linux/drivers/net/ethernet/chelsio/cxgb4vf/cxgb4vf_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  37
  38#include <linux/module.h>
  39#include <linux/moduleparam.h>
  40#include <linux/init.h>
  41#include <linux/pci.h>
  42#include <linux/dma-mapping.h>
  43#include <linux/netdevice.h>
  44#include <linux/etherdevice.h>
  45#include <linux/debugfs.h>
  46#include <linux/ethtool.h>
  47#include <linux/mdio.h>
  48
  49#include "t4vf_common.h"
  50#include "t4vf_defs.h"
  51
  52#include "../cxgb4/t4_regs.h"
  53#include "../cxgb4/t4_msg.h"
  54
  55/*
  56 * Generic information about the driver.
  57 */
  58#define DRV_VERSION "2.0.0-ko"
  59#define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
  60
  61/*
  62 * Module Parameters.
  63 * ==================
  64 */
  65
  66/*
  67 * Default ethtool "message level" for adapters.
  68 */
  69#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  70                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  71                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
  72
  73/*
  74 * The driver uses the best interrupt scheme available on a platform in the
  75 * order MSI-X then MSI.  This parameter determines which of these schemes the
  76 * driver may consider as follows:
  77 *
  78 *     msi = 2: choose from among MSI-X and MSI
  79 *     msi = 1: only consider MSI interrupts
  80 *
  81 * Note that unlike the Physical Function driver, this Virtual Function driver
  82 * does _not_ support legacy INTx interrupts (this limitation is mandated by
  83 * the PCI-E SR-IOV standard).
  84 */
  85#define MSI_MSIX        2
  86#define MSI_MSI         1
  87#define MSI_DEFAULT     MSI_MSIX
  88
  89static int msi = MSI_DEFAULT;
  90
  91module_param(msi, int, 0644);
  92MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
  93
  94/*
  95 * Fundamental constants.
  96 * ======================
  97 */
  98
  99enum {
 100        MAX_TXQ_ENTRIES         = 16384,
 101        MAX_RSPQ_ENTRIES        = 16384,
 102        MAX_RX_BUFFERS          = 16384,
 103
 104        MIN_TXQ_ENTRIES         = 32,
 105        MIN_RSPQ_ENTRIES        = 128,
 106        MIN_FL_ENTRIES          = 16,
 107
 108        /*
 109         * For purposes of manipulating the Free List size we need to
 110         * recognize that Free Lists are actually Egress Queues (the host
 111         * produces free buffers which the hardware consumes), Egress Queues
 112         * indices are all in units of Egress Context Units bytes, and free
 113         * list entries are 64-bit PCI DMA addresses.  And since the state of
 114         * the Producer Index == the Consumer Index implies an EMPTY list, we
 115         * always have at least one Egress Unit's worth of Free List entries
 116         * unused.  See sge.c for more details ...
 117         */
 118        EQ_UNIT = SGE_EQ_IDXSIZE,
 119        FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
 120        MIN_FL_RESID = FL_PER_EQ_UNIT,
 121};
 122
 123/*
 124 * Global driver state.
 125 * ====================
 126 */
 127
 128static struct dentry *cxgb4vf_debugfs_root;
 129
 130/*
 131 * OS "Callback" functions.
 132 * ========================
 133 */
 134
 135/*
 136 * The link status has changed on the indicated "port" (Virtual Interface).
 137 */
 138void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
 139{
 140        struct net_device *dev = adapter->port[pidx];
 141
 142        /*
 143         * If the port is disabled or the current recorded "link up"
 144         * status matches the new status, just return.
 145         */
 146        if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
 147                return;
 148
 149        /*
 150         * Tell the OS that the link status has changed and print a short
 151         * informative message on the console about the event.
 152         */
 153        if (link_ok) {
 154                const char *s;
 155                const char *fc;
 156                const struct port_info *pi = netdev_priv(dev);
 157
 158                netif_carrier_on(dev);
 159
 160                switch (pi->link_cfg.speed) {
 161                case 100:
 162                        s = "100Mbps";
 163                        break;
 164                case 1000:
 165                        s = "1Gbps";
 166                        break;
 167                case 10000:
 168                        s = "10Gbps";
 169                        break;
 170                case 25000:
 171                        s = "25Gbps";
 172                        break;
 173                case 40000:
 174                        s = "40Gbps";
 175                        break;
 176                case 100000:
 177                        s = "100Gbps";
 178                        break;
 179
 180                default:
 181                        s = "unknown";
 182                        break;
 183                }
 184
 185                switch (pi->link_cfg.fc) {
 186                case PAUSE_RX:
 187                        fc = "RX";
 188                        break;
 189
 190                case PAUSE_TX:
 191                        fc = "TX";
 192                        break;
 193
 194                case PAUSE_RX|PAUSE_TX:
 195                        fc = "RX/TX";
 196                        break;
 197
 198                default:
 199                        fc = "no";
 200                        break;
 201                }
 202
 203                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
 204        } else {
 205                netif_carrier_off(dev);
 206                netdev_info(dev, "link down\n");
 207        }
 208}
 209
 210/*
 211 * THe port module type has changed on the indicated "port" (Virtual
 212 * Interface).
 213 */
 214void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
 215{
 216        static const char * const mod_str[] = {
 217                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 218        };
 219        const struct net_device *dev = adapter->port[pidx];
 220        const struct port_info *pi = netdev_priv(dev);
 221
 222        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 223                dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
 224                         dev->name);
 225        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 226                dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
 227                         dev->name, mod_str[pi->mod_type]);
 228        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 229                dev_info(adapter->pdev_dev, "%s: unsupported optical port "
 230                         "module inserted\n", dev->name);
 231        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 232                dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
 233                         "forcing TWINAX\n", dev->name);
 234        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 235                dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
 236                         dev->name);
 237        else
 238                dev_info(adapter->pdev_dev, "%s: unknown module type %d "
 239                         "inserted\n", dev->name, pi->mod_type);
 240}
 241
 242/*
 243 * Net device operations.
 244 * ======================
 245 */
 246
 247
 248
 249
 250/*
 251 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
 252 * Interface).
 253 */
 254static int link_start(struct net_device *dev)
 255{
 256        int ret;
 257        struct port_info *pi = netdev_priv(dev);
 258
 259        /*
 260         * We do not set address filters and promiscuity here, the stack does
 261         * that step explicitly. Enable vlan accel.
 262         */
 263        ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
 264                              true);
 265        if (ret == 0) {
 266                ret = t4vf_change_mac(pi->adapter, pi->viid,
 267                                      pi->xact_addr_filt, dev->dev_addr, true);
 268                if (ret >= 0) {
 269                        pi->xact_addr_filt = ret;
 270                        ret = 0;
 271                }
 272        }
 273
 274        /*
 275         * We don't need to actually "start the link" itself since the
 276         * firmware will do that for us when the first Virtual Interface
 277         * is enabled on a port.
 278         */
 279        if (ret == 0)
 280                ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
 281        return ret;
 282}
 283
 284/*
 285 * Name the MSI-X interrupts.
 286 */
 287static void name_msix_vecs(struct adapter *adapter)
 288{
 289        int namelen = sizeof(adapter->msix_info[0].desc) - 1;
 290        int pidx;
 291
 292        /*
 293         * Firmware events.
 294         */
 295        snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
 296                 "%s-FWeventq", adapter->name);
 297        adapter->msix_info[MSIX_FW].desc[namelen] = 0;
 298
 299        /*
 300         * Ethernet queues.
 301         */
 302        for_each_port(adapter, pidx) {
 303                struct net_device *dev = adapter->port[pidx];
 304                const struct port_info *pi = netdev_priv(dev);
 305                int qs, msi;
 306
 307                for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
 308                        snprintf(adapter->msix_info[msi].desc, namelen,
 309                                 "%s-%d", dev->name, qs);
 310                        adapter->msix_info[msi].desc[namelen] = 0;
 311                }
 312        }
 313}
 314
 315/*
 316 * Request all of our MSI-X resources.
 317 */
 318static int request_msix_queue_irqs(struct adapter *adapter)
 319{
 320        struct sge *s = &adapter->sge;
 321        int rxq, msi, err;
 322
 323        /*
 324         * Firmware events.
 325         */
 326        err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
 327                          0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
 328        if (err)
 329                return err;
 330
 331        /*
 332         * Ethernet queues.
 333         */
 334        msi = MSIX_IQFLINT;
 335        for_each_ethrxq(s, rxq) {
 336                err = request_irq(adapter->msix_info[msi].vec,
 337                                  t4vf_sge_intr_msix, 0,
 338                                  adapter->msix_info[msi].desc,
 339                                  &s->ethrxq[rxq].rspq);
 340                if (err)
 341                        goto err_free_irqs;
 342                msi++;
 343        }
 344        return 0;
 345
 346err_free_irqs:
 347        while (--rxq >= 0)
 348                free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
 349        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 350        return err;
 351}
 352
 353/*
 354 * Free our MSI-X resources.
 355 */
 356static void free_msix_queue_irqs(struct adapter *adapter)
 357{
 358        struct sge *s = &adapter->sge;
 359        int rxq, msi;
 360
 361        free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
 362        msi = MSIX_IQFLINT;
 363        for_each_ethrxq(s, rxq)
 364                free_irq(adapter->msix_info[msi++].vec,
 365                         &s->ethrxq[rxq].rspq);
 366}
 367
 368/*
 369 * Turn on NAPI and start up interrupts on a response queue.
 370 */
 371static void qenable(struct sge_rspq *rspq)
 372{
 373        napi_enable(&rspq->napi);
 374
 375        /*
 376         * 0-increment the Going To Sleep register to start the timer and
 377         * enable interrupts.
 378         */
 379        t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 380                     CIDXINC_V(0) |
 381                     SEINTARM_V(rspq->intr_params) |
 382                     INGRESSQID_V(rspq->cntxt_id));
 383}
 384
 385/*
 386 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
 387 */
 388static void enable_rx(struct adapter *adapter)
 389{
 390        int rxq;
 391        struct sge *s = &adapter->sge;
 392
 393        for_each_ethrxq(s, rxq)
 394                qenable(&s->ethrxq[rxq].rspq);
 395        qenable(&s->fw_evtq);
 396
 397        /*
 398         * The interrupt queue doesn't use NAPI so we do the 0-increment of
 399         * its Going To Sleep register here to get it started.
 400         */
 401        if (adapter->flags & USING_MSI)
 402                t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
 403                             CIDXINC_V(0) |
 404                             SEINTARM_V(s->intrq.intr_params) |
 405                             INGRESSQID_V(s->intrq.cntxt_id));
 406
 407}
 408
 409/*
 410 * Wait until all NAPI handlers are descheduled.
 411 */
 412static void quiesce_rx(struct adapter *adapter)
 413{
 414        struct sge *s = &adapter->sge;
 415        int rxq;
 416
 417        for_each_ethrxq(s, rxq)
 418                napi_disable(&s->ethrxq[rxq].rspq.napi);
 419        napi_disable(&s->fw_evtq.napi);
 420}
 421
 422/*
 423 * Response queue handler for the firmware event queue.
 424 */
 425static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
 426                          const struct pkt_gl *gl)
 427{
 428        /*
 429         * Extract response opcode and get pointer to CPL message body.
 430         */
 431        struct adapter *adapter = rspq->adapter;
 432        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 433        void *cpl = (void *)(rsp + 1);
 434
 435        switch (opcode) {
 436        case CPL_FW6_MSG: {
 437                /*
 438                 * We've received an asynchronous message from the firmware.
 439                 */
 440                const struct cpl_fw6_msg *fw_msg = cpl;
 441                if (fw_msg->type == FW6_TYPE_CMD_RPL)
 442                        t4vf_handle_fw_rpl(adapter, fw_msg->data);
 443                break;
 444        }
 445
 446        case CPL_FW4_MSG: {
 447                /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 448                 */
 449                const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
 450                opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
 451                if (opcode != CPL_SGE_EGR_UPDATE) {
 452                        dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 453                                , opcode);
 454                        break;
 455                }
 456                cpl = (void *)p;
 457                /*FALLTHROUGH*/
 458        }
 459
 460        case CPL_SGE_EGR_UPDATE: {
 461                /*
 462                 * We've received an Egress Queue Status Update message.  We
 463                 * get these, if the SGE is configured to send these when the
 464                 * firmware passes certain points in processing our TX
 465                 * Ethernet Queue or if we make an explicit request for one.
 466                 * We use these updates to determine when we may need to
 467                 * restart a TX Ethernet Queue which was stopped for lack of
 468                 * free TX Queue Descriptors ...
 469                 */
 470                const struct cpl_sge_egr_update *p = cpl;
 471                unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
 472                struct sge *s = &adapter->sge;
 473                struct sge_txq *tq;
 474                struct sge_eth_txq *txq;
 475                unsigned int eq_idx;
 476
 477                /*
 478                 * Perform sanity checking on the Queue ID to make sure it
 479                 * really refers to one of our TX Ethernet Egress Queues which
 480                 * is active and matches the queue's ID.  None of these error
 481                 * conditions should ever happen so we may want to either make
 482                 * them fatal and/or conditionalized under DEBUG.
 483                 */
 484                eq_idx = EQ_IDX(s, qid);
 485                if (unlikely(eq_idx >= MAX_EGRQ)) {
 486                        dev_err(adapter->pdev_dev,
 487                                "Egress Update QID %d out of range\n", qid);
 488                        break;
 489                }
 490                tq = s->egr_map[eq_idx];
 491                if (unlikely(tq == NULL)) {
 492                        dev_err(adapter->pdev_dev,
 493                                "Egress Update QID %d TXQ=NULL\n", qid);
 494                        break;
 495                }
 496                txq = container_of(tq, struct sge_eth_txq, q);
 497                if (unlikely(tq->abs_id != qid)) {
 498                        dev_err(adapter->pdev_dev,
 499                                "Egress Update QID %d refers to TXQ %d\n",
 500                                qid, tq->abs_id);
 501                        break;
 502                }
 503
 504                /*
 505                 * Restart a stopped TX Queue which has less than half of its
 506                 * TX ring in use ...
 507                 */
 508                txq->q.restarts++;
 509                netif_tx_wake_queue(txq->txq);
 510                break;
 511        }
 512
 513        default:
 514                dev_err(adapter->pdev_dev,
 515                        "unexpected CPL %#x on FW event queue\n", opcode);
 516        }
 517
 518        return 0;
 519}
 520
 521/*
 522 * Allocate SGE TX/RX response queues.  Determine how many sets of SGE queues
 523 * to use and initializes them.  We support multiple "Queue Sets" per port if
 524 * we have MSI-X, otherwise just one queue set per port.
 525 */
 526static int setup_sge_queues(struct adapter *adapter)
 527{
 528        struct sge *s = &adapter->sge;
 529        int err, pidx, msix;
 530
 531        /*
 532         * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
 533         * state.
 534         */
 535        bitmap_zero(s->starving_fl, MAX_EGRQ);
 536
 537        /*
 538         * If we're using MSI interrupt mode we need to set up a "forwarded
 539         * interrupt" queue which we'll set up with our MSI vector.  The rest
 540         * of the ingress queues will be set up to forward their interrupts to
 541         * this queue ...  This must be first since t4vf_sge_alloc_rxq() uses
 542         * the intrq's queue ID as the interrupt forwarding queue for the
 543         * subsequent calls ...
 544         */
 545        if (adapter->flags & USING_MSI) {
 546                err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
 547                                         adapter->port[0], 0, NULL, NULL);
 548                if (err)
 549                        goto err_free_queues;
 550        }
 551
 552        /*
 553         * Allocate our ingress queue for asynchronous firmware messages.
 554         */
 555        err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
 556                                 MSIX_FW, NULL, fwevtq_handler);
 557        if (err)
 558                goto err_free_queues;
 559
 560        /*
 561         * Allocate each "port"'s initial Queue Sets.  These can be changed
 562         * later on ... up to the point where any interface on the adapter is
 563         * brought up at which point lots of things get nailed down
 564         * permanently ...
 565         */
 566        msix = MSIX_IQFLINT;
 567        for_each_port(adapter, pidx) {
 568                struct net_device *dev = adapter->port[pidx];
 569                struct port_info *pi = netdev_priv(dev);
 570                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 571                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 572                int qs;
 573
 574                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 575                        err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
 576                                                 dev, msix++,
 577                                                 &rxq->fl, t4vf_ethrx_handler);
 578                        if (err)
 579                                goto err_free_queues;
 580
 581                        err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
 582                                             netdev_get_tx_queue(dev, qs),
 583                                             s->fw_evtq.cntxt_id);
 584                        if (err)
 585                                goto err_free_queues;
 586
 587                        rxq->rspq.idx = qs;
 588                        memset(&rxq->stats, 0, sizeof(rxq->stats));
 589                }
 590        }
 591
 592        /*
 593         * Create the reverse mappings for the queues.
 594         */
 595        s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
 596        s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
 597        IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
 598        for_each_port(adapter, pidx) {
 599                struct net_device *dev = adapter->port[pidx];
 600                struct port_info *pi = netdev_priv(dev);
 601                struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
 602                struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
 603                int qs;
 604
 605                for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
 606                        IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
 607                        EQ_MAP(s, txq->q.abs_id) = &txq->q;
 608
 609                        /*
 610                         * The FW_IQ_CMD doesn't return the Absolute Queue IDs
 611                         * for Free Lists but since all of the Egress Queues
 612                         * (including Free Lists) have Relative Queue IDs
 613                         * which are computed as Absolute - Base Queue ID, we
 614                         * can synthesize the Absolute Queue IDs for the Free
 615                         * Lists.  This is useful for debugging purposes when
 616                         * we want to dump Queue Contexts via the PF Driver.
 617                         */
 618                        rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
 619                        EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
 620                }
 621        }
 622        return 0;
 623
 624err_free_queues:
 625        t4vf_free_sge_resources(adapter);
 626        return err;
 627}
 628
 629/*
 630 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
 631 * queues.  We configure the RSS CPU lookup table to distribute to the number
 632 * of HW receive queues, and the response queue lookup table to narrow that
 633 * down to the response queues actually configured for each "port" (Virtual
 634 * Interface).  We always configure the RSS mapping for all ports since the
 635 * mapping table has plenty of entries.
 636 */
 637static int setup_rss(struct adapter *adapter)
 638{
 639        int pidx;
 640
 641        for_each_port(adapter, pidx) {
 642                struct port_info *pi = adap2pinfo(adapter, pidx);
 643                struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
 644                u16 rss[MAX_PORT_QSETS];
 645                int qs, err;
 646
 647                for (qs = 0; qs < pi->nqsets; qs++)
 648                        rss[qs] = rxq[qs].rspq.abs_id;
 649
 650                err = t4vf_config_rss_range(adapter, pi->viid,
 651                                            0, pi->rss_size, rss, pi->nqsets);
 652                if (err)
 653                        return err;
 654
 655                /*
 656                 * Perform Global RSS Mode-specific initialization.
 657                 */
 658                switch (adapter->params.rss.mode) {
 659                case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
 660                        /*
 661                         * If Tunnel All Lookup isn't specified in the global
 662                         * RSS Configuration, then we need to specify a
 663                         * default Ingress Queue for any ingress packets which
 664                         * aren't hashed.  We'll use our first ingress queue
 665                         * ...
 666                         */
 667                        if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
 668                                union rss_vi_config config;
 669                                err = t4vf_read_rss_vi_config(adapter,
 670                                                              pi->viid,
 671                                                              &config);
 672                                if (err)
 673                                        return err;
 674                                config.basicvirtual.defaultq =
 675                                        rxq[0].rspq.abs_id;
 676                                err = t4vf_write_rss_vi_config(adapter,
 677                                                               pi->viid,
 678                                                               &config);
 679                                if (err)
 680                                        return err;
 681                        }
 682                        break;
 683                }
 684        }
 685
 686        return 0;
 687}
 688
 689/*
 690 * Bring the adapter up.  Called whenever we go from no "ports" open to having
 691 * one open.  This function performs the actions necessary to make an adapter
 692 * operational, such as completing the initialization of HW modules, and
 693 * enabling interrupts.  Must be called with the rtnl lock held.  (Note that
 694 * this is called "cxgb_up" in the PF Driver.)
 695 */
 696static int adapter_up(struct adapter *adapter)
 697{
 698        int err;
 699
 700        /*
 701         * If this is the first time we've been called, perform basic
 702         * adapter setup.  Once we've done this, many of our adapter
 703         * parameters can no longer be changed ...
 704         */
 705        if ((adapter->flags & FULL_INIT_DONE) == 0) {
 706                err = setup_sge_queues(adapter);
 707                if (err)
 708                        return err;
 709                err = setup_rss(adapter);
 710                if (err) {
 711                        t4vf_free_sge_resources(adapter);
 712                        return err;
 713                }
 714
 715                if (adapter->flags & USING_MSIX)
 716                        name_msix_vecs(adapter);
 717                adapter->flags |= FULL_INIT_DONE;
 718        }
 719
 720        /*
 721         * Acquire our interrupt resources.  We only support MSI-X and MSI.
 722         */
 723        BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
 724        if (adapter->flags & USING_MSIX)
 725                err = request_msix_queue_irqs(adapter);
 726        else
 727                err = request_irq(adapter->pdev->irq,
 728                                  t4vf_intr_handler(adapter), 0,
 729                                  adapter->name, adapter);
 730        if (err) {
 731                dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
 732                        err);
 733                return err;
 734        }
 735
 736        /*
 737         * Enable NAPI ingress processing and return success.
 738         */
 739        enable_rx(adapter);
 740        t4vf_sge_start(adapter);
 741
 742        /* Initialize hash mac addr list*/
 743        INIT_LIST_HEAD(&adapter->mac_hlist);
 744        return 0;
 745}
 746
 747/*
 748 * Bring the adapter down.  Called whenever the last "port" (Virtual
 749 * Interface) closed.  (Note that this routine is called "cxgb_down" in the PF
 750 * Driver.)
 751 */
 752static void adapter_down(struct adapter *adapter)
 753{
 754        /*
 755         * Free interrupt resources.
 756         */
 757        if (adapter->flags & USING_MSIX)
 758                free_msix_queue_irqs(adapter);
 759        else
 760                free_irq(adapter->pdev->irq, adapter);
 761
 762        /*
 763         * Wait for NAPI handlers to finish.
 764         */
 765        quiesce_rx(adapter);
 766}
 767
 768/*
 769 * Start up a net device.
 770 */
 771static int cxgb4vf_open(struct net_device *dev)
 772{
 773        int err;
 774        struct port_info *pi = netdev_priv(dev);
 775        struct adapter *adapter = pi->adapter;
 776
 777        /*
 778         * If this is the first interface that we're opening on the "adapter",
 779         * bring the "adapter" up now.
 780         */
 781        if (adapter->open_device_map == 0) {
 782                err = adapter_up(adapter);
 783                if (err)
 784                        return err;
 785        }
 786
 787        /*
 788         * Note that this interface is up and start everything up ...
 789         */
 790        err = link_start(dev);
 791        if (err)
 792                goto err_unwind;
 793
 794        netif_tx_start_all_queues(dev);
 795        set_bit(pi->port_id, &adapter->open_device_map);
 796        return 0;
 797
 798err_unwind:
 799        if (adapter->open_device_map == 0)
 800                adapter_down(adapter);
 801        return err;
 802}
 803
 804/*
 805 * Shut down a net device.  This routine is called "cxgb_close" in the PF
 806 * Driver ...
 807 */
 808static int cxgb4vf_stop(struct net_device *dev)
 809{
 810        struct port_info *pi = netdev_priv(dev);
 811        struct adapter *adapter = pi->adapter;
 812
 813        netif_tx_stop_all_queues(dev);
 814        netif_carrier_off(dev);
 815        t4vf_enable_vi(adapter, pi->viid, false, false);
 816        pi->link_cfg.link_ok = 0;
 817
 818        clear_bit(pi->port_id, &adapter->open_device_map);
 819        if (adapter->open_device_map == 0)
 820                adapter_down(adapter);
 821        return 0;
 822}
 823
 824/*
 825 * Translate our basic statistics into the standard "ifconfig" statistics.
 826 */
 827static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
 828{
 829        struct t4vf_port_stats stats;
 830        struct port_info *pi = netdev2pinfo(dev);
 831        struct adapter *adapter = pi->adapter;
 832        struct net_device_stats *ns = &dev->stats;
 833        int err;
 834
 835        spin_lock(&adapter->stats_lock);
 836        err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
 837        spin_unlock(&adapter->stats_lock);
 838
 839        memset(ns, 0, sizeof(*ns));
 840        if (err)
 841                return ns;
 842
 843        ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
 844                        stats.tx_ucast_bytes + stats.tx_offload_bytes);
 845        ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
 846                          stats.tx_ucast_frames + stats.tx_offload_frames);
 847        ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
 848                        stats.rx_ucast_bytes);
 849        ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
 850                          stats.rx_ucast_frames);
 851        ns->multicast = stats.rx_mcast_frames;
 852        ns->tx_errors = stats.tx_drop_frames;
 853        ns->rx_errors = stats.rx_err_frames;
 854
 855        return ns;
 856}
 857
 858static inline int cxgb4vf_set_addr_hash(struct port_info *pi)
 859{
 860        struct adapter *adapter = pi->adapter;
 861        u64 vec = 0;
 862        bool ucast = false;
 863        struct hash_mac_addr *entry;
 864
 865        /* Calculate the hash vector for the updated list and program it */
 866        list_for_each_entry(entry, &adapter->mac_hlist, list) {
 867                ucast |= is_unicast_ether_addr(entry->addr);
 868                vec |= (1ULL << hash_mac_addr(entry->addr));
 869        }
 870        return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
 871}
 872
 873static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 874{
 875        struct port_info *pi = netdev_priv(netdev);
 876        struct adapter *adapter = pi->adapter;
 877        int ret;
 878        u64 mhash = 0;
 879        u64 uhash = 0;
 880        bool free = false;
 881        bool ucast = is_unicast_ether_addr(mac_addr);
 882        const u8 *maclist[1] = {mac_addr};
 883        struct hash_mac_addr *new_entry;
 884
 885        ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
 886                                  NULL, ucast ? &uhash : &mhash, false);
 887        if (ret < 0)
 888                goto out;
 889        /* if hash != 0, then add the addr to hash addr list
 890         * so on the end we will calculate the hash for the
 891         * list and program it
 892         */
 893        if (uhash || mhash) {
 894                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 895                if (!new_entry)
 896                        return -ENOMEM;
 897                ether_addr_copy(new_entry->addr, mac_addr);
 898                list_add_tail(&new_entry->list, &adapter->mac_hlist);
 899                ret = cxgb4vf_set_addr_hash(pi);
 900        }
 901out:
 902        return ret < 0 ? ret : 0;
 903}
 904
 905static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 906{
 907        struct port_info *pi = netdev_priv(netdev);
 908        struct adapter *adapter = pi->adapter;
 909        int ret;
 910        const u8 *maclist[1] = {mac_addr};
 911        struct hash_mac_addr *entry, *tmp;
 912
 913        /* If the MAC address to be removed is in the hash addr
 914         * list, delete it from the list and update hash vector
 915         */
 916        list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
 917                if (ether_addr_equal(entry->addr, mac_addr)) {
 918                        list_del(&entry->list);
 919                        kfree(entry);
 920                        return cxgb4vf_set_addr_hash(pi);
 921                }
 922        }
 923
 924        ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
 925        return ret < 0 ? -EINVAL : 0;
 926}
 927
 928/*
 929 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
 930 * If @mtu is -1 it is left unchanged.
 931 */
 932static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 933{
 934        struct port_info *pi = netdev_priv(dev);
 935
 936        __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
 937        __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
 938        return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
 939                               (dev->flags & IFF_PROMISC) != 0,
 940                               (dev->flags & IFF_ALLMULTI) != 0,
 941                               1, -1, sleep_ok);
 942}
 943
 944/*
 945 * Set the current receive modes on the device.
 946 */
 947static void cxgb4vf_set_rxmode(struct net_device *dev)
 948{
 949        /* unfortunately we can't return errors to the stack */
 950        set_rxmode(dev, -1, false);
 951}
 952
 953/*
 954 * Find the entry in the interrupt holdoff timer value array which comes
 955 * closest to the specified interrupt holdoff value.
 956 */
 957static int closest_timer(const struct sge *s, int us)
 958{
 959        int i, timer_idx = 0, min_delta = INT_MAX;
 960
 961        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
 962                int delta = us - s->timer_val[i];
 963                if (delta < 0)
 964                        delta = -delta;
 965                if (delta < min_delta) {
 966                        min_delta = delta;
 967                        timer_idx = i;
 968                }
 969        }
 970        return timer_idx;
 971}
 972
 973static int closest_thres(const struct sge *s, int thres)
 974{
 975        int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
 976
 977        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
 978                delta = thres - s->counter_val[i];
 979                if (delta < 0)
 980                        delta = -delta;
 981                if (delta < min_delta) {
 982                        min_delta = delta;
 983                        pktcnt_idx = i;
 984                }
 985        }
 986        return pktcnt_idx;
 987}
 988
 989/*
 990 * Return a queue's interrupt hold-off time in us.  0 means no timer.
 991 */
 992static unsigned int qtimer_val(const struct adapter *adapter,
 993                               const struct sge_rspq *rspq)
 994{
 995        unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
 996
 997        return timer_idx < SGE_NTIMERS
 998                ? adapter->sge.timer_val[timer_idx]
 999                : 0;
1000}
1001
1002/**
1003 *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1004 *      @adapter: the adapter
1005 *      @rspq: the RX response queue
1006 *      @us: the hold-off time in us, or 0 to disable timer
1007 *      @cnt: the hold-off packet count, or 0 to disable counter
1008 *
1009 *      Sets an RX response queue's interrupt hold-off time and packet count.
1010 *      At least one of the two needs to be enabled for the queue to generate
1011 *      interrupts.
1012 */
1013static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1014                               unsigned int us, unsigned int cnt)
1015{
1016        unsigned int timer_idx;
1017
1018        /*
1019         * If both the interrupt holdoff timer and count are specified as
1020         * zero, default to a holdoff count of 1 ...
1021         */
1022        if ((us | cnt) == 0)
1023                cnt = 1;
1024
1025        /*
1026         * If an interrupt holdoff count has been specified, then find the
1027         * closest configured holdoff count and use that.  If the response
1028         * queue has already been created, then update its queue context
1029         * parameters ...
1030         */
1031        if (cnt) {
1032                int err;
1033                u32 v, pktcnt_idx;
1034
1035                pktcnt_idx = closest_thres(&adapter->sge, cnt);
1036                if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1037                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1038                            FW_PARAMS_PARAM_X_V(
1039                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1040                            FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1041                        err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1042                        if (err)
1043                                return err;
1044                }
1045                rspq->pktcnt_idx = pktcnt_idx;
1046        }
1047
1048        /*
1049         * Compute the closest holdoff timer index from the supplied holdoff
1050         * timer value.
1051         */
1052        timer_idx = (us == 0
1053                     ? SGE_TIMER_RSTRT_CNTR
1054                     : closest_timer(&adapter->sge, us));
1055
1056        /*
1057         * Update the response queue's interrupt coalescing parameters and
1058         * return success.
1059         */
1060        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1061                             QINTR_CNT_EN_V(cnt > 0));
1062        return 0;
1063}
1064
1065/*
1066 * Return a version number to identify the type of adapter.  The scheme is:
1067 * - bits 0..9: chip version
1068 * - bits 10..15: chip revision
1069 */
1070static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1071{
1072        /*
1073         * Chip version 4, revision 0x3f (cxgb4vf).
1074         */
1075        return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1076}
1077
1078/*
1079 * Execute the specified ioctl command.
1080 */
1081static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1082{
1083        int ret = 0;
1084
1085        switch (cmd) {
1086            /*
1087             * The VF Driver doesn't have access to any of the other
1088             * common Ethernet device ioctl()'s (like reading/writing
1089             * PHY registers, etc.
1090             */
1091
1092        default:
1093                ret = -EOPNOTSUPP;
1094                break;
1095        }
1096        return ret;
1097}
1098
1099/*
1100 * Change the device's MTU.
1101 */
1102static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1103{
1104        int ret;
1105        struct port_info *pi = netdev_priv(dev);
1106
1107        ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1108                              -1, -1, -1, -1, true);
1109        if (!ret)
1110                dev->mtu = new_mtu;
1111        return ret;
1112}
1113
1114static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1115        netdev_features_t features)
1116{
1117        /*
1118         * Since there is no support for separate rx/tx vlan accel
1119         * enable/disable make sure tx flag is always in same state as rx.
1120         */
1121        if (features & NETIF_F_HW_VLAN_CTAG_RX)
1122                features |= NETIF_F_HW_VLAN_CTAG_TX;
1123        else
1124                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1125
1126        return features;
1127}
1128
1129static int cxgb4vf_set_features(struct net_device *dev,
1130        netdev_features_t features)
1131{
1132        struct port_info *pi = netdev_priv(dev);
1133        netdev_features_t changed = dev->features ^ features;
1134
1135        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1136                t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1137                                features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1138
1139        return 0;
1140}
1141
1142/*
1143 * Change the devices MAC address.
1144 */
1145static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1146{
1147        int ret;
1148        struct sockaddr *addr = _addr;
1149        struct port_info *pi = netdev_priv(dev);
1150
1151        if (!is_valid_ether_addr(addr->sa_data))
1152                return -EADDRNOTAVAIL;
1153
1154        ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1155                              addr->sa_data, true);
1156        if (ret < 0)
1157                return ret;
1158
1159        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1160        pi->xact_addr_filt = ret;
1161        return 0;
1162}
1163
1164#ifdef CONFIG_NET_POLL_CONTROLLER
1165/*
1166 * Poll all of our receive queues.  This is called outside of normal interrupt
1167 * context.
1168 */
1169static void cxgb4vf_poll_controller(struct net_device *dev)
1170{
1171        struct port_info *pi = netdev_priv(dev);
1172        struct adapter *adapter = pi->adapter;
1173
1174        if (adapter->flags & USING_MSIX) {
1175                struct sge_eth_rxq *rxq;
1176                int nqsets;
1177
1178                rxq = &adapter->sge.ethrxq[pi->first_qset];
1179                for (nqsets = pi->nqsets; nqsets; nqsets--) {
1180                        t4vf_sge_intr_msix(0, &rxq->rspq);
1181                        rxq++;
1182                }
1183        } else
1184                t4vf_intr_handler(adapter)(0, adapter);
1185}
1186#endif
1187
1188/*
1189 * Ethtool operations.
1190 * ===================
1191 *
1192 * Note that we don't support any ethtool operations which change the physical
1193 * state of the port to which we're linked.
1194 */
1195
1196/**
1197 *      from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1198 *      @port_type: Firmware Port Type
1199 *      @mod_type: Firmware Module Type
1200 *
1201 *      Translate Firmware Port/Module type to Ethtool Port Type.
1202 */
1203static int from_fw_port_mod_type(enum fw_port_type port_type,
1204                                 enum fw_port_module_type mod_type)
1205{
1206        if (port_type == FW_PORT_TYPE_BT_SGMII ||
1207            port_type == FW_PORT_TYPE_BT_XFI ||
1208            port_type == FW_PORT_TYPE_BT_XAUI) {
1209                return PORT_TP;
1210        } else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1211                   port_type == FW_PORT_TYPE_FIBER_XAUI) {
1212                return PORT_FIBRE;
1213        } else if (port_type == FW_PORT_TYPE_SFP ||
1214                   port_type == FW_PORT_TYPE_QSFP_10G ||
1215                   port_type == FW_PORT_TYPE_QSA ||
1216                   port_type == FW_PORT_TYPE_QSFP) {
1217                if (mod_type == FW_PORT_MOD_TYPE_LR ||
1218                    mod_type == FW_PORT_MOD_TYPE_SR ||
1219                    mod_type == FW_PORT_MOD_TYPE_ER ||
1220                    mod_type == FW_PORT_MOD_TYPE_LRM)
1221                        return PORT_FIBRE;
1222                else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1223                         mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1224                        return PORT_DA;
1225                else
1226                        return PORT_OTHER;
1227        }
1228
1229        return PORT_OTHER;
1230}
1231
1232/**
1233 *      fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1234 *      @port_type: Firmware Port Type
1235 *      @fw_caps: Firmware Port Capabilities
1236 *      @link_mode_mask: ethtool Link Mode Mask
1237 *
1238 *      Translate a Firmware Port Capabilities specification to an ethtool
1239 *      Link Mode Mask.
1240 */
1241static void fw_caps_to_lmm(enum fw_port_type port_type,
1242                           unsigned int fw_caps,
1243                           unsigned long *link_mode_mask)
1244{
1245        #define SET_LMM(__lmm_name) __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name\
1246                         ## _BIT, link_mode_mask)
1247
1248        #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1249                do { \
1250                        if (fw_caps & FW_PORT_CAP_ ## __fw_name) \
1251                                SET_LMM(__lmm_name); \
1252                } while (0)
1253
1254        switch (port_type) {
1255        case FW_PORT_TYPE_BT_SGMII:
1256        case FW_PORT_TYPE_BT_XFI:
1257        case FW_PORT_TYPE_BT_XAUI:
1258                SET_LMM(TP);
1259                FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1260                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1261                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1262                break;
1263
1264        case FW_PORT_TYPE_KX4:
1265        case FW_PORT_TYPE_KX:
1266                SET_LMM(Backplane);
1267                FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1268                FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1269                break;
1270
1271        case FW_PORT_TYPE_KR:
1272                SET_LMM(Backplane);
1273                SET_LMM(10000baseKR_Full);
1274                break;
1275
1276        case FW_PORT_TYPE_BP_AP:
1277                SET_LMM(Backplane);
1278                SET_LMM(10000baseR_FEC);
1279                SET_LMM(10000baseKR_Full);
1280                SET_LMM(1000baseKX_Full);
1281                break;
1282
1283        case FW_PORT_TYPE_BP4_AP:
1284                SET_LMM(Backplane);
1285                SET_LMM(10000baseR_FEC);
1286                SET_LMM(10000baseKR_Full);
1287                SET_LMM(1000baseKX_Full);
1288                SET_LMM(10000baseKX4_Full);
1289                break;
1290
1291        case FW_PORT_TYPE_FIBER_XFI:
1292        case FW_PORT_TYPE_FIBER_XAUI:
1293        case FW_PORT_TYPE_SFP:
1294        case FW_PORT_TYPE_QSFP_10G:
1295        case FW_PORT_TYPE_QSA:
1296                SET_LMM(FIBRE);
1297                FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1298                FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1299                break;
1300
1301        case FW_PORT_TYPE_BP40_BA:
1302        case FW_PORT_TYPE_QSFP:
1303                SET_LMM(FIBRE);
1304                SET_LMM(40000baseSR4_Full);
1305                break;
1306
1307        case FW_PORT_TYPE_CR_QSFP:
1308        case FW_PORT_TYPE_SFP28:
1309                SET_LMM(FIBRE);
1310                SET_LMM(25000baseCR_Full);
1311                break;
1312
1313        case FW_PORT_TYPE_KR4_100G:
1314        case FW_PORT_TYPE_CR4_QSFP:
1315                SET_LMM(FIBRE);
1316                SET_LMM(100000baseCR4_Full);
1317                break;
1318
1319        default:
1320                break;
1321        }
1322
1323        FW_CAPS_TO_LMM(ANEG, Autoneg);
1324        FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1325        FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1326
1327        #undef FW_CAPS_TO_LMM
1328        #undef SET_LMM
1329}
1330
1331static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1332                                      struct ethtool_link_ksettings
1333                                                        *link_ksettings)
1334{
1335        const struct port_info *pi = netdev_priv(dev);
1336        struct ethtool_link_settings *base = &link_ksettings->base;
1337
1338        ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1339        ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1340        ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1341
1342        base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1343
1344        if (pi->mdio_addr >= 0) {
1345                base->phy_address = pi->mdio_addr;
1346                base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1347                                      ? ETH_MDIO_SUPPORTS_C22
1348                                      : ETH_MDIO_SUPPORTS_C45);
1349        } else {
1350                base->phy_address = 255;
1351                base->mdio_support = 0;
1352        }
1353
1354        fw_caps_to_lmm(pi->port_type, pi->link_cfg.supported,
1355                       link_ksettings->link_modes.supported);
1356        fw_caps_to_lmm(pi->port_type, pi->link_cfg.advertising,
1357                       link_ksettings->link_modes.advertising);
1358        fw_caps_to_lmm(pi->port_type, pi->link_cfg.lp_advertising,
1359                       link_ksettings->link_modes.lp_advertising);
1360
1361        if (netif_carrier_ok(dev)) {
1362                base->speed = pi->link_cfg.speed;
1363                base->duplex = DUPLEX_FULL;
1364        } else {
1365                base->speed = SPEED_UNKNOWN;
1366                base->duplex = DUPLEX_UNKNOWN;
1367        }
1368
1369        base->autoneg = pi->link_cfg.autoneg;
1370        if (pi->link_cfg.supported & FW_PORT_CAP_ANEG)
1371                ethtool_link_ksettings_add_link_mode(link_ksettings,
1372                                                     supported, Autoneg);
1373        if (pi->link_cfg.autoneg)
1374                ethtool_link_ksettings_add_link_mode(link_ksettings,
1375                                                     advertising, Autoneg);
1376
1377        return 0;
1378}
1379
1380/*
1381 * Return our driver information.
1382 */
1383static void cxgb4vf_get_drvinfo(struct net_device *dev,
1384                                struct ethtool_drvinfo *drvinfo)
1385{
1386        struct adapter *adapter = netdev2adap(dev);
1387
1388        strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1389        strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1390        strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1391                sizeof(drvinfo->bus_info));
1392        snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1393                 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1394                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1395                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1396                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1397                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1398                 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1399                 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1400                 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1401                 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1402}
1403
1404/*
1405 * Return current adapter message level.
1406 */
1407static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1408{
1409        return netdev2adap(dev)->msg_enable;
1410}
1411
1412/*
1413 * Set current adapter message level.
1414 */
1415static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1416{
1417        netdev2adap(dev)->msg_enable = msglevel;
1418}
1419
1420/*
1421 * Return the device's current Queue Set ring size parameters along with the
1422 * allowed maximum values.  Since ethtool doesn't understand the concept of
1423 * multi-queue devices, we just return the current values associated with the
1424 * first Queue Set.
1425 */
1426static void cxgb4vf_get_ringparam(struct net_device *dev,
1427                                  struct ethtool_ringparam *rp)
1428{
1429        const struct port_info *pi = netdev_priv(dev);
1430        const struct sge *s = &pi->adapter->sge;
1431
1432        rp->rx_max_pending = MAX_RX_BUFFERS;
1433        rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1434        rp->rx_jumbo_max_pending = 0;
1435        rp->tx_max_pending = MAX_TXQ_ENTRIES;
1436
1437        rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1438        rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1439        rp->rx_jumbo_pending = 0;
1440        rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1441}
1442
1443/*
1444 * Set the Queue Set ring size parameters for the device.  Again, since
1445 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1446 * apply these new values across all of the Queue Sets associated with the
1447 * device -- after vetting them of course!
1448 */
1449static int cxgb4vf_set_ringparam(struct net_device *dev,
1450                                 struct ethtool_ringparam *rp)
1451{
1452        const struct port_info *pi = netdev_priv(dev);
1453        struct adapter *adapter = pi->adapter;
1454        struct sge *s = &adapter->sge;
1455        int qs;
1456
1457        if (rp->rx_pending > MAX_RX_BUFFERS ||
1458            rp->rx_jumbo_pending ||
1459            rp->tx_pending > MAX_TXQ_ENTRIES ||
1460            rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1461            rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1462            rp->rx_pending < MIN_FL_ENTRIES ||
1463            rp->tx_pending < MIN_TXQ_ENTRIES)
1464                return -EINVAL;
1465
1466        if (adapter->flags & FULL_INIT_DONE)
1467                return -EBUSY;
1468
1469        for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1470                s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1471                s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1472                s->ethtxq[qs].q.size = rp->tx_pending;
1473        }
1474        return 0;
1475}
1476
1477/*
1478 * Return the interrupt holdoff timer and count for the first Queue Set on the
1479 * device.  Our extension ioctl() (the cxgbtool interface) allows the
1480 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1481 */
1482static int cxgb4vf_get_coalesce(struct net_device *dev,
1483                                struct ethtool_coalesce *coalesce)
1484{
1485        const struct port_info *pi = netdev_priv(dev);
1486        const struct adapter *adapter = pi->adapter;
1487        const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1488
1489        coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1490        coalesce->rx_max_coalesced_frames =
1491                ((rspq->intr_params & QINTR_CNT_EN_F)
1492                 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1493                 : 0);
1494        return 0;
1495}
1496
1497/*
1498 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1499 * interface.  Our extension ioctl() (the cxgbtool interface) allows us to set
1500 * the interrupt holdoff timer on any of the device's Queue Sets.
1501 */
1502static int cxgb4vf_set_coalesce(struct net_device *dev,
1503                                struct ethtool_coalesce *coalesce)
1504{
1505        const struct port_info *pi = netdev_priv(dev);
1506        struct adapter *adapter = pi->adapter;
1507
1508        return set_rxq_intr_params(adapter,
1509                                   &adapter->sge.ethrxq[pi->first_qset].rspq,
1510                                   coalesce->rx_coalesce_usecs,
1511                                   coalesce->rx_max_coalesced_frames);
1512}
1513
1514/*
1515 * Report current port link pause parameter settings.
1516 */
1517static void cxgb4vf_get_pauseparam(struct net_device *dev,
1518                                   struct ethtool_pauseparam *pauseparam)
1519{
1520        struct port_info *pi = netdev_priv(dev);
1521
1522        pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1523        pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1524        pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1525}
1526
1527/*
1528 * Identify the port by blinking the port's LED.
1529 */
1530static int cxgb4vf_phys_id(struct net_device *dev,
1531                           enum ethtool_phys_id_state state)
1532{
1533        unsigned int val;
1534        struct port_info *pi = netdev_priv(dev);
1535
1536        if (state == ETHTOOL_ID_ACTIVE)
1537                val = 0xffff;
1538        else if (state == ETHTOOL_ID_INACTIVE)
1539                val = 0;
1540        else
1541                return -EINVAL;
1542
1543        return t4vf_identify_port(pi->adapter, pi->viid, val);
1544}
1545
1546/*
1547 * Port stats maintained per queue of the port.
1548 */
1549struct queue_port_stats {
1550        u64 tso;
1551        u64 tx_csum;
1552        u64 rx_csum;
1553        u64 vlan_ex;
1554        u64 vlan_ins;
1555        u64 lro_pkts;
1556        u64 lro_merged;
1557};
1558
1559/*
1560 * Strings for the ETH_SS_STATS statistics set ("ethtool -S").  Note that
1561 * these need to match the order of statistics returned by
1562 * t4vf_get_port_stats().
1563 */
1564static const char stats_strings[][ETH_GSTRING_LEN] = {
1565        /*
1566         * These must match the layout of the t4vf_port_stats structure.
1567         */
1568        "TxBroadcastBytes  ",
1569        "TxBroadcastFrames ",
1570        "TxMulticastBytes  ",
1571        "TxMulticastFrames ",
1572        "TxUnicastBytes    ",
1573        "TxUnicastFrames   ",
1574        "TxDroppedFrames   ",
1575        "TxOffloadBytes    ",
1576        "TxOffloadFrames   ",
1577        "RxBroadcastBytes  ",
1578        "RxBroadcastFrames ",
1579        "RxMulticastBytes  ",
1580        "RxMulticastFrames ",
1581        "RxUnicastBytes    ",
1582        "RxUnicastFrames   ",
1583        "RxErrorFrames     ",
1584
1585        /*
1586         * These are accumulated per-queue statistics and must match the
1587         * order of the fields in the queue_port_stats structure.
1588         */
1589        "TSO               ",
1590        "TxCsumOffload     ",
1591        "RxCsumGood        ",
1592        "VLANextractions   ",
1593        "VLANinsertions    ",
1594        "GROPackets        ",
1595        "GROMerged         ",
1596};
1597
1598/*
1599 * Return the number of statistics in the specified statistics set.
1600 */
1601static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1602{
1603        switch (sset) {
1604        case ETH_SS_STATS:
1605                return ARRAY_SIZE(stats_strings);
1606        default:
1607                return -EOPNOTSUPP;
1608        }
1609        /*NOTREACHED*/
1610}
1611
1612/*
1613 * Return the strings for the specified statistics set.
1614 */
1615static void cxgb4vf_get_strings(struct net_device *dev,
1616                                u32 sset,
1617                                u8 *data)
1618{
1619        switch (sset) {
1620        case ETH_SS_STATS:
1621                memcpy(data, stats_strings, sizeof(stats_strings));
1622                break;
1623        }
1624}
1625
1626/*
1627 * Small utility routine to accumulate queue statistics across the queues of
1628 * a "port".
1629 */
1630static void collect_sge_port_stats(const struct adapter *adapter,
1631                                   const struct port_info *pi,
1632                                   struct queue_port_stats *stats)
1633{
1634        const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1635        const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1636        int qs;
1637
1638        memset(stats, 0, sizeof(*stats));
1639        for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1640                stats->tso += txq->tso;
1641                stats->tx_csum += txq->tx_cso;
1642                stats->rx_csum += rxq->stats.rx_cso;
1643                stats->vlan_ex += rxq->stats.vlan_ex;
1644                stats->vlan_ins += txq->vlan_ins;
1645                stats->lro_pkts += rxq->stats.lro_pkts;
1646                stats->lro_merged += rxq->stats.lro_merged;
1647        }
1648}
1649
1650/*
1651 * Return the ETH_SS_STATS statistics set.
1652 */
1653static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1654                                      struct ethtool_stats *stats,
1655                                      u64 *data)
1656{
1657        struct port_info *pi = netdev2pinfo(dev);
1658        struct adapter *adapter = pi->adapter;
1659        int err = t4vf_get_port_stats(adapter, pi->pidx,
1660                                      (struct t4vf_port_stats *)data);
1661        if (err)
1662                memset(data, 0, sizeof(struct t4vf_port_stats));
1663
1664        data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1665        collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1666}
1667
1668/*
1669 * Return the size of our register map.
1670 */
1671static int cxgb4vf_get_regs_len(struct net_device *dev)
1672{
1673        return T4VF_REGMAP_SIZE;
1674}
1675
1676/*
1677 * Dump a block of registers, start to end inclusive, into a buffer.
1678 */
1679static void reg_block_dump(struct adapter *adapter, void *regbuf,
1680                           unsigned int start, unsigned int end)
1681{
1682        u32 *bp = regbuf + start - T4VF_REGMAP_START;
1683
1684        for ( ; start <= end; start += sizeof(u32)) {
1685                /*
1686                 * Avoid reading the Mailbox Control register since that
1687                 * can trigger a Mailbox Ownership Arbitration cycle and
1688                 * interfere with communication with the firmware.
1689                 */
1690                if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1691                        *bp++ = 0xffff;
1692                else
1693                        *bp++ = t4_read_reg(adapter, start);
1694        }
1695}
1696
1697/*
1698 * Copy our entire register map into the provided buffer.
1699 */
1700static void cxgb4vf_get_regs(struct net_device *dev,
1701                             struct ethtool_regs *regs,
1702                             void *regbuf)
1703{
1704        struct adapter *adapter = netdev2adap(dev);
1705
1706        regs->version = mk_adap_vers(adapter);
1707
1708        /*
1709         * Fill in register buffer with our register map.
1710         */
1711        memset(regbuf, 0, T4VF_REGMAP_SIZE);
1712
1713        reg_block_dump(adapter, regbuf,
1714                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1715                       T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1716        reg_block_dump(adapter, regbuf,
1717                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1718                       T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1719
1720        /* T5 adds new registers in the PL Register map.
1721         */
1722        reg_block_dump(adapter, regbuf,
1723                       T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1724                       T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1725                       ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1726        reg_block_dump(adapter, regbuf,
1727                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1728                       T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1729
1730        reg_block_dump(adapter, regbuf,
1731                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1732                       T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1733}
1734
1735/*
1736 * Report current Wake On LAN settings.
1737 */
1738static void cxgb4vf_get_wol(struct net_device *dev,
1739                            struct ethtool_wolinfo *wol)
1740{
1741        wol->supported = 0;
1742        wol->wolopts = 0;
1743        memset(&wol->sopass, 0, sizeof(wol->sopass));
1744}
1745
1746/*
1747 * TCP Segmentation Offload flags which we support.
1748 */
1749#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1750
1751static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1752        .get_link_ksettings     = cxgb4vf_get_link_ksettings,
1753        .get_drvinfo            = cxgb4vf_get_drvinfo,
1754        .get_msglevel           = cxgb4vf_get_msglevel,
1755        .set_msglevel           = cxgb4vf_set_msglevel,
1756        .get_ringparam          = cxgb4vf_get_ringparam,
1757        .set_ringparam          = cxgb4vf_set_ringparam,
1758        .get_coalesce           = cxgb4vf_get_coalesce,
1759        .set_coalesce           = cxgb4vf_set_coalesce,
1760        .get_pauseparam         = cxgb4vf_get_pauseparam,
1761        .get_link               = ethtool_op_get_link,
1762        .get_strings            = cxgb4vf_get_strings,
1763        .set_phys_id            = cxgb4vf_phys_id,
1764        .get_sset_count         = cxgb4vf_get_sset_count,
1765        .get_ethtool_stats      = cxgb4vf_get_ethtool_stats,
1766        .get_regs_len           = cxgb4vf_get_regs_len,
1767        .get_regs               = cxgb4vf_get_regs,
1768        .get_wol                = cxgb4vf_get_wol,
1769};
1770
1771/*
1772 * /sys/kernel/debug/cxgb4vf support code and data.
1773 * ================================================
1774 */
1775
1776/*
1777 * Show Firmware Mailbox Command/Reply Log
1778 *
1779 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1780 * it's possible that we can catch things during a log update and therefore
1781 * see partially corrupted log entries.  But i9t's probably Good Enough(tm).
1782 * If we ever decide that we want to make sure that we're dumping a coherent
1783 * log, we'd need to perform locking in the mailbox logging and in
1784 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1785 * like we do for the Firmware Device Log.  But as stated above, meh ...
1786 */
1787static int mboxlog_show(struct seq_file *seq, void *v)
1788{
1789        struct adapter *adapter = seq->private;
1790        struct mbox_cmd_log *log = adapter->mbox_log;
1791        struct mbox_cmd *entry;
1792        int entry_idx, i;
1793
1794        if (v == SEQ_START_TOKEN) {
1795                seq_printf(seq,
1796                           "%10s  %15s  %5s  %5s  %s\n",
1797                           "Seq#", "Tstamp", "Atime", "Etime",
1798                           "Command/Reply");
1799                return 0;
1800        }
1801
1802        entry_idx = log->cursor + ((uintptr_t)v - 2);
1803        if (entry_idx >= log->size)
1804                entry_idx -= log->size;
1805        entry = mbox_cmd_log_entry(log, entry_idx);
1806
1807        /* skip over unused entries */
1808        if (entry->timestamp == 0)
1809                return 0;
1810
1811        seq_printf(seq, "%10u  %15llu  %5d  %5d",
1812                   entry->seqno, entry->timestamp,
1813                   entry->access, entry->execute);
1814        for (i = 0; i < MBOX_LEN / 8; i++) {
1815                u64 flit = entry->cmd[i];
1816                u32 hi = (u32)(flit >> 32);
1817                u32 lo = (u32)flit;
1818
1819                seq_printf(seq, "  %08x %08x", hi, lo);
1820        }
1821        seq_puts(seq, "\n");
1822        return 0;
1823}
1824
1825static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1826{
1827        struct adapter *adapter = seq->private;
1828        struct mbox_cmd_log *log = adapter->mbox_log;
1829
1830        return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1831}
1832
1833static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1834{
1835        return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1836}
1837
1838static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1839{
1840        ++*pos;
1841        return mboxlog_get_idx(seq, *pos);
1842}
1843
1844static void mboxlog_stop(struct seq_file *seq, void *v)
1845{
1846}
1847
1848static const struct seq_operations mboxlog_seq_ops = {
1849        .start = mboxlog_start,
1850        .next  = mboxlog_next,
1851        .stop  = mboxlog_stop,
1852        .show  = mboxlog_show
1853};
1854
1855static int mboxlog_open(struct inode *inode, struct file *file)
1856{
1857        int res = seq_open(file, &mboxlog_seq_ops);
1858
1859        if (!res) {
1860                struct seq_file *seq = file->private_data;
1861
1862                seq->private = inode->i_private;
1863        }
1864        return res;
1865}
1866
1867static const struct file_operations mboxlog_fops = {
1868        .owner   = THIS_MODULE,
1869        .open    = mboxlog_open,
1870        .read    = seq_read,
1871        .llseek  = seq_lseek,
1872        .release = seq_release,
1873};
1874
1875/*
1876 * Show SGE Queue Set information.  We display QPL Queues Sets per line.
1877 */
1878#define QPL     4
1879
1880static int sge_qinfo_show(struct seq_file *seq, void *v)
1881{
1882        struct adapter *adapter = seq->private;
1883        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1884        int qs, r = (uintptr_t)v - 1;
1885
1886        if (r)
1887                seq_putc(seq, '\n');
1888
1889        #define S3(fmt_spec, s, v) \
1890                do {\
1891                        seq_printf(seq, "%-12s", s); \
1892                        for (qs = 0; qs < n; ++qs) \
1893                                seq_printf(seq, " %16" fmt_spec, v); \
1894                        seq_putc(seq, '\n'); \
1895                } while (0)
1896        #define S(s, v)         S3("s", s, v)
1897        #define T(s, v)         S3("u", s, txq[qs].v)
1898        #define R(s, v)         S3("u", s, rxq[qs].v)
1899
1900        if (r < eth_entries) {
1901                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1902                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1903                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1904
1905                S("QType:", "Ethernet");
1906                S("Interface:",
1907                  (rxq[qs].rspq.netdev
1908                   ? rxq[qs].rspq.netdev->name
1909                   : "N/A"));
1910                S3("d", "Port:",
1911                   (rxq[qs].rspq.netdev
1912                    ? ((struct port_info *)
1913                       netdev_priv(rxq[qs].rspq.netdev))->port_id
1914                    : -1));
1915                T("TxQ ID:", q.abs_id);
1916                T("TxQ size:", q.size);
1917                T("TxQ inuse:", q.in_use);
1918                T("TxQ PIdx:", q.pidx);
1919                T("TxQ CIdx:", q.cidx);
1920                R("RspQ ID:", rspq.abs_id);
1921                R("RspQ size:", rspq.size);
1922                R("RspQE size:", rspq.iqe_len);
1923                S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1924                S3("u", "Intr pktcnt:",
1925                   adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1926                R("RspQ CIdx:", rspq.cidx);
1927                R("RspQ Gen:", rspq.gen);
1928                R("FL ID:", fl.abs_id);
1929                R("FL size:", fl.size - MIN_FL_RESID);
1930                R("FL avail:", fl.avail);
1931                R("FL PIdx:", fl.pidx);
1932                R("FL CIdx:", fl.cidx);
1933                return 0;
1934        }
1935
1936        r -= eth_entries;
1937        if (r == 0) {
1938                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1939
1940                seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1941                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1942                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1943                           qtimer_val(adapter, evtq));
1944                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1945                           adapter->sge.counter_val[evtq->pktcnt_idx]);
1946                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1947                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1948        } else if (r == 1) {
1949                const struct sge_rspq *intrq = &adapter->sge.intrq;
1950
1951                seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1952                seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1953                seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1954                           qtimer_val(adapter, intrq));
1955                seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1956                           adapter->sge.counter_val[intrq->pktcnt_idx]);
1957                seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1958                seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1959        }
1960
1961        #undef R
1962        #undef T
1963        #undef S
1964        #undef S3
1965
1966        return 0;
1967}
1968
1969/*
1970 * Return the number of "entries" in our "file".  We group the multi-Queue
1971 * sections with QPL Queue Sets per "entry".  The sections of the output are:
1972 *
1973 *     Ethernet RX/TX Queue Sets
1974 *     Firmware Event Queue
1975 *     Forwarded Interrupt Queue (if in MSI mode)
1976 */
1977static int sge_queue_entries(const struct adapter *adapter)
1978{
1979        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1980                ((adapter->flags & USING_MSI) != 0);
1981}
1982
1983static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1984{
1985        int entries = sge_queue_entries(seq->private);
1986
1987        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1988}
1989
1990static void sge_queue_stop(struct seq_file *seq, void *v)
1991{
1992}
1993
1994static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1995{
1996        int entries = sge_queue_entries(seq->private);
1997
1998        ++*pos;
1999        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2000}
2001
2002static const struct seq_operations sge_qinfo_seq_ops = {
2003        .start = sge_queue_start,
2004        .next  = sge_queue_next,
2005        .stop  = sge_queue_stop,
2006        .show  = sge_qinfo_show
2007};
2008
2009static int sge_qinfo_open(struct inode *inode, struct file *file)
2010{
2011        int res = seq_open(file, &sge_qinfo_seq_ops);
2012
2013        if (!res) {
2014                struct seq_file *seq = file->private_data;
2015                seq->private = inode->i_private;
2016        }
2017        return res;
2018}
2019
2020static const struct file_operations sge_qinfo_debugfs_fops = {
2021        .owner   = THIS_MODULE,
2022        .open    = sge_qinfo_open,
2023        .read    = seq_read,
2024        .llseek  = seq_lseek,
2025        .release = seq_release,
2026};
2027
2028/*
2029 * Show SGE Queue Set statistics.  We display QPL Queues Sets per line.
2030 */
2031#define QPL     4
2032
2033static int sge_qstats_show(struct seq_file *seq, void *v)
2034{
2035        struct adapter *adapter = seq->private;
2036        int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2037        int qs, r = (uintptr_t)v - 1;
2038
2039        if (r)
2040                seq_putc(seq, '\n');
2041
2042        #define S3(fmt, s, v) \
2043                do { \
2044                        seq_printf(seq, "%-16s", s); \
2045                        for (qs = 0; qs < n; ++qs) \
2046                                seq_printf(seq, " %8" fmt, v); \
2047                        seq_putc(seq, '\n'); \
2048                } while (0)
2049        #define S(s, v)         S3("s", s, v)
2050
2051        #define T3(fmt, s, v)   S3(fmt, s, txq[qs].v)
2052        #define T(s, v)         T3("lu", s, v)
2053
2054        #define R3(fmt, s, v)   S3(fmt, s, rxq[qs].v)
2055        #define R(s, v)         R3("lu", s, v)
2056
2057        if (r < eth_entries) {
2058                const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2059                const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2060                int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2061
2062                S("QType:", "Ethernet");
2063                S("Interface:",
2064                  (rxq[qs].rspq.netdev
2065                   ? rxq[qs].rspq.netdev->name
2066                   : "N/A"));
2067                R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2068                R("RxPackets:", stats.pkts);
2069                R("RxCSO:", stats.rx_cso);
2070                R("VLANxtract:", stats.vlan_ex);
2071                R("LROmerged:", stats.lro_merged);
2072                R("LROpackets:", stats.lro_pkts);
2073                R("RxDrops:", stats.rx_drops);
2074                T("TSO:", tso);
2075                T("TxCSO:", tx_cso);
2076                T("VLANins:", vlan_ins);
2077                T("TxQFull:", q.stops);
2078                T("TxQRestarts:", q.restarts);
2079                T("TxMapErr:", mapping_err);
2080                R("FLAllocErr:", fl.alloc_failed);
2081                R("FLLrgAlcErr:", fl.large_alloc_failed);
2082                R("FLStarving:", fl.starving);
2083                return 0;
2084        }
2085
2086        r -= eth_entries;
2087        if (r == 0) {
2088                const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2089
2090                seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2091                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2092                           evtq->unhandled_irqs);
2093                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2094                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2095        } else if (r == 1) {
2096                const struct sge_rspq *intrq = &adapter->sge.intrq;
2097
2098                seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2099                seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2100                           intrq->unhandled_irqs);
2101                seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2102                seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2103        }
2104
2105        #undef R
2106        #undef T
2107        #undef S
2108        #undef R3
2109        #undef T3
2110        #undef S3
2111
2112        return 0;
2113}
2114
2115/*
2116 * Return the number of "entries" in our "file".  We group the multi-Queue
2117 * sections with QPL Queue Sets per "entry".  The sections of the output are:
2118 *
2119 *     Ethernet RX/TX Queue Sets
2120 *     Firmware Event Queue
2121 *     Forwarded Interrupt Queue (if in MSI mode)
2122 */
2123static int sge_qstats_entries(const struct adapter *adapter)
2124{
2125        return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2126                ((adapter->flags & USING_MSI) != 0);
2127}
2128
2129static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2130{
2131        int entries = sge_qstats_entries(seq->private);
2132
2133        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2134}
2135
2136static void sge_qstats_stop(struct seq_file *seq, void *v)
2137{
2138}
2139
2140static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2141{
2142        int entries = sge_qstats_entries(seq->private);
2143
2144        (*pos)++;
2145        return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2146}
2147
2148static const struct seq_operations sge_qstats_seq_ops = {
2149        .start = sge_qstats_start,
2150        .next  = sge_qstats_next,
2151        .stop  = sge_qstats_stop,
2152        .show  = sge_qstats_show
2153};
2154
2155static int sge_qstats_open(struct inode *inode, struct file *file)
2156{
2157        int res = seq_open(file, &sge_qstats_seq_ops);
2158
2159        if (res == 0) {
2160                struct seq_file *seq = file->private_data;
2161                seq->private = inode->i_private;
2162        }
2163        return res;
2164}
2165
2166static const struct file_operations sge_qstats_proc_fops = {
2167        .owner   = THIS_MODULE,
2168        .open    = sge_qstats_open,
2169        .read    = seq_read,
2170        .llseek  = seq_lseek,
2171        .release = seq_release,
2172};
2173
2174/*
2175 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2176 */
2177static int resources_show(struct seq_file *seq, void *v)
2178{
2179        struct adapter *adapter = seq->private;
2180        struct vf_resources *vfres = &adapter->params.vfres;
2181
2182        #define S(desc, fmt, var) \
2183                seq_printf(seq, "%-60s " fmt "\n", \
2184                           desc " (" #var "):", vfres->var)
2185
2186        S("Virtual Interfaces", "%d", nvi);
2187        S("Egress Queues", "%d", neq);
2188        S("Ethernet Control", "%d", nethctrl);
2189        S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2190        S("Ingress Queues", "%d", niq);
2191        S("Traffic Class", "%d", tc);
2192        S("Port Access Rights Mask", "%#x", pmask);
2193        S("MAC Address Filters", "%d", nexactf);
2194        S("Firmware Command Read Capabilities", "%#x", r_caps);
2195        S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2196
2197        #undef S
2198
2199        return 0;
2200}
2201
2202static int resources_open(struct inode *inode, struct file *file)
2203{
2204        return single_open(file, resources_show, inode->i_private);
2205}
2206
2207static const struct file_operations resources_proc_fops = {
2208        .owner   = THIS_MODULE,
2209        .open    = resources_open,
2210        .read    = seq_read,
2211        .llseek  = seq_lseek,
2212        .release = single_release,
2213};
2214
2215/*
2216 * Show Virtual Interfaces.
2217 */
2218static int interfaces_show(struct seq_file *seq, void *v)
2219{
2220        if (v == SEQ_START_TOKEN) {
2221                seq_puts(seq, "Interface  Port   VIID\n");
2222        } else {
2223                struct adapter *adapter = seq->private;
2224                int pidx = (uintptr_t)v - 2;
2225                struct net_device *dev = adapter->port[pidx];
2226                struct port_info *pi = netdev_priv(dev);
2227
2228                seq_printf(seq, "%9s  %4d  %#5x\n",
2229                           dev->name, pi->port_id, pi->viid);
2230        }
2231        return 0;
2232}
2233
2234static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2235{
2236        return pos <= adapter->params.nports
2237                ? (void *)(uintptr_t)(pos + 1)
2238                : NULL;
2239}
2240
2241static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2242{
2243        return *pos
2244                ? interfaces_get_idx(seq->private, *pos)
2245                : SEQ_START_TOKEN;
2246}
2247
2248static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2249{
2250        (*pos)++;
2251        return interfaces_get_idx(seq->private, *pos);
2252}
2253
2254static void interfaces_stop(struct seq_file *seq, void *v)
2255{
2256}
2257
2258static const struct seq_operations interfaces_seq_ops = {
2259        .start = interfaces_start,
2260        .next  = interfaces_next,
2261        .stop  = interfaces_stop,
2262        .show  = interfaces_show
2263};
2264
2265static int interfaces_open(struct inode *inode, struct file *file)
2266{
2267        int res = seq_open(file, &interfaces_seq_ops);
2268
2269        if (res == 0) {
2270                struct seq_file *seq = file->private_data;
2271                seq->private = inode->i_private;
2272        }
2273        return res;
2274}
2275
2276static const struct file_operations interfaces_proc_fops = {
2277        .owner   = THIS_MODULE,
2278        .open    = interfaces_open,
2279        .read    = seq_read,
2280        .llseek  = seq_lseek,
2281        .release = seq_release,
2282};
2283
2284/*
2285 * /sys/kernel/debugfs/cxgb4vf/ files list.
2286 */
2287struct cxgb4vf_debugfs_entry {
2288        const char *name;               /* name of debugfs node */
2289        umode_t mode;                   /* file system mode */
2290        const struct file_operations *fops;
2291};
2292
2293static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2294        { "mboxlog",    S_IRUGO, &mboxlog_fops },
2295        { "sge_qinfo",  S_IRUGO, &sge_qinfo_debugfs_fops },
2296        { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2297        { "resources",  S_IRUGO, &resources_proc_fops },
2298        { "interfaces", S_IRUGO, &interfaces_proc_fops },
2299};
2300
2301/*
2302 * Module and device initialization and cleanup code.
2303 * ==================================================
2304 */
2305
2306/*
2307 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes.  We assume that the
2308 * directory (debugfs_root) has already been set up.
2309 */
2310static int setup_debugfs(struct adapter *adapter)
2311{
2312        int i;
2313
2314        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2315
2316        /*
2317         * Debugfs support is best effort.
2318         */
2319        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2320                (void)debugfs_create_file(debugfs_files[i].name,
2321                                  debugfs_files[i].mode,
2322                                  adapter->debugfs_root,
2323                                  (void *)adapter,
2324                                  debugfs_files[i].fops);
2325
2326        return 0;
2327}
2328
2329/*
2330 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above.  We leave
2331 * it to our caller to tear down the directory (debugfs_root).
2332 */
2333static void cleanup_debugfs(struct adapter *adapter)
2334{
2335        BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2336
2337        /*
2338         * Unlike our sister routine cleanup_proc(), we don't need to remove
2339         * individual entries because a call will be made to
2340         * debugfs_remove_recursive().  We just need to clean up any ancillary
2341         * persistent state.
2342         */
2343        /* nothing to do */
2344}
2345
2346/* Figure out how many Ports and Queue Sets we can support.  This depends on
2347 * knowing our Virtual Function Resources and may be called a second time if
2348 * we fall back from MSI-X to MSI Interrupt Mode.
2349 */
2350static void size_nports_qsets(struct adapter *adapter)
2351{
2352        struct vf_resources *vfres = &adapter->params.vfres;
2353        unsigned int ethqsets, pmask_nports;
2354
2355        /* The number of "ports" which we support is equal to the number of
2356         * Virtual Interfaces with which we've been provisioned.
2357         */
2358        adapter->params.nports = vfres->nvi;
2359        if (adapter->params.nports > MAX_NPORTS) {
2360                dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2361                         " allowed virtual interfaces\n", MAX_NPORTS,
2362                         adapter->params.nports);
2363                adapter->params.nports = MAX_NPORTS;
2364        }
2365
2366        /* We may have been provisioned with more VIs than the number of
2367         * ports we're allowed to access (our Port Access Rights Mask).
2368         * This is obviously a configuration conflict but we don't want to
2369         * crash the kernel or anything silly just because of that.
2370         */
2371        pmask_nports = hweight32(adapter->params.vfres.pmask);
2372        if (pmask_nports < adapter->params.nports) {
2373                dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2374                         " virtual interfaces; limited by Port Access Rights"
2375                         " mask %#x\n", pmask_nports, adapter->params.nports,
2376                         adapter->params.vfres.pmask);
2377                adapter->params.nports = pmask_nports;
2378        }
2379
2380        /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2381         * Event Queue.  And if we're using MSI Interrupts, we'll also need to
2382         * reserve an Ingress Queue for a Forwarded Interrupts.
2383         *
2384         * The rest of the FL/Intr-capable ingress queues will be matched up
2385         * one-for-one with Ethernet/Control egress queues in order to form
2386         * "Queue Sets" which will be aportioned between the "ports".  For
2387         * each Queue Set, we'll need the ability to allocate two Egress
2388         * Contexts -- one for the Ingress Queue Free List and one for the TX
2389         * Ethernet Queue.
2390         *
2391         * Note that even if we're currently configured to use MSI-X
2392         * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2393         * to MSI Interrupts if we can't get enough MSI-X Interrupts.  If that
2394         * happens we'll need to adjust things later.
2395         */
2396        ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2397        if (vfres->nethctrl != ethqsets)
2398                ethqsets = min(vfres->nethctrl, ethqsets);
2399        if (vfres->neq < ethqsets*2)
2400                ethqsets = vfres->neq/2;
2401        if (ethqsets > MAX_ETH_QSETS)
2402                ethqsets = MAX_ETH_QSETS;
2403        adapter->sge.max_ethqsets = ethqsets;
2404
2405        if (adapter->sge.max_ethqsets < adapter->params.nports) {
2406                dev_warn(adapter->pdev_dev, "only using %d of %d available"
2407                         " virtual interfaces (too few Queue Sets)\n",
2408                         adapter->sge.max_ethqsets, adapter->params.nports);
2409                adapter->params.nports = adapter->sge.max_ethqsets;
2410        }
2411}
2412
2413/*
2414 * Perform early "adapter" initialization.  This is where we discover what
2415 * adapter parameters we're going to be using and initialize basic adapter
2416 * hardware support.
2417 */
2418static int adap_init0(struct adapter *adapter)
2419{
2420        struct sge_params *sge_params = &adapter->params.sge;
2421        struct sge *s = &adapter->sge;
2422        int err;
2423        u32 param, val = 0;
2424
2425        /*
2426         * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2427         * 2.6.31 and later we can't call pci_reset_function() in order to
2428         * issue an FLR because of a self- deadlock on the device semaphore.
2429         * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2430         * cases where they're needed -- for instance, some versions of KVM
2431         * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
2432         * use the firmware based reset in order to reset any per function
2433         * state.
2434         */
2435        err = t4vf_fw_reset(adapter);
2436        if (err < 0) {
2437                dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2438                return err;
2439        }
2440
2441        /*
2442         * Grab basic operational parameters.  These will predominantly have
2443         * been set up by the Physical Function Driver or will be hard coded
2444         * into the adapter.  We just have to live with them ...  Note that
2445         * we _must_ get our VPD parameters before our SGE parameters because
2446         * we need to know the adapter's core clock from the VPD in order to
2447         * properly decode the SGE Timer Values.
2448         */
2449        err = t4vf_get_dev_params(adapter);
2450        if (err) {
2451                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2452                        " device parameters: err=%d\n", err);
2453                return err;
2454        }
2455        err = t4vf_get_vpd_params(adapter);
2456        if (err) {
2457                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2458                        " VPD parameters: err=%d\n", err);
2459                return err;
2460        }
2461        err = t4vf_get_sge_params(adapter);
2462        if (err) {
2463                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2464                        " SGE parameters: err=%d\n", err);
2465                return err;
2466        }
2467        err = t4vf_get_rss_glb_config(adapter);
2468        if (err) {
2469                dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2470                        " RSS parameters: err=%d\n", err);
2471                return err;
2472        }
2473        if (adapter->params.rss.mode !=
2474            FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2475                dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2476                        " mode %d\n", adapter->params.rss.mode);
2477                return -EINVAL;
2478        }
2479        err = t4vf_sge_init(adapter);
2480        if (err) {
2481                dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2482                        " err=%d\n", err);
2483                return err;
2484        }
2485
2486        /* If we're running on newer firmware, let it know that we're
2487         * prepared to deal with encapsulated CPL messages.  Older
2488         * firmware won't understand this and we'll just get
2489         * unencapsulated messages ...
2490         */
2491        param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2492                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2493        val = 1;
2494        (void) t4vf_set_params(adapter, 1, &param, &val);
2495
2496        /*
2497         * Retrieve our RX interrupt holdoff timer values and counter
2498         * threshold values from the SGE parameters.
2499         */
2500        s->timer_val[0] = core_ticks_to_us(adapter,
2501                TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2502        s->timer_val[1] = core_ticks_to_us(adapter,
2503                TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2504        s->timer_val[2] = core_ticks_to_us(adapter,
2505                TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2506        s->timer_val[3] = core_ticks_to_us(adapter,
2507                TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2508        s->timer_val[4] = core_ticks_to_us(adapter,
2509                TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2510        s->timer_val[5] = core_ticks_to_us(adapter,
2511                TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2512
2513        s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2514        s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2515        s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2516        s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2517
2518        /*
2519         * Grab our Virtual Interface resource allocation, extract the
2520         * features that we're interested in and do a bit of sanity testing on
2521         * what we discover.
2522         */
2523        err = t4vf_get_vfres(adapter);
2524        if (err) {
2525                dev_err(adapter->pdev_dev, "unable to get virtual interface"
2526                        " resources: err=%d\n", err);
2527                return err;
2528        }
2529
2530        /* Check for various parameter sanity issues */
2531        if (adapter->params.vfres.pmask == 0) {
2532                dev_err(adapter->pdev_dev, "no port access configured\n"
2533                        "usable!\n");
2534                return -EINVAL;
2535        }
2536        if (adapter->params.vfres.nvi == 0) {
2537                dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2538                        "usable!\n");
2539                return -EINVAL;
2540        }
2541
2542        /* Initialize nports and max_ethqsets now that we have our Virtual
2543         * Function Resources.
2544         */
2545        size_nports_qsets(adapter);
2546
2547        return 0;
2548}
2549
2550static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2551                             u8 pkt_cnt_idx, unsigned int size,
2552                             unsigned int iqe_size)
2553{
2554        rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2555                             (pkt_cnt_idx < SGE_NCOUNTERS ?
2556                              QINTR_CNT_EN_F : 0));
2557        rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2558                            ? pkt_cnt_idx
2559                            : 0);
2560        rspq->iqe_len = iqe_size;
2561        rspq->size = size;
2562}
2563
2564/*
2565 * Perform default configuration of DMA queues depending on the number and
2566 * type of ports we found and the number of available CPUs.  Most settings can
2567 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2568 * being brought up for the first time.
2569 */
2570static void cfg_queues(struct adapter *adapter)
2571{
2572        struct sge *s = &adapter->sge;
2573        int q10g, n10g, qidx, pidx, qs;
2574        size_t iqe_size;
2575
2576        /*
2577         * We should not be called till we know how many Queue Sets we can
2578         * support.  In particular, this means that we need to know what kind
2579         * of interrupts we'll be using ...
2580         */
2581        BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2582
2583        /*
2584         * Count the number of 10GbE Virtual Interfaces that we have.
2585         */
2586        n10g = 0;
2587        for_each_port(adapter, pidx)
2588                n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2589
2590        /*
2591         * We default to 1 queue per non-10G port and up to # of cores queues
2592         * per 10G port.
2593         */
2594        if (n10g == 0)
2595                q10g = 0;
2596        else {
2597                int n1g = (adapter->params.nports - n10g);
2598                q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2599                if (q10g > num_online_cpus())
2600                        q10g = num_online_cpus();
2601        }
2602
2603        /*
2604         * Allocate the "Queue Sets" to the various Virtual Interfaces.
2605         * The layout will be established in setup_sge_queues() when the
2606         * adapter is brough up for the first time.
2607         */
2608        qidx = 0;
2609        for_each_port(adapter, pidx) {
2610                struct port_info *pi = adap2pinfo(adapter, pidx);
2611
2612                pi->first_qset = qidx;
2613                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2614                qidx += pi->nqsets;
2615        }
2616        s->ethqsets = qidx;
2617
2618        /*
2619         * The Ingress Queue Entry Size for our various Response Queues needs
2620         * to be big enough to accommodate the largest message we can receive
2621         * from the chip/firmware; which is 64 bytes ...
2622         */
2623        iqe_size = 64;
2624
2625        /*
2626         * Set up default Queue Set parameters ...  Start off with the
2627         * shortest interrupt holdoff timer.
2628         */
2629        for (qs = 0; qs < s->max_ethqsets; qs++) {
2630                struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2631                struct sge_eth_txq *txq = &s->ethtxq[qs];
2632
2633                init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2634                rxq->fl.size = 72;
2635                txq->q.size = 1024;
2636        }
2637
2638        /*
2639         * The firmware event queue is used for link state changes and
2640         * notifications of TX DMA completions.
2641         */
2642        init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2643
2644        /*
2645         * The forwarded interrupt queue is used when we're in MSI interrupt
2646         * mode.  In this mode all interrupts associated with RX queues will
2647         * be forwarded to a single queue which we'll associate with our MSI
2648         * interrupt vector.  The messages dropped in the forwarded interrupt
2649         * queue will indicate which ingress queue needs servicing ...  This
2650         * queue needs to be large enough to accommodate all of the ingress
2651         * queues which are forwarding their interrupt (+1 to prevent the PIDX
2652         * from equalling the CIDX if every ingress queue has an outstanding
2653         * interrupt).  The queue doesn't need to be any larger because no
2654         * ingress queue will ever have more than one outstanding interrupt at
2655         * any time ...
2656         */
2657        init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2658                  iqe_size);
2659}
2660
2661/*
2662 * Reduce the number of Ethernet queues across all ports to at most n.
2663 * n provides at least one queue per port.
2664 */
2665static void reduce_ethqs(struct adapter *adapter, int n)
2666{
2667        int i;
2668        struct port_info *pi;
2669
2670        /*
2671         * While we have too many active Ether Queue Sets, interate across the
2672         * "ports" and reduce their individual Queue Set allocations.
2673         */
2674        BUG_ON(n < adapter->params.nports);
2675        while (n < adapter->sge.ethqsets)
2676                for_each_port(adapter, i) {
2677                        pi = adap2pinfo(adapter, i);
2678                        if (pi->nqsets > 1) {
2679                                pi->nqsets--;
2680                                adapter->sge.ethqsets--;
2681                                if (adapter->sge.ethqsets <= n)
2682                                        break;
2683                        }
2684                }
2685
2686        /*
2687         * Reassign the starting Queue Sets for each of the "ports" ...
2688         */
2689        n = 0;
2690        for_each_port(adapter, i) {
2691                pi = adap2pinfo(adapter, i);
2692                pi->first_qset = n;
2693                n += pi->nqsets;
2694        }
2695}
2696
2697/*
2698 * We need to grab enough MSI-X vectors to cover our interrupt needs.  Ideally
2699 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2700 * need.  Minimally we need one for every Virtual Interface plus those needed
2701 * for our "extras".  Note that this process may lower the maximum number of
2702 * allowed Queue Sets ...
2703 */
2704static int enable_msix(struct adapter *adapter)
2705{
2706        int i, want, need, nqsets;
2707        struct msix_entry entries[MSIX_ENTRIES];
2708        struct sge *s = &adapter->sge;
2709
2710        for (i = 0; i < MSIX_ENTRIES; ++i)
2711                entries[i].entry = i;
2712
2713        /*
2714         * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2715         * plus those needed for our "extras" (for example, the firmware
2716         * message queue).  We _need_ at least one "Queue Set" per Virtual
2717         * Interface plus those needed for our "extras".  So now we get to see
2718         * if the song is right ...
2719         */
2720        want = s->max_ethqsets + MSIX_EXTRAS;
2721        need = adapter->params.nports + MSIX_EXTRAS;
2722
2723        want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2724        if (want < 0)
2725                return want;
2726
2727        nqsets = want - MSIX_EXTRAS;
2728        if (nqsets < s->max_ethqsets) {
2729                dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2730                         " for %d Queue Sets\n", nqsets);
2731                s->max_ethqsets = nqsets;
2732                if (nqsets < s->ethqsets)
2733                        reduce_ethqs(adapter, nqsets);
2734        }
2735        for (i = 0; i < want; ++i)
2736                adapter->msix_info[i].vec = entries[i].vector;
2737
2738        return 0;
2739}
2740
2741static const struct net_device_ops cxgb4vf_netdev_ops   = {
2742        .ndo_open               = cxgb4vf_open,
2743        .ndo_stop               = cxgb4vf_stop,
2744        .ndo_start_xmit         = t4vf_eth_xmit,
2745        .ndo_get_stats          = cxgb4vf_get_stats,
2746        .ndo_set_rx_mode        = cxgb4vf_set_rxmode,
2747        .ndo_set_mac_address    = cxgb4vf_set_mac_addr,
2748        .ndo_validate_addr      = eth_validate_addr,
2749        .ndo_do_ioctl           = cxgb4vf_do_ioctl,
2750        .ndo_change_mtu         = cxgb4vf_change_mtu,
2751        .ndo_fix_features       = cxgb4vf_fix_features,
2752        .ndo_set_features       = cxgb4vf_set_features,
2753#ifdef CONFIG_NET_POLL_CONTROLLER
2754        .ndo_poll_controller    = cxgb4vf_poll_controller,
2755#endif
2756};
2757
2758/*
2759 * "Probe" a device: initialize a device and construct all kernel and driver
2760 * state needed to manage the device.  This routine is called "init_one" in
2761 * the PF Driver ...
2762 */
2763static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2764                             const struct pci_device_id *ent)
2765{
2766        int pci_using_dac;
2767        int err, pidx;
2768        unsigned int pmask;
2769        struct adapter *adapter;
2770        struct port_info *pi;
2771        struct net_device *netdev;
2772        unsigned int pf;
2773
2774        /*
2775         * Print our driver banner the first time we're called to initialize a
2776         * device.
2777         */
2778        pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2779
2780        /*
2781         * Initialize generic PCI device state.
2782         */
2783        err = pci_enable_device(pdev);
2784        if (err) {
2785                dev_err(&pdev->dev, "cannot enable PCI device\n");
2786                return err;
2787        }
2788
2789        /*
2790         * Reserve PCI resources for the device.  If we can't get them some
2791         * other driver may have already claimed the device ...
2792         */
2793        err = pci_request_regions(pdev, KBUILD_MODNAME);
2794        if (err) {
2795                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2796                goto err_disable_device;
2797        }
2798
2799        /*
2800         * Set up our DMA mask: try for 64-bit address masking first and
2801         * fall back to 32-bit if we can't get 64 bits ...
2802         */
2803        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2804        if (err == 0) {
2805                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2806                if (err) {
2807                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2808                                " coherent allocations\n");
2809                        goto err_release_regions;
2810                }
2811                pci_using_dac = 1;
2812        } else {
2813                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2814                if (err != 0) {
2815                        dev_err(&pdev->dev, "no usable DMA configuration\n");
2816                        goto err_release_regions;
2817                }
2818                pci_using_dac = 0;
2819        }
2820
2821        /*
2822         * Enable bus mastering for the device ...
2823         */
2824        pci_set_master(pdev);
2825
2826        /*
2827         * Allocate our adapter data structure and attach it to the device.
2828         */
2829        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2830        if (!adapter) {
2831                err = -ENOMEM;
2832                goto err_release_regions;
2833        }
2834        pci_set_drvdata(pdev, adapter);
2835        adapter->pdev = pdev;
2836        adapter->pdev_dev = &pdev->dev;
2837
2838        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2839                                    (sizeof(struct mbox_cmd) *
2840                                     T4VF_OS_LOG_MBOX_CMDS),
2841                                    GFP_KERNEL);
2842        if (!adapter->mbox_log) {
2843                err = -ENOMEM;
2844                goto err_free_adapter;
2845        }
2846        adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2847
2848        /*
2849         * Initialize SMP data synchronization resources.
2850         */
2851        spin_lock_init(&adapter->stats_lock);
2852        spin_lock_init(&adapter->mbox_lock);
2853        INIT_LIST_HEAD(&adapter->mlist.list);
2854
2855        /*
2856         * Map our I/O registers in BAR0.
2857         */
2858        adapter->regs = pci_ioremap_bar(pdev, 0);
2859        if (!adapter->regs) {
2860                dev_err(&pdev->dev, "cannot map device registers\n");
2861                err = -ENOMEM;
2862                goto err_free_adapter;
2863        }
2864
2865        /* Wait for the device to become ready before proceeding ...
2866         */
2867        err = t4vf_prep_adapter(adapter);
2868        if (err) {
2869                dev_err(adapter->pdev_dev, "device didn't become ready:"
2870                        " err=%d\n", err);
2871                goto err_unmap_bar0;
2872        }
2873
2874        /* For T5 and later we want to use the new BAR-based User Doorbells,
2875         * so we need to map BAR2 here ...
2876         */
2877        if (!is_t4(adapter->params.chip)) {
2878                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2879                                           pci_resource_len(pdev, 2));
2880                if (!adapter->bar2) {
2881                        dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2882                        err = -ENOMEM;
2883                        goto err_unmap_bar0;
2884                }
2885        }
2886        /*
2887         * Initialize adapter level features.
2888         */
2889        adapter->name = pci_name(pdev);
2890        adapter->msg_enable = DFLT_MSG_ENABLE;
2891        err = adap_init0(adapter);
2892        if (err)
2893                goto err_unmap_bar;
2894
2895        /*
2896         * Allocate our "adapter ports" and stitch everything together.
2897         */
2898        pmask = adapter->params.vfres.pmask;
2899        pf = t4vf_get_pf_from_vf(adapter);
2900        for_each_port(adapter, pidx) {
2901                int port_id, viid;
2902                u8 mac[ETH_ALEN];
2903                unsigned int naddr = 1;
2904
2905                /*
2906                 * We simplistically allocate our virtual interfaces
2907                 * sequentially across the port numbers to which we have
2908                 * access rights.  This should be configurable in some manner
2909                 * ...
2910                 */
2911                if (pmask == 0)
2912                        break;
2913                port_id = ffs(pmask) - 1;
2914                pmask &= ~(1 << port_id);
2915                viid = t4vf_alloc_vi(adapter, port_id);
2916                if (viid < 0) {
2917                        dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2918                                " err=%d\n", port_id, viid);
2919                        err = viid;
2920                        goto err_free_dev;
2921                }
2922
2923                /*
2924                 * Allocate our network device and stitch things together.
2925                 */
2926                netdev = alloc_etherdev_mq(sizeof(struct port_info),
2927                                           MAX_PORT_QSETS);
2928                if (netdev == NULL) {
2929                        t4vf_free_vi(adapter, viid);
2930                        err = -ENOMEM;
2931                        goto err_free_dev;
2932                }
2933                adapter->port[pidx] = netdev;
2934                SET_NETDEV_DEV(netdev, &pdev->dev);
2935                pi = netdev_priv(netdev);
2936                pi->adapter = adapter;
2937                pi->pidx = pidx;
2938                pi->port_id = port_id;
2939                pi->viid = viid;
2940
2941                /*
2942                 * Initialize the starting state of our "port" and register
2943                 * it.
2944                 */
2945                pi->xact_addr_filt = -1;
2946                netif_carrier_off(netdev);
2947                netdev->irq = pdev->irq;
2948
2949                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2950                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2951                        NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
2952                netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2953                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2954                        NETIF_F_HIGHDMA;
2955                netdev->features = netdev->hw_features |
2956                                   NETIF_F_HW_VLAN_CTAG_TX;
2957                if (pci_using_dac)
2958                        netdev->features |= NETIF_F_HIGHDMA;
2959
2960                netdev->priv_flags |= IFF_UNICAST_FLT;
2961                netdev->min_mtu = 81;
2962                netdev->max_mtu = ETH_MAX_MTU;
2963
2964                netdev->netdev_ops = &cxgb4vf_netdev_ops;
2965                netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
2966                netdev->dev_port = pi->port_id;
2967
2968                /*
2969                 * Initialize the hardware/software state for the port.
2970                 */
2971                err = t4vf_port_init(adapter, pidx);
2972                if (err) {
2973                        dev_err(&pdev->dev, "cannot initialize port %d\n",
2974                                pidx);
2975                        goto err_free_dev;
2976                }
2977
2978                err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac);
2979                if (err) {
2980                        dev_err(&pdev->dev,
2981                                "unable to determine MAC ACL address, "
2982                                "continuing anyway.. (status %d)\n", err);
2983                } else if (naddr && adapter->params.vfres.nvi == 1) {
2984                        struct sockaddr addr;
2985
2986                        ether_addr_copy(addr.sa_data, mac);
2987                        err = cxgb4vf_set_mac_addr(netdev, &addr);
2988                        if (err) {
2989                                dev_err(&pdev->dev,
2990                                        "unable to set MAC address %pM\n",
2991                                        mac);
2992                                goto err_free_dev;
2993                        }
2994                        dev_info(&pdev->dev,
2995                                 "Using assigned MAC ACL: %pM\n", mac);
2996                }
2997        }
2998
2999        /* See what interrupts we'll be using.  If we've been configured to
3000         * use MSI-X interrupts, try to enable them but fall back to using
3001         * MSI interrupts if we can't enable MSI-X interrupts.  If we can't
3002         * get MSI interrupts we bail with the error.
3003         */
3004        if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3005                adapter->flags |= USING_MSIX;
3006        else {
3007                if (msi == MSI_MSIX) {
3008                        dev_info(adapter->pdev_dev,
3009                                 "Unable to use MSI-X Interrupts; falling "
3010                                 "back to MSI Interrupts\n");
3011
3012                        /* We're going to need a Forwarded Interrupt Queue so
3013                         * that may cut into how many Queue Sets we can
3014                         * support.
3015                         */
3016                        msi = MSI_MSI;
3017                        size_nports_qsets(adapter);
3018                }
3019                err = pci_enable_msi(pdev);
3020                if (err) {
3021                        dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3022                                " err=%d\n", err);
3023                        goto err_free_dev;
3024                }
3025                adapter->flags |= USING_MSI;
3026        }
3027
3028        /* Now that we know how many "ports" we have and what interrupt
3029         * mechanism we're going to use, we can configure our queue resources.
3030         */
3031        cfg_queues(adapter);
3032
3033        /*
3034         * The "card" is now ready to go.  If any errors occur during device
3035         * registration we do not fail the whole "card" but rather proceed
3036         * only with the ports we manage to register successfully.  However we
3037         * must register at least one net device.
3038         */
3039        for_each_port(adapter, pidx) {
3040                struct port_info *pi = netdev_priv(adapter->port[pidx]);
3041                netdev = adapter->port[pidx];
3042                if (netdev == NULL)
3043                        continue;
3044
3045                netif_set_real_num_tx_queues(netdev, pi->nqsets);
3046                netif_set_real_num_rx_queues(netdev, pi->nqsets);
3047
3048                err = register_netdev(netdev);
3049                if (err) {
3050                        dev_warn(&pdev->dev, "cannot register net device %s,"
3051                                 " skipping\n", netdev->name);
3052                        continue;
3053                }
3054
3055                set_bit(pidx, &adapter->registered_device_map);
3056        }
3057        if (adapter->registered_device_map == 0) {
3058                dev_err(&pdev->dev, "could not register any net devices\n");
3059                goto err_disable_interrupts;
3060        }
3061
3062        /*
3063         * Set up our debugfs entries.
3064         */
3065        if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3066                adapter->debugfs_root =
3067                        debugfs_create_dir(pci_name(pdev),
3068                                           cxgb4vf_debugfs_root);
3069                if (IS_ERR_OR_NULL(adapter->debugfs_root))
3070                        dev_warn(&pdev->dev, "could not create debugfs"
3071                                 " directory");
3072                else
3073                        setup_debugfs(adapter);
3074        }
3075
3076        /*
3077         * Print a short notice on the existence and configuration of the new
3078         * VF network device ...
3079         */
3080        for_each_port(adapter, pidx) {
3081                dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3082                         adapter->port[pidx]->name,
3083                         (adapter->flags & USING_MSIX) ? "MSI-X" :
3084                         (adapter->flags & USING_MSI)  ? "MSI" : "");
3085        }
3086
3087        /*
3088         * Return success!
3089         */
3090        return 0;
3091
3092        /*
3093         * Error recovery and exit code.  Unwind state that's been created
3094         * so far and return the error.
3095         */
3096err_disable_interrupts:
3097        if (adapter->flags & USING_MSIX) {
3098                pci_disable_msix(adapter->pdev);
3099                adapter->flags &= ~USING_MSIX;
3100        } else if (adapter->flags & USING_MSI) {
3101                pci_disable_msi(adapter->pdev);
3102                adapter->flags &= ~USING_MSI;
3103        }
3104
3105err_free_dev:
3106        for_each_port(adapter, pidx) {
3107                netdev = adapter->port[pidx];
3108                if (netdev == NULL)
3109                        continue;
3110                pi = netdev_priv(netdev);
3111                t4vf_free_vi(adapter, pi->viid);
3112                if (test_bit(pidx, &adapter->registered_device_map))
3113                        unregister_netdev(netdev);
3114                free_netdev(netdev);
3115        }
3116
3117err_unmap_bar:
3118        if (!is_t4(adapter->params.chip))
3119                iounmap(adapter->bar2);
3120
3121err_unmap_bar0:
3122        iounmap(adapter->regs);
3123
3124err_free_adapter:
3125        kfree(adapter->mbox_log);
3126        kfree(adapter);
3127
3128err_release_regions:
3129        pci_release_regions(pdev);
3130        pci_clear_master(pdev);
3131
3132err_disable_device:
3133        pci_disable_device(pdev);
3134
3135        return err;
3136}
3137
3138/*
3139 * "Remove" a device: tear down all kernel and driver state created in the
3140 * "probe" routine and quiesce the device (disable interrupts, etc.).  (Note
3141 * that this is called "remove_one" in the PF Driver.)
3142 */
3143static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3144{
3145        struct adapter *adapter = pci_get_drvdata(pdev);
3146
3147        /*
3148         * Tear down driver state associated with device.
3149         */
3150        if (adapter) {
3151                int pidx;
3152
3153                /*
3154                 * Stop all of our activity.  Unregister network port,
3155                 * disable interrupts, etc.
3156                 */
3157                for_each_port(adapter, pidx)
3158                        if (test_bit(pidx, &adapter->registered_device_map))
3159                                unregister_netdev(adapter->port[pidx]);
3160                t4vf_sge_stop(adapter);
3161                if (adapter->flags & USING_MSIX) {
3162                        pci_disable_msix(adapter->pdev);
3163                        adapter->flags &= ~USING_MSIX;
3164                } else if (adapter->flags & USING_MSI) {
3165                        pci_disable_msi(adapter->pdev);
3166                        adapter->flags &= ~USING_MSI;
3167                }
3168
3169                /*
3170                 * Tear down our debugfs entries.
3171                 */
3172                if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3173                        cleanup_debugfs(adapter);
3174                        debugfs_remove_recursive(adapter->debugfs_root);
3175                }
3176
3177                /*
3178                 * Free all of the various resources which we've acquired ...
3179                 */
3180                t4vf_free_sge_resources(adapter);
3181                for_each_port(adapter, pidx) {
3182                        struct net_device *netdev = adapter->port[pidx];
3183                        struct port_info *pi;
3184
3185                        if (netdev == NULL)
3186                                continue;
3187
3188                        pi = netdev_priv(netdev);
3189                        t4vf_free_vi(adapter, pi->viid);
3190                        free_netdev(netdev);
3191                }
3192                iounmap(adapter->regs);
3193                if (!is_t4(adapter->params.chip))
3194                        iounmap(adapter->bar2);
3195                kfree(adapter->mbox_log);
3196                kfree(adapter);
3197        }
3198
3199        /*
3200         * Disable the device and release its PCI resources.
3201         */
3202        pci_disable_device(pdev);
3203        pci_clear_master(pdev);
3204        pci_release_regions(pdev);
3205}
3206
3207/*
3208 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3209 * delivery.
3210 */
3211static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3212{
3213        struct adapter *adapter;
3214        int pidx;
3215
3216        adapter = pci_get_drvdata(pdev);
3217        if (!adapter)
3218                return;
3219
3220        /* Disable all Virtual Interfaces.  This will shut down the
3221         * delivery of all ingress packets into the chip for these
3222         * Virtual Interfaces.
3223         */
3224        for_each_port(adapter, pidx)
3225                if (test_bit(pidx, &adapter->registered_device_map))
3226                        unregister_netdev(adapter->port[pidx]);
3227
3228        /* Free up all Queues which will prevent further DMA and
3229         * Interrupts allowing various internal pathways to drain.
3230         */
3231        t4vf_sge_stop(adapter);
3232        if (adapter->flags & USING_MSIX) {
3233                pci_disable_msix(adapter->pdev);
3234                adapter->flags &= ~USING_MSIX;
3235        } else if (adapter->flags & USING_MSI) {
3236                pci_disable_msi(adapter->pdev);
3237                adapter->flags &= ~USING_MSI;
3238        }
3239
3240        /*
3241         * Free up all Queues which will prevent further DMA and
3242         * Interrupts allowing various internal pathways to drain.
3243         */
3244        t4vf_free_sge_resources(adapter);
3245        pci_set_drvdata(pdev, NULL);
3246}
3247
3248/* Macros needed to support the PCI Device ID Table ...
3249 */
3250#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3251        static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3252#define CH_PCI_DEVICE_ID_FUNCTION       0x8
3253
3254#define CH_PCI_ID_TABLE_ENTRY(devid) \
3255                { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3256
3257#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3258
3259#include "../cxgb4/t4_pci_id_tbl.h"
3260
3261MODULE_DESCRIPTION(DRV_DESC);
3262MODULE_AUTHOR("Chelsio Communications");
3263MODULE_LICENSE("Dual BSD/GPL");
3264MODULE_VERSION(DRV_VERSION);
3265MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3266
3267static struct pci_driver cxgb4vf_driver = {
3268        .name           = KBUILD_MODNAME,
3269        .id_table       = cxgb4vf_pci_tbl,
3270        .probe          = cxgb4vf_pci_probe,
3271        .remove         = cxgb4vf_pci_remove,
3272        .shutdown       = cxgb4vf_pci_shutdown,
3273};
3274
3275/*
3276 * Initialize global driver state.
3277 */
3278static int __init cxgb4vf_module_init(void)
3279{
3280        int ret;
3281
3282        /*
3283         * Vet our module parameters.
3284         */
3285        if (msi != MSI_MSIX && msi != MSI_MSI) {
3286                pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3287                        msi, MSI_MSIX, MSI_MSI);
3288                return -EINVAL;
3289        }
3290
3291        /* Debugfs support is optional, just warn if this fails */
3292        cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3293        if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3294                pr_warn("could not create debugfs entry, continuing\n");
3295
3296        ret = pci_register_driver(&cxgb4vf_driver);
3297        if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3298                debugfs_remove(cxgb4vf_debugfs_root);
3299        return ret;
3300}
3301
3302/*
3303 * Tear down global driver state.
3304 */
3305static void __exit cxgb4vf_module_exit(void)
3306{
3307        pci_unregister_driver(&cxgb4vf_driver);
3308        debugfs_remove(cxgb4vf_debugfs_root);
3309}
3310
3311module_init(cxgb4vf_module_init);
3312module_exit(cxgb4vf_module_exit);
3313