larger of the
7902                 * pre and post number of devices.
7903                 */
7904                spin_lock_irqsave(&conf->device_lock, flags);
7905                mddev->degraded = raid5_calc_degraded(conf);
7906                spin_unlock_irqrestore(&conf->device_lock, flags);
7907        }
7908        mddev->raid_disks = conf->raid_disks;
7909        mddev->reshape_position = conf->reshape_progress;
7910        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7911
7912        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7913        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7914        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7915        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7916        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7917        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7918                                                "reshape");
7919        if (!mddev->sync_thread) {
7920                mddev->recovery = 0;
7921                spin_lock_irq(&conf->device_lock);
7922                write_seqcount_begin(&conf->gen_lock);
7923                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7924                mddev->new_chunk_sectors =
7925                        conf->chunk_sectors = conf->prev_chunk_sectors;
7926                mddev->new_layout = conf->algorithm = conf->prev_algo;
7927                rdev_for_each(rdev, mddev)
7928                        rdev->new_data_offset = rdev->data_offset;
7929                smp_wmb();
7930                conf->generation --;
7931                conf->reshape_progress = MaxSector;
7932                mddev->reshape_position = MaxSector;
7933                write_seqcount_end(&conf->gen_lock);
7934                spin_unlock_irq(&conf->device_lock);
7935                return -EAGAIN;
7936        }
7937        conf->reshape_checkpoint = jiffies;
7938        md_wakeup_thread(mddev->sync_thread);
7939        md_new_event(mddev);
7940        return 0;
7941}
7942
7943/* This is called from the reshape thread and should make any
7944 * changes needed in 'conf'
7945 */
7946static void end_reshape(struct r5conf *conf)
7947{
7948
7949        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7950                struct md_rdev *rdev;
7951
7952                spin_lock_irq(&conf->device_lock);
7953                conf->previous_raid_disks = conf->raid_disks;
7954                rdev_for_each(rdev, conf->mddev)
7955                        rdev->data_offset = rdev->new_data_offset;
7956                smp_wmb();
7957                conf->reshape_progress = MaxSector;
7958                conf->mddev->reshape_position = MaxSector;
7959                spin_unlock_irq(&conf->device_lock);
7960                wake_up(&conf->wait_for_overlap);
7961
7962                /* read-ahead size must cover two whole stripes, which is
7963                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7964                 */
7965                if (conf->mddev->queue) {
7966                        int data_disks = conf->raid_disks - conf->max_degraded;
7967                        int stripe = data_disks * ((conf->chunk_sectors << 9)
7968                                                   / PAGE_SIZE);
7969                        if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7970                                conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7971                }
7972        }
7973}
7974
7975/* This is called from the raid5d thread with mddev_lock held.
7976 * It makes config changes to the device.
7977 */
7978static void raid5_finish_reshape(struct mddev *mddev)
7979{
7980        struct r5conf *conf = mddev->private;
7981
7982        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7983
7984                if (mddev->delta_disks > 0) {
7985                        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7986                        if (mddev->queue) {
7987                                set_capacity(mddev->gendisk, mddev->array_sectors);
7988                                revalidate_disk(mddev->gendisk);
7989                        }
7990                } else {
7991                        int d;
7992                        spin_lock_irq(&conf->device_lock);
7993                        mddev->degraded = raid5_calc_degraded(conf);
7994                        spin_unlock_irq(&conf->device_lock);
7995                        for (d = conf->raid_disks ;
7996                             d < conf->raid_disks - mddev->delta_disks;
7997                             d++) {
7998                                struct md_rdev *rdev = conf->disks[d].rdev;
7999                                if (rdev)
8000                                        clear_bit(In_sync, &rdev->flags);
8001                                rdev = conf->disks[d].replacement;
8002                                if (rdev)
8003                                        clear_bit(In_sync, &rdev->flags);
8004                        }
8005                }
8006                mddev->layout = conf->algorithm;
8007                mddev->chunk_sectors = conf->chunk_sectors;
8008                mddev->reshape_position = MaxSector;
8009                mddev->delta_disks = 0;
8010                mddev->reshape_backwards = 0;
8011        }
8012}
8013
8014static void raid5_quiesce(struct mddev *mddev, int state)
8015{
8016        struct r5conf *conf = mddev->private;
8017
8018        switch(state) {
8019        case 2: /* resume for a suspend */
8020                wake_up(&conf->wait_for_overlap);
8021                break;
8022
8023        case 1: /* stop all writes */
8024                lock_all_device_hash_locks_irq(conf);
8025                /* '2' tells resync/reshape to pause so that all
8026                 * active stripes can drain
8027                 */
8028                r5c_flush_cache(conf, INT_MAX);
8029                conf->quiesce = 2;
8030                wait_event_cmd(conf->wait_for_quiescent,
8031                                    atomic_read(&conf->active_stripes) == 0 &&
8032                                    atomic_read(&conf->active_aligned_reads) == 0,
8033                                    unlock_all_device_hash_locks_irq(conf),
8034                                    lock_all_device_hash_locks_irq(conf));
8035                conf->quiesce = 1;
8036                unlock_all_device_hash_locks_irq(conf);
8037                /* allow reshape to continue */
8038                wake_up(&conf->wait_for_overlap);
8039                break;
8040
8041        case 0: /* re-enable writes */
8042                lock_all_device_hash_locks_irq(conf);
8043                conf->quiesce = 0;
8044                wake_up(&conf->wait_for_quiescent);
8045                wake_up(&conf->wait_for_overlap);
8046                unlock_all_device_hash_locks_irq(conf);
8047                break;
8048        }
8049        r5l_quiesce(conf->log, state);
8050}
8051
8052static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8053{
8054        struct r0conf *raid0_conf = mddev->private;
8055        sector_t sectors;
8056
8057        /* for raid0 takeover only one zone is supported */
8058        if (raid0_conf->nr_strip_zones > 1) {
8059                pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8060                        mdname(mddev));
8061                return ERR_PTR(-EINVAL);
8062        }
8063
8064        sectors = raid0_conf->strip_zone[0].zone_end;
8065        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8066        mddev->dev_sectors = sectors;
8067        mddev->new_level = level;
8068        mddev->new_layout = ALGORITHM_PARITY_N;
8069        mddev->new_chunk_sectors = mddev->chunk_sectors;
8070        mddev->raid_disks += 1;
8071        mddev->delta_disks = 1;
8072        /* make sure it will be not marked as dirty */
8073        mddev->recovery_cp = MaxSector;
8074
8075        return setup_conf(mddev);
8076}
8077
8078static void *raid5_takeover_raid1(struct mddev *mddev)
8079{
8080        int chunksect;
8081        void *ret;
8082
8083        if (mddev->raid_disks != 2 ||
8084            mddev->degraded > 1)
8085                return ERR_PTR(-EINVAL);
8086
8087        /* Should check if there are write-behind devices? */
8088
8089        chunksect = 64*2; /* 64K by default */
8090
8091        /* The array must be an exact multiple of chunksize */
8092        while (chunksect && (mddev->array_sectors & (chunksect-1)))
8093                chunksect >>= 1;
8094
8095        if ((chunksect<<9) < STRIPE_SIZE)
8096                /* array size does not allow a suitable chunk size */
8097                return ERR_PTR(-EINVAL);
8098
8099        mddev->new_level = 5;
8100        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8101        mddev->new_chunk_sectors = chunksect;
8102
8103        ret = setup_conf(mddev);
8104        if (!IS_ERR(ret))
8105                mddev_clear_unsupported_flags(mddev,
8106                        UNSUPPORTED_MDDEV_FLAGS);
8107        return ret;
8108}
8109
8110static void *raid5_takeover_raid6(struct mddev *mddev)
8111{
8112        int new_layout;
8113
8114        switch (mddev->layout) {
8115        case ALGORITHM_LEFT_ASYMMETRIC_6:
8116                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8117                break;
8118        case ALGORITHM_RIGHT_ASYMMETRIC_6:
8119                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8120                break;
8121        case ALGORITHM_LEFT_SYMMETRIC_6:
8122                new_layout = ALGORITHM_LEFT_SYMMETRIC;
8123                break;
8124        case ALGORITHM_RIGHT_SYMMETRIC_6:
8125                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8126                break;
8127        case ALGORITHM_PARITY_0_6:
8128                new_layout = ALGORITHM_PARITY_0;
8129                break;
8130        case ALGORITHM_PARITY_N:
8131                new_layout = ALGORITHM_PARITY_N;
8132                break;
8133        default:
8134                return ERR_PTR(-EINVAL);
8135        }
8136        mddev->new_level = 5;
8137        mddev->new_layout = new_layout;
8138        mddev->delta_disks = -1;
8139        mddev->raid_disks -= 1;
8140        return setup_conf(mddev);
8141}
8142
8143static int raid5_check_reshape(struct mddev *mddev)
8144{
8145        /* For a 2-drive array, the layout and chunk size can be changed
8146         * immediately as not restriping is needed.
8147         * For larger arrays we record the new value - after validation
8148         * to be used by a reshape pass.
8149         */
8150        struct r5conf *conf = mddev->private;
8151        int new_chunk = mddev->new_chunk_sectors;
8152
8153        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8154                return -EINVAL;
8155        if (new_chunk > 0) {
8156                if (!is_power_of_2(new_chunk))
8157                        return -EINVAL;
8158                if (new_chunk < (PAGE_SIZE>>9))
8159                        return -EINVAL;
8160                if (mddev->array_sectors & (new_chunk-1))
8161                        /* not factor of array size */
8162                        return -EINVAL;
8163        }
8164
8165        /* They look valid */
8166
8167        if (mddev->raid_disks == 2) {
8168                /* can make the change immediately */
8169                if (mddev->new_layout >= 0) {
8170                        conf->algorithm = mddev->new_layout;
8171                        mddev->layout = mddev->new_layout;
8172                }
8173                if (new_chunk > 0) {
8174                        conf->chunk_sectors = new_chunk ;
8175                        mddev->chunk_sectors = new_chunk;
8176                }
8177                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8178                md_wakeup_thread(mddev->thread);
8179        }
8180        return check_reshape(mddev);
8181}
8182
8183static int raid6_check_reshape(struct mddev *mddev)
8184{
8185        int new_chunk = mddev->new_chunk_sectors;
8186
8187        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8188                return -EINVAL;
8189        if (new_chunk > 0) {
8190                if (!is_power_of_2(new_chunk))
8191                        return -EINVAL;
8192                if (new_chunk < (PAGE_SIZE >> 9))
8193                        return -EINVAL;
8194                if (mddev->array_sectors & (new_chunk-1))
8195                        /* not factor of array size */
8196                        return -EINVAL;
8197        }
8198
8199        /* They look valid */
8200        return check_reshape(mddev);
8201}
8202
8203static void *raid5_takeover(struct mddev *mddev)
8204{
8205        /* raid5 can take over:
8206         *  raid0 - if there is only one strip zone - make it a raid4 layout
8207         *  raid1 - if there are two drives.  We need to know the chunk size
8208         *  raid4 - trivial - just use a raid4 layout.
8209         *  raid6 - Providing it is a *_6 layout
8210         */
8211        if (mddev->level == 0)
8212                return raid45_takeover_raid0(mddev, 5);
8213        if (mddev->level == 1)
8214                return raid5_takeover_raid1(mddev);
8215        if (mddev->level == 4) {
8216                mddev->new_layout = ALGORITHM_PARITY_N;
8217                mddev->new_level = 5;
8218                return setup_conf(mddev);
8219        }
8220        if (mddev->level == 6)
8221                return raid5_takeover_raid6(mddev);
8222
8223        return ERR_PTR(-EINVAL);
8224}
8225
8226static void *raid4_takeover(struct mddev *mddev)
8227{
8228        /* raid4 can take over:
8229         *  raid0 - if there is only one strip zone
8230         *  raid5 - if layout is right
8231         */
8232        if (mddev->level == 0)
8233                return raid45_takeover_raid0(mddev, 4);
8234        if (mddev->level == 5 &&
8235            mddev->layout == ALGORITHM_PARITY_N) {
8236                mddev->new_layout = 0;
8237                mddev->new_level = 4;
8238                return setup_conf(mddev);
8239        }
8240        return ERR_PTR(-EINVAL);
8241}
8242
8243static struct md_personality raid5_personality;
8244
8245static void *raid6_takeover(struct mddev *mddev)
8246{
8247        /* Currently can only take over a raid5.  We map the
8248         * personality to an equivalent raid6 personality
8249         * with the Q block at the end.
8250         */
8251        int new_layout;
8252
8253        if (mddev->pers != &raid5_personality)
8254                return ERR_PTR(-EINVAL);
8255        if (mddev->degraded > 1)
8256                return ERR_PTR(-EINVAL);
8257        if (mddev->raid_disks > 253)
8258                return ERR_PTR(-EINVAL);
8259        if (mddev->raid_disks < 3)
8260                return ERR_PTR(-EINVAL);
8261
8262        switch (mddev->layout) {
8263        case ALGORITHM_LEFT_ASYMMETRIC:
8264                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8265                break;
8266        case ALGORITHM_RIGHT_ASYMMETRIC:
8267                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8268                break;
8269        case ALGORITHM_LEFT_SYMMETRIC:
8270                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8271                break;
8272        case ALGORITHM_RIGHT_SYMMETRIC:
8273                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8274                break;
8275        case ALGORITHM_PARITY_0:
8276                new_layout = ALGORITHM_PARITY_0_6;
8277                break;
8278        case ALGORITHM_PARITY_N:
8279                new_layout = ALGORITHM_PARITY_N;
8280                break;
8281        default:
8282                return ERR_PTR(-EINVAL);
8283        }
8284        mddev->new_level = 6;
8285        mddev->new_layout = new_layout;
8286        mddev->delta_disks = 1;
8287        mddev->raid_disks += 1;
8288        return setup_conf(mddev);
8289}
8290
8291static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8292{
8293        struct r5conf *conf;
8294        int err;
8295
8296        err = mddev_lock(mddev);
8297        if (err)
8298                return err;
8299        conf = mddev->private;
8300        if (!conf) {
8301                mddev_unlock(mddev);
8302                return -ENODEV;
8303        }
8304
8305        if (strncmp(buf, "ppl", 3) == 0) {
8306                /* ppl only works with RAID 5 */
8307                if (!raid5_has_ppl(conf) && conf->level == 5) {
8308                        err = log_init(conf, NULL, true);
8309                        if (!err) {
8310                                err = resize_stripes(conf, conf->pool_size);
8311                                if (err)
8312                                        log_exit(conf);
8313                        }
8314                } else
8315                        err = -EINVAL;
8316        } else if (strncmp(buf, "resync", 6) == 0) {
8317                if (raid5_has_ppl(conf)) {
8318                        mddev_suspend(mddev);
8319                        log_exit(conf);
8320                        mddev_resume(mddev);
8321                        err = resize_stripes(conf, conf->pool_size);
8322                } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8323                           r5l_log_disk_error(conf)) {
8324                        bool journal_dev_exists = false;
8325                        struct md_rdev *rdev;
8326
8327                        rdev_for_each(rdev, mddev)
8328                                if (test_bit(Journal, &rdev->flags)) {
8329                                        journal_dev_exists = true;
8330                                        break;
8331                                }
8332
8333                        if (!journal_dev_exists) {
8334                                mddev_suspend(mddev);
8335                                clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8336                                mddev_resume(mddev);
8337                        } else  /* need remove journal device first */
8338                                err = -EBUSY;
8339                } else
8340                        err = -EINVAL;
8341        } else {
8342                err = -EINVAL;
8343        }
8344
8345        if (!err)
8346                md_update_sb(mddev, 1);
8347
8348        mddev_unlock(mddev);
8349
8350        return err;
8351}
8352
8353static struct md_personality raid6_personality =
8354{
8355        .name           = "raid6",
8356        .level          = 6,
8357        .owner          = THIS_MODULE,
8358        .make_request   = raid5_make_request,
8359        .run            = raid5_run,
8360        .free           = raid5_free,
8361        .status         = raid5_status,
8362        .error_handler  = raid5_error,
8363        .hot_add_disk   = raid5_add_disk,
8364        .hot_remove_disk= raid5_remove_disk,
8365        .spare_active   = raid5_spare_active,
8366        .sync_request   = raid5_sync_request,
8367        .resize         = raid5_resize,
8368        .size           = raid5_size,
8369        .check_reshape  = raid6_check_reshape,
8370        .start_reshape  = raid5_start_reshape,
8371        .finish_reshape = raid5_finish_reshape,
8372        .quiesce        = raid5_quiesce,
8373        .takeover       = raid6_takeover,
8374        .congested      = raid5_congested,
8375        .change_consistency_policy = raid5_change_consistency_policy,
8376};
8377static struct md_personality raid5_personality =
8378{
8379        .name           = "raid5",
8380        .level          = 5,
8381        .owner          = THIS_MODULE,
8382        .make_request   = raid5_make_request,
8383        .run            = raid5_run,
8384        .free           = raid5_free,
8385        .status         = raid5_status,
8386        .error_handler  = raid5_error,
8387        .hot_add_disk   = raid5_add_disk,
8388        .hot_remove_disk= raid5_remove_disk,
8389        .spare_active   = raid5_spare_active,
8390        .sync_request   = raid5_sync_request,
8391        .resize         = raid5_resize,
8392        .size           = raid5_size,
8393        .check_reshape  = raid5_check_reshape,
8394        .start_reshape  = raid5_start_reshape,
8395        .finish_reshape = raid5_finish_reshape,
8396        .quiesce        = raid5_quiesce,
8397        .takeover       = raid5_takeover,
8398        .congested      = raid5_congested,
8399        .change_consistency_policy = raid5_change_consistency_policy,
8400};
8401
8402static struct md_personality raid4_personality =
8403{
8404        .name           = "raid4",
8405        .level          = 4,
8406        .owner          = THIS_MODULE,
8407        .make_request   = raid5_make_request,
8408        .run            = raid5_run,
8409        .free           = raid5_free,
8410        .status         = raid5_status,
8411        .error_handler  = raid5_error,
8412        .hot_add_disk   = raid5_add_disk,
8413        .hot_remove_disk= raid5_remove_disk,
8414        .spare_active   = raid5_spare_active,
8415        .sync_request   = raid5_sync_request,
8416        .resize         = raid5_resize,
8417        .size           = raid5_size,
8418        .check_reshape  = raid5_check_reshape,
8419        .start_reshape  = raid5_start_reshape,
8420        .finish_reshape = raid5_finish_reshape,
8421        .quiesce        = raid5_quiesce,
8422        .takeover       = raid4_takeover,
8423        .congested      = raid5_congested,
8424        .change_consistency_policy = raid5_change_consistency_policy,
8425};
8426
8427static int __init raid5_init(void)
8428{
8429        int ret;
8430
8431        raid5_wq = alloc_workqueue("raid5wq",
8432                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8433        if (!raid5_wq)
8434                return -ENOMEM;
8435
8436        ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8437                                      "md/raid5:prepare",
8438                                      raid456_cpu_up_prepare,
8439                                      raid456_cpu_dead);
8440        if (ret) {
8441                destroy_workqueue(raid5_wq);
8442                return ret;
8443        }
8444        register_md_personality(&raid6_personality);
8445        register_md_personality(&raid5_personality);
8446        register_md_personality(&raid4_personality);
8447        return 0;
8448}
8449
8450static void raid5_exit(void)
8451{
8452        unregister_md_personality(&raid6_personality);
8453        unregister_md_personality(&raid5_personality);
8454        unregister_md_personality(&raid4_personality);
8455        cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8456        destroy_workqueue(raid5_wq);
8457}
8458
8459module_init(raid5_init);
8460module_exit(raid5_exit);
8461MODULE_LICENSE("GPL");
8462MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8463MODULE_ALIAS("md-personality-4"); /* RAID5 */
8464MODULE_ALIAS("md-raid5");
8465MODULE_ALIAS("md-raid4");
8466MODULE_ALIAS("md-level-5");
8467MODULE_ALIAS("md-level-4");
8468MODULE_ALIAS("md-personality-8"); /* RAID6 */
8469MODULE_ALIAS("md-raid6");
8470MODULE_ALIAS("md-level-6");
8471
8472/* This used to be two separate modules, they were: */
8473MODULE_ALIAS("raid5");
8474MODULE_ALIAS("raid6");
8475