linux/drivers/media/rc/rc-main.c
<<
>>
Prefs
   1/* rc-main.c - Remote Controller core module
   2 *
   3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation version 2 of the License.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <media/rc-core.h>
  18#include <linux/atomic.h>
  19#include <linux/spinlock.h>
  20#include <linux/delay.h>
  21#include <linux/input.h>
  22#include <linux/leds.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/device.h>
  26#include <linux/module.h>
  27#include "rc-core-priv.h"
  28
  29/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  30#define IR_TAB_MIN_SIZE 256
  31#define IR_TAB_MAX_SIZE 8192
  32#define RC_DEV_MAX      256
  33
  34/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
  35#define IR_KEYPRESS_TIMEOUT 250
  36
  37/* Used to keep track of known keymaps */
  38static LIST_HEAD(rc_map_list);
  39static DEFINE_SPINLOCK(rc_map_lock);
  40static struct led_trigger *led_feedback;
  41
  42/* Used to keep track of rc devices */
  43static DEFINE_IDA(rc_ida);
  44
  45static struct rc_map_list *seek_rc_map(const char *name)
  46{
  47        struct rc_map_list *map = NULL;
  48
  49        spin_lock(&rc_map_lock);
  50        list_for_each_entry(map, &rc_map_list, list) {
  51                if (!strcmp(name, map->map.name)) {
  52                        spin_unlock(&rc_map_lock);
  53                        return map;
  54                }
  55        }
  56        spin_unlock(&rc_map_lock);
  57
  58        return NULL;
  59}
  60
  61struct rc_map *rc_map_get(const char *name)
  62{
  63
  64        struct rc_map_list *map;
  65
  66        map = seek_rc_map(name);
  67#ifdef CONFIG_MODULES
  68        if (!map) {
  69                int rc = request_module("%s", name);
  70                if (rc < 0) {
  71                        pr_err("Couldn't load IR keymap %s\n", name);
  72                        return NULL;
  73                }
  74                msleep(20);     /* Give some time for IR to register */
  75
  76                map = seek_rc_map(name);
  77        }
  78#endif
  79        if (!map) {
  80                pr_err("IR keymap %s not found\n", name);
  81                return NULL;
  82        }
  83
  84        printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
  85
  86        return &map->map;
  87}
  88EXPORT_SYMBOL_GPL(rc_map_get);
  89
  90int rc_map_register(struct rc_map_list *map)
  91{
  92        spin_lock(&rc_map_lock);
  93        list_add_tail(&map->list, &rc_map_list);
  94        spin_unlock(&rc_map_lock);
  95        return 0;
  96}
  97EXPORT_SYMBOL_GPL(rc_map_register);
  98
  99void rc_map_unregister(struct rc_map_list *map)
 100{
 101        spin_lock(&rc_map_lock);
 102        list_del(&map->list);
 103        spin_unlock(&rc_map_lock);
 104}
 105EXPORT_SYMBOL_GPL(rc_map_unregister);
 106
 107
 108static struct rc_map_table empty[] = {
 109        { 0x2a, KEY_COFFEE },
 110};
 111
 112static struct rc_map_list empty_map = {
 113        .map = {
 114                .scan    = empty,
 115                .size    = ARRAY_SIZE(empty),
 116                .rc_type = RC_TYPE_UNKNOWN,     /* Legacy IR type */
 117                .name    = RC_MAP_EMPTY,
 118        }
 119};
 120
 121/**
 122 * ir_create_table() - initializes a scancode table
 123 * @rc_map:     the rc_map to initialize
 124 * @name:       name to assign to the table
 125 * @rc_type:    ir type to assign to the new table
 126 * @size:       initial size of the table
 127 * @return:     zero on success or a negative error code
 128 *
 129 * This routine will initialize the rc_map and will allocate
 130 * memory to hold at least the specified number of elements.
 131 */
 132static int ir_create_table(struct rc_map *rc_map,
 133                           const char *name, u64 rc_type, size_t size)
 134{
 135        rc_map->name = kstrdup(name, GFP_KERNEL);
 136        if (!rc_map->name)
 137                return -ENOMEM;
 138        rc_map->rc_type = rc_type;
 139        rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 140        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 141        rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 142        if (!rc_map->scan) {
 143                kfree(rc_map->name);
 144                rc_map->name = NULL;
 145                return -ENOMEM;
 146        }
 147
 148        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 149                   rc_map->size, rc_map->alloc);
 150        return 0;
 151}
 152
 153/**
 154 * ir_free_table() - frees memory allocated by a scancode table
 155 * @rc_map:     the table whose mappings need to be freed
 156 *
 157 * This routine will free memory alloctaed for key mappings used by given
 158 * scancode table.
 159 */
 160static void ir_free_table(struct rc_map *rc_map)
 161{
 162        rc_map->size = 0;
 163        kfree(rc_map->name);
 164        rc_map->name = NULL;
 165        kfree(rc_map->scan);
 166        rc_map->scan = NULL;
 167}
 168
 169/**
 170 * ir_resize_table() - resizes a scancode table if necessary
 171 * @rc_map:     the rc_map to resize
 172 * @gfp_flags:  gfp flags to use when allocating memory
 173 * @return:     zero on success or a negative error code
 174 *
 175 * This routine will shrink the rc_map if it has lots of
 176 * unused entries and grow it if it is full.
 177 */
 178static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
 179{
 180        unsigned int oldalloc = rc_map->alloc;
 181        unsigned int newalloc = oldalloc;
 182        struct rc_map_table *oldscan = rc_map->scan;
 183        struct rc_map_table *newscan;
 184
 185        if (rc_map->size == rc_map->len) {
 186                /* All entries in use -> grow keytable */
 187                if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 188                        return -ENOMEM;
 189
 190                newalloc *= 2;
 191                IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
 192        }
 193
 194        if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 195                /* Less than 1/3 of entries in use -> shrink keytable */
 196                newalloc /= 2;
 197                IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
 198        }
 199
 200        if (newalloc == oldalloc)
 201                return 0;
 202
 203        newscan = kmalloc(newalloc, gfp_flags);
 204        if (!newscan) {
 205                IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
 206                return -ENOMEM;
 207        }
 208
 209        memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 210        rc_map->scan = newscan;
 211        rc_map->alloc = newalloc;
 212        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 213        kfree(oldscan);
 214        return 0;
 215}
 216
 217/**
 218 * ir_update_mapping() - set a keycode in the scancode->keycode table
 219 * @dev:        the struct rc_dev device descriptor
 220 * @rc_map:     scancode table to be adjusted
 221 * @index:      index of the mapping that needs to be updated
 222 * @keycode:    the desired keycode
 223 * @return:     previous keycode assigned to the mapping
 224 *
 225 * This routine is used to update scancode->keycode mapping at given
 226 * position.
 227 */
 228static unsigned int ir_update_mapping(struct rc_dev *dev,
 229                                      struct rc_map *rc_map,
 230                                      unsigned int index,
 231                                      unsigned int new_keycode)
 232{
 233        int old_keycode = rc_map->scan[index].keycode;
 234        int i;
 235
 236        /* Did the user wish to remove the mapping? */
 237        if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 238                IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
 239                           index, rc_map->scan[index].scancode);
 240                rc_map->len--;
 241                memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 242                        (rc_map->len - index) * sizeof(struct rc_map_table));
 243        } else {
 244                IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
 245                           index,
 246                           old_keycode == KEY_RESERVED ? "New" : "Replacing",
 247                           rc_map->scan[index].scancode, new_keycode);
 248                rc_map->scan[index].keycode = new_keycode;
 249                __set_bit(new_keycode, dev->input_dev->keybit);
 250        }
 251
 252        if (old_keycode != KEY_RESERVED) {
 253                /* A previous mapping was updated... */
 254                __clear_bit(old_keycode, dev->input_dev->keybit);
 255                /* ... but another scancode might use the same keycode */
 256                for (i = 0; i < rc_map->len; i++) {
 257                        if (rc_map->scan[i].keycode == old_keycode) {
 258                                __set_bit(old_keycode, dev->input_dev->keybit);
 259                                break;
 260                        }
 261                }
 262
 263                /* Possibly shrink the keytable, failure is not a problem */
 264                ir_resize_table(rc_map, GFP_ATOMIC);
 265        }
 266
 267        return old_keycode;
 268}
 269
 270/**
 271 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 272 * @dev:        the struct rc_dev device descriptor
 273 * @rc_map:     scancode table to be searched
 274 * @scancode:   the desired scancode
 275 * @resize:     controls whether we allowed to resize the table to
 276 *              accommodate not yet present scancodes
 277 * @return:     index of the mapping containing scancode in question
 278 *              or -1U in case of failure.
 279 *
 280 * This routine is used to locate given scancode in rc_map.
 281 * If scancode is not yet present the routine will allocate a new slot
 282 * for it.
 283 */
 284static unsigned int ir_establish_scancode(struct rc_dev *dev,
 285                                          struct rc_map *rc_map,
 286                                          unsigned int scancode,
 287                                          bool resize)
 288{
 289        unsigned int i;
 290
 291        /*
 292         * Unfortunately, some hardware-based IR decoders don't provide
 293         * all bits for the complete IR code. In general, they provide only
 294         * the command part of the IR code. Yet, as it is possible to replace
 295         * the provided IR with another one, it is needed to allow loading
 296         * IR tables from other remotes. So, we support specifying a mask to
 297         * indicate the valid bits of the scancodes.
 298         */
 299        if (dev->scancode_mask)
 300                scancode &= dev->scancode_mask;
 301
 302        /* First check if we already have a mapping for this ir command */
 303        for (i = 0; i < rc_map->len; i++) {
 304                if (rc_map->scan[i].scancode == scancode)
 305                        return i;
 306
 307                /* Keytable is sorted from lowest to highest scancode */
 308                if (rc_map->scan[i].scancode >= scancode)
 309                        break;
 310        }
 311
 312        /* No previous mapping found, we might need to grow the table */
 313        if (rc_map->size == rc_map->len) {
 314                if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
 315                        return -1U;
 316        }
 317
 318        /* i is the proper index to insert our new keycode */
 319        if (i < rc_map->len)
 320                memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 321                        (rc_map->len - i) * sizeof(struct rc_map_table));
 322        rc_map->scan[i].scancode = scancode;
 323        rc_map->scan[i].keycode = KEY_RESERVED;
 324        rc_map->len++;
 325
 326        return i;
 327}
 328
 329/**
 330 * ir_setkeycode() - set a keycode in the scancode->keycode table
 331 * @idev:       the struct input_dev device descriptor
 332 * @scancode:   the desired scancode
 333 * @keycode:    result
 334 * @return:     -EINVAL if the keycode could not be inserted, otherwise zero.
 335 *
 336 * This routine is used to handle evdev EVIOCSKEY ioctl.
 337 */
 338static int ir_setkeycode(struct input_dev *idev,
 339                         const struct input_keymap_entry *ke,
 340                         unsigned int *old_keycode)
 341{
 342        struct rc_dev *rdev = input_get_drvdata(idev);
 343        struct rc_map *rc_map = &rdev->rc_map;
 344        unsigned int index;
 345        unsigned int scancode;
 346        int retval = 0;
 347        unsigned long flags;
 348
 349        spin_lock_irqsave(&rc_map->lock, flags);
 350
 351        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 352                index = ke->index;
 353                if (index >= rc_map->len) {
 354                        retval = -EINVAL;
 355                        goto out;
 356                }
 357        } else {
 358                retval = input_scancode_to_scalar(ke, &scancode);
 359                if (retval)
 360                        goto out;
 361
 362                index = ir_establish_scancode(rdev, rc_map, scancode, true);
 363                if (index >= rc_map->len) {
 364                        retval = -ENOMEM;
 365                        goto out;
 366                }
 367        }
 368
 369        *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 370
 371out:
 372        spin_unlock_irqrestore(&rc_map->lock, flags);
 373        return retval;
 374}
 375
 376/**
 377 * ir_setkeytable() - sets several entries in the scancode->keycode table
 378 * @dev:        the struct rc_dev device descriptor
 379 * @to:         the struct rc_map to copy entries to
 380 * @from:       the struct rc_map to copy entries from
 381 * @return:     -ENOMEM if all keycodes could not be inserted, otherwise zero.
 382 *
 383 * This routine is used to handle table initialization.
 384 */
 385static int ir_setkeytable(struct rc_dev *dev,
 386                          const struct rc_map *from)
 387{
 388        struct rc_map *rc_map = &dev->rc_map;
 389        unsigned int i, index;
 390        int rc;
 391
 392        rc = ir_create_table(rc_map, from->name,
 393                             from->rc_type, from->size);
 394        if (rc)
 395                return rc;
 396
 397        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 398                   rc_map->size, rc_map->alloc);
 399
 400        for (i = 0; i < from->size; i++) {
 401                index = ir_establish_scancode(dev, rc_map,
 402                                              from->scan[i].scancode, false);
 403                if (index >= rc_map->len) {
 404                        rc = -ENOMEM;
 405                        break;
 406                }
 407
 408                ir_update_mapping(dev, rc_map, index,
 409                                  from->scan[i].keycode);
 410        }
 411
 412        if (rc)
 413                ir_free_table(rc_map);
 414
 415        return rc;
 416}
 417
 418/**
 419 * ir_lookup_by_scancode() - locate mapping by scancode
 420 * @rc_map:     the struct rc_map to search
 421 * @scancode:   scancode to look for in the table
 422 * @return:     index in the table, -1U if not found
 423 *
 424 * This routine performs binary search in RC keykeymap table for
 425 * given scancode.
 426 */
 427static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 428                                          unsigned int scancode)
 429{
 430        int start = 0;
 431        int end = rc_map->len - 1;
 432        int mid;
 433
 434        while (start <= end) {
 435                mid = (start + end) / 2;
 436                if (rc_map->scan[mid].scancode < scancode)
 437                        start = mid + 1;
 438                else if (rc_map->scan[mid].scancode > scancode)
 439                        end = mid - 1;
 440                else
 441                        return mid;
 442        }
 443
 444        return -1U;
 445}
 446
 447/**
 448 * ir_getkeycode() - get a keycode from the scancode->keycode table
 449 * @idev:       the struct input_dev device descriptor
 450 * @scancode:   the desired scancode
 451 * @keycode:    used to return the keycode, if found, or KEY_RESERVED
 452 * @return:     always returns zero.
 453 *
 454 * This routine is used to handle evdev EVIOCGKEY ioctl.
 455 */
 456static int ir_getkeycode(struct input_dev *idev,
 457                         struct input_keymap_entry *ke)
 458{
 459        struct rc_dev *rdev = input_get_drvdata(idev);
 460        struct rc_map *rc_map = &rdev->rc_map;
 461        struct rc_map_table *entry;
 462        unsigned long flags;
 463        unsigned int index;
 464        unsigned int scancode;
 465        int retval;
 466
 467        spin_lock_irqsave(&rc_map->lock, flags);
 468
 469        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 470                index = ke->index;
 471        } else {
 472                retval = input_scancode_to_scalar(ke, &scancode);
 473                if (retval)
 474                        goto out;
 475
 476                index = ir_lookup_by_scancode(rc_map, scancode);
 477        }
 478
 479        if (index < rc_map->len) {
 480                entry = &rc_map->scan[index];
 481
 482                ke->index = index;
 483                ke->keycode = entry->keycode;
 484                ke->len = sizeof(entry->scancode);
 485                memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 486
 487        } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 488                /*
 489                 * We do not really know the valid range of scancodes
 490                 * so let's respond with KEY_RESERVED to anything we
 491                 * do not have mapping for [yet].
 492                 */
 493                ke->index = index;
 494                ke->keycode = KEY_RESERVED;
 495        } else {
 496                retval = -EINVAL;
 497                goto out;
 498        }
 499
 500        retval = 0;
 501
 502out:
 503        spin_unlock_irqrestore(&rc_map->lock, flags);
 504        return retval;
 505}
 506
 507/**
 508 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 509 * @dev:        the struct rc_dev descriptor of the device
 510 * @scancode:   the scancode to look for
 511 * @return:     the corresponding keycode, or KEY_RESERVED
 512 *
 513 * This routine is used by drivers which need to convert a scancode to a
 514 * keycode. Normally it should not be used since drivers should have no
 515 * interest in keycodes.
 516 */
 517u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
 518{
 519        struct rc_map *rc_map = &dev->rc_map;
 520        unsigned int keycode;
 521        unsigned int index;
 522        unsigned long flags;
 523
 524        spin_lock_irqsave(&rc_map->lock, flags);
 525
 526        index = ir_lookup_by_scancode(rc_map, scancode);
 527        keycode = index < rc_map->len ?
 528                        rc_map->scan[index].keycode : KEY_RESERVED;
 529
 530        spin_unlock_irqrestore(&rc_map->lock, flags);
 531
 532        if (keycode != KEY_RESERVED)
 533                IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
 534                           dev->input_name, scancode, keycode);
 535
 536        return keycode;
 537}
 538EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 539
 540/**
 541 * ir_do_keyup() - internal function to signal the release of a keypress
 542 * @dev:        the struct rc_dev descriptor of the device
 543 * @sync:       whether or not to call input_sync
 544 *
 545 * This function is used internally to release a keypress, it must be
 546 * called with keylock held.
 547 */
 548static void ir_do_keyup(struct rc_dev *dev, bool sync)
 549{
 550        if (!dev->keypressed)
 551                return;
 552
 553        IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
 554        input_report_key(dev->input_dev, dev->last_keycode, 0);
 555        led_trigger_event(led_feedback, LED_OFF);
 556        if (sync)
 557                input_sync(dev->input_dev);
 558        dev->keypressed = false;
 559}
 560
 561/**
 562 * rc_keyup() - signals the release of a keypress
 563 * @dev:        the struct rc_dev descriptor of the device
 564 *
 565 * This routine is used to signal that a key has been released on the
 566 * remote control.
 567 */
 568void rc_keyup(struct rc_dev *dev)
 569{
 570        unsigned long flags;
 571
 572        spin_lock_irqsave(&dev->keylock, flags);
 573        ir_do_keyup(dev, true);
 574        spin_unlock_irqrestore(&dev->keylock, flags);
 575}
 576EXPORT_SYMBOL_GPL(rc_keyup);
 577
 578/**
 579 * ir_timer_keyup() - generates a keyup event after a timeout
 580 * @cookie:     a pointer to the struct rc_dev for the device
 581 *
 582 * This routine will generate a keyup event some time after a keydown event
 583 * is generated when no further activity has been detected.
 584 */
 585static void ir_timer_keyup(unsigned long cookie)
 586{
 587        struct rc_dev *dev = (struct rc_dev *)cookie;
 588        unsigned long flags;
 589
 590        /*
 591         * ir->keyup_jiffies is used to prevent a race condition if a
 592         * hardware interrupt occurs at this point and the keyup timer
 593         * event is moved further into the future as a result.
 594         *
 595         * The timer will then be reactivated and this function called
 596         * again in the future. We need to exit gracefully in that case
 597         * to allow the input subsystem to do its auto-repeat magic or
 598         * a keyup event might follow immediately after the keydown.
 599         */
 600        spin_lock_irqsave(&dev->keylock, flags);
 601        if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 602                ir_do_keyup(dev, true);
 603        spin_unlock_irqrestore(&dev->keylock, flags);
 604}
 605
 606/**
 607 * rc_repeat() - signals that a key is still pressed
 608 * @dev:        the struct rc_dev descriptor of the device
 609 *
 610 * This routine is used by IR decoders when a repeat message which does
 611 * not include the necessary bits to reproduce the scancode has been
 612 * received.
 613 */
 614void rc_repeat(struct rc_dev *dev)
 615{
 616        unsigned long flags;
 617
 618        spin_lock_irqsave(&dev->keylock, flags);
 619
 620        input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
 621        input_sync(dev->input_dev);
 622
 623        if (!dev->keypressed)
 624                goto out;
 625
 626        dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 627        mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 628
 629out:
 630        spin_unlock_irqrestore(&dev->keylock, flags);
 631}
 632EXPORT_SYMBOL_GPL(rc_repeat);
 633
 634/**
 635 * ir_do_keydown() - internal function to process a keypress
 636 * @dev:        the struct rc_dev descriptor of the device
 637 * @protocol:   the protocol of the keypress
 638 * @scancode:   the scancode of the keypress
 639 * @keycode:    the keycode of the keypress
 640 * @toggle:     the toggle value of the keypress
 641 *
 642 * This function is used internally to register a keypress, it must be
 643 * called with keylock held.
 644 */
 645static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
 646                          u32 scancode, u32 keycode, u8 toggle)
 647{
 648        bool new_event = (!dev->keypressed               ||
 649                          dev->last_protocol != protocol ||
 650                          dev->last_scancode != scancode ||
 651                          dev->last_toggle   != toggle);
 652
 653        if (new_event && dev->keypressed)
 654                ir_do_keyup(dev, false);
 655
 656        input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 657
 658        if (new_event && keycode != KEY_RESERVED) {
 659                /* Register a keypress */
 660                dev->keypressed = true;
 661                dev->last_protocol = protocol;
 662                dev->last_scancode = scancode;
 663                dev->last_toggle = toggle;
 664                dev->last_keycode = keycode;
 665
 666                IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
 667                           dev->input_name, keycode, protocol, scancode);
 668                input_report_key(dev->input_dev, keycode, 1);
 669
 670                led_trigger_event(led_feedback, LED_FULL);
 671        }
 672
 673        input_sync(dev->input_dev);
 674}
 675
 676/**
 677 * rc_keydown() - generates input event for a key press
 678 * @dev:        the struct rc_dev descriptor of the device
 679 * @protocol:   the protocol for the keypress
 680 * @scancode:   the scancode for the keypress
 681 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 682 *              support toggle values, this should be set to zero)
 683 *
 684 * This routine is used to signal that a key has been pressed on the
 685 * remote control.
 686 */
 687void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
 688{
 689        unsigned long flags;
 690        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 691
 692        spin_lock_irqsave(&dev->keylock, flags);
 693        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 694
 695        if (dev->keypressed) {
 696                dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 697                mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 698        }
 699        spin_unlock_irqrestore(&dev->keylock, flags);
 700}
 701EXPORT_SYMBOL_GPL(rc_keydown);
 702
 703/**
 704 * rc_keydown_notimeout() - generates input event for a key press without
 705 *                          an automatic keyup event at a later time
 706 * @dev:        the struct rc_dev descriptor of the device
 707 * @protocol:   the protocol for the keypress
 708 * @scancode:   the scancode for the keypress
 709 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 710 *              support toggle values, this should be set to zero)
 711 *
 712 * This routine is used to signal that a key has been pressed on the
 713 * remote control. The driver must manually call rc_keyup() at a later stage.
 714 */
 715void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
 716                          u32 scancode, u8 toggle)
 717{
 718        unsigned long flags;
 719        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 720
 721        spin_lock_irqsave(&dev->keylock, flags);
 722        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 723        spin_unlock_irqrestore(&dev->keylock, flags);
 724}
 725EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 726
 727/**
 728 * rc_validate_filter() - checks that the scancode and mask are valid and
 729 *                        provides sensible defaults
 730 * @dev:        the struct rc_dev descriptor of the device
 731 * @filter:     the scancode and mask
 732 * @return:     0 or -EINVAL if the filter is not valid
 733 */
 734static int rc_validate_filter(struct rc_dev *dev,
 735                              struct rc_scancode_filter *filter)
 736{
 737        static u32 masks[] = {
 738                [RC_TYPE_RC5] = 0x1f7f,
 739                [RC_TYPE_RC5X_20] = 0x1f7f3f,
 740                [RC_TYPE_RC5_SZ] = 0x2fff,
 741                [RC_TYPE_SONY12] = 0x1f007f,
 742                [RC_TYPE_SONY15] = 0xff007f,
 743                [RC_TYPE_SONY20] = 0x1fff7f,
 744                [RC_TYPE_JVC] = 0xffff,
 745                [RC_TYPE_NEC] = 0xffff,
 746                [RC_TYPE_NECX] = 0xffffff,
 747                [RC_TYPE_NEC32] = 0xffffffff,
 748                [RC_TYPE_SANYO] = 0x1fffff,
 749                [RC_TYPE_MCIR2_KBD] = 0xffff,
 750                [RC_TYPE_MCIR2_MSE] = 0x1fffff,
 751                [RC_TYPE_RC6_0] = 0xffff,
 752                [RC_TYPE_RC6_6A_20] = 0xfffff,
 753                [RC_TYPE_RC6_6A_24] = 0xffffff,
 754                [RC_TYPE_RC6_6A_32] = 0xffffffff,
 755                [RC_TYPE_RC6_MCE] = 0xffff7fff,
 756                [RC_TYPE_SHARP] = 0x1fff,
 757        };
 758        u32 s = filter->data;
 759        enum rc_type protocol = dev->wakeup_protocol;
 760
 761        switch (protocol) {
 762        case RC_TYPE_NECX:
 763                if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
 764                        return -EINVAL;
 765                break;
 766        case RC_TYPE_NEC32:
 767                if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
 768                        return -EINVAL;
 769                break;
 770        case RC_TYPE_RC6_MCE:
 771                if ((s & 0xffff0000) != 0x800f0000)
 772                        return -EINVAL;
 773                break;
 774        case RC_TYPE_RC6_6A_32:
 775                if ((s & 0xffff0000) == 0x800f0000)
 776                        return -EINVAL;
 777                break;
 778        default:
 779                break;
 780        }
 781
 782        filter->data &= masks[protocol];
 783        filter->mask &= masks[protocol];
 784
 785        /*
 786         * If we have to raw encode the IR for wakeup, we cannot have a mask
 787         */
 788        if (dev->encode_wakeup &&
 789            filter->mask != 0 && filter->mask != masks[protocol])
 790                return -EINVAL;
 791
 792        return 0;
 793}
 794
 795int rc_open(struct rc_dev *rdev)
 796{
 797        int rval = 0;
 798
 799        if (!rdev)
 800                return -EINVAL;
 801
 802        mutex_lock(&rdev->lock);
 803
 804        if (!rdev->users++ && rdev->open != NULL)
 805                rval = rdev->open(rdev);
 806
 807        if (rval)
 808                rdev->users--;
 809
 810        mutex_unlock(&rdev->lock);
 811
 812        return rval;
 813}
 814EXPORT_SYMBOL_GPL(rc_open);
 815
 816static int ir_open(struct input_dev *idev)
 817{
 818        struct rc_dev *rdev = input_get_drvdata(idev);
 819
 820        return rc_open(rdev);
 821}
 822
 823void rc_close(struct rc_dev *rdev)
 824{
 825        if (rdev) {
 826                mutex_lock(&rdev->lock);
 827
 828                if (!--rdev->users && rdev->close != NULL)
 829                        rdev->close(rdev);
 830
 831                mutex_unlock(&rdev->lock);
 832        }
 833}
 834EXPORT_SYMBOL_GPL(rc_close);
 835
 836static void ir_close(struct input_dev *idev)
 837{
 838        struct rc_dev *rdev = input_get_drvdata(idev);
 839        rc_close(rdev);
 840}
 841
 842/* class for /sys/class/rc */
 843static char *rc_devnode(struct device *dev, umode_t *mode)
 844{
 845        return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 846}
 847
 848static struct class rc_class = {
 849        .name           = "rc",
 850        .devnode        = rc_devnode,
 851};
 852
 853/*
 854 * These are the protocol textual descriptions that are
 855 * used by the sysfs protocols file. Note that the order
 856 * of the entries is relevant.
 857 */
 858static const struct {
 859        u64     type;
 860        const char      *name;
 861        const char      *module_name;
 862} proto_names[] = {
 863        { RC_BIT_NONE,          "none",         NULL                    },
 864        { RC_BIT_OTHER,         "other",        NULL                    },
 865        { RC_BIT_UNKNOWN,       "unknown",      NULL                    },
 866        { RC_BIT_RC5 |
 867          RC_BIT_RC5X_20,       "rc-5",         "ir-rc5-decoder"        },
 868        { RC_BIT_NEC |
 869          RC_BIT_NECX |
 870          RC_BIT_NEC32,         "nec",          "ir-nec-decoder"        },
 871        { RC_BIT_RC6_0 |
 872          RC_BIT_RC6_6A_20 |
 873          RC_BIT_RC6_6A_24 |
 874          RC_BIT_RC6_6A_32 |
 875          RC_BIT_RC6_MCE,       "rc-6",         "ir-rc6-decoder"        },
 876        { RC_BIT_JVC,           "jvc",          "ir-jvc-decoder"        },
 877        { RC_BIT_SONY12 |
 878          RC_BIT_SONY15 |
 879          RC_BIT_SONY20,        "sony",         "ir-sony-decoder"       },
 880        { RC_BIT_RC5_SZ,        "rc-5-sz",      "ir-rc5-decoder"        },
 881        { RC_BIT_SANYO,         "sanyo",        "ir-sanyo-decoder"      },
 882        { RC_BIT_SHARP,         "sharp",        "ir-sharp-decoder"      },
 883        { RC_BIT_MCIR2_KBD |
 884          RC_BIT_MCIR2_MSE,     "mce_kbd",      "ir-mce_kbd-decoder"    },
 885        { RC_BIT_XMP,           "xmp",          "ir-xmp-decoder"        },
 886        { RC_BIT_CEC,           "cec",          NULL                    },
 887};
 888
 889/**
 890 * struct rc_filter_attribute - Device attribute relating to a filter type.
 891 * @attr:       Device attribute.
 892 * @type:       Filter type.
 893 * @mask:       false for filter value, true for filter mask.
 894 */
 895struct rc_filter_attribute {
 896        struct device_attribute         attr;
 897        enum rc_filter_type             type;
 898        bool                            mask;
 899};
 900#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
 901
 902#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)       \
 903        struct rc_filter_attribute dev_attr_##_name = {                 \
 904                .attr = __ATTR(_name, _mode, _show, _store),            \
 905                .type = (_type),                                        \
 906                .mask = (_mask),                                        \
 907        }
 908
 909static bool lirc_is_present(void)
 910{
 911#if defined(CONFIG_LIRC_MODULE)
 912        struct module *lirc;
 913
 914        mutex_lock(&module_mutex);
 915        lirc = find_module("lirc_dev");
 916        mutex_unlock(&module_mutex);
 917
 918        return lirc ? true : false;
 919#elif defined(CONFIG_LIRC)
 920        return true;
 921#else
 922        return false;
 923#endif
 924}
 925
 926/**
 927 * show_protocols() - shows the current IR protocol(s)
 928 * @device:     the device descriptor
 929 * @mattr:      the device attribute struct
 930 * @buf:        a pointer to the output buffer
 931 *
 932 * This routine is a callback routine for input read the IR protocol type(s).
 933 * it is trigged by reading /sys/class/rc/rc?/protocols.
 934 * It returns the protocol names of supported protocols.
 935 * Enabled protocols are printed in brackets.
 936 *
 937 * dev->lock is taken to guard against races between device
 938 * registration, store_protocols and show_protocols.
 939 */
 940static ssize_t show_protocols(struct device *device,
 941                              struct device_attribute *mattr, char *buf)
 942{
 943        struct rc_dev *dev = to_rc_dev(device);
 944        u64 allowed, enabled;
 945        char *tmp = buf;
 946        int i;
 947
 948        /* Device is being removed */
 949        if (!dev)
 950                return -EINVAL;
 951
 952        if (!atomic_read(&dev->initialized))
 953                return -ERESTARTSYS;
 954
 955        mutex_lock(&dev->lock);
 956
 957        enabled = dev->enabled_protocols;
 958        allowed = dev->allowed_protocols;
 959        if (dev->raw && !allowed)
 960                allowed = ir_raw_get_allowed_protocols();
 961
 962        mutex_unlock(&dev->lock);
 963
 964        IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
 965                   __func__, (long long)allowed, (long long)enabled);
 966
 967        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 968                if (allowed & enabled & proto_names[i].type)
 969                        tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
 970                else if (allowed & proto_names[i].type)
 971                        tmp += sprintf(tmp, "%s ", proto_names[i].name);
 972
 973                if (allowed & proto_names[i].type)
 974                        allowed &= ~proto_names[i].type;
 975        }
 976
 977        if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
 978                tmp += sprintf(tmp, "[lirc] ");
 979
 980        if (tmp != buf)
 981                tmp--;
 982        *tmp = '\n';
 983
 984        return tmp + 1 - buf;
 985}
 986
 987/**
 988 * parse_protocol_change() - parses a protocol change request
 989 * @protocols:  pointer to the bitmask of current protocols
 990 * @buf:        pointer to the buffer with a list of changes
 991 *
 992 * Writing "+proto" will add a protocol to the protocol mask.
 993 * Writing "-proto" will remove a protocol from protocol mask.
 994 * Writing "proto" will enable only "proto".
 995 * Writing "none" will disable all protocols.
 996 * Returns the number of changes performed or a negative error code.
 997 */
 998static int parse_protocol_change(u64 *protocols, const char *buf)
 999{
1000        const char *tmp;
1001        unsigned count = 0;
1002        bool enable, disable;
1003        u64 mask;
1004        int i;
1005
1006        while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1007                if (!*tmp)
1008                        break;
1009
1010                if (*tmp == '+') {
1011                        enable = true;
1012                        disable = false;
1013                        tmp++;
1014                } else if (*tmp == '-') {
1015                        enable = false;
1016                        disable = true;
1017                        tmp++;
1018                } else {
1019                        enable = false;
1020                        disable = false;
1021                }
1022
1023                for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1024                        if (!strcasecmp(tmp, proto_names[i].name)) {
1025                                mask = proto_names[i].type;
1026                                break;
1027                        }
1028                }
1029
1030                if (i == ARRAY_SIZE(proto_names)) {
1031                        if (!strcasecmp(tmp, "lirc"))
1032                                mask = 0;
1033                        else {
1034                                IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1035                                return -EINVAL;
1036                        }
1037                }
1038
1039                count++;
1040
1041                if (enable)
1042                        *protocols |= mask;
1043                else if (disable)
1044                        *protocols &= ~mask;
1045                else
1046                        *protocols = mask;
1047        }
1048
1049        if (!count) {
1050                IR_dprintk(1, "Protocol not specified\n");
1051                return -EINVAL;
1052        }
1053
1054        return count;
1055}
1056
1057static void ir_raw_load_modules(u64 *protocols)
1058{
1059        u64 available;
1060        int i, ret;
1061
1062        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1063                if (proto_names[i].type == RC_BIT_NONE ||
1064                    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1065                        continue;
1066
1067                available = ir_raw_get_allowed_protocols();
1068                if (!(*protocols & proto_names[i].type & ~available))
1069                        continue;
1070
1071                if (!proto_names[i].module_name) {
1072                        pr_err("Can't enable IR protocol %s\n",
1073                               proto_names[i].name);
1074                        *protocols &= ~proto_names[i].type;
1075                        continue;
1076                }
1077
1078                ret = request_module("%s", proto_names[i].module_name);
1079                if (ret < 0) {
1080                        pr_err("Couldn't load IR protocol module %s\n",
1081                               proto_names[i].module_name);
1082                        *protocols &= ~proto_names[i].type;
1083                        continue;
1084                }
1085                msleep(20);
1086                available = ir_raw_get_allowed_protocols();
1087                if (!(*protocols & proto_names[i].type & ~available))
1088                        continue;
1089
1090                pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1091                       proto_names[i].module_name,
1092                       proto_names[i].name);
1093                *protocols &= ~proto_names[i].type;
1094        }
1095}
1096
1097/**
1098 * store_protocols() - changes the current/wakeup IR protocol(s)
1099 * @device:     the device descriptor
1100 * @mattr:      the device attribute struct
1101 * @buf:        a pointer to the input buffer
1102 * @len:        length of the input buffer
1103 *
1104 * This routine is for changing the IR protocol type.
1105 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1106 * See parse_protocol_change() for the valid commands.
1107 * Returns @len on success or a negative error code.
1108 *
1109 * dev->lock is taken to guard against races between device
1110 * registration, store_protocols and show_protocols.
1111 */
1112static ssize_t store_protocols(struct device *device,
1113                               struct device_attribute *mattr,
1114                               const char *buf, size_t len)
1115{
1116        struct rc_dev *dev = to_rc_dev(device);
1117        u64 *current_protocols;
1118        struct rc_scancode_filter *filter;
1119        u64 old_protocols, new_protocols;
1120        ssize_t rc;
1121
1122        /* Device is being removed */
1123        if (!dev)
1124                return -EINVAL;
1125
1126        if (!atomic_read(&dev->initialized))
1127                return -ERESTARTSYS;
1128
1129        IR_dprintk(1, "Normal protocol change requested\n");
1130        current_protocols = &dev->enabled_protocols;
1131        filter = &dev->scancode_filter;
1132
1133        if (!dev->change_protocol) {
1134                IR_dprintk(1, "Protocol switching not supported\n");
1135                return -EINVAL;
1136        }
1137
1138        mutex_lock(&dev->lock);
1139
1140        old_protocols = *current_protocols;
1141        new_protocols = old_protocols;
1142        rc = parse_protocol_change(&new_protocols, buf);
1143        if (rc < 0)
1144                goto out;
1145
1146        rc = dev->change_protocol(dev, &new_protocols);
1147        if (rc < 0) {
1148                IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1149                           (long long)new_protocols);
1150                goto out;
1151        }
1152
1153        if (dev->driver_type == RC_DRIVER_IR_RAW)
1154                ir_raw_load_modules(&new_protocols);
1155
1156        if (new_protocols != old_protocols) {
1157                *current_protocols = new_protocols;
1158                IR_dprintk(1, "Protocols changed to 0x%llx\n",
1159                           (long long)new_protocols);
1160        }
1161
1162        /*
1163         * If a protocol change was attempted the filter may need updating, even
1164         * if the actual protocol mask hasn't changed (since the driver may have
1165         * cleared the filter).
1166         * Try setting the same filter with the new protocol (if any).
1167         * Fall back to clearing the filter.
1168         */
1169        if (dev->s_filter && filter->mask) {
1170                if (new_protocols)
1171                        rc = dev->s_filter(dev, filter);
1172                else
1173                        rc = -1;
1174
1175                if (rc < 0) {
1176                        filter->data = 0;
1177                        filter->mask = 0;
1178                        dev->s_filter(dev, filter);
1179                }
1180        }
1181
1182        rc = len;
1183
1184out:
1185        mutex_unlock(&dev->lock);
1186        return rc;
1187}
1188
1189/**
1190 * show_filter() - shows the current scancode filter value or mask
1191 * @device:     the device descriptor
1192 * @attr:       the device attribute struct
1193 * @buf:        a pointer to the output buffer
1194 *
1195 * This routine is a callback routine to read a scancode filter value or mask.
1196 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1197 * It prints the current scancode filter value or mask of the appropriate filter
1198 * type in hexadecimal into @buf and returns the size of the buffer.
1199 *
1200 * Bits of the filter value corresponding to set bits in the filter mask are
1201 * compared against input scancodes and non-matching scancodes are discarded.
1202 *
1203 * dev->lock is taken to guard against races between device registration,
1204 * store_filter and show_filter.
1205 */
1206static ssize_t show_filter(struct device *device,
1207                           struct device_attribute *attr,
1208                           char *buf)
1209{
1210        struct rc_dev *dev = to_rc_dev(device);
1211        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1212        struct rc_scancode_filter *filter;
1213        u32 val;
1214
1215        /* Device is being removed */
1216        if (!dev)
1217                return -EINVAL;
1218
1219        if (!atomic_read(&dev->initialized))
1220                return -ERESTARTSYS;
1221
1222        mutex_lock(&dev->lock);
1223
1224        if (fattr->type == RC_FILTER_NORMAL)
1225                filter = &dev->scancode_filter;
1226        else
1227                filter = &dev->scancode_wakeup_filter;
1228
1229        if (fattr->mask)
1230                val = filter->mask;
1231        else
1232                val = filter->data;
1233        mutex_unlock(&dev->lock);
1234
1235        return sprintf(buf, "%#x\n", val);
1236}
1237
1238/**
1239 * store_filter() - changes the scancode filter value
1240 * @device:     the device descriptor
1241 * @attr:       the device attribute struct
1242 * @buf:        a pointer to the input buffer
1243 * @len:        length of the input buffer
1244 *
1245 * This routine is for changing a scancode filter value or mask.
1246 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1247 * Returns -EINVAL if an invalid filter value for the current protocol was
1248 * specified or if scancode filtering is not supported by the driver, otherwise
1249 * returns @len.
1250 *
1251 * Bits of the filter value corresponding to set bits in the filter mask are
1252 * compared against input scancodes and non-matching scancodes are discarded.
1253 *
1254 * dev->lock is taken to guard against races between device registration,
1255 * store_filter and show_filter.
1256 */
1257static ssize_t store_filter(struct device *device,
1258                            struct device_attribute *attr,
1259                            const char *buf, size_t len)
1260{
1261        struct rc_dev *dev = to_rc_dev(device);
1262        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1263        struct rc_scancode_filter new_filter, *filter;
1264        int ret;
1265        unsigned long val;
1266        int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1267
1268        /* Device is being removed */
1269        if (!dev)
1270                return -EINVAL;
1271
1272        if (!atomic_read(&dev->initialized))
1273                return -ERESTARTSYS;
1274
1275        ret = kstrtoul(buf, 0, &val);
1276        if (ret < 0)
1277                return ret;
1278
1279        if (fattr->type == RC_FILTER_NORMAL) {
1280                set_filter = dev->s_filter;
1281                filter = &dev->scancode_filter;
1282        } else {
1283                set_filter = dev->s_wakeup_filter;
1284                filter = &dev->scancode_wakeup_filter;
1285        }
1286
1287        if (!set_filter)
1288                return -EINVAL;
1289
1290        mutex_lock(&dev->lock);
1291
1292        new_filter = *filter;
1293        if (fattr->mask)
1294                new_filter.mask = val;
1295        else
1296                new_filter.data = val;
1297
1298        if (fattr->type == RC_FILTER_WAKEUP) {
1299                /*
1300                 * Refuse to set a filter unless a protocol is enabled
1301                 * and the filter is valid for that protocol
1302                 */
1303                if (dev->wakeup_protocol != RC_TYPE_UNKNOWN)
1304                        ret = rc_validate_filter(dev, &new_filter);
1305                else
1306                        ret = -EINVAL;
1307
1308                if (ret != 0)
1309                        goto unlock;
1310        }
1311
1312        if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1313            val) {
1314                /* refuse to set a filter unless a protocol is enabled */
1315                ret = -EINVAL;
1316                goto unlock;
1317        }
1318
1319        ret = set_filter(dev, &new_filter);
1320        if (ret < 0)
1321                goto unlock;
1322
1323        *filter = new_filter;
1324
1325unlock:
1326        mutex_unlock(&dev->lock);
1327        return (ret < 0) ? ret : len;
1328}
1329
1330/*
1331 * This is the list of all variants of all protocols, which is used by
1332 * the wakeup_protocols sysfs entry. In the protocols sysfs entry some
1333 * some protocols are grouped together (e.g. nec = nec + necx + nec32).
1334 *
1335 * For wakeup we need to know the exact protocol variant so the hardware
1336 * can be programmed exactly what to expect.
1337 */
1338static const char * const proto_variant_names[] = {
1339        [RC_TYPE_UNKNOWN] = "unknown",
1340        [RC_TYPE_OTHER] = "other",
1341        [RC_TYPE_RC5] = "rc-5",
1342        [RC_TYPE_RC5X_20] = "rc-5x-20",
1343        [RC_TYPE_RC5_SZ] = "rc-5-sz",
1344        [RC_TYPE_JVC] = "jvc",
1345        [RC_TYPE_SONY12] = "sony-12",
1346        [RC_TYPE_SONY15] = "sony-15",
1347        [RC_TYPE_SONY20] = "sony-20",
1348        [RC_TYPE_NEC] = "nec",
1349        [RC_TYPE_NECX] = "nec-x",
1350        [RC_TYPE_NEC32] = "nec-32",
1351        [RC_TYPE_SANYO] = "sanyo",
1352        [RC_TYPE_MCIR2_KBD] = "mcir2-kbd",
1353        [RC_TYPE_MCIR2_MSE] = "mcir2-mse",
1354        [RC_TYPE_RC6_0] = "rc-6-0",
1355        [RC_TYPE_RC6_6A_20] = "rc-6-6a-20",
1356        [RC_TYPE_RC6_6A_24] = "rc-6-6a-24",
1357        [RC_TYPE_RC6_6A_32] = "rc-6-6a-32",
1358        [RC_TYPE_RC6_MCE] = "rc-6-mce",
1359        [RC_TYPE_SHARP] = "sharp",
1360        [RC_TYPE_XMP] = "xmp",
1361        [RC_TYPE_CEC] = "cec",
1362};
1363
1364/**
1365 * show_wakeup_protocols() - shows the wakeup IR protocol
1366 * @device:     the device descriptor
1367 * @mattr:      the device attribute struct
1368 * @buf:        a pointer to the output buffer
1369 *
1370 * This routine is a callback routine for input read the IR protocol type(s).
1371 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1372 * It returns the protocol names of supported protocols.
1373 * The enabled protocols are printed in brackets.
1374 *
1375 * dev->lock is taken to guard against races between device
1376 * registration, store_protocols and show_protocols.
1377 */
1378static ssize_t show_wakeup_protocols(struct device *device,
1379                                     struct device_attribute *mattr,
1380                                     char *buf)
1381{
1382        struct rc_dev *dev = to_rc_dev(device);
1383        u64 allowed;
1384        enum rc_type enabled;
1385        char *tmp = buf;
1386        int i;
1387
1388        /* Device is being removed */
1389        if (!dev)
1390                return -EINVAL;
1391
1392        if (!atomic_read(&dev->initialized))
1393                return -ERESTARTSYS;
1394
1395        mutex_lock(&dev->lock);
1396
1397        allowed = dev->allowed_wakeup_protocols;
1398        enabled = dev->wakeup_protocol;
1399
1400        mutex_unlock(&dev->lock);
1401
1402        IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1403                   __func__, (long long)allowed, enabled);
1404
1405        for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1406                if (allowed & (1ULL << i)) {
1407                        if (i == enabled)
1408                                tmp += sprintf(tmp, "[%s] ",
1409                                                proto_variant_names[i]);
1410                        else
1411                                tmp += sprintf(tmp, "%s ",
1412                                                proto_variant_names[i]);
1413                }
1414        }
1415
1416        if (tmp != buf)
1417                tmp--;
1418        *tmp = '\n';
1419
1420        return tmp + 1 - buf;
1421}
1422
1423/**
1424 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1425 * @device:     the device descriptor
1426 * @mattr:      the device attribute struct
1427 * @buf:        a pointer to the input buffer
1428 * @len:        length of the input buffer
1429 *
1430 * This routine is for changing the IR protocol type.
1431 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1432 * Returns @len on success or a negative error code.
1433 *
1434 * dev->lock is taken to guard against races between device
1435 * registration, store_protocols and show_protocols.
1436 */
1437static ssize_t store_wakeup_protocols(struct device *device,
1438                                      struct device_attribute *mattr,
1439                                      const char *buf, size_t len)
1440{
1441        struct rc_dev *dev = to_rc_dev(device);
1442        enum rc_type protocol;
1443        ssize_t rc;
1444        u64 allowed;
1445        int i;
1446
1447        /* Device is being removed */
1448        if (!dev)
1449                return -EINVAL;
1450
1451        if (!atomic_read(&dev->initialized))
1452                return -ERESTARTSYS;
1453
1454        mutex_lock(&dev->lock);
1455
1456        allowed = dev->allowed_wakeup_protocols;
1457
1458        if (sysfs_streq(buf, "none")) {
1459                protocol = RC_TYPE_UNKNOWN;
1460        } else {
1461                for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1462                        if ((allowed & (1ULL << i)) &&
1463                            sysfs_streq(buf, proto_variant_names[i])) {
1464                                protocol = i;
1465                                break;
1466                        }
1467                }
1468
1469                if (i == ARRAY_SIZE(proto_variant_names)) {
1470                        rc = -EINVAL;
1471                        goto out;
1472                }
1473
1474                if (dev->encode_wakeup) {
1475                        u64 mask = 1ULL << protocol;
1476
1477                        ir_raw_load_modules(&mask);
1478                        if (!mask) {
1479                                rc = -EINVAL;
1480                                goto out;
1481                        }
1482                }
1483        }
1484
1485        if (dev->wakeup_protocol != protocol) {
1486                dev->wakeup_protocol = protocol;
1487                IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1488
1489                if (protocol == RC_TYPE_RC6_MCE)
1490                        dev->scancode_wakeup_filter.data = 0x800f0000;
1491                else
1492                        dev->scancode_wakeup_filter.data = 0;
1493                dev->scancode_wakeup_filter.mask = 0;
1494
1495                rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1496                if (rc == 0)
1497                        rc = len;
1498        } else {
1499                rc = len;
1500        }
1501
1502out:
1503        mutex_unlock(&dev->lock);
1504        return rc;
1505}
1506
1507static void rc_dev_release(struct device *device)
1508{
1509        struct rc_dev *dev = to_rc_dev(device);
1510
1511        kfree(dev);
1512}
1513
1514#define ADD_HOTPLUG_VAR(fmt, val...)                                    \
1515        do {                                                            \
1516                int err = add_uevent_var(env, fmt, val);                \
1517                if (err)                                                \
1518                        return err;                                     \
1519        } while (0)
1520
1521static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1522{
1523        struct rc_dev *dev = to_rc_dev(device);
1524
1525        if (dev->rc_map.name)
1526                ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1527        if (dev->driver_name)
1528                ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1529
1530        return 0;
1531}
1532
1533/*
1534 * Static device attribute struct with the sysfs attributes for IR's
1535 */
1536static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
1537static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1538                   store_wakeup_protocols);
1539static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1540                      show_filter, store_filter, RC_FILTER_NORMAL, false);
1541static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1542                      show_filter, store_filter, RC_FILTER_NORMAL, true);
1543static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1544                      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1545static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1546                      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1547
1548static struct attribute *rc_dev_protocol_attrs[] = {
1549        &dev_attr_protocols.attr,
1550        NULL,
1551};
1552
1553static struct attribute_group rc_dev_protocol_attr_grp = {
1554        .attrs  = rc_dev_protocol_attrs,
1555};
1556
1557static struct attribute *rc_dev_filter_attrs[] = {
1558        &dev_attr_filter.attr.attr,
1559        &dev_attr_filter_mask.attr.attr,
1560        NULL,
1561};
1562
1563static struct attribute_group rc_dev_filter_attr_grp = {
1564        .attrs  = rc_dev_filter_attrs,
1565};
1566
1567static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1568        &dev_attr_wakeup_filter.attr.attr,
1569        &dev_attr_wakeup_filter_mask.attr.attr,
1570        &dev_attr_wakeup_protocols.attr,
1571        NULL,
1572};
1573
1574static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1575        .attrs  = rc_dev_wakeup_filter_attrs,
1576};
1577
1578static struct device_type rc_dev_type = {
1579        .release        = rc_dev_release,
1580        .uevent         = rc_dev_uevent,
1581};
1582
1583struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1584{
1585        struct rc_dev *dev;
1586
1587        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1588        if (!dev)
1589                return NULL;
1590
1591        if (type != RC_DRIVER_IR_RAW_TX) {
1592                dev->input_dev = input_allocate_device();
1593                if (!dev->input_dev) {
1594                        kfree(dev);
1595                        return NULL;
1596                }
1597
1598                dev->input_dev->getkeycode = ir_getkeycode;
1599                dev->input_dev->setkeycode = ir_setkeycode;
1600                input_set_drvdata(dev->input_dev, dev);
1601
1602                setup_timer(&dev->timer_keyup, ir_timer_keyup,
1603                            (unsigned long)dev);
1604
1605                spin_lock_init(&dev->rc_map.lock);
1606                spin_lock_init(&dev->keylock);
1607        }
1608        mutex_init(&dev->lock);
1609
1610        dev->dev.type = &rc_dev_type;
1611        dev->dev.class = &rc_class;
1612        device_initialize(&dev->dev);
1613
1614        dev->driver_type = type;
1615
1616        __module_get(THIS_MODULE);
1617        return dev;
1618}
1619EXPORT_SYMBOL_GPL(rc_allocate_device);
1620
1621void rc_free_device(struct rc_dev *dev)
1622{
1623        if (!dev)
1624                return;
1625
1626        input_free_device(dev->input_dev);
1627
1628        put_device(&dev->dev);
1629
1630        /* kfree(dev) will be called by the callback function
1631           rc_dev_release() */
1632
1633        module_put(THIS_MODULE);
1634}
1635EXPORT_SYMBOL_GPL(rc_free_device);
1636
1637static void devm_rc_alloc_release(struct device *dev, void *res)
1638{
1639        rc_free_device(*(struct rc_dev **)res);
1640}
1641
1642struct rc_dev *devm_rc_allocate_device(struct device *dev,
1643                                       enum rc_driver_type type)
1644{
1645        struct rc_dev **dr, *rc;
1646
1647        dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1648        if (!dr)
1649                return NULL;
1650
1651        rc = rc_allocate_device(type);
1652        if (!rc) {
1653                devres_free(dr);
1654                return NULL;
1655        }
1656
1657        rc->dev.parent = dev;
1658        rc->managed_alloc = true;
1659        *dr = rc;
1660        devres_add(dev, dr);
1661
1662        return rc;
1663}
1664EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1665
1666static int rc_setup_rx_device(struct rc_dev *dev)
1667{
1668        int rc;
1669        struct rc_map *rc_map;
1670        u64 rc_type;
1671
1672        if (!dev->map_name)
1673                return -EINVAL;
1674
1675        rc_map = rc_map_get(dev->map_name);
1676        if (!rc_map)
1677                rc_map = rc_map_get(RC_MAP_EMPTY);
1678        if (!rc_map || !rc_map->scan || rc_map->size == 0)
1679                return -EINVAL;
1680
1681        rc = ir_setkeytable(dev, rc_map);
1682        if (rc)
1683                return rc;
1684
1685        rc_type = BIT_ULL(rc_map->rc_type);
1686
1687        if (dev->change_protocol) {
1688                rc = dev->change_protocol(dev, &rc_type);
1689                if (rc < 0)
1690                        goto out_table;
1691                dev->enabled_protocols = rc_type;
1692        }
1693
1694        if (dev->driver_type == RC_DRIVER_IR_RAW)
1695                ir_raw_load_modules(&rc_type);
1696
1697        set_bit(EV_KEY, dev->input_dev->evbit);
1698        set_bit(EV_REP, dev->input_dev->evbit);
1699        set_bit(EV_MSC, dev->input_dev->evbit);
1700        set_bit(MSC_SCAN, dev->input_dev->mscbit);
1701        if (dev->open)
1702                dev->input_dev->open = ir_open;
1703        if (dev->close)
1704                dev->input_dev->close = ir_close;
1705
1706        /*
1707         * Default delay of 250ms is too short for some protocols, especially
1708         * since the timeout is currently set to 250ms. Increase it to 500ms,
1709         * to avoid wrong repetition of the keycodes. Note that this must be
1710         * set after the call to input_register_device().
1711         */
1712        dev->input_dev->rep[REP_DELAY] = 500;
1713
1714        /*
1715         * As a repeat event on protocols like RC-5 and NEC take as long as
1716         * 110/114ms, using 33ms as a repeat period is not the right thing
1717         * to do.
1718         */
1719        dev->input_dev->rep[REP_PERIOD] = 125;
1720
1721        dev->input_dev->dev.parent = &dev->dev;
1722        memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1723        dev->input_dev->phys = dev->input_phys;
1724        dev->input_dev->name = dev->input_name;
1725
1726        /* rc_open will be called here */
1727        rc = input_register_device(dev->input_dev);
1728        if (rc)
1729                goto out_table;
1730
1731        return 0;
1732
1733out_table:
1734        ir_free_table(&dev->rc_map);
1735
1736        return rc;
1737}
1738
1739static void rc_free_rx_device(struct rc_dev *dev)
1740{
1741        if (!dev || dev->driver_type == RC_DRIVER_IR_RAW_TX)
1742                return;
1743
1744        ir_free_table(&dev->rc_map);
1745
1746        input_unregister_device(dev->input_dev);
1747        dev->input_dev = NULL;
1748}
1749
1750int rc_register_device(struct rc_dev *dev)
1751{
1752        static bool raw_init; /* 'false' default value, raw decoders loaded? */
1753        const char *path;
1754        int attr = 0;
1755        int minor;
1756        int rc;
1757
1758        if (!dev)
1759                return -EINVAL;
1760
1761        minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1762        if (minor < 0)
1763                return minor;
1764
1765        dev->minor = minor;
1766        dev_set_name(&dev->dev, "rc%u", dev->minor);
1767        dev_set_drvdata(&dev->dev, dev);
1768        atomic_set(&dev->initialized, 0);
1769
1770        dev->dev.groups = dev->sysfs_groups;
1771        if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1772                dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1773        if (dev->s_filter)
1774                dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1775        if (dev->s_wakeup_filter)
1776                dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1777        dev->sysfs_groups[attr++] = NULL;
1778
1779        rc = device_add(&dev->dev);
1780        if (rc)
1781                goto out_unlock;
1782
1783        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1784        dev_info(&dev->dev, "%s as %s\n",
1785                dev->input_name ?: "Unspecified device", path ?: "N/A");
1786        kfree(path);
1787
1788        if (dev->driver_type == RC_DRIVER_IR_RAW ||
1789            dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1790                if (!raw_init) {
1791                        request_module_nowait("ir-lirc-codec");
1792                        raw_init = true;
1793                }
1794                rc = ir_raw_event_register(dev);
1795                if (rc < 0)
1796                        goto out_dev;
1797        }
1798
1799        if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1800                rc = rc_setup_rx_device(dev);
1801                if (rc)
1802                        goto out_raw;
1803        }
1804
1805        /* Allow the RC sysfs nodes to be accessible */
1806        atomic_set(&dev->initialized, 1);
1807
1808        IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1809                   dev->minor,
1810                   dev->driver_name ? dev->driver_name : "unknown");
1811
1812        return 0;
1813
1814out_raw:
1815        ir_raw_event_unregister(dev);
1816out_dev:
1817        device_del(&dev->dev);
1818out_unlock:
1819        ida_simple_remove(&rc_ida, minor);
1820        return rc;
1821}
1822EXPORT_SYMBOL_GPL(rc_register_device);
1823
1824static void devm_rc_release(struct device *dev, void *res)
1825{
1826        rc_unregister_device(*(struct rc_dev **)res);
1827}
1828
1829int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1830{
1831        struct rc_dev **dr;
1832        int ret;
1833
1834        dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1835        if (!dr)
1836                return -ENOMEM;
1837
1838        ret = rc_register_device(dev);
1839        if (ret) {
1840                devres_free(dr);
1841                return ret;
1842        }
1843
1844        *dr = dev;
1845        devres_add(parent, dr);
1846
1847        return 0;
1848}
1849EXPORT_SYMBOL_GPL(devm_rc_register_device);
1850
1851void rc_unregister_device(struct rc_dev *dev)
1852{
1853        if (!dev)
1854                return;
1855
1856        del_timer_sync(&dev->timer_keyup);
1857
1858        if (dev->driver_type == RC_DRIVER_IR_RAW)
1859                ir_raw_event_unregister(dev);
1860
1861        rc_free_rx_device(dev);
1862
1863        device_del(&dev->dev);
1864
1865        ida_simple_remove(&rc_ida, dev->minor);
1866
1867        if (!dev->managed_alloc)
1868                rc_free_device(dev);
1869}
1870
1871EXPORT_SYMBOL_GPL(rc_unregister_device);
1872
1873/*
1874 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1875 */
1876
1877static int __init rc_core_init(void)
1878{
1879        int rc = class_register(&rc_class);
1880        if (rc) {
1881                pr_err("rc_core: unable to register rc class\n");
1882                return rc;
1883        }
1884
1885        led_trigger_register_simple("rc-feedback", &led_feedback);
1886        rc_map_register(&empty_map);
1887
1888        return 0;
1889}
1890
1891static void __exit rc_core_exit(void)
1892{
1893        class_unregister(&rc_class);
1894        led_trigger_unregister_simple(led_feedback);
1895        rc_map_unregister(&empty_map);
1896}
1897
1898subsys_initcall(rc_core_init);
1899module_exit(rc_core_exit);
1900
1901int rc_core_debug;    /* ir_debug level (0,1,2) */
1902EXPORT_SYMBOL_GPL(rc_core_debug);
1903module_param_named(debug, rc_core_debug, int, 0644);
1904
1905MODULE_AUTHOR("Mauro Carvalho Chehab");
1906MODULE_LICENSE("GPL");
1907