linux/drivers/mtd/mtdpart.c
<<
>>
Prefs
   1/*
   2 * Simple MTD partitioning layer
   3 *
   4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
   5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
   6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/list.h>
  29#include <linux/kmod.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/partitions.h>
  32#include <linux/err.h>
  33
  34#include "mtdcore.h"
  35
  36/* Our partition linked list */
  37static LIST_HEAD(mtd_partitions);
  38static DEFINE_MUTEX(mtd_partitions_mutex);
  39
  40/* Our partition node structure */
  41struct mtd_part {
  42        struct mtd_info mtd;
  43        struct mtd_info *master;
  44        uint64_t offset;
  45        struct list_head list;
  46};
  47
  48/*
  49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  50 * the pointer to that structure.
  51 */
  52static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  53{
  54        return container_of(mtd, struct mtd_part, mtd);
  55}
  56
  57
  58/*
  59 * MTD methods which simply translate the effective address and pass through
  60 * to the _real_ device.
  61 */
  62
  63static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  64                size_t *retlen, u_char *buf)
  65{
  66        struct mtd_part *part = mtd_to_part(mtd);
  67        struct mtd_ecc_stats stats;
  68        int res;
  69
  70        stats = part->master->ecc_stats;
  71        res = part->master->_read(part->master, from + part->offset, len,
  72                                  retlen, buf);
  73        if (unlikely(mtd_is_eccerr(res)))
  74                mtd->ecc_stats.failed +=
  75                        part->master->ecc_stats.failed - stats.failed;
  76        else
  77                mtd->ecc_stats.corrected +=
  78                        part->master->ecc_stats.corrected - stats.corrected;
  79        return res;
  80}
  81
  82static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  83                size_t *retlen, void **virt, resource_size_t *phys)
  84{
  85        struct mtd_part *part = mtd_to_part(mtd);
  86
  87        return part->master->_point(part->master, from + part->offset, len,
  88                                    retlen, virt, phys);
  89}
  90
  91static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  92{
  93        struct mtd_part *part = mtd_to_part(mtd);
  94
  95        return part->master->_unpoint(part->master, from + part->offset, len);
  96}
  97
  98static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  99                                            unsigned long len,
 100                                            unsigned long offset,
 101                                            unsigned long flags)
 102{
 103        struct mtd_part *part = mtd_to_part(mtd);
 104
 105        offset += part->offset;
 106        return part->master->_get_unmapped_area(part->master, len, offset,
 107                                                flags);
 108}
 109
 110static int part_read_oob(struct mtd_info *mtd, loff_t from,
 111                struct mtd_oob_ops *ops)
 112{
 113        struct mtd_part *part = mtd_to_part(mtd);
 114        int res;
 115
 116        if (from >= mtd->size)
 117                return -EINVAL;
 118        if (ops->datbuf && from + ops->len > mtd->size)
 119                return -EINVAL;
 120
 121        /*
 122         * If OOB is also requested, make sure that we do not read past the end
 123         * of this partition.
 124         */
 125        if (ops->oobbuf) {
 126                size_t len, pages;
 127
 128                len = mtd_oobavail(mtd, ops);
 129                pages = mtd_div_by_ws(mtd->size, mtd);
 130                pages -= mtd_div_by_ws(from, mtd);
 131                if (ops->ooboffs + ops->ooblen > pages * len)
 132                        return -EINVAL;
 133        }
 134
 135        res = part->master->_read_oob(part->master, from + part->offset, ops);
 136        if (unlikely(res)) {
 137                if (mtd_is_bitflip(res))
 138                        mtd->ecc_stats.corrected++;
 139                if (mtd_is_eccerr(res))
 140                        mtd->ecc_stats.failed++;
 141        }
 142        return res;
 143}
 144
 145static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
 146                size_t len, size_t *retlen, u_char *buf)
 147{
 148        struct mtd_part *part = mtd_to_part(mtd);
 149        return part->master->_read_user_prot_reg(part->master, from, len,
 150                                                 retlen, buf);
 151}
 152
 153static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
 154                                   size_t *retlen, struct otp_info *buf)
 155{
 156        struct mtd_part *part = mtd_to_part(mtd);
 157        return part->master->_get_user_prot_info(part->master, len, retlen,
 158                                                 buf);
 159}
 160
 161static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
 162                size_t len, size_t *retlen, u_char *buf)
 163{
 164        struct mtd_part *part = mtd_to_part(mtd);
 165        return part->master->_read_fact_prot_reg(part->master, from, len,
 166                                                 retlen, buf);
 167}
 168
 169static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
 170                                   size_t *retlen, struct otp_info *buf)
 171{
 172        struct mtd_part *part = mtd_to_part(mtd);
 173        return part->master->_get_fact_prot_info(part->master, len, retlen,
 174                                                 buf);
 175}
 176
 177static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
 178                size_t *retlen, const u_char *buf)
 179{
 180        struct mtd_part *part = mtd_to_part(mtd);
 181        return part->master->_write(part->master, to + part->offset, len,
 182                                    retlen, buf);
 183}
 184
 185static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
 186                size_t *retlen, const u_char *buf)
 187{
 188        struct mtd_part *part = mtd_to_part(mtd);
 189        return part->master->_panic_write(part->master, to + part->offset, len,
 190                                          retlen, buf);
 191}
 192
 193static int part_write_oob(struct mtd_info *mtd, loff_t to,
 194                struct mtd_oob_ops *ops)
 195{
 196        struct mtd_part *part = mtd_to_part(mtd);
 197
 198        if (to >= mtd->size)
 199                return -EINVAL;
 200        if (ops->datbuf && to + ops->len > mtd->size)
 201                return -EINVAL;
 202        return part->master->_write_oob(part->master, to + part->offset, ops);
 203}
 204
 205static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
 206                size_t len, size_t *retlen, u_char *buf)
 207{
 208        struct mtd_part *part = mtd_to_part(mtd);
 209        return part->master->_write_user_prot_reg(part->master, from, len,
 210                                                  retlen, buf);
 211}
 212
 213static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
 214                size_t len)
 215{
 216        struct mtd_part *part = mtd_to_part(mtd);
 217        return part->master->_lock_user_prot_reg(part->master, from, len);
 218}
 219
 220static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
 221                unsigned long count, loff_t to, size_t *retlen)
 222{
 223        struct mtd_part *part = mtd_to_part(mtd);
 224        return part->master->_writev(part->master, vecs, count,
 225                                     to + part->offset, retlen);
 226}
 227
 228static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
 229{
 230        struct mtd_part *part = mtd_to_part(mtd);
 231        int ret;
 232
 233        instr->addr += part->offset;
 234        ret = part->master->_erase(part->master, instr);
 235        if (ret) {
 236                if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 237                        instr->fail_addr -= part->offset;
 238                instr->addr -= part->offset;
 239        }
 240        return ret;
 241}
 242
 243void mtd_erase_callback(struct erase_info *instr)
 244{
 245        if (instr->mtd->_erase == part_erase) {
 246                struct mtd_part *part = mtd_to_part(instr->mtd);
 247
 248                if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 249                        instr->fail_addr -= part->offset;
 250                instr->addr -= part->offset;
 251        }
 252        if (instr->callback)
 253                instr->callback(instr);
 254}
 255EXPORT_SYMBOL_GPL(mtd_erase_callback);
 256
 257static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 258{
 259        struct mtd_part *part = mtd_to_part(mtd);
 260        return part->master->_lock(part->master, ofs + part->offset, len);
 261}
 262
 263static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 264{
 265        struct mtd_part *part = mtd_to_part(mtd);
 266        return part->master->_unlock(part->master, ofs + part->offset, len);
 267}
 268
 269static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 270{
 271        struct mtd_part *part = mtd_to_part(mtd);
 272        return part->master->_is_locked(part->master, ofs + part->offset, len);
 273}
 274
 275static void part_sync(struct mtd_info *mtd)
 276{
 277        struct mtd_part *part = mtd_to_part(mtd);
 278        part->master->_sync(part->master);
 279}
 280
 281static int part_suspend(struct mtd_info *mtd)
 282{
 283        struct mtd_part *part = mtd_to_part(mtd);
 284        return part->master->_suspend(part->master);
 285}
 286
 287static void part_resume(struct mtd_info *mtd)
 288{
 289        struct mtd_part *part = mtd_to_part(mtd);
 290        part->master->_resume(part->master);
 291}
 292
 293static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 294{
 295        struct mtd_part *part = mtd_to_part(mtd);
 296        ofs += part->offset;
 297        return part->master->_block_isreserved(part->master, ofs);
 298}
 299
 300static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
 301{
 302        struct mtd_part *part = mtd_to_part(mtd);
 303        ofs += part->offset;
 304        return part->master->_block_isbad(part->master, ofs);
 305}
 306
 307static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
 308{
 309        struct mtd_part *part = mtd_to_part(mtd);
 310        int res;
 311
 312        ofs += part->offset;
 313        res = part->master->_block_markbad(part->master, ofs);
 314        if (!res)
 315                mtd->ecc_stats.badblocks++;
 316        return res;
 317}
 318
 319static int part_get_device(struct mtd_info *mtd)
 320{
 321        struct mtd_part *part = mtd_to_part(mtd);
 322        return part->master->_get_device(part->master);
 323}
 324
 325static void part_put_device(struct mtd_info *mtd)
 326{
 327        struct mtd_part *part = mtd_to_part(mtd);
 328        part->master->_put_device(part->master);
 329}
 330
 331static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
 332                              struct mtd_oob_region *oobregion)
 333{
 334        struct mtd_part *part = mtd_to_part(mtd);
 335
 336        return mtd_ooblayout_ecc(part->master, section, oobregion);
 337}
 338
 339static int part_ooblayout_free(struct mtd_info *mtd, int section,
 340                               struct mtd_oob_region *oobregion)
 341{
 342        struct mtd_part *part = mtd_to_part(mtd);
 343
 344        return mtd_ooblayout_free(part->master, section, oobregion);
 345}
 346
 347static const struct mtd_ooblayout_ops part_ooblayout_ops = {
 348        .ecc = part_ooblayout_ecc,
 349        .free = part_ooblayout_free,
 350};
 351
 352static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
 353{
 354        struct mtd_part *part = mtd_to_part(mtd);
 355
 356        return part->master->_max_bad_blocks(part->master,
 357                                             ofs + part->offset, len);
 358}
 359
 360static inline void free_partition(struct mtd_part *p)
 361{
 362        kfree(p->mtd.name);
 363        kfree(p);
 364}
 365
 366/*
 367 * This function unregisters and destroy all slave MTD objects which are
 368 * attached to the given master MTD object.
 369 */
 370
 371int del_mtd_partitions(struct mtd_info *master)
 372{
 373        struct mtd_part *slave, *next;
 374        int ret, err = 0;
 375
 376        mutex_lock(&mtd_partitions_mutex);
 377        list_for_each_entry_safe(slave, next, &mtd_partitions, list)
 378                if (slave->master == master) {
 379                        ret = del_mtd_device(&slave->mtd);
 380                        if (ret < 0) {
 381                                err = ret;
 382                                continue;
 383                        }
 384                        list_del(&slave->list);
 385                        free_partition(slave);
 386                }
 387        mutex_unlock(&mtd_partitions_mutex);
 388
 389        return err;
 390}
 391
 392static struct mtd_part *allocate_partition(struct mtd_info *master,
 393                        const struct mtd_partition *part, int partno,
 394                        uint64_t cur_offset)
 395{
 396        struct mtd_part *slave;
 397        char *name;
 398
 399        /* allocate the partition structure */
 400        slave = kzalloc(sizeof(*slave), GFP_KERNEL);
 401        name = kstrdup(part->name, GFP_KERNEL);
 402        if (!name || !slave) {
 403                printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
 404                       master->name);
 405                kfree(name);
 406                kfree(slave);
 407                return ERR_PTR(-ENOMEM);
 408        }
 409
 410        /* set up the MTD object for this partition */
 411        slave->mtd.type = master->type;
 412        slave->mtd.flags = master->flags & ~part->mask_flags;
 413        slave->mtd.size = part->size;
 414        slave->mtd.writesize = master->writesize;
 415        slave->mtd.writebufsize = master->writebufsize;
 416        slave->mtd.oobsize = master->oobsize;
 417        slave->mtd.oobavail = master->oobavail;
 418        slave->mtd.subpage_sft = master->subpage_sft;
 419        slave->mtd.pairing = master->pairing;
 420
 421        slave->mtd.name = name;
 422        slave->mtd.owner = master->owner;
 423
 424        /* NOTE: Historically, we didn't arrange MTDs as a tree out of
 425         * concern for showing the same data in multiple partitions.
 426         * However, it is very useful to have the master node present,
 427         * so the MTD_PARTITIONED_MASTER option allows that. The master
 428         * will have device nodes etc only if this is set, so make the
 429         * parent conditional on that option. Note, this is a way to
 430         * distinguish between the master and the partition in sysfs.
 431         */
 432        slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
 433                                &master->dev :
 434                                master->dev.parent;
 435        slave->mtd.dev.of_node = part->of_node;
 436
 437        slave->mtd._read = part_read;
 438        slave->mtd._write = part_write;
 439
 440        if (master->_panic_write)
 441                slave->mtd._panic_write = part_panic_write;
 442
 443        if (master->_point && master->_unpoint) {
 444                slave->mtd._point = part_point;
 445                slave->mtd._unpoint = part_unpoint;
 446        }
 447
 448        if (master->_get_unmapped_area)
 449                slave->mtd._get_unmapped_area = part_get_unmapped_area;
 450        if (master->_read_oob)
 451                slave->mtd._read_oob = part_read_oob;
 452        if (master->_write_oob)
 453                slave->mtd._write_oob = part_write_oob;
 454        if (master->_read_user_prot_reg)
 455                slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
 456        if (master->_read_fact_prot_reg)
 457                slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
 458        if (master->_write_user_prot_reg)
 459                slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
 460        if (master->_lock_user_prot_reg)
 461                slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
 462        if (master->_get_user_prot_info)
 463                slave->mtd._get_user_prot_info = part_get_user_prot_info;
 464        if (master->_get_fact_prot_info)
 465                slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
 466        if (master->_sync)
 467                slave->mtd._sync = part_sync;
 468        if (!partno && !master->dev.class && master->_suspend &&
 469            master->_resume) {
 470                        slave->mtd._suspend = part_suspend;
 471                        slave->mtd._resume = part_resume;
 472        }
 473        if (master->_writev)
 474                slave->mtd._writev = part_writev;
 475        if (master->_lock)
 476                slave->mtd._lock = part_lock;
 477        if (master->_unlock)
 478                slave->mtd._unlock = part_unlock;
 479        if (master->_is_locked)
 480                slave->mtd._is_locked = part_is_locked;
 481        if (master->_block_isreserved)
 482                slave->mtd._block_isreserved = part_block_isreserved;
 483        if (master->_block_isbad)
 484                slave->mtd._block_isbad = part_block_isbad;
 485        if (master->_block_markbad)
 486                slave->mtd._block_markbad = part_block_markbad;
 487        if (master->_max_bad_blocks)
 488                slave->mtd._max_bad_blocks = part_max_bad_blocks;
 489
 490        if (master->_get_device)
 491                slave->mtd._get_device = part_get_device;
 492        if (master->_put_device)
 493                slave->mtd._put_device = part_put_device;
 494
 495        slave->mtd._erase = part_erase;
 496        slave->master = master;
 497        slave->offset = part->offset;
 498
 499        if (slave->offset == MTDPART_OFS_APPEND)
 500                slave->offset = cur_offset;
 501        if (slave->offset == MTDPART_OFS_NXTBLK) {
 502                slave->offset = cur_offset;
 503                if (mtd_mod_by_eb(cur_offset, master) != 0) {
 504                        /* Round up to next erasesize */
 505                        slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
 506                        printk(KERN_NOTICE "Moving partition %d: "
 507                               "0x%012llx -> 0x%012llx\n", partno,
 508                               (unsigned long long)cur_offset, (unsigned long long)slave->offset);
 509                }
 510        }
 511        if (slave->offset == MTDPART_OFS_RETAIN) {
 512                slave->offset = cur_offset;
 513                if (master->size - slave->offset >= slave->mtd.size) {
 514                        slave->mtd.size = master->size - slave->offset
 515                                                        - slave->mtd.size;
 516                } else {
 517                        printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
 518                                part->name, master->size - slave->offset,
 519                                slave->mtd.size);
 520                        /* register to preserve ordering */
 521                        goto out_register;
 522                }
 523        }
 524        if (slave->mtd.size == MTDPART_SIZ_FULL)
 525                slave->mtd.size = master->size - slave->offset;
 526
 527        printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
 528                (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
 529
 530        /* let's do some sanity checks */
 531        if (slave->offset >= master->size) {
 532                /* let's register it anyway to preserve ordering */
 533                slave->offset = 0;
 534                slave->mtd.size = 0;
 535                printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
 536                        part->name);
 537                goto out_register;
 538        }
 539        if (slave->offset + slave->mtd.size > master->size) {
 540                slave->mtd.size = master->size - slave->offset;
 541                printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
 542                        part->name, master->name, (unsigned long long)slave->mtd.size);
 543        }
 544        if (master->numeraseregions > 1) {
 545                /* Deal with variable erase size stuff */
 546                int i, max = master->numeraseregions;
 547                u64 end = slave->offset + slave->mtd.size;
 548                struct mtd_erase_region_info *regions = master->eraseregions;
 549
 550                /* Find the first erase regions which is part of this
 551                 * partition. */
 552                for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
 553                        ;
 554                /* The loop searched for the region _behind_ the first one */
 555                if (i > 0)
 556                        i--;
 557
 558                /* Pick biggest erasesize */
 559                for (; i < max && regions[i].offset < end; i++) {
 560                        if (slave->mtd.erasesize < regions[i].erasesize) {
 561                                slave->mtd.erasesize = regions[i].erasesize;
 562                        }
 563                }
 564                BUG_ON(slave->mtd.erasesize == 0);
 565        } else {
 566                /* Single erase size */
 567                slave->mtd.erasesize = master->erasesize;
 568        }
 569
 570        if ((slave->mtd.flags & MTD_WRITEABLE) &&
 571            mtd_mod_by_eb(slave->offset, &slave->mtd)) {
 572                /* Doesn't start on a boundary of major erase size */
 573                /* FIXME: Let it be writable if it is on a boundary of
 574                 * _minor_ erase size though */
 575                slave->mtd.flags &= ~MTD_WRITEABLE;
 576                printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
 577                        part->name);
 578        }
 579        if ((slave->mtd.flags & MTD_WRITEABLE) &&
 580            mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
 581                slave->mtd.flags &= ~MTD_WRITEABLE;
 582                printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
 583                        part->name);
 584        }
 585
 586        mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
 587        slave->mtd.ecc_step_size = master->ecc_step_size;
 588        slave->mtd.ecc_strength = master->ecc_strength;
 589        slave->mtd.bitflip_threshold = master->bitflip_threshold;
 590
 591        if (master->_block_isbad) {
 592                uint64_t offs = 0;
 593
 594                while (offs < slave->mtd.size) {
 595                        if (mtd_block_isreserved(master, offs + slave->offset))
 596                                slave->mtd.ecc_stats.bbtblocks++;
 597                        else if (mtd_block_isbad(master, offs + slave->offset))
 598                                slave->mtd.ecc_stats.badblocks++;
 599                        offs += slave->mtd.erasesize;
 600                }
 601        }
 602
 603out_register:
 604        return slave;
 605}
 606
 607static ssize_t mtd_partition_offset_show(struct device *dev,
 608                struct device_attribute *attr, char *buf)
 609{
 610        struct mtd_info *mtd = dev_get_drvdata(dev);
 611        struct mtd_part *part = mtd_to_part(mtd);
 612        return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
 613}
 614
 615static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
 616
 617static const struct attribute *mtd_partition_attrs[] = {
 618        &dev_attr_offset.attr,
 619        NULL
 620};
 621
 622static int mtd_add_partition_attrs(struct mtd_part *new)
 623{
 624        int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
 625        if (ret)
 626                printk(KERN_WARNING
 627                       "mtd: failed to create partition attrs, err=%d\n", ret);
 628        return ret;
 629}
 630
 631int mtd_add_partition(struct mtd_info *master, const char *name,
 632                      long long offset, long long length)
 633{
 634        struct mtd_partition part;
 635        struct mtd_part *new;
 636        int ret = 0;
 637
 638        /* the direct offset is expected */
 639        if (offset == MTDPART_OFS_APPEND ||
 640            offset == MTDPART_OFS_NXTBLK)
 641                return -EINVAL;
 642
 643        if (length == MTDPART_SIZ_FULL)
 644                length = master->size - offset;
 645
 646        if (length <= 0)
 647                return -EINVAL;
 648
 649        memset(&part, 0, sizeof(part));
 650        part.name = name;
 651        part.size = length;
 652        part.offset = offset;
 653
 654        new = allocate_partition(master, &part, -1, offset);
 655        if (IS_ERR(new))
 656                return PTR_ERR(new);
 657
 658        mutex_lock(&mtd_partitions_mutex);
 659        list_add(&new->list, &mtd_partitions);
 660        mutex_unlock(&mtd_partitions_mutex);
 661
 662        add_mtd_device(&new->mtd);
 663
 664        mtd_add_partition_attrs(new);
 665
 666        return ret;
 667}
 668EXPORT_SYMBOL_GPL(mtd_add_partition);
 669
 670int mtd_del_partition(struct mtd_info *master, int partno)
 671{
 672        struct mtd_part *slave, *next;
 673        int ret = -EINVAL;
 674
 675        mutex_lock(&mtd_partitions_mutex);
 676        list_for_each_entry_safe(slave, next, &mtd_partitions, list)
 677                if ((slave->master == master) &&
 678                    (slave->mtd.index == partno)) {
 679                        sysfs_remove_files(&slave->mtd.dev.kobj,
 680                                           mtd_partition_attrs);
 681                        ret = del_mtd_device(&slave->mtd);
 682                        if (ret < 0)
 683                                break;
 684
 685                        list_del(&slave->list);
 686                        free_partition(slave);
 687                        break;
 688                }
 689        mutex_unlock(&mtd_partitions_mutex);
 690
 691        return ret;
 692}
 693EXPORT_SYMBOL_GPL(mtd_del_partition);
 694
 695/*
 696 * This function, given a master MTD object and a partition table, creates
 697 * and registers slave MTD objects which are bound to the master according to
 698 * the partition definitions.
 699 *
 700 * For historical reasons, this function's caller only registers the master
 701 * if the MTD_PARTITIONED_MASTER config option is set.
 702 */
 703
 704int add_mtd_partitions(struct mtd_info *master,
 705                       const struct mtd_partition *parts,
 706                       int nbparts)
 707{
 708        struct mtd_part *slave;
 709        uint64_t cur_offset = 0;
 710        int i;
 711
 712        printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
 713
 714        for (i = 0; i < nbparts; i++) {
 715                slave = allocate_partition(master, parts + i, i, cur_offset);
 716                if (IS_ERR(slave)) {
 717                        del_mtd_partitions(master);
 718                        return PTR_ERR(slave);
 719                }
 720
 721                mutex_lock(&mtd_partitions_mutex);
 722                list_add(&slave->list, &mtd_partitions);
 723                mutex_unlock(&mtd_partitions_mutex);
 724
 725                add_mtd_device(&slave->mtd);
 726                mtd_add_partition_attrs(slave);
 727
 728                cur_offset = slave->offset + slave->mtd.size;
 729        }
 730
 731        return 0;
 732}
 733
 734static DEFINE_SPINLOCK(part_parser_lock);
 735static LIST_HEAD(part_parsers);
 736
 737static struct mtd_part_parser *mtd_part_parser_get(const char *name)
 738{
 739        struct mtd_part_parser *p, *ret = NULL;
 740
 741        spin_lock(&part_parser_lock);
 742
 743        list_for_each_entry(p, &part_parsers, list)
 744                if (!strcmp(p->name, name) && try_module_get(p->owner)) {
 745                        ret = p;
 746                        break;
 747                }
 748
 749        spin_unlock(&part_parser_lock);
 750
 751        return ret;
 752}
 753
 754static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
 755{
 756        module_put(p->owner);
 757}
 758
 759/*
 760 * Many partition parsers just expected the core to kfree() all their data in
 761 * one chunk. Do that by default.
 762 */
 763static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
 764                                            int nr_parts)
 765{
 766        kfree(pparts);
 767}
 768
 769int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
 770{
 771        p->owner = owner;
 772
 773        if (!p->cleanup)
 774                p->cleanup = &mtd_part_parser_cleanup_default;
 775
 776        spin_lock(&part_parser_lock);
 777        list_add(&p->list, &part_parsers);
 778        spin_unlock(&part_parser_lock);
 779
 780        return 0;
 781}
 782EXPORT_SYMBOL_GPL(__register_mtd_parser);
 783
 784void deregister_mtd_parser(struct mtd_part_parser *p)
 785{
 786        spin_lock(&part_parser_lock);
 787        list_del(&p->list);
 788        spin_unlock(&part_parser_lock);
 789}
 790EXPORT_SYMBOL_GPL(deregister_mtd_parser);
 791
 792/*
 793 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
 794 * are changing this array!
 795 */
 796static const char * const default_mtd_part_types[] = {
 797        "cmdlinepart",
 798        "ofpart",
 799        NULL
 800};
 801
 802/**
 803 * parse_mtd_partitions - parse MTD partitions
 804 * @master: the master partition (describes whole MTD device)
 805 * @types: names of partition parsers to try or %NULL
 806 * @pparts: info about partitions found is returned here
 807 * @data: MTD partition parser-specific data
 808 *
 809 * This function tries to find partition on MTD device @master. It uses MTD
 810 * partition parsers, specified in @types. However, if @types is %NULL, then
 811 * the default list of parsers is used. The default list contains only the
 812 * "cmdlinepart" and "ofpart" parsers ATM.
 813 * Note: If there are more then one parser in @types, the kernel only takes the
 814 * partitions parsed out by the first parser.
 815 *
 816 * This function may return:
 817 * o a negative error code in case of failure
 818 * o zero otherwise, and @pparts will describe the partitions, number of
 819 *   partitions, and the parser which parsed them. Caller must release
 820 *   resources with mtd_part_parser_cleanup() when finished with the returned
 821 *   data.
 822 */
 823int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
 824                         struct mtd_partitions *pparts,
 825                         struct mtd_part_parser_data *data)
 826{
 827        struct mtd_part_parser *parser;
 828        int ret, err = 0;
 829
 830        if (!types)
 831                types = default_mtd_part_types;
 832
 833        for ( ; *types; types++) {
 834                pr_debug("%s: parsing partitions %s\n", master->name, *types);
 835                parser = mtd_part_parser_get(*types);
 836                if (!parser && !request_module("%s", *types))
 837                        parser = mtd_part_parser_get(*types);
 838                pr_debug("%s: got parser %s\n", master->name,
 839                         parser ? parser->name : NULL);
 840                if (!parser)
 841                        continue;
 842                ret = (*parser->parse_fn)(master, &pparts->parts, data);
 843                pr_debug("%s: parser %s: %i\n",
 844                         master->name, parser->name, ret);
 845                if (ret > 0) {
 846                        printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
 847                               ret, parser->name, master->name);
 848                        pparts->nr_parts = ret;
 849                        pparts->parser = parser;
 850                        return 0;
 851                }
 852                mtd_part_parser_put(parser);
 853                /*
 854                 * Stash the first error we see; only report it if no parser
 855                 * succeeds
 856                 */
 857                if (ret < 0 && !err)
 858                        err = ret;
 859        }
 860        return err;
 861}
 862
 863void mtd_part_parser_cleanup(struct mtd_partitions *parts)
 864{
 865        const struct mtd_part_parser *parser;
 866
 867        if (!parts)
 868                return;
 869
 870        parser = parts->parser;
 871        if (parser) {
 872                if (parser->cleanup)
 873                        parser->cleanup(parts->parts, parts->nr_parts);
 874
 875                mtd_part_parser_put(parser);
 876        }
 877}
 878
 879int mtd_is_partition(const struct mtd_info *mtd)
 880{
 881        struct mtd_part *part;
 882        int ispart = 0;
 883
 884        mutex_lock(&mtd_partitions_mutex);
 885        list_for_each_entry(part, &mtd_partitions, list)
 886                if (&part->mtd == mtd) {
 887                        ispart = 1;
 888                        break;
 889                }
 890        mutex_unlock(&mtd_partitions_mutex);
 891
 892        return ispart;
 893}
 894EXPORT_SYMBOL_GPL(mtd_is_partition);
 895
 896/* Returns the size of the entire flash chip */
 897uint64_t mtd_get_device_size(const struct mtd_info *mtd)
 898{
 899        if (!mtd_is_partition(mtd))
 900                return mtd->size;
 901
 902        return mtd_to_part(mtd)->master->size;
 903}
 904EXPORT_SYMBOL_GPL(mtd_get_device_size);
 905