linux/drivers/net/ethernet/intel/i40evf/i40e_txrx.c
<<
>>
Prefs
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
  29
  30#include "i40evf.h"
  31#include "i40e_trace.h"
  32#include "i40e_prototype.h"
  33
  34static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  35                                u32 td_tag)
  36{
  37        return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  38                           ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  39                           ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  40                           ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  41                           ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  42}
  43
  44#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  45
  46/**
  47 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  48 * @ring:      the ring that owns the buffer
  49 * @tx_buffer: the buffer to free
  50 **/
  51static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  52                                            struct i40e_tx_buffer *tx_buffer)
  53{
  54        if (tx_buffer->skb) {
  55                if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  56                        kfree(tx_buffer->raw_buf);
  57                else
  58                        dev_kfree_skb_any(tx_buffer->skb);
  59                if (dma_unmap_len(tx_buffer, len))
  60                        dma_unmap_single(ring->dev,
  61                                         dma_unmap_addr(tx_buffer, dma),
  62                                         dma_unmap_len(tx_buffer, len),
  63                                         DMA_TO_DEVICE);
  64        } else if (dma_unmap_len(tx_buffer, len)) {
  65                dma_unmap_page(ring->dev,
  66                               dma_unmap_addr(tx_buffer, dma),
  67                               dma_unmap_len(tx_buffer, len),
  68                               DMA_TO_DEVICE);
  69        }
  70
  71        tx_buffer->next_to_watch = NULL;
  72        tx_buffer->skb = NULL;
  73        dma_unmap_len_set(tx_buffer, len, 0);
  74        /* tx_buffer must be completely set up in the transmit path */
  75}
  76
  77/**
  78 * i40evf_clean_tx_ring - Free any empty Tx buffers
  79 * @tx_ring: ring to be cleaned
  80 **/
  81void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  82{
  83        unsigned long bi_size;
  84        u16 i;
  85
  86        /* ring already cleared, nothing to do */
  87        if (!tx_ring->tx_bi)
  88                return;
  89
  90        /* Free all the Tx ring sk_buffs */
  91        for (i = 0; i < tx_ring->count; i++)
  92                i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  93
  94        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  95        memset(tx_ring->tx_bi, 0, bi_size);
  96
  97        /* Zero out the descriptor ring */
  98        memset(tx_ring->desc, 0, tx_ring->size);
  99
 100        tx_ring->next_to_use = 0;
 101        tx_ring->next_to_clean = 0;
 102
 103        if (!tx_ring->netdev)
 104                return;
 105
 106        /* cleanup Tx queue statistics */
 107        netdev_tx_reset_queue(txring_txq(tx_ring));
 108}
 109
 110/**
 111 * i40evf_free_tx_resources - Free Tx resources per queue
 112 * @tx_ring: Tx descriptor ring for a specific queue
 113 *
 114 * Free all transmit software resources
 115 **/
 116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
 117{
 118        i40evf_clean_tx_ring(tx_ring);
 119        kfree(tx_ring->tx_bi);
 120        tx_ring->tx_bi = NULL;
 121
 122        if (tx_ring->desc) {
 123                dma_free_coherent(tx_ring->dev, tx_ring->size,
 124                                  tx_ring->desc, tx_ring->dma);
 125                tx_ring->desc = NULL;
 126        }
 127}
 128
 129/**
 130 * i40evf_get_tx_pending - how many Tx descriptors not processed
 131 * @tx_ring: the ring of descriptors
 132 * @in_sw: is tx_pending being checked in SW or HW
 133 *
 134 * Since there is no access to the ring head register
 135 * in XL710, we need to use our local copies
 136 **/
 137u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 138{
 139        u32 head, tail;
 140
 141        head = ring->next_to_clean;
 142        tail = readl(ring->tail);
 143
 144        if (head != tail)
 145                return (head < tail) ?
 146                        tail - head : (tail + ring->count - head);
 147
 148        return 0;
 149}
 150
 151#define WB_STRIDE 4
 152
 153/**
 154 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 155 * @vsi: the VSI we care about
 156 * @tx_ring: Tx ring to clean
 157 * @napi_budget: Used to determine if we are in netpoll
 158 *
 159 * Returns true if there's any budget left (e.g. the clean is finished)
 160 **/
 161static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 162                              struct i40e_ring *tx_ring, int napi_budget)
 163{
 164        u16 i = tx_ring->next_to_clean;
 165        struct i40e_tx_buffer *tx_buf;
 166        struct i40e_tx_desc *tx_desc;
 167        unsigned int total_bytes = 0, total_packets = 0;
 168        unsigned int budget = vsi->work_limit;
 169
 170        tx_buf = &tx_ring->tx_bi[i];
 171        tx_desc = I40E_TX_DESC(tx_ring, i);
 172        i -= tx_ring->count;
 173
 174        do {
 175                struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 176
 177                /* if next_to_watch is not set then there is no work pending */
 178                if (!eop_desc)
 179                        break;
 180
 181                /* prevent any other reads prior to eop_desc */
 182                read_barrier_depends();
 183
 184                i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 185                /* if the descriptor isn't done, no work yet to do */
 186                if (!(eop_desc->cmd_type_offset_bsz &
 187                      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
 188                        break;
 189
 190                /* clear next_to_watch to prevent false hangs */
 191                tx_buf->next_to_watch = NULL;
 192
 193                /* update the statistics for this packet */
 194                total_bytes += tx_buf->bytecount;
 195                total_packets += tx_buf->gso_segs;
 196
 197                /* free the skb */
 198                napi_consume_skb(tx_buf->skb, napi_budget);
 199
 200                /* unmap skb header data */
 201                dma_unmap_single(tx_ring->dev,
 202                                 dma_unmap_addr(tx_buf, dma),
 203                                 dma_unmap_len(tx_buf, len),
 204                                 DMA_TO_DEVICE);
 205
 206                /* clear tx_buffer data */
 207                tx_buf->skb = NULL;
 208                dma_unmap_len_set(tx_buf, len, 0);
 209
 210                /* unmap remaining buffers */
 211                while (tx_desc != eop_desc) {
 212                        i40e_trace(clean_tx_irq_unmap,
 213                                   tx_ring, tx_desc, tx_buf);
 214
 215                        tx_buf++;
 216                        tx_desc++;
 217                        i++;
 218                        if (unlikely(!i)) {
 219                                i -= tx_ring->count;
 220                                tx_buf = tx_ring->tx_bi;
 221                                tx_desc = I40E_TX_DESC(tx_ring, 0);
 222                        }
 223
 224                        /* unmap any remaining paged data */
 225                        if (dma_unmap_len(tx_buf, len)) {
 226                                dma_unmap_page(tx_ring->dev,
 227                                               dma_unmap_addr(tx_buf, dma),
 228                                               dma_unmap_len(tx_buf, len),
 229                                               DMA_TO_DEVICE);
 230                                dma_unmap_len_set(tx_buf, len, 0);
 231                        }
 232                }
 233
 234                /* move us one more past the eop_desc for start of next pkt */
 235                tx_buf++;
 236                tx_desc++;
 237                i++;
 238                if (unlikely(!i)) {
 239                        i -= tx_ring->count;
 240                        tx_buf = tx_ring->tx_bi;
 241                        tx_desc = I40E_TX_DESC(tx_ring, 0);
 242                }
 243
 244                prefetch(tx_desc);
 245
 246                /* update budget accounting */
 247                budget--;
 248        } while (likely(budget));
 249
 250        i += tx_ring->count;
 251        tx_ring->next_to_clean = i;
 252        u64_stats_update_begin(&tx_ring->syncp);
 253        tx_ring->stats.bytes += total_bytes;
 254        tx_ring->stats.packets += total_packets;
 255        u64_stats_update_end(&tx_ring->syncp);
 256        tx_ring->q_vector->tx.total_bytes += total_bytes;
 257        tx_ring->q_vector->tx.total_packets += total_packets;
 258
 259        if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 260                /* check to see if there are < 4 descriptors
 261                 * waiting to be written back, then kick the hardware to force
 262                 * them to be written back in case we stay in NAPI.
 263                 * In this mode on X722 we do not enable Interrupt.
 264                 */
 265                unsigned int j = i40evf_get_tx_pending(tx_ring, false);
 266
 267                if (budget &&
 268                    ((j / WB_STRIDE) == 0) && (j > 0) &&
 269                    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
 270                    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 271                        tx_ring->arm_wb = true;
 272        }
 273
 274        /* notify netdev of completed buffers */
 275        netdev_tx_completed_queue(txring_txq(tx_ring),
 276                                  total_packets, total_bytes);
 277
 278#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 279        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 280                     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 281                /* Make sure that anybody stopping the queue after this
 282                 * sees the new next_to_clean.
 283                 */
 284                smp_mb();
 285                if (__netif_subqueue_stopped(tx_ring->netdev,
 286                                             tx_ring->queue_index) &&
 287                   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 288                        netif_wake_subqueue(tx_ring->netdev,
 289                                            tx_ring->queue_index);
 290                        ++tx_ring->tx_stats.restart_queue;
 291                }
 292        }
 293
 294        return !!budget;
 295}
 296
 297/**
 298 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 299 * @vsi: the VSI we care about
 300 * @q_vector: the vector on which to enable writeback
 301 *
 302 **/
 303static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 304                                  struct i40e_q_vector *q_vector)
 305{
 306        u16 flags = q_vector->tx.ring[0].flags;
 307        u32 val;
 308
 309        if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 310                return;
 311
 312        if (q_vector->arm_wb_state)
 313                return;
 314
 315        val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 316              I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 317
 318        wr32(&vsi->back->hw,
 319             I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
 320                                  vsi->base_vector - 1), val);
 321        q_vector->arm_wb_state = true;
 322}
 323
 324/**
 325 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 326 * @vsi: the VSI we care about
 327 * @q_vector: the vector  on which to force writeback
 328 *
 329 **/
 330void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 331{
 332        u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
 333                  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 334                  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 335                  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 336                  /* allow 00 to be written to the index */;
 337
 338        wr32(&vsi->back->hw,
 339             I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
 340             val);
 341}
 342
 343/**
 344 * i40e_set_new_dynamic_itr - Find new ITR level
 345 * @rc: structure containing ring performance data
 346 *
 347 * Returns true if ITR changed, false if not
 348 *
 349 * Stores a new ITR value based on packets and byte counts during
 350 * the last interrupt.  The advantage of per interrupt computation
 351 * is faster updates and more accurate ITR for the current traffic
 352 * pattern.  Constants in this function were computed based on
 353 * theoretical maximum wire speed and thresholds were set based on
 354 * testing data as well as attempting to minimize response time
 355 * while increasing bulk throughput.
 356 **/
 357static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 358{
 359        enum i40e_latency_range new_latency_range = rc->latency_range;
 360        struct i40e_q_vector *qv = rc->ring->q_vector;
 361        u32 new_itr = rc->itr;
 362        int bytes_per_int;
 363        int usecs;
 364
 365        if (rc->total_packets == 0 || !rc->itr)
 366                return false;
 367
 368        /* simple throttlerate management
 369         *   0-10MB/s   lowest (50000 ints/s)
 370         *  10-20MB/s   low    (20000 ints/s)
 371         *  20-1249MB/s bulk   (18000 ints/s)
 372         *  > 40000 Rx packets per second (8000 ints/s)
 373         *
 374         * The math works out because the divisor is in 10^(-6) which
 375         * turns the bytes/us input value into MB/s values, but
 376         * make sure to use usecs, as the register values written
 377         * are in 2 usec increments in the ITR registers, and make sure
 378         * to use the smoothed values that the countdown timer gives us.
 379         */
 380        usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 381        bytes_per_int = rc->total_bytes / usecs;
 382
 383        switch (new_latency_range) {
 384        case I40E_LOWEST_LATENCY:
 385                if (bytes_per_int > 10)
 386                        new_latency_range = I40E_LOW_LATENCY;
 387                break;
 388        case I40E_LOW_LATENCY:
 389                if (bytes_per_int > 20)
 390                        new_latency_range = I40E_BULK_LATENCY;
 391                else if (bytes_per_int <= 10)
 392                        new_latency_range = I40E_LOWEST_LATENCY;
 393                break;
 394        case I40E_BULK_LATENCY:
 395        case I40E_ULTRA_LATENCY:
 396        default:
 397                if (bytes_per_int <= 20)
 398                        new_latency_range = I40E_LOW_LATENCY;
 399                break;
 400        }
 401
 402        /* this is to adjust RX more aggressively when streaming small
 403         * packets.  The value of 40000 was picked as it is just beyond
 404         * what the hardware can receive per second if in low latency
 405         * mode.
 406         */
 407#define RX_ULTRA_PACKET_RATE 40000
 408
 409        if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
 410            (&qv->rx == rc))
 411                new_latency_range = I40E_ULTRA_LATENCY;
 412
 413        rc->latency_range = new_latency_range;
 414
 415        switch (new_latency_range) {
 416        case I40E_LOWEST_LATENCY:
 417                new_itr = I40E_ITR_50K;
 418                break;
 419        case I40E_LOW_LATENCY:
 420                new_itr = I40E_ITR_20K;
 421                break;
 422        case I40E_BULK_LATENCY:
 423                new_itr = I40E_ITR_18K;
 424                break;
 425        case I40E_ULTRA_LATENCY:
 426                new_itr = I40E_ITR_8K;
 427                break;
 428        default:
 429                break;
 430        }
 431
 432        rc->total_bytes = 0;
 433        rc->total_packets = 0;
 434
 435        if (new_itr != rc->itr) {
 436                rc->itr = new_itr;
 437                return true;
 438        }
 439
 440        return false;
 441}
 442
 443/**
 444 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 445 * @tx_ring: the tx ring to set up
 446 *
 447 * Return 0 on success, negative on error
 448 **/
 449int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
 450{
 451        struct device *dev = tx_ring->dev;
 452        int bi_size;
 453
 454        if (!dev)
 455                return -ENOMEM;
 456
 457        /* warn if we are about to overwrite the pointer */
 458        WARN_ON(tx_ring->tx_bi);
 459        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 460        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 461        if (!tx_ring->tx_bi)
 462                goto err;
 463
 464        /* round up to nearest 4K */
 465        tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 466        tx_ring->size = ALIGN(tx_ring->size, 4096);
 467        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 468                                           &tx_ring->dma, GFP_KERNEL);
 469        if (!tx_ring->desc) {
 470                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 471                         tx_ring->size);
 472                goto err;
 473        }
 474
 475        tx_ring->next_to_use = 0;
 476        tx_ring->next_to_clean = 0;
 477        return 0;
 478
 479err:
 480        kfree(tx_ring->tx_bi);
 481        tx_ring->tx_bi = NULL;
 482        return -ENOMEM;
 483}
 484
 485/**
 486 * i40evf_clean_rx_ring - Free Rx buffers
 487 * @rx_ring: ring to be cleaned
 488 **/
 489void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
 490{
 491        unsigned long bi_size;
 492        u16 i;
 493
 494        /* ring already cleared, nothing to do */
 495        if (!rx_ring->rx_bi)
 496                return;
 497
 498        if (rx_ring->skb) {
 499                dev_kfree_skb(rx_ring->skb);
 500                rx_ring->skb = NULL;
 501        }
 502
 503        /* Free all the Rx ring sk_buffs */
 504        for (i = 0; i < rx_ring->count; i++) {
 505                struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 506
 507                if (!rx_bi->page)
 508                        continue;
 509
 510                /* Invalidate cache lines that may have been written to by
 511                 * device so that we avoid corrupting memory.
 512                 */
 513                dma_sync_single_range_for_cpu(rx_ring->dev,
 514                                              rx_bi->dma,
 515                                              rx_bi->page_offset,
 516                                              rx_ring->rx_buf_len,
 517                                              DMA_FROM_DEVICE);
 518
 519                /* free resources associated with mapping */
 520                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 521                                     i40e_rx_pg_size(rx_ring),
 522                                     DMA_FROM_DEVICE,
 523                                     I40E_RX_DMA_ATTR);
 524
 525                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 526
 527                rx_bi->page = NULL;
 528                rx_bi->page_offset = 0;
 529        }
 530
 531        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 532        memset(rx_ring->rx_bi, 0, bi_size);
 533
 534        /* Zero out the descriptor ring */
 535        memset(rx_ring->desc, 0, rx_ring->size);
 536
 537        rx_ring->next_to_alloc = 0;
 538        rx_ring->next_to_clean = 0;
 539        rx_ring->next_to_use = 0;
 540}
 541
 542/**
 543 * i40evf_free_rx_resources - Free Rx resources
 544 * @rx_ring: ring to clean the resources from
 545 *
 546 * Free all receive software resources
 547 **/
 548void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
 549{
 550        i40evf_clean_rx_ring(rx_ring);
 551        kfree(rx_ring->rx_bi);
 552        rx_ring->rx_bi = NULL;
 553
 554        if (rx_ring->desc) {
 555                dma_free_coherent(rx_ring->dev, rx_ring->size,
 556                                  rx_ring->desc, rx_ring->dma);
 557                rx_ring->desc = NULL;
 558        }
 559}
 560
 561/**
 562 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 563 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 564 *
 565 * Returns 0 on success, negative on failure
 566 **/
 567int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
 568{
 569        struct device *dev = rx_ring->dev;
 570        int bi_size;
 571
 572        /* warn if we are about to overwrite the pointer */
 573        WARN_ON(rx_ring->rx_bi);
 574        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 575        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 576        if (!rx_ring->rx_bi)
 577                goto err;
 578
 579        u64_stats_init(&rx_ring->syncp);
 580
 581        /* Round up to nearest 4K */
 582        rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
 583        rx_ring->size = ALIGN(rx_ring->size, 4096);
 584        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 585                                           &rx_ring->dma, GFP_KERNEL);
 586
 587        if (!rx_ring->desc) {
 588                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 589                         rx_ring->size);
 590                goto err;
 591        }
 592
 593        rx_ring->next_to_alloc = 0;
 594        rx_ring->next_to_clean = 0;
 595        rx_ring->next_to_use = 0;
 596
 597        return 0;
 598err:
 599        kfree(rx_ring->rx_bi);
 600        rx_ring->rx_bi = NULL;
 601        return -ENOMEM;
 602}
 603
 604/**
 605 * i40e_release_rx_desc - Store the new tail and head values
 606 * @rx_ring: ring to bump
 607 * @val: new head index
 608 **/
 609static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
 610{
 611        rx_ring->next_to_use = val;
 612
 613        /* update next to alloc since we have filled the ring */
 614        rx_ring->next_to_alloc = val;
 615
 616        /* Force memory writes to complete before letting h/w
 617         * know there are new descriptors to fetch.  (Only
 618         * applicable for weak-ordered memory model archs,
 619         * such as IA-64).
 620         */
 621        wmb();
 622        writel(val, rx_ring->tail);
 623}
 624
 625/**
 626 * i40e_rx_offset - Return expected offset into page to access data
 627 * @rx_ring: Ring we are requesting offset of
 628 *
 629 * Returns the offset value for ring into the data buffer.
 630 */
 631static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
 632{
 633        return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
 634}
 635
 636/**
 637 * i40e_alloc_mapped_page - recycle or make a new page
 638 * @rx_ring: ring to use
 639 * @bi: rx_buffer struct to modify
 640 *
 641 * Returns true if the page was successfully allocated or
 642 * reused.
 643 **/
 644static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
 645                                   struct i40e_rx_buffer *bi)
 646{
 647        struct page *page = bi->page;
 648        dma_addr_t dma;
 649
 650        /* since we are recycling buffers we should seldom need to alloc */
 651        if (likely(page)) {
 652                rx_ring->rx_stats.page_reuse_count++;
 653                return true;
 654        }
 655
 656        /* alloc new page for storage */
 657        page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
 658        if (unlikely(!page)) {
 659                rx_ring->rx_stats.alloc_page_failed++;
 660                return false;
 661        }
 662
 663        /* map page for use */
 664        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 665                                 i40e_rx_pg_size(rx_ring),
 666                                 DMA_FROM_DEVICE,
 667                                 I40E_RX_DMA_ATTR);
 668
 669        /* if mapping failed free memory back to system since
 670         * there isn't much point in holding memory we can't use
 671         */
 672        if (dma_mapping_error(rx_ring->dev, dma)) {
 673                __free_pages(page, i40e_rx_pg_order(rx_ring));
 674                rx_ring->rx_stats.alloc_page_failed++;
 675                return false;
 676        }
 677
 678        bi->dma = dma;
 679        bi->page = page;
 680        bi->page_offset = i40e_rx_offset(rx_ring);
 681
 682        /* initialize pagecnt_bias to 1 representing we fully own page */
 683        bi->pagecnt_bias = 1;
 684
 685        return true;
 686}
 687
 688/**
 689 * i40e_receive_skb - Send a completed packet up the stack
 690 * @rx_ring:  rx ring in play
 691 * @skb: packet to send up
 692 * @vlan_tag: vlan tag for packet
 693 **/
 694static void i40e_receive_skb(struct i40e_ring *rx_ring,
 695                             struct sk_buff *skb, u16 vlan_tag)
 696{
 697        struct i40e_q_vector *q_vector = rx_ring->q_vector;
 698
 699        if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 700            (vlan_tag & VLAN_VID_MASK))
 701                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 702
 703        napi_gro_receive(&q_vector->napi, skb);
 704}
 705
 706/**
 707 * i40evf_alloc_rx_buffers - Replace used receive buffers
 708 * @rx_ring: ring to place buffers on
 709 * @cleaned_count: number of buffers to replace
 710 *
 711 * Returns false if all allocations were successful, true if any fail
 712 **/
 713bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
 714{
 715        u16 ntu = rx_ring->next_to_use;
 716        union i40e_rx_desc *rx_desc;
 717        struct i40e_rx_buffer *bi;
 718
 719        /* do nothing if no valid netdev defined */
 720        if (!rx_ring->netdev || !cleaned_count)
 721                return false;
 722
 723        rx_desc = I40E_RX_DESC(rx_ring, ntu);
 724        bi = &rx_ring->rx_bi[ntu];
 725
 726        do {
 727                if (!i40e_alloc_mapped_page(rx_ring, bi))
 728                        goto no_buffers;
 729
 730                /* sync the buffer for use by the device */
 731                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 732                                                 bi->page_offset,
 733                                                 rx_ring->rx_buf_len,
 734                                                 DMA_FROM_DEVICE);
 735
 736                /* Refresh the desc even if buffer_addrs didn't change
 737                 * because each write-back erases this info.
 738                 */
 739                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 740
 741                rx_desc++;
 742                bi++;
 743                ntu++;
 744                if (unlikely(ntu == rx_ring->count)) {
 745                        rx_desc = I40E_RX_DESC(rx_ring, 0);
 746                        bi = rx_ring->rx_bi;
 747                        ntu = 0;
 748                }
 749
 750                /* clear the status bits for the next_to_use descriptor */
 751                rx_desc->wb.qword1.status_error_len = 0;
 752
 753                cleaned_count--;
 754        } while (cleaned_count);
 755
 756        if (rx_ring->next_to_use != ntu)
 757                i40e_release_rx_desc(rx_ring, ntu);
 758
 759        return false;
 760
 761no_buffers:
 762        if (rx_ring->next_to_use != ntu)
 763                i40e_release_rx_desc(rx_ring, ntu);
 764
 765        /* make sure to come back via polling to try again after
 766         * allocation failure
 767         */
 768        return true;
 769}
 770
 771/**
 772 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 773 * @vsi: the VSI we care about
 774 * @skb: skb currently being received and modified
 775 * @rx_desc: the receive descriptor
 776 **/
 777static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
 778                                    struct sk_buff *skb,
 779                                    union i40e_rx_desc *rx_desc)
 780{
 781        struct i40e_rx_ptype_decoded decoded;
 782        u32 rx_error, rx_status;
 783        bool ipv4, ipv6;
 784        u8 ptype;
 785        u64 qword;
 786
 787        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 788        ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
 789        rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
 790                   I40E_RXD_QW1_ERROR_SHIFT;
 791        rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
 792                    I40E_RXD_QW1_STATUS_SHIFT;
 793        decoded = decode_rx_desc_ptype(ptype);
 794
 795        skb->ip_summed = CHECKSUM_NONE;
 796
 797        skb_checksum_none_assert(skb);
 798
 799        /* Rx csum enabled and ip headers found? */
 800        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 801                return;
 802
 803        /* did the hardware decode the packet and checksum? */
 804        if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
 805                return;
 806
 807        /* both known and outer_ip must be set for the below code to work */
 808        if (!(decoded.known && decoded.outer_ip))
 809                return;
 810
 811        ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
 812               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
 813        ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
 814               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
 815
 816        if (ipv4 &&
 817            (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
 818                         BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
 819                goto checksum_fail;
 820
 821        /* likely incorrect csum if alternate IP extension headers found */
 822        if (ipv6 &&
 823            rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 824                /* don't increment checksum err here, non-fatal err */
 825                return;
 826
 827        /* there was some L4 error, count error and punt packet to the stack */
 828        if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
 829                goto checksum_fail;
 830
 831        /* handle packets that were not able to be checksummed due
 832         * to arrival speed, in this case the stack can compute
 833         * the csum.
 834         */
 835        if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
 836                return;
 837
 838        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
 839        switch (decoded.inner_prot) {
 840        case I40E_RX_PTYPE_INNER_PROT_TCP:
 841        case I40E_RX_PTYPE_INNER_PROT_UDP:
 842        case I40E_RX_PTYPE_INNER_PROT_SCTP:
 843                skb->ip_summed = CHECKSUM_UNNECESSARY;
 844                /* fall though */
 845        default:
 846                break;
 847        }
 848
 849        return;
 850
 851checksum_fail:
 852        vsi->back->hw_csum_rx_error++;
 853}
 854
 855/**
 856 * i40e_ptype_to_htype - get a hash type
 857 * @ptype: the ptype value from the descriptor
 858 *
 859 * Returns a hash type to be used by skb_set_hash
 860 **/
 861static inline int i40e_ptype_to_htype(u8 ptype)
 862{
 863        struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
 864
 865        if (!decoded.known)
 866                return PKT_HASH_TYPE_NONE;
 867
 868        if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
 869            decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
 870                return PKT_HASH_TYPE_L4;
 871        else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
 872                 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
 873                return PKT_HASH_TYPE_L3;
 874        else
 875                return PKT_HASH_TYPE_L2;
 876}
 877
 878/**
 879 * i40e_rx_hash - set the hash value in the skb
 880 * @ring: descriptor ring
 881 * @rx_desc: specific descriptor
 882 **/
 883static inline void i40e_rx_hash(struct i40e_ring *ring,
 884                                union i40e_rx_desc *rx_desc,
 885                                struct sk_buff *skb,
 886                                u8 rx_ptype)
 887{
 888        u32 hash;
 889        const __le64 rss_mask =
 890                cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
 891                            I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
 892
 893        if (ring->netdev->features & NETIF_F_RXHASH)
 894                return;
 895
 896        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
 897                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
 898                skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
 899        }
 900}
 901
 902/**
 903 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 904 * @rx_ring: rx descriptor ring packet is being transacted on
 905 * @rx_desc: pointer to the EOP Rx descriptor
 906 * @skb: pointer to current skb being populated
 907 * @rx_ptype: the packet type decoded by hardware
 908 *
 909 * This function checks the ring, descriptor, and packet information in
 910 * order to populate the hash, checksum, VLAN, protocol, and
 911 * other fields within the skb.
 912 **/
 913static inline
 914void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
 915                               union i40e_rx_desc *rx_desc, struct sk_buff *skb,
 916                               u8 rx_ptype)
 917{
 918        i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
 919
 920        i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
 921
 922        skb_record_rx_queue(skb, rx_ring->queue_index);
 923
 924        /* modifies the skb - consumes the enet header */
 925        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 926}
 927
 928/**
 929 * i40e_cleanup_headers - Correct empty headers
 930 * @rx_ring: rx descriptor ring packet is being transacted on
 931 * @skb: pointer to current skb being fixed
 932 *
 933 * Also address the case where we are pulling data in on pages only
 934 * and as such no data is present in the skb header.
 935 *
 936 * In addition if skb is not at least 60 bytes we need to pad it so that
 937 * it is large enough to qualify as a valid Ethernet frame.
 938 *
 939 * Returns true if an error was encountered and skb was freed.
 940 **/
 941static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
 942{
 943        /* if eth_skb_pad returns an error the skb was freed */
 944        if (eth_skb_pad(skb))
 945                return true;
 946
 947        return false;
 948}
 949
 950/**
 951 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 952 * @rx_ring: rx descriptor ring to store buffers on
 953 * @old_buff: donor buffer to have page reused
 954 *
 955 * Synchronizes page for reuse by the adapter
 956 **/
 957static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
 958                               struct i40e_rx_buffer *old_buff)
 959{
 960        struct i40e_rx_buffer *new_buff;
 961        u16 nta = rx_ring->next_to_alloc;
 962
 963        new_buff = &rx_ring->rx_bi[nta];
 964
 965        /* update, and store next to alloc */
 966        nta++;
 967        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 968
 969        /* transfer page from old buffer to new buffer */
 970        new_buff->dma           = old_buff->dma;
 971        new_buff->page          = old_buff->page;
 972        new_buff->page_offset   = old_buff->page_offset;
 973        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
 974}
 975
 976/**
 977 * i40e_page_is_reusable - check if any reuse is possible
 978 * @page: page struct to check
 979 *
 980 * A page is not reusable if it was allocated under low memory
 981 * conditions, or it's not in the same NUMA node as this CPU.
 982 */
 983static inline bool i40e_page_is_reusable(struct page *page)
 984{
 985        return (page_to_nid(page) == numa_mem_id()) &&
 986                !page_is_pfmemalloc(page);
 987}
 988
 989/**
 990 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 991 * the adapter for another receive
 992 *
 993 * @rx_buffer: buffer containing the page
 994 *
 995 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 996 * an unused region in the page.
 997 *
 998 * For small pages, @truesize will be a constant value, half the size
 999 * of the memory at page.  We'll attempt to alternate between high and
1000 * low halves of the page, with one half ready for use by the hardware
1001 * and the other half being consumed by the stack.  We use the page
1002 * ref count to determine whether the stack has finished consuming the
1003 * portion of this page that was passed up with a previous packet.  If
1004 * the page ref count is >1, we'll assume the "other" half page is
1005 * still busy, and this page cannot be reused.
1006 *
1007 * For larger pages, @truesize will be the actual space used by the
1008 * received packet (adjusted upward to an even multiple of the cache
1009 * line size).  This will advance through the page by the amount
1010 * actually consumed by the received packets while there is still
1011 * space for a buffer.  Each region of larger pages will be used at
1012 * most once, after which the page will not be reused.
1013 *
1014 * In either case, if the page is reusable its refcount is increased.
1015 **/
1016static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1017{
1018        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1019        struct page *page = rx_buffer->page;
1020
1021        /* Is any reuse possible? */
1022        if (unlikely(!i40e_page_is_reusable(page)))
1023                return false;
1024
1025#if (PAGE_SIZE < 8192)
1026        /* if we are only owner of page we can reuse it */
1027        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1028                return false;
1029#else
1030#define I40E_LAST_OFFSET \
1031        (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1032        if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1033                return false;
1034#endif
1035
1036        /* If we have drained the page fragment pool we need to update
1037         * the pagecnt_bias and page count so that we fully restock the
1038         * number of references the driver holds.
1039         */
1040        if (unlikely(!pagecnt_bias)) {
1041                page_ref_add(page, USHRT_MAX);
1042                rx_buffer->pagecnt_bias = USHRT_MAX;
1043        }
1044
1045        return true;
1046}
1047
1048/**
1049 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1050 * @rx_ring: rx descriptor ring to transact packets on
1051 * @rx_buffer: buffer containing page to add
1052 * @skb: sk_buff to place the data into
1053 * @size: packet length from rx_desc
1054 *
1055 * This function will add the data contained in rx_buffer->page to the skb.
1056 * It will just attach the page as a frag to the skb.
1057 *
1058 * The function will then update the page offset.
1059 **/
1060static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1061                             struct i40e_rx_buffer *rx_buffer,
1062                             struct sk_buff *skb,
1063                             unsigned int size)
1064{
1065#if (PAGE_SIZE < 8192)
1066        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1067#else
1068        unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1069#endif
1070
1071        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1072                        rx_buffer->page_offset, size, truesize);
1073
1074        /* page is being used so we must update the page offset */
1075#if (PAGE_SIZE < 8192)
1076        rx_buffer->page_offset ^= truesize;
1077#else
1078        rx_buffer->page_offset += truesize;
1079#endif
1080}
1081
1082/**
1083 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1084 * @rx_ring: rx descriptor ring to transact packets on
1085 * @size: size of buffer to add to skb
1086 *
1087 * This function will pull an Rx buffer from the ring and synchronize it
1088 * for use by the CPU.
1089 */
1090static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1091                                                 const unsigned int size)
1092{
1093        struct i40e_rx_buffer *rx_buffer;
1094
1095        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1096        prefetchw(rx_buffer->page);
1097
1098        /* we are reusing so sync this buffer for CPU use */
1099        dma_sync_single_range_for_cpu(rx_ring->dev,
1100                                      rx_buffer->dma,
1101                                      rx_buffer->page_offset,
1102                                      size,
1103                                      DMA_FROM_DEVICE);
1104
1105        /* We have pulled a buffer for use, so decrement pagecnt_bias */
1106        rx_buffer->pagecnt_bias--;
1107
1108        return rx_buffer;
1109}
1110
1111/**
1112 * i40e_construct_skb - Allocate skb and populate it
1113 * @rx_ring: rx descriptor ring to transact packets on
1114 * @rx_buffer: rx buffer to pull data from
1115 * @size: size of buffer to add to skb
1116 *
1117 * This function allocates an skb.  It then populates it with the page
1118 * data from the current receive descriptor, taking care to set up the
1119 * skb correctly.
1120 */
1121static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1122                                          struct i40e_rx_buffer *rx_buffer,
1123                                          unsigned int size)
1124{
1125        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1126#if (PAGE_SIZE < 8192)
1127        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1128#else
1129        unsigned int truesize = SKB_DATA_ALIGN(size);
1130#endif
1131        unsigned int headlen;
1132        struct sk_buff *skb;
1133
1134        /* prefetch first cache line of first page */
1135        prefetch(va);
1136#if L1_CACHE_BYTES < 128
1137        prefetch(va + L1_CACHE_BYTES);
1138#endif
1139
1140        /* allocate a skb to store the frags */
1141        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1142                               I40E_RX_HDR_SIZE,
1143                               GFP_ATOMIC | __GFP_NOWARN);
1144        if (unlikely(!skb))
1145                return NULL;
1146
1147        /* Determine available headroom for copy */
1148        headlen = size;
1149        if (headlen > I40E_RX_HDR_SIZE)
1150                headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1151
1152        /* align pull length to size of long to optimize memcpy performance */
1153        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1154
1155        /* update all of the pointers */
1156        size -= headlen;
1157        if (size) {
1158                skb_add_rx_frag(skb, 0, rx_buffer->page,
1159                                rx_buffer->page_offset + headlen,
1160                                size, truesize);
1161
1162                /* buffer is used by skb, update page_offset */
1163#if (PAGE_SIZE < 8192)
1164                rx_buffer->page_offset ^= truesize;
1165#else
1166                rx_buffer->page_offset += truesize;
1167#endif
1168        } else {
1169                /* buffer is unused, reset bias back to rx_buffer */
1170                rx_buffer->pagecnt_bias++;
1171        }
1172
1173        return skb;
1174}
1175
1176/**
1177 * i40e_build_skb - Build skb around an existing buffer
1178 * @rx_ring: Rx descriptor ring to transact packets on
1179 * @rx_buffer: Rx buffer to pull data from
1180 * @size: size of buffer to add to skb
1181 *
1182 * This function builds an skb around an existing Rx buffer, taking care
1183 * to set up the skb correctly and avoid any memcpy overhead.
1184 */
1185static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1186                                      struct i40e_rx_buffer *rx_buffer,
1187                                      unsigned int size)
1188{
1189        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1190#if (PAGE_SIZE < 8192)
1191        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1192#else
1193        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1194                                SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1195#endif
1196        struct sk_buff *skb;
1197
1198        /* prefetch first cache line of first page */
1199        prefetch(va);
1200#if L1_CACHE_BYTES < 128
1201        prefetch(va + L1_CACHE_BYTES);
1202#endif
1203        /* build an skb around the page buffer */
1204        skb = build_skb(va - I40E_SKB_PAD, truesize);
1205        if (unlikely(!skb))
1206                return NULL;
1207
1208        /* update pointers within the skb to store the data */
1209        skb_reserve(skb, I40E_SKB_PAD);
1210        __skb_put(skb, size);
1211
1212        /* buffer is used by skb, update page_offset */
1213#if (PAGE_SIZE < 8192)
1214        rx_buffer->page_offset ^= truesize;
1215#else
1216        rx_buffer->page_offset += truesize;
1217#endif
1218
1219        return skb;
1220}
1221
1222/**
1223 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1224 * @rx_ring: rx descriptor ring to transact packets on
1225 * @rx_buffer: rx buffer to pull data from
1226 *
1227 * This function will clean up the contents of the rx_buffer.  It will
1228 * either recycle the bufer or unmap it and free the associated resources.
1229 */
1230static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1231                               struct i40e_rx_buffer *rx_buffer)
1232{
1233        if (i40e_can_reuse_rx_page(rx_buffer)) {
1234                /* hand second half of page back to the ring */
1235                i40e_reuse_rx_page(rx_ring, rx_buffer);
1236                rx_ring->rx_stats.page_reuse_count++;
1237        } else {
1238                /* we are not reusing the buffer so unmap it */
1239                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1240                                     i40e_rx_pg_size(rx_ring),
1241                                     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1242                __page_frag_cache_drain(rx_buffer->page,
1243                                        rx_buffer->pagecnt_bias);
1244        }
1245
1246        /* clear contents of buffer_info */
1247        rx_buffer->page = NULL;
1248}
1249
1250/**
1251 * i40e_is_non_eop - process handling of non-EOP buffers
1252 * @rx_ring: Rx ring being processed
1253 * @rx_desc: Rx descriptor for current buffer
1254 * @skb: Current socket buffer containing buffer in progress
1255 *
1256 * This function updates next to clean.  If the buffer is an EOP buffer
1257 * this function exits returning false, otherwise it will place the
1258 * sk_buff in the next buffer to be chained and return true indicating
1259 * that this is in fact a non-EOP buffer.
1260 **/
1261static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1262                            union i40e_rx_desc *rx_desc,
1263                            struct sk_buff *skb)
1264{
1265        u32 ntc = rx_ring->next_to_clean + 1;
1266
1267        /* fetch, update, and store next to clean */
1268        ntc = (ntc < rx_ring->count) ? ntc : 0;
1269        rx_ring->next_to_clean = ntc;
1270
1271        prefetch(I40E_RX_DESC(rx_ring, ntc));
1272
1273        /* if we are the last buffer then there is nothing else to do */
1274#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1275        if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1276                return false;
1277
1278        rx_ring->rx_stats.non_eop_descs++;
1279
1280        return true;
1281}
1282
1283/**
1284 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1285 * @rx_ring: rx descriptor ring to transact packets on
1286 * @budget: Total limit on number of packets to process
1287 *
1288 * This function provides a "bounce buffer" approach to Rx interrupt
1289 * processing.  The advantage to this is that on systems that have
1290 * expensive overhead for IOMMU access this provides a means of avoiding
1291 * it by maintaining the mapping of the page to the system.
1292 *
1293 * Returns amount of work completed
1294 **/
1295static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1296{
1297        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1298        struct sk_buff *skb = rx_ring->skb;
1299        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1300        bool failure = false;
1301
1302        while (likely(total_rx_packets < budget)) {
1303                struct i40e_rx_buffer *rx_buffer;
1304                union i40e_rx_desc *rx_desc;
1305                unsigned int size;
1306                u16 vlan_tag;
1307                u8 rx_ptype;
1308                u64 qword;
1309
1310                /* return some buffers to hardware, one at a time is too slow */
1311                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1312                        failure = failure ||
1313                                  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1314                        cleaned_count = 0;
1315                }
1316
1317                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1318
1319                /* status_error_len will always be zero for unused descriptors
1320                 * because it's cleared in cleanup, and overlaps with hdr_addr
1321                 * which is always zero because packet split isn't used, if the
1322                 * hardware wrote DD then the length will be non-zero
1323                 */
1324                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1325
1326                /* This memory barrier is needed to keep us from reading
1327                 * any other fields out of the rx_desc until we have
1328                 * verified the descriptor has been written back.
1329                 */
1330                dma_rmb();
1331
1332                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1333                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1334                if (!size)
1335                        break;
1336
1337                i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1338                rx_buffer = i40e_get_rx_buffer(rx_ring, size);
1339
1340                /* retrieve a buffer from the ring */
1341                if (skb)
1342                        i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1343                else if (ring_uses_build_skb(rx_ring))
1344                        skb = i40e_build_skb(rx_ring, rx_buffer, size);
1345                else
1346                        skb = i40e_construct_skb(rx_ring, rx_buffer, size);
1347
1348                /* exit if we failed to retrieve a buffer */
1349                if (!skb) {
1350                        rx_ring->rx_stats.alloc_buff_failed++;
1351                        rx_buffer->pagecnt_bias++;
1352                        break;
1353                }
1354
1355                i40e_put_rx_buffer(rx_ring, rx_buffer);
1356                cleaned_count++;
1357
1358                if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1359                        continue;
1360
1361                /* ERR_MASK will only have valid bits if EOP set, and
1362                 * what we are doing here is actually checking
1363                 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1364                 * the error field
1365                 */
1366                if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1367                        dev_kfree_skb_any(skb);
1368                        skb = NULL;
1369                        continue;
1370                }
1371
1372                if (i40e_cleanup_headers(rx_ring, skb)) {
1373                        skb = NULL;
1374                        continue;
1375                }
1376
1377                /* probably a little skewed due to removing CRC */
1378                total_rx_bytes += skb->len;
1379
1380                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1381                rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1382                           I40E_RXD_QW1_PTYPE_SHIFT;
1383
1384                /* populate checksum, VLAN, and protocol */
1385                i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1386
1387
1388                vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1389                           le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1390
1391                i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1392                i40e_receive_skb(rx_ring, skb, vlan_tag);
1393                skb = NULL;
1394
1395                /* update budget accounting */
1396                total_rx_packets++;
1397        }
1398
1399        rx_ring->skb = skb;
1400
1401        u64_stats_update_begin(&rx_ring->syncp);
1402        rx_ring->stats.packets += total_rx_packets;
1403        rx_ring->stats.bytes += total_rx_bytes;
1404        u64_stats_update_end(&rx_ring->syncp);
1405        rx_ring->q_vector->rx.total_packets += total_rx_packets;
1406        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1407
1408        /* guarantee a trip back through this routine if there was a failure */
1409        return failure ? budget : total_rx_packets;
1410}
1411
1412static u32 i40e_buildreg_itr(const int type, const u16 itr)
1413{
1414        u32 val;
1415
1416        val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1417              /* Don't clear PBA because that can cause lost interrupts that
1418               * came in while we were cleaning/polling
1419               */
1420              (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1421              (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1422
1423        return val;
1424}
1425
1426/* a small macro to shorten up some long lines */
1427#define INTREG I40E_VFINT_DYN_CTLN1
1428static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1429{
1430        struct i40evf_adapter *adapter = vsi->back;
1431
1432        return adapter->rx_rings[idx].rx_itr_setting;
1433}
1434
1435static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1436{
1437        struct i40evf_adapter *adapter = vsi->back;
1438
1439        return adapter->tx_rings[idx].tx_itr_setting;
1440}
1441
1442/**
1443 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1444 * @vsi: the VSI we care about
1445 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1446 *
1447 **/
1448static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1449                                          struct i40e_q_vector *q_vector)
1450{
1451        struct i40e_hw *hw = &vsi->back->hw;
1452        bool rx = false, tx = false;
1453        u32 rxval, txval;
1454        int vector;
1455        int idx = q_vector->v_idx;
1456        int rx_itr_setting, tx_itr_setting;
1457
1458        vector = (q_vector->v_idx + vsi->base_vector);
1459
1460        /* avoid dynamic calculation if in countdown mode OR if
1461         * all dynamic is disabled
1462         */
1463        rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1464
1465        rx_itr_setting = get_rx_itr(vsi, idx);
1466        tx_itr_setting = get_tx_itr(vsi, idx);
1467
1468        if (q_vector->itr_countdown > 0 ||
1469            (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1470             !ITR_IS_DYNAMIC(tx_itr_setting))) {
1471                goto enable_int;
1472        }
1473
1474        if (ITR_IS_DYNAMIC(rx_itr_setting)) {
1475                rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1476                rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1477        }
1478
1479        if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1480                tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1481                txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1482        }
1483
1484        if (rx || tx) {
1485                /* get the higher of the two ITR adjustments and
1486                 * use the same value for both ITR registers
1487                 * when in adaptive mode (Rx and/or Tx)
1488                 */
1489                u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1490
1491                q_vector->tx.itr = q_vector->rx.itr = itr;
1492                txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1493                tx = true;
1494                rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1495                rx = true;
1496        }
1497
1498        /* only need to enable the interrupt once, but need
1499         * to possibly update both ITR values
1500         */
1501        if (rx) {
1502                /* set the INTENA_MSK_MASK so that this first write
1503                 * won't actually enable the interrupt, instead just
1504                 * updating the ITR (it's bit 31 PF and VF)
1505                 */
1506                rxval |= BIT(31);
1507                /* don't check _DOWN because interrupt isn't being enabled */
1508                wr32(hw, INTREG(vector - 1), rxval);
1509        }
1510
1511enable_int:
1512        if (!test_bit(__I40E_VSI_DOWN, vsi->state))
1513                wr32(hw, INTREG(vector - 1), txval);
1514
1515        if (q_vector->itr_countdown)
1516                q_vector->itr_countdown--;
1517        else
1518                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1519}
1520
1521/**
1522 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1523 * @napi: napi struct with our devices info in it
1524 * @budget: amount of work driver is allowed to do this pass, in packets
1525 *
1526 * This function will clean all queues associated with a q_vector.
1527 *
1528 * Returns the amount of work done
1529 **/
1530int i40evf_napi_poll(struct napi_struct *napi, int budget)
1531{
1532        struct i40e_q_vector *q_vector =
1533                               container_of(napi, struct i40e_q_vector, napi);
1534        struct i40e_vsi *vsi = q_vector->vsi;
1535        struct i40e_ring *ring;
1536        bool clean_complete = true;
1537        bool arm_wb = false;
1538        int budget_per_ring;
1539        int work_done = 0;
1540
1541        if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
1542                napi_complete(napi);
1543                return 0;
1544        }
1545
1546        /* Since the actual Tx work is minimal, we can give the Tx a larger
1547         * budget and be more aggressive about cleaning up the Tx descriptors.
1548         */
1549        i40e_for_each_ring(ring, q_vector->tx) {
1550                if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1551                        clean_complete = false;
1552                        continue;
1553                }
1554                arm_wb |= ring->arm_wb;
1555                ring->arm_wb = false;
1556        }
1557
1558        /* Handle case where we are called by netpoll with a budget of 0 */
1559        if (budget <= 0)
1560                goto tx_only;
1561
1562        /* We attempt to distribute budget to each Rx queue fairly, but don't
1563         * allow the budget to go below 1 because that would exit polling early.
1564         */
1565        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1566
1567        i40e_for_each_ring(ring, q_vector->rx) {
1568                int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1569
1570                work_done += cleaned;
1571                /* if we clean as many as budgeted, we must not be done */
1572                if (cleaned >= budget_per_ring)
1573                        clean_complete = false;
1574        }
1575
1576        /* If work not completed, return budget and polling will return */
1577        if (!clean_complete) {
1578                const cpumask_t *aff_mask = &q_vector->affinity_mask;
1579                int cpu_id = smp_processor_id();
1580
1581                /* It is possible that the interrupt affinity has changed but,
1582                 * if the cpu is pegged at 100%, polling will never exit while
1583                 * traffic continues and the interrupt will be stuck on this
1584                 * cpu.  We check to make sure affinity is correct before we
1585                 * continue to poll, otherwise we must stop polling so the
1586                 * interrupt can move to the correct cpu.
1587                 */
1588                if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
1589tx_only:
1590                        if (arm_wb) {
1591                                q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1592                                i40e_enable_wb_on_itr(vsi, q_vector);
1593                        }
1594                        return budget;
1595                }
1596        }
1597
1598        if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1599                q_vector->arm_wb_state = false;
1600
1601        /* Work is done so exit the polling mode and re-enable the interrupt */
1602        napi_complete_done(napi, work_done);
1603
1604        /* If we're prematurely stopping polling to fix the interrupt
1605         * affinity we want to make sure polling starts back up so we
1606         * issue a call to i40evf_force_wb which triggers a SW interrupt.
1607         */
1608        if (!clean_complete)
1609                i40evf_force_wb(vsi, q_vector);
1610        else
1611                i40e_update_enable_itr(vsi, q_vector);
1612
1613        return min(work_done, budget - 1);
1614}
1615
1616/**
1617 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1618 * @skb:     send buffer
1619 * @tx_ring: ring to send buffer on
1620 * @flags:   the tx flags to be set
1621 *
1622 * Checks the skb and set up correspondingly several generic transmit flags
1623 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1624 *
1625 * Returns error code indicate the frame should be dropped upon error and the
1626 * otherwise  returns 0 to indicate the flags has been set properly.
1627 **/
1628static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1629                                               struct i40e_ring *tx_ring,
1630                                               u32 *flags)
1631{
1632        __be16 protocol = skb->protocol;
1633        u32  tx_flags = 0;
1634
1635        if (protocol == htons(ETH_P_8021Q) &&
1636            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1637                /* When HW VLAN acceleration is turned off by the user the
1638                 * stack sets the protocol to 8021q so that the driver
1639                 * can take any steps required to support the SW only
1640                 * VLAN handling.  In our case the driver doesn't need
1641                 * to take any further steps so just set the protocol
1642                 * to the encapsulated ethertype.
1643                 */
1644                skb->protocol = vlan_get_protocol(skb);
1645                goto out;
1646        }
1647
1648        /* if we have a HW VLAN tag being added, default to the HW one */
1649        if (skb_vlan_tag_present(skb)) {
1650                tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1651                tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1652        /* else if it is a SW VLAN, check the next protocol and store the tag */
1653        } else if (protocol == htons(ETH_P_8021Q)) {
1654                struct vlan_hdr *vhdr, _vhdr;
1655
1656                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1657                if (!vhdr)
1658                        return -EINVAL;
1659
1660                protocol = vhdr->h_vlan_encapsulated_proto;
1661                tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1662                tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1663        }
1664
1665out:
1666        *flags = tx_flags;
1667        return 0;
1668}
1669
1670/**
1671 * i40e_tso - set up the tso context descriptor
1672 * @first:    pointer to first Tx buffer for xmit
1673 * @hdr_len:  ptr to the size of the packet header
1674 * @cd_type_cmd_tso_mss: Quad Word 1
1675 *
1676 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1677 **/
1678static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
1679                    u64 *cd_type_cmd_tso_mss)
1680{
1681        struct sk_buff *skb = first->skb;
1682        u64 cd_cmd, cd_tso_len, cd_mss;
1683        union {
1684                struct iphdr *v4;
1685                struct ipv6hdr *v6;
1686                unsigned char *hdr;
1687        } ip;
1688        union {
1689                struct tcphdr *tcp;
1690                struct udphdr *udp;
1691                unsigned char *hdr;
1692        } l4;
1693        u32 paylen, l4_offset;
1694        u16 gso_segs, gso_size;
1695        int err;
1696
1697        if (skb->ip_summed != CHECKSUM_PARTIAL)
1698                return 0;
1699
1700        if (!skb_is_gso(skb))
1701                return 0;
1702
1703        err = skb_cow_head(skb, 0);
1704        if (err < 0)
1705                return err;
1706
1707        ip.hdr = skb_network_header(skb);
1708        l4.hdr = skb_transport_header(skb);
1709
1710        /* initialize outer IP header fields */
1711        if (ip.v4->version == 4) {
1712                ip.v4->tot_len = 0;
1713                ip.v4->check = 0;
1714        } else {
1715                ip.v6->payload_len = 0;
1716        }
1717
1718        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1719                                         SKB_GSO_GRE_CSUM |
1720                                         SKB_GSO_IPXIP4 |
1721                                         SKB_GSO_IPXIP6 |
1722                                         SKB_GSO_UDP_TUNNEL |
1723                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
1724                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1725                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1726                        l4.udp->len = 0;
1727
1728                        /* determine offset of outer transport header */
1729                        l4_offset = l4.hdr - skb->data;
1730
1731                        /* remove payload length from outer checksum */
1732                        paylen = skb->len - l4_offset;
1733                        csum_replace_by_diff(&l4.udp->check,
1734                                             (__force __wsum)htonl(paylen));
1735                }
1736
1737                /* reset pointers to inner headers */
1738                ip.hdr = skb_inner_network_header(skb);
1739                l4.hdr = skb_inner_transport_header(skb);
1740
1741                /* initialize inner IP header fields */
1742                if (ip.v4->version == 4) {
1743                        ip.v4->tot_len = 0;
1744                        ip.v4->check = 0;
1745                } else {
1746                        ip.v6->payload_len = 0;
1747                }
1748        }
1749
1750        /* determine offset of inner transport header */
1751        l4_offset = l4.hdr - skb->data;
1752
1753        /* remove payload length from inner checksum */
1754        paylen = skb->len - l4_offset;
1755        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1756
1757        /* compute length of segmentation header */
1758        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1759
1760        /* pull values out of skb_shinfo */
1761        gso_size = skb_shinfo(skb)->gso_size;
1762        gso_segs = skb_shinfo(skb)->gso_segs;
1763
1764        /* update GSO size and bytecount with header size */
1765        first->gso_segs = gso_segs;
1766        first->bytecount += (first->gso_segs - 1) * *hdr_len;
1767
1768        /* find the field values */
1769        cd_cmd = I40E_TX_CTX_DESC_TSO;
1770        cd_tso_len = skb->len - *hdr_len;
1771        cd_mss = gso_size;
1772        *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1773                                (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1774                                (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1775        return 1;
1776}
1777
1778/**
1779 * i40e_tx_enable_csum - Enable Tx checksum offloads
1780 * @skb: send buffer
1781 * @tx_flags: pointer to Tx flags currently set
1782 * @td_cmd: Tx descriptor command bits to set
1783 * @td_offset: Tx descriptor header offsets to set
1784 * @tx_ring: Tx descriptor ring
1785 * @cd_tunneling: ptr to context desc bits
1786 **/
1787static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1788                               u32 *td_cmd, u32 *td_offset,
1789                               struct i40e_ring *tx_ring,
1790                               u32 *cd_tunneling)
1791{
1792        union {
1793                struct iphdr *v4;
1794                struct ipv6hdr *v6;
1795                unsigned char *hdr;
1796        } ip;
1797        union {
1798                struct tcphdr *tcp;
1799                struct udphdr *udp;
1800                unsigned char *hdr;
1801        } l4;
1802        unsigned char *exthdr;
1803        u32 offset, cmd = 0;
1804        __be16 frag_off;
1805        u8 l4_proto = 0;
1806
1807        if (skb->ip_summed != CHECKSUM_PARTIAL)
1808                return 0;
1809
1810        ip.hdr = skb_network_header(skb);
1811        l4.hdr = skb_transport_header(skb);
1812
1813        /* compute outer L2 header size */
1814        offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1815
1816        if (skb->encapsulation) {
1817                u32 tunnel = 0;
1818                /* define outer network header type */
1819                if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1820                        tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1821                                  I40E_TX_CTX_EXT_IP_IPV4 :
1822                                  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1823
1824                        l4_proto = ip.v4->protocol;
1825                } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1826                        tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1827
1828                        exthdr = ip.hdr + sizeof(*ip.v6);
1829                        l4_proto = ip.v6->nexthdr;
1830                        if (l4.hdr != exthdr)
1831                                ipv6_skip_exthdr(skb, exthdr - skb->data,
1832                                                 &l4_proto, &frag_off);
1833                }
1834
1835                /* define outer transport */
1836                switch (l4_proto) {
1837                case IPPROTO_UDP:
1838                        tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1839                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1840                        break;
1841                case IPPROTO_GRE:
1842                        tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1843                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1844                        break;
1845                case IPPROTO_IPIP:
1846                case IPPROTO_IPV6:
1847                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1848                        l4.hdr = skb_inner_network_header(skb);
1849                        break;
1850                default:
1851                        if (*tx_flags & I40E_TX_FLAGS_TSO)
1852                                return -1;
1853
1854                        skb_checksum_help(skb);
1855                        return 0;
1856                }
1857
1858                /* compute outer L3 header size */
1859                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1860                          I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1861
1862                /* switch IP header pointer from outer to inner header */
1863                ip.hdr = skb_inner_network_header(skb);
1864
1865                /* compute tunnel header size */
1866                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1867                          I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1868
1869                /* indicate if we need to offload outer UDP header */
1870                if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1871                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1872                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1873                        tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1874
1875                /* record tunnel offload values */
1876                *cd_tunneling |= tunnel;
1877
1878                /* switch L4 header pointer from outer to inner */
1879                l4.hdr = skb_inner_transport_header(skb);
1880                l4_proto = 0;
1881
1882                /* reset type as we transition from outer to inner headers */
1883                *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1884                if (ip.v4->version == 4)
1885                        *tx_flags |= I40E_TX_FLAGS_IPV4;
1886                if (ip.v6->version == 6)
1887                        *tx_flags |= I40E_TX_FLAGS_IPV6;
1888        }
1889
1890        /* Enable IP checksum offloads */
1891        if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1892                l4_proto = ip.v4->protocol;
1893                /* the stack computes the IP header already, the only time we
1894                 * need the hardware to recompute it is in the case of TSO.
1895                 */
1896                cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1897                       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1898                       I40E_TX_DESC_CMD_IIPT_IPV4;
1899        } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1900                cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1901
1902                exthdr = ip.hdr + sizeof(*ip.v6);
1903                l4_proto = ip.v6->nexthdr;
1904                if (l4.hdr != exthdr)
1905                        ipv6_skip_exthdr(skb, exthdr - skb->data,
1906                                         &l4_proto, &frag_off);
1907        }
1908
1909        /* compute inner L3 header size */
1910        offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1911
1912        /* Enable L4 checksum offloads */
1913        switch (l4_proto) {
1914        case IPPROTO_TCP:
1915                /* enable checksum offloads */
1916                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1917                offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1918                break;
1919        case IPPROTO_SCTP:
1920                /* enable SCTP checksum offload */
1921                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1922                offset |= (sizeof(struct sctphdr) >> 2) <<
1923                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1924                break;
1925        case IPPROTO_UDP:
1926                /* enable UDP checksum offload */
1927                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1928                offset |= (sizeof(struct udphdr) >> 2) <<
1929                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1930                break;
1931        default:
1932                if (*tx_flags & I40E_TX_FLAGS_TSO)
1933                        return -1;
1934                skb_checksum_help(skb);
1935                return 0;
1936        }
1937
1938        *td_cmd |= cmd;
1939        *td_offset |= offset;
1940
1941        return 1;
1942}
1943
1944/**
1945 * i40e_create_tx_ctx Build the Tx context descriptor
1946 * @tx_ring:  ring to create the descriptor on
1947 * @cd_type_cmd_tso_mss: Quad Word 1
1948 * @cd_tunneling: Quad Word 0 - bits 0-31
1949 * @cd_l2tag2: Quad Word 0 - bits 32-63
1950 **/
1951static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1952                               const u64 cd_type_cmd_tso_mss,
1953                               const u32 cd_tunneling, const u32 cd_l2tag2)
1954{
1955        struct i40e_tx_context_desc *context_desc;
1956        int i = tx_ring->next_to_use;
1957
1958        if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1959            !cd_tunneling && !cd_l2tag2)
1960                return;
1961
1962        /* grab the next descriptor */
1963        context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1964
1965        i++;
1966        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1967
1968        /* cpu_to_le32 and assign to struct fields */
1969        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1970        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1971        context_desc->rsvd = cpu_to_le16(0);
1972        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1973}
1974
1975/**
1976 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1977 * @skb:      send buffer
1978 *
1979 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1980 * and so we need to figure out the cases where we need to linearize the skb.
1981 *
1982 * For TSO we need to count the TSO header and segment payload separately.
1983 * As such we need to check cases where we have 7 fragments or more as we
1984 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1985 * the segment payload in the first descriptor, and another 7 for the
1986 * fragments.
1987 **/
1988bool __i40evf_chk_linearize(struct sk_buff *skb)
1989{
1990        const struct skb_frag_struct *frag, *stale;
1991        int nr_frags, sum;
1992
1993        /* no need to check if number of frags is less than 7 */
1994        nr_frags = skb_shinfo(skb)->nr_frags;
1995        if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1996                return false;
1997
1998        /* We need to walk through the list and validate that each group
1999         * of 6 fragments totals at least gso_size.
2000         */
2001        nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2002        frag = &skb_shinfo(skb)->frags[0];
2003
2004        /* Initialize size to the negative value of gso_size minus 1.  We
2005         * use this as the worst case scenerio in which the frag ahead
2006         * of us only provides one byte which is why we are limited to 6
2007         * descriptors for a single transmit as the header and previous
2008         * fragment are already consuming 2 descriptors.
2009         */
2010        sum = 1 - skb_shinfo(skb)->gso_size;
2011
2012        /* Add size of frags 0 through 4 to create our initial sum */
2013        sum += skb_frag_size(frag++);
2014        sum += skb_frag_size(frag++);
2015        sum += skb_frag_size(frag++);
2016        sum += skb_frag_size(frag++);
2017        sum += skb_frag_size(frag++);
2018
2019        /* Walk through fragments adding latest fragment, testing it, and
2020         * then removing stale fragments from the sum.
2021         */
2022        stale = &skb_shinfo(skb)->frags[0];
2023        for (;;) {
2024                sum += skb_frag_size(frag++);
2025
2026                /* if sum is negative we failed to make sufficient progress */
2027                if (sum < 0)
2028                        return true;
2029
2030                if (!nr_frags--)
2031                        break;
2032
2033                sum -= skb_frag_size(stale++);
2034        }
2035
2036        return false;
2037}
2038
2039/**
2040 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
2041 * @tx_ring: the ring to be checked
2042 * @size:    the size buffer we want to assure is available
2043 *
2044 * Returns -EBUSY if a stop is needed, else 0
2045 **/
2046int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2047{
2048        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2049        /* Memory barrier before checking head and tail */
2050        smp_mb();
2051
2052        /* Check again in a case another CPU has just made room available. */
2053        if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2054                return -EBUSY;
2055
2056        /* A reprieve! - use start_queue because it doesn't call schedule */
2057        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2058        ++tx_ring->tx_stats.restart_queue;
2059        return 0;
2060}
2061
2062/**
2063 * i40evf_tx_map - Build the Tx descriptor
2064 * @tx_ring:  ring to send buffer on
2065 * @skb:      send buffer
2066 * @first:    first buffer info buffer to use
2067 * @tx_flags: collected send information
2068 * @hdr_len:  size of the packet header
2069 * @td_cmd:   the command field in the descriptor
2070 * @td_offset: offset for checksum or crc
2071 **/
2072static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2073                                 struct i40e_tx_buffer *first, u32 tx_flags,
2074                                 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2075{
2076        unsigned int data_len = skb->data_len;
2077        unsigned int size = skb_headlen(skb);
2078        struct skb_frag_struct *frag;
2079        struct i40e_tx_buffer *tx_bi;
2080        struct i40e_tx_desc *tx_desc;
2081        u16 i = tx_ring->next_to_use;
2082        u32 td_tag = 0;
2083        dma_addr_t dma;
2084
2085        if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2086                td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2087                td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2088                         I40E_TX_FLAGS_VLAN_SHIFT;
2089        }
2090
2091        first->tx_flags = tx_flags;
2092
2093        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2094
2095        tx_desc = I40E_TX_DESC(tx_ring, i);
2096        tx_bi = first;
2097
2098        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2099                unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2100
2101                if (dma_mapping_error(tx_ring->dev, dma))
2102                        goto dma_error;
2103
2104                /* record length, and DMA address */
2105                dma_unmap_len_set(tx_bi, len, size);
2106                dma_unmap_addr_set(tx_bi, dma, dma);
2107
2108                /* align size to end of page */
2109                max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2110                tx_desc->buffer_addr = cpu_to_le64(dma);
2111
2112                while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2113                        tx_desc->cmd_type_offset_bsz =
2114                                build_ctob(td_cmd, td_offset,
2115                                           max_data, td_tag);
2116
2117                        tx_desc++;
2118                        i++;
2119
2120                        if (i == tx_ring->count) {
2121                                tx_desc = I40E_TX_DESC(tx_ring, 0);
2122                                i = 0;
2123                        }
2124
2125                        dma += max_data;
2126                        size -= max_data;
2127
2128                        max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2129                        tx_desc->buffer_addr = cpu_to_le64(dma);
2130                }
2131
2132                if (likely(!data_len))
2133                        break;
2134
2135                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2136                                                          size, td_tag);
2137
2138                tx_desc++;
2139                i++;
2140
2141                if (i == tx_ring->count) {
2142                        tx_desc = I40E_TX_DESC(tx_ring, 0);
2143                        i = 0;
2144                }
2145
2146                size = skb_frag_size(frag);
2147                data_len -= size;
2148
2149                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2150                                       DMA_TO_DEVICE);
2151
2152                tx_bi = &tx_ring->tx_bi[i];
2153        }
2154
2155        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2156
2157        i++;
2158        if (i == tx_ring->count)
2159                i = 0;
2160
2161        tx_ring->next_to_use = i;
2162
2163        i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2164
2165        /* write last descriptor with RS and EOP bits */
2166        td_cmd |= I40E_TXD_CMD;
2167        tx_desc->cmd_type_offset_bsz =
2168                        build_ctob(td_cmd, td_offset, size, td_tag);
2169
2170        /* Force memory writes to complete before letting h/w know there
2171         * are new descriptors to fetch.
2172         *
2173         * We also use this memory barrier to make certain all of the
2174         * status bits have been updated before next_to_watch is written.
2175         */
2176        wmb();
2177
2178        /* set next_to_watch value indicating a packet is present */
2179        first->next_to_watch = tx_desc;
2180
2181        /* notify HW of packet */
2182        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2183                writel(i, tx_ring->tail);
2184
2185                /* we need this if more than one processor can write to our tail
2186                 * at a time, it synchronizes IO on IA64/Altix systems
2187                 */
2188                mmiowb();
2189        }
2190
2191        return;
2192
2193dma_error:
2194        dev_info(tx_ring->dev, "TX DMA map failed\n");
2195
2196        /* clear dma mappings for failed tx_bi map */
2197        for (;;) {
2198                tx_bi = &tx_ring->tx_bi[i];
2199                i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2200                if (tx_bi == first)
2201                        break;
2202                if (i == 0)
2203                        i = tx_ring->count;
2204                i--;
2205        }
2206
2207        tx_ring->next_to_use = i;
2208}
2209
2210/**
2211 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2212 * @skb:     send buffer
2213 * @tx_ring: ring to send buffer on
2214 *
2215 * Returns NETDEV_TX_OK if sent, else an error code
2216 **/
2217static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2218                                        struct i40e_ring *tx_ring)
2219{
2220        u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2221        u32 cd_tunneling = 0, cd_l2tag2 = 0;
2222        struct i40e_tx_buffer *first;
2223        u32 td_offset = 0;
2224        u32 tx_flags = 0;
2225        __be16 protocol;
2226        u32 td_cmd = 0;
2227        u8 hdr_len = 0;
2228        int tso, count;
2229
2230        /* prefetch the data, we'll need it later */
2231        prefetch(skb->data);
2232
2233        i40e_trace(xmit_frame_ring, skb, tx_ring);
2234
2235        count = i40e_xmit_descriptor_count(skb);
2236        if (i40e_chk_linearize(skb, count)) {
2237                if (__skb_linearize(skb)) {
2238                        dev_kfree_skb_any(skb);
2239                        return NETDEV_TX_OK;
2240                }
2241                count = i40e_txd_use_count(skb->len);
2242                tx_ring->tx_stats.tx_linearize++;
2243        }
2244
2245        /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2246         *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2247         *       + 4 desc gap to avoid the cache line where head is,
2248         *       + 1 desc for context descriptor,
2249         * otherwise try next time
2250         */
2251        if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2252                tx_ring->tx_stats.tx_busy++;
2253                return NETDEV_TX_BUSY;
2254        }
2255
2256        /* record the location of the first descriptor for this packet */
2257        first = &tx_ring->tx_bi[tx_ring->next_to_use];
2258        first->skb = skb;
2259        first->bytecount = skb->len;
2260        first->gso_segs = 1;
2261
2262        /* prepare the xmit flags */
2263        if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2264                goto out_drop;
2265
2266        /* obtain protocol of skb */
2267        protocol = vlan_get_protocol(skb);
2268
2269        /* setup IPv4/IPv6 offloads */
2270        if (protocol == htons(ETH_P_IP))
2271                tx_flags |= I40E_TX_FLAGS_IPV4;
2272        else if (protocol == htons(ETH_P_IPV6))
2273                tx_flags |= I40E_TX_FLAGS_IPV6;
2274
2275        tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2276
2277        if (tso < 0)
2278                goto out_drop;
2279        else if (tso)
2280                tx_flags |= I40E_TX_FLAGS_TSO;
2281
2282        /* Always offload the checksum, since it's in the data descriptor */
2283        tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2284                                  tx_ring, &cd_tunneling);
2285        if (tso < 0)
2286                goto out_drop;
2287
2288        skb_tx_timestamp(skb);
2289
2290        /* always enable CRC insertion offload */
2291        td_cmd |= I40E_TX_DESC_CMD_ICRC;
2292
2293        i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2294                           cd_tunneling, cd_l2tag2);
2295
2296        i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2297                      td_cmd, td_offset);
2298
2299        return NETDEV_TX_OK;
2300
2301out_drop:
2302        i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2303        dev_kfree_skb_any(first->skb);
2304        first->skb = NULL;
2305        return NETDEV_TX_OK;
2306}
2307
2308/**
2309 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2310 * @skb:    send buffer
2311 * @netdev: network interface device structure
2312 *
2313 * Returns NETDEV_TX_OK if sent, else an error code
2314 **/
2315netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2316{
2317        struct i40evf_adapter *adapter = netdev_priv(netdev);
2318        struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2319
2320        /* hardware can't handle really short frames, hardware padding works
2321         * beyond this point
2322         */
2323        if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2324                if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2325                        return NETDEV_TX_OK;
2326                skb->len = I40E_MIN_TX_LEN;
2327                skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2328        }
2329
2330        return i40e_xmit_frame_ring(skb, tx_ring);
2331}
2332