linux/drivers/net/ethernet/marvell/mvneta.c
<<
>>
Prefs
   1/*
   2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
   3 *
   4 * Copyright (C) 2012 Marvell
   5 *
   6 * Rami Rosen <rosenr@marvell.com>
   7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
   8 *
   9 * This file is licensed under the terms of the GNU General Public
  10 * License version 2. This program is licensed "as is" without any
  11 * warranty of any kind, whether express or implied.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/cpu.h>
  16#include <linux/etherdevice.h>
  17#include <linux/if_vlan.h>
  18#include <linux/inetdevice.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/kernel.h>
  22#include <linux/mbus.h>
  23#include <linux/module.h>
  24#include <linux/netdevice.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_mdio.h>
  29#include <linux/of_net.h>
  30#include <linux/phy.h>
  31#include <linux/phy_fixed.h>
  32#include <linux/platform_device.h>
  33#include <linux/skbuff.h>
  34#include <net/hwbm.h>
  35#include "mvneta_bm.h"
  36#include <net/ip.h>
  37#include <net/ipv6.h>
  38#include <net/tso.h>
  39
  40/* Registers */
  41#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
  42#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
  43#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT     4
  44#define      MVNETA_RXQ_SHORT_POOL_ID_MASK      0x30
  45#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT      6
  46#define      MVNETA_RXQ_LONG_POOL_ID_MASK       0xc0
  47#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
  48#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
  49#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
  50#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
  51#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
  52#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
  53#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
  54#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
  55#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
  56#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
  57#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
  58#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
  59#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
  60#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)    (0x1700 + ((pool) << 2))
  61#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT   3
  62#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK    0xfff8
  63#define MVNETA_PORT_RX_RESET                    0x1cc0
  64#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
  65#define MVNETA_PHY_ADDR                         0x2000
  66#define      MVNETA_PHY_ADDR_MASK               0x1f
  67#define MVNETA_MBUS_RETRY                       0x2010
  68#define MVNETA_UNIT_INTR_CAUSE                  0x2080
  69#define MVNETA_UNIT_CONTROL                     0x20B0
  70#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
  71#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
  72#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
  73#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
  74#define MVNETA_BASE_ADDR_ENABLE                 0x2290
  75#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
  76#define MVNETA_PORT_CONFIG                      0x2400
  77#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
  78#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
  79#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
  80#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
  81#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
  82#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
  83#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
  84#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
  85#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
  86                                                 MVNETA_DEF_RXQ_ARP(q)   | \
  87                                                 MVNETA_DEF_RXQ_TCP(q)   | \
  88                                                 MVNETA_DEF_RXQ_UDP(q)   | \
  89                                                 MVNETA_DEF_RXQ_BPDU(q)  | \
  90                                                 MVNETA_TX_UNSET_ERR_SUM | \
  91                                                 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  92#define MVNETA_PORT_CONFIG_EXTEND                0x2404
  93#define MVNETA_MAC_ADDR_LOW                      0x2414
  94#define MVNETA_MAC_ADDR_HIGH                     0x2418
  95#define MVNETA_SDMA_CONFIG                       0x241c
  96#define      MVNETA_SDMA_BRST_SIZE_16            4
  97#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
  98#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
  99#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
 100#define      MVNETA_DESC_SWAP                    BIT(6)
 101#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
 102#define MVNETA_PORT_STATUS                       0x2444
 103#define      MVNETA_TX_IN_PRGRS                  BIT(1)
 104#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
 105#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
 106#define MVNETA_SERDES_CFG                        0x24A0
 107#define      MVNETA_SGMII_SERDES_PROTO           0x0cc7
 108#define      MVNETA_QSGMII_SERDES_PROTO          0x0667
 109#define MVNETA_TYPE_PRIO                         0x24bc
 110#define      MVNETA_FORCE_UNI                    BIT(21)
 111#define MVNETA_TXQ_CMD_1                         0x24e4
 112#define MVNETA_TXQ_CMD                           0x2448
 113#define      MVNETA_TXQ_DISABLE_SHIFT            8
 114#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
 115#define MVNETA_RX_DISCARD_FRAME_COUNT            0x2484
 116#define MVNETA_OVERRUN_FRAME_COUNT               0x2488
 117#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
 118#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
 119#define MVNETA_ACC_MODE                          0x2500
 120#define MVNETA_BM_ADDRESS                        0x2504
 121#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
 122#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
 123#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
 124#define      MVNETA_CPU_RXQ_ACCESS(rxq)          BIT(rxq)
 125#define      MVNETA_CPU_TXQ_ACCESS(txq)          BIT(txq + 8)
 126#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
 127
 128/* Exception Interrupt Port/Queue Cause register
 129 *
 130 * Their behavior depend of the mapping done using the PCPX2Q
 131 * registers. For a given CPU if the bit associated to a queue is not
 132 * set, then for the register a read from this CPU will always return
 133 * 0 and a write won't do anything
 134 */
 135
 136#define MVNETA_INTR_NEW_CAUSE                    0x25a0
 137#define MVNETA_INTR_NEW_MASK                     0x25a4
 138
 139/* bits  0..7  = TXQ SENT, one bit per queue.
 140 * bits  8..15 = RXQ OCCUP, one bit per queue.
 141 * bits 16..23 = RXQ FREE, one bit per queue.
 142 * bit  29 = OLD_REG_SUM, see old reg ?
 143 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 144 * bit  31 = MISC_SUM,   one bit for 4 ports
 145 */
 146#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
 147#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
 148#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
 149#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
 150#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
 151
 152#define MVNETA_INTR_OLD_CAUSE                    0x25a8
 153#define MVNETA_INTR_OLD_MASK                     0x25ac
 154
 155/* Data Path Port/Queue Cause Register */
 156#define MVNETA_INTR_MISC_CAUSE                   0x25b0
 157#define MVNETA_INTR_MISC_MASK                    0x25b4
 158
 159#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
 160#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
 161#define      MVNETA_CAUSE_PTP                    BIT(4)
 162
 163#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
 164#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
 165#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
 166#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
 167#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
 168#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
 169#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
 170#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
 171
 172#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
 173#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
 174#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
 175
 176#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
 177#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
 178#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
 179
 180#define MVNETA_INTR_ENABLE                       0x25b8
 181#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
 182#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
 183
 184#define MVNETA_RXQ_CMD                           0x2680
 185#define      MVNETA_RXQ_DISABLE_SHIFT            8
 186#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
 187#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
 188#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
 189#define MVNETA_GMAC_CTRL_0                       0x2c00
 190#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
 191#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
 192#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
 193#define MVNETA_GMAC_CTRL_2                       0x2c08
 194#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
 195#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
 196#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
 197#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
 198#define MVNETA_GMAC_STATUS                       0x2c10
 199#define      MVNETA_GMAC_LINK_UP                 BIT(0)
 200#define      MVNETA_GMAC_SPEED_1000              BIT(1)
 201#define      MVNETA_GMAC_SPEED_100               BIT(2)
 202#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
 203#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
 204#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
 205#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
 206#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
 207#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
 208#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
 209#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
 210#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
 211#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
 212#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
 213#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
 214#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
 215#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
 216#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
 217#define MVNETA_MIB_COUNTERS_BASE                 0x3000
 218#define      MVNETA_MIB_LATE_COLLISION           0x7c
 219#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
 220#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
 221#define MVNETA_DA_FILT_UCAST_BASE                0x3600
 222#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
 223#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
 224#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
 225#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
 226#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
 227#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
 228#define      MVNETA_TXQ_DEC_SENT_MASK            0xff
 229#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
 230#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
 231#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
 232#define MVNETA_PORT_TX_RESET                     0x3cf0
 233#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
 234#define MVNETA_TX_MTU                            0x3e0c
 235#define MVNETA_TX_TOKEN_SIZE                     0x3e14
 236#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
 237#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
 238#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
 239
 240#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK      0xff
 241
 242/* Descriptor ring Macros */
 243#define MVNETA_QUEUE_NEXT_DESC(q, index)        \
 244        (((index) < (q)->last_desc) ? ((index) + 1) : 0)
 245
 246/* Various constants */
 247
 248/* Coalescing */
 249#define MVNETA_TXDONE_COAL_PKTS         0       /* interrupt per packet */
 250#define MVNETA_RX_COAL_PKTS             32
 251#define MVNETA_RX_COAL_USEC             100
 252
 253/* The two bytes Marvell header. Either contains a special value used
 254 * by Marvell switches when a specific hardware mode is enabled (not
 255 * supported by this driver) or is filled automatically by zeroes on
 256 * the RX side. Those two bytes being at the front of the Ethernet
 257 * header, they allow to have the IP header aligned on a 4 bytes
 258 * boundary automatically: the hardware skips those two bytes on its
 259 * own.
 260 */
 261#define MVNETA_MH_SIZE                  2
 262
 263#define MVNETA_VLAN_TAG_LEN             4
 264
 265#define MVNETA_TX_CSUM_DEF_SIZE         1600
 266#define MVNETA_TX_CSUM_MAX_SIZE         9800
 267#define MVNETA_ACC_MODE_EXT1            1
 268#define MVNETA_ACC_MODE_EXT2            2
 269
 270#define MVNETA_MAX_DECODE_WIN           6
 271
 272/* Timeout constants */
 273#define MVNETA_TX_DISABLE_TIMEOUT_MSEC  1000
 274#define MVNETA_RX_DISABLE_TIMEOUT_MSEC  1000
 275#define MVNETA_TX_FIFO_EMPTY_TIMEOUT    10000
 276
 277#define MVNETA_TX_MTU_MAX               0x3ffff
 278
 279/* The RSS lookup table actually has 256 entries but we do not use
 280 * them yet
 281 */
 282#define MVNETA_RSS_LU_TABLE_SIZE        1
 283
 284/* TSO header size */
 285#define TSO_HEADER_SIZE 128
 286
 287/* Max number of Rx descriptors */
 288#define MVNETA_MAX_RXD 128
 289
 290/* Max number of Tx descriptors */
 291#define MVNETA_MAX_TXD 532
 292
 293/* Max number of allowed TCP segments for software TSO */
 294#define MVNETA_MAX_TSO_SEGS 100
 295
 296#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 297
 298/* descriptor aligned size */
 299#define MVNETA_DESC_ALIGNED_SIZE        32
 300
 301/* Number of bytes to be taken into account by HW when putting incoming data
 302 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
 303 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
 304 */
 305#define MVNETA_RX_PKT_OFFSET_CORRECTION         64
 306
 307#define MVNETA_RX_PKT_SIZE(mtu) \
 308        ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
 309              ETH_HLEN + ETH_FCS_LEN,                        \
 310              cache_line_size())
 311
 312#define IS_TSO_HEADER(txq, addr) \
 313        ((addr >= txq->tso_hdrs_phys) && \
 314         (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
 315
 316#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
 317        (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
 318
 319struct mvneta_statistic {
 320        unsigned short offset;
 321        unsigned short type;
 322        const char name[ETH_GSTRING_LEN];
 323};
 324
 325#define T_REG_32        32
 326#define T_REG_64        64
 327
 328static const struct mvneta_statistic mvneta_statistics[] = {
 329        { 0x3000, T_REG_64, "good_octets_received", },
 330        { 0x3010, T_REG_32, "good_frames_received", },
 331        { 0x3008, T_REG_32, "bad_octets_received", },
 332        { 0x3014, T_REG_32, "bad_frames_received", },
 333        { 0x3018, T_REG_32, "broadcast_frames_received", },
 334        { 0x301c, T_REG_32, "multicast_frames_received", },
 335        { 0x3050, T_REG_32, "unrec_mac_control_received", },
 336        { 0x3058, T_REG_32, "good_fc_received", },
 337        { 0x305c, T_REG_32, "bad_fc_received", },
 338        { 0x3060, T_REG_32, "undersize_received", },
 339        { 0x3064, T_REG_32, "fragments_received", },
 340        { 0x3068, T_REG_32, "oversize_received", },
 341        { 0x306c, T_REG_32, "jabber_received", },
 342        { 0x3070, T_REG_32, "mac_receive_error", },
 343        { 0x3074, T_REG_32, "bad_crc_event", },
 344        { 0x3078, T_REG_32, "collision", },
 345        { 0x307c, T_REG_32, "late_collision", },
 346        { 0x2484, T_REG_32, "rx_discard", },
 347        { 0x2488, T_REG_32, "rx_overrun", },
 348        { 0x3020, T_REG_32, "frames_64_octets", },
 349        { 0x3024, T_REG_32, "frames_65_to_127_octets", },
 350        { 0x3028, T_REG_32, "frames_128_to_255_octets", },
 351        { 0x302c, T_REG_32, "frames_256_to_511_octets", },
 352        { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
 353        { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
 354        { 0x3038, T_REG_64, "good_octets_sent", },
 355        { 0x3040, T_REG_32, "good_frames_sent", },
 356        { 0x3044, T_REG_32, "excessive_collision", },
 357        { 0x3048, T_REG_32, "multicast_frames_sent", },
 358        { 0x304c, T_REG_32, "broadcast_frames_sent", },
 359        { 0x3054, T_REG_32, "fc_sent", },
 360        { 0x300c, T_REG_32, "internal_mac_transmit_err", },
 361};
 362
 363struct mvneta_pcpu_stats {
 364        struct  u64_stats_sync syncp;
 365        u64     rx_packets;
 366        u64     rx_bytes;
 367        u64     tx_packets;
 368        u64     tx_bytes;
 369};
 370
 371struct mvneta_pcpu_port {
 372        /* Pointer to the shared port */
 373        struct mvneta_port      *pp;
 374
 375        /* Pointer to the CPU-local NAPI struct */
 376        struct napi_struct      napi;
 377
 378        /* Cause of the previous interrupt */
 379        u32                     cause_rx_tx;
 380};
 381
 382struct mvneta_port {
 383        u8 id;
 384        struct mvneta_pcpu_port __percpu        *ports;
 385        struct mvneta_pcpu_stats __percpu       *stats;
 386
 387        int pkt_size;
 388        unsigned int frag_size;
 389        void __iomem *base;
 390        struct mvneta_rx_queue *rxqs;
 391        struct mvneta_tx_queue *txqs;
 392        struct net_device *dev;
 393        struct hlist_node node_online;
 394        struct hlist_node node_dead;
 395        int rxq_def;
 396        /* Protect the access to the percpu interrupt registers,
 397         * ensuring that the configuration remains coherent.
 398         */
 399        spinlock_t lock;
 400        bool is_stopped;
 401
 402        u32 cause_rx_tx;
 403        struct napi_struct napi;
 404
 405        /* Core clock */
 406        struct clk *clk;
 407        /* AXI clock */
 408        struct clk *clk_bus;
 409        u8 mcast_count[256];
 410        u16 tx_ring_size;
 411        u16 rx_ring_size;
 412
 413        struct mii_bus *mii_bus;
 414        phy_interface_t phy_interface;
 415        struct device_node *phy_node;
 416        unsigned int link;
 417        unsigned int duplex;
 418        unsigned int speed;
 419        unsigned int tx_csum_limit;
 420        unsigned int use_inband_status:1;
 421
 422        struct mvneta_bm *bm_priv;
 423        struct mvneta_bm_pool *pool_long;
 424        struct mvneta_bm_pool *pool_short;
 425        int bm_win_id;
 426
 427        u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
 428
 429        u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
 430
 431        /* Flags for special SoC configurations */
 432        bool neta_armada3700;
 433        u16 rx_offset_correction;
 434        const struct mbus_dram_target_info *dram_target_info;
 435};
 436
 437/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 438 * layout of the transmit and reception DMA descriptors, and their
 439 * layout is therefore defined by the hardware design
 440 */
 441
 442#define MVNETA_TX_L3_OFF_SHIFT  0
 443#define MVNETA_TX_IP_HLEN_SHIFT 8
 444#define MVNETA_TX_L4_UDP        BIT(16)
 445#define MVNETA_TX_L3_IP6        BIT(17)
 446#define MVNETA_TXD_IP_CSUM      BIT(18)
 447#define MVNETA_TXD_Z_PAD        BIT(19)
 448#define MVNETA_TXD_L_DESC       BIT(20)
 449#define MVNETA_TXD_F_DESC       BIT(21)
 450#define MVNETA_TXD_FLZ_DESC     (MVNETA_TXD_Z_PAD  | \
 451                                 MVNETA_TXD_L_DESC | \
 452                                 MVNETA_TXD_F_DESC)
 453#define MVNETA_TX_L4_CSUM_FULL  BIT(30)
 454#define MVNETA_TX_L4_CSUM_NOT   BIT(31)
 455
 456#define MVNETA_RXD_ERR_CRC              0x0
 457#define MVNETA_RXD_BM_POOL_SHIFT        13
 458#define MVNETA_RXD_BM_POOL_MASK         (BIT(13) | BIT(14))
 459#define MVNETA_RXD_ERR_SUMMARY          BIT(16)
 460#define MVNETA_RXD_ERR_OVERRUN          BIT(17)
 461#define MVNETA_RXD_ERR_LEN              BIT(18)
 462#define MVNETA_RXD_ERR_RESOURCE         (BIT(17) | BIT(18))
 463#define MVNETA_RXD_ERR_CODE_MASK        (BIT(17) | BIT(18))
 464#define MVNETA_RXD_L3_IP4               BIT(25)
 465#define MVNETA_RXD_FIRST_LAST_DESC      (BIT(26) | BIT(27))
 466#define MVNETA_RXD_L4_CSUM_OK           BIT(30)
 467
 468#if defined(__LITTLE_ENDIAN)
 469struct mvneta_tx_desc {
 470        u32  command;           /* Options used by HW for packet transmitting.*/
 471        u16  reserverd1;        /* csum_l4 (for future use)             */
 472        u16  data_size;         /* Data size of transmitted packet in bytes */
 473        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 474        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 475        u32  reserved3[4];      /* Reserved - (for future use)          */
 476};
 477
 478struct mvneta_rx_desc {
 479        u32  status;            /* Info about received packet           */
 480        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 481        u16  data_size;         /* Size of received packet in bytes     */
 482
 483        u32  buf_phys_addr;     /* Physical address of the buffer       */
 484        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 485
 486        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 487        u16  reserved3;         /* prefetch_cmd, for future use         */
 488        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 489
 490        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 491        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 492};
 493#else
 494struct mvneta_tx_desc {
 495        u16  data_size;         /* Data size of transmitted packet in bytes */
 496        u16  reserverd1;        /* csum_l4 (for future use)             */
 497        u32  command;           /* Options used by HW for packet transmitting.*/
 498        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 499        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 500        u32  reserved3[4];      /* Reserved - (for future use)          */
 501};
 502
 503struct mvneta_rx_desc {
 504        u16  data_size;         /* Size of received packet in bytes     */
 505        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 506        u32  status;            /* Info about received packet           */
 507
 508        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 509        u32  buf_phys_addr;     /* Physical address of the buffer       */
 510
 511        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 512        u16  reserved3;         /* prefetch_cmd, for future use         */
 513        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 514
 515        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 516        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 517};
 518#endif
 519
 520struct mvneta_tx_queue {
 521        /* Number of this TX queue, in the range 0-7 */
 522        u8 id;
 523
 524        /* Number of TX DMA descriptors in the descriptor ring */
 525        int size;
 526
 527        /* Number of currently used TX DMA descriptor in the
 528         * descriptor ring
 529         */
 530        int count;
 531        int pending;
 532        int tx_stop_threshold;
 533        int tx_wake_threshold;
 534
 535        /* Array of transmitted skb */
 536        struct sk_buff **tx_skb;
 537
 538        /* Index of last TX DMA descriptor that was inserted */
 539        int txq_put_index;
 540
 541        /* Index of the TX DMA descriptor to be cleaned up */
 542        int txq_get_index;
 543
 544        u32 done_pkts_coal;
 545
 546        /* Virtual address of the TX DMA descriptors array */
 547        struct mvneta_tx_desc *descs;
 548
 549        /* DMA address of the TX DMA descriptors array */
 550        dma_addr_t descs_phys;
 551
 552        /* Index of the last TX DMA descriptor */
 553        int last_desc;
 554
 555        /* Index of the next TX DMA descriptor to process */
 556        int next_desc_to_proc;
 557
 558        /* DMA buffers for TSO headers */
 559        char *tso_hdrs;
 560
 561        /* DMA address of TSO headers */
 562        dma_addr_t tso_hdrs_phys;
 563
 564        /* Affinity mask for CPUs*/
 565        cpumask_t affinity_mask;
 566};
 567
 568struct mvneta_rx_queue {
 569        /* rx queue number, in the range 0-7 */
 570        u8 id;
 571
 572        /* num of rx descriptors in the rx descriptor ring */
 573        int size;
 574
 575        /* counter of times when mvneta_refill() failed */
 576        int missed;
 577
 578        u32 pkts_coal;
 579        u32 time_coal;
 580
 581        /* Virtual address of the RX buffer */
 582        void  **buf_virt_addr;
 583
 584        /* Virtual address of the RX DMA descriptors array */
 585        struct mvneta_rx_desc *descs;
 586
 587        /* DMA address of the RX DMA descriptors array */
 588        dma_addr_t descs_phys;
 589
 590        /* Index of the last RX DMA descriptor */
 591        int last_desc;
 592
 593        /* Index of the next RX DMA descriptor to process */
 594        int next_desc_to_proc;
 595};
 596
 597static enum cpuhp_state online_hpstate;
 598/* The hardware supports eight (8) rx queues, but we are only allowing
 599 * the first one to be used. Therefore, let's just allocate one queue.
 600 */
 601static int rxq_number = 8;
 602static int txq_number = 8;
 603
 604static int rxq_def;
 605
 606static int rx_copybreak __read_mostly = 256;
 607
 608/* HW BM need that each port be identify by a unique ID */
 609static int global_port_id;
 610
 611#define MVNETA_DRIVER_NAME "mvneta"
 612#define MVNETA_DRIVER_VERSION "1.0"
 613
 614/* Utility/helper methods */
 615
 616/* Write helper method */
 617static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
 618{
 619        writel(data, pp->base + offset);
 620}
 621
 622/* Read helper method */
 623static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
 624{
 625        return readl(pp->base + offset);
 626}
 627
 628/* Increment txq get counter */
 629static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
 630{
 631        txq->txq_get_index++;
 632        if (txq->txq_get_index == txq->size)
 633                txq->txq_get_index = 0;
 634}
 635
 636/* Increment txq put counter */
 637static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
 638{
 639        txq->txq_put_index++;
 640        if (txq->txq_put_index == txq->size)
 641                txq->txq_put_index = 0;
 642}
 643
 644
 645/* Clear all MIB counters */
 646static void mvneta_mib_counters_clear(struct mvneta_port *pp)
 647{
 648        int i;
 649        u32 dummy;
 650
 651        /* Perform dummy reads from MIB counters */
 652        for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
 653                dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
 654        dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
 655        dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
 656}
 657
 658/* Get System Network Statistics */
 659static void
 660mvneta_get_stats64(struct net_device *dev,
 661                   struct rtnl_link_stats64 *stats)
 662{
 663        struct mvneta_port *pp = netdev_priv(dev);
 664        unsigned int start;
 665        int cpu;
 666
 667        for_each_possible_cpu(cpu) {
 668                struct mvneta_pcpu_stats *cpu_stats;
 669                u64 rx_packets;
 670                u64 rx_bytes;
 671                u64 tx_packets;
 672                u64 tx_bytes;
 673
 674                cpu_stats = per_cpu_ptr(pp->stats, cpu);
 675                do {
 676                        start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
 677                        rx_packets = cpu_stats->rx_packets;
 678                        rx_bytes   = cpu_stats->rx_bytes;
 679                        tx_packets = cpu_stats->tx_packets;
 680                        tx_bytes   = cpu_stats->tx_bytes;
 681                } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
 682
 683                stats->rx_packets += rx_packets;
 684                stats->rx_bytes   += rx_bytes;
 685                stats->tx_packets += tx_packets;
 686                stats->tx_bytes   += tx_bytes;
 687        }
 688
 689        stats->rx_errors        = dev->stats.rx_errors;
 690        stats->rx_dropped       = dev->stats.rx_dropped;
 691
 692        stats->tx_dropped       = dev->stats.tx_dropped;
 693}
 694
 695/* Rx descriptors helper methods */
 696
 697/* Checks whether the RX descriptor having this status is both the first
 698 * and the last descriptor for the RX packet. Each RX packet is currently
 699 * received through a single RX descriptor, so not having each RX
 700 * descriptor with its first and last bits set is an error
 701 */
 702static int mvneta_rxq_desc_is_first_last(u32 status)
 703{
 704        return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
 705                MVNETA_RXD_FIRST_LAST_DESC;
 706}
 707
 708/* Add number of descriptors ready to receive new packets */
 709static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
 710                                          struct mvneta_rx_queue *rxq,
 711                                          int ndescs)
 712{
 713        /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
 714         * be added at once
 715         */
 716        while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
 717                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 718                            (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
 719                             MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 720                ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
 721        }
 722
 723        mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 724                    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 725}
 726
 727/* Get number of RX descriptors occupied by received packets */
 728static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
 729                                        struct mvneta_rx_queue *rxq)
 730{
 731        u32 val;
 732
 733        val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
 734        return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
 735}
 736
 737/* Update num of rx desc called upon return from rx path or
 738 * from mvneta_rxq_drop_pkts().
 739 */
 740static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
 741                                       struct mvneta_rx_queue *rxq,
 742                                       int rx_done, int rx_filled)
 743{
 744        u32 val;
 745
 746        if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
 747                val = rx_done |
 748                  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
 749                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 750                return;
 751        }
 752
 753        /* Only 255 descriptors can be added at once */
 754        while ((rx_done > 0) || (rx_filled > 0)) {
 755                if (rx_done <= 0xff) {
 756                        val = rx_done;
 757                        rx_done = 0;
 758                } else {
 759                        val = 0xff;
 760                        rx_done -= 0xff;
 761                }
 762                if (rx_filled <= 0xff) {
 763                        val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 764                        rx_filled = 0;
 765                } else {
 766                        val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 767                        rx_filled -= 0xff;
 768                }
 769                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 770        }
 771}
 772
 773/* Get pointer to next RX descriptor to be processed by SW */
 774static struct mvneta_rx_desc *
 775mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
 776{
 777        int rx_desc = rxq->next_desc_to_proc;
 778
 779        rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
 780        prefetch(rxq->descs + rxq->next_desc_to_proc);
 781        return rxq->descs + rx_desc;
 782}
 783
 784/* Change maximum receive size of the port. */
 785static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
 786{
 787        u32 val;
 788
 789        val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 790        val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
 791        val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
 792                MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
 793        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 794}
 795
 796
 797/* Set rx queue offset */
 798static void mvneta_rxq_offset_set(struct mvneta_port *pp,
 799                                  struct mvneta_rx_queue *rxq,
 800                                  int offset)
 801{
 802        u32 val;
 803
 804        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 805        val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
 806
 807        /* Offset is in */
 808        val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
 809        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 810}
 811
 812
 813/* Tx descriptors helper methods */
 814
 815/* Update HW with number of TX descriptors to be sent */
 816static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
 817                                     struct mvneta_tx_queue *txq,
 818                                     int pend_desc)
 819{
 820        u32 val;
 821
 822        /* Only 255 descriptors can be added at once ; Assume caller
 823         * process TX desriptors in quanta less than 256
 824         */
 825        val = pend_desc + txq->pending;
 826        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
 827        txq->pending = 0;
 828}
 829
 830/* Get pointer to next TX descriptor to be processed (send) by HW */
 831static struct mvneta_tx_desc *
 832mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
 833{
 834        int tx_desc = txq->next_desc_to_proc;
 835
 836        txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
 837        return txq->descs + tx_desc;
 838}
 839
 840/* Release the last allocated TX descriptor. Useful to handle DMA
 841 * mapping failures in the TX path.
 842 */
 843static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
 844{
 845        if (txq->next_desc_to_proc == 0)
 846                txq->next_desc_to_proc = txq->last_desc - 1;
 847        else
 848                txq->next_desc_to_proc--;
 849}
 850
 851/* Set rxq buf size */
 852static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
 853                                    struct mvneta_rx_queue *rxq,
 854                                    int buf_size)
 855{
 856        u32 val;
 857
 858        val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
 859
 860        val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
 861        val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
 862
 863        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
 864}
 865
 866/* Disable buffer management (BM) */
 867static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
 868                                  struct mvneta_rx_queue *rxq)
 869{
 870        u32 val;
 871
 872        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 873        val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
 874        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 875}
 876
 877/* Enable buffer management (BM) */
 878static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
 879                                 struct mvneta_rx_queue *rxq)
 880{
 881        u32 val;
 882
 883        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 884        val |= MVNETA_RXQ_HW_BUF_ALLOC;
 885        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 886}
 887
 888/* Notify HW about port's assignment of pool for bigger packets */
 889static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
 890                                     struct mvneta_rx_queue *rxq)
 891{
 892        u32 val;
 893
 894        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 895        val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
 896        val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
 897
 898        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 899}
 900
 901/* Notify HW about port's assignment of pool for smaller packets */
 902static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
 903                                      struct mvneta_rx_queue *rxq)
 904{
 905        u32 val;
 906
 907        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 908        val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
 909        val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
 910
 911        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 912}
 913
 914/* Set port's receive buffer size for assigned BM pool */
 915static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
 916                                              int buf_size,
 917                                              u8 pool_id)
 918{
 919        u32 val;
 920
 921        if (!IS_ALIGNED(buf_size, 8)) {
 922                dev_warn(pp->dev->dev.parent,
 923                         "illegal buf_size value %d, round to %d\n",
 924                         buf_size, ALIGN(buf_size, 8));
 925                buf_size = ALIGN(buf_size, 8);
 926        }
 927
 928        val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
 929        val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
 930        mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
 931}
 932
 933/* Configure MBUS window in order to enable access BM internal SRAM */
 934static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
 935                                  u8 target, u8 attr)
 936{
 937        u32 win_enable, win_protect;
 938        int i;
 939
 940        win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
 941
 942        if (pp->bm_win_id < 0) {
 943                /* Find first not occupied window */
 944                for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
 945                        if (win_enable & (1 << i)) {
 946                                pp->bm_win_id = i;
 947                                break;
 948                        }
 949                }
 950                if (i == MVNETA_MAX_DECODE_WIN)
 951                        return -ENOMEM;
 952        } else {
 953                i = pp->bm_win_id;
 954        }
 955
 956        mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
 957        mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
 958
 959        if (i < 4)
 960                mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
 961
 962        mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
 963                    (attr << 8) | target);
 964
 965        mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
 966
 967        win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
 968        win_protect |= 3 << (2 * i);
 969        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
 970
 971        win_enable &= ~(1 << i);
 972        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
 973
 974        return 0;
 975}
 976
 977static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
 978{
 979        u32 wsize;
 980        u8 target, attr;
 981        int err;
 982
 983        /* Get BM window information */
 984        err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
 985                                         &target, &attr);
 986        if (err < 0)
 987                return err;
 988
 989        pp->bm_win_id = -1;
 990
 991        /* Open NETA -> BM window */
 992        err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
 993                                     target, attr);
 994        if (err < 0) {
 995                netdev_info(pp->dev, "fail to configure mbus window to BM\n");
 996                return err;
 997        }
 998        return 0;
 999}
1000
1001/* Assign and initialize pools for port. In case of fail
1002 * buffer manager will remain disabled for current port.
1003 */
1004static int mvneta_bm_port_init(struct platform_device *pdev,
1005                               struct mvneta_port *pp)
1006{
1007        struct device_node *dn = pdev->dev.of_node;
1008        u32 long_pool_id, short_pool_id;
1009
1010        if (!pp->neta_armada3700) {
1011                int ret;
1012
1013                ret = mvneta_bm_port_mbus_init(pp);
1014                if (ret)
1015                        return ret;
1016        }
1017
1018        if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1019                netdev_info(pp->dev, "missing long pool id\n");
1020                return -EINVAL;
1021        }
1022
1023        /* Create port's long pool depending on mtu */
1024        pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1025                                           MVNETA_BM_LONG, pp->id,
1026                                           MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1027        if (!pp->pool_long) {
1028                netdev_info(pp->dev, "fail to obtain long pool for port\n");
1029                return -ENOMEM;
1030        }
1031
1032        pp->pool_long->port_map |= 1 << pp->id;
1033
1034        mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1035                                   pp->pool_long->id);
1036
1037        /* If short pool id is not defined, assume using single pool */
1038        if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1039                short_pool_id = long_pool_id;
1040
1041        /* Create port's short pool */
1042        pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1043                                            MVNETA_BM_SHORT, pp->id,
1044                                            MVNETA_BM_SHORT_PKT_SIZE);
1045        if (!pp->pool_short) {
1046                netdev_info(pp->dev, "fail to obtain short pool for port\n");
1047                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1048                return -ENOMEM;
1049        }
1050
1051        if (short_pool_id != long_pool_id) {
1052                pp->pool_short->port_map |= 1 << pp->id;
1053                mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1054                                           pp->pool_short->id);
1055        }
1056
1057        return 0;
1058}
1059
1060/* Update settings of a pool for bigger packets */
1061static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1062{
1063        struct mvneta_bm_pool *bm_pool = pp->pool_long;
1064        struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1065        int num;
1066
1067        /* Release all buffers from long pool */
1068        mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1069        if (hwbm_pool->buf_num) {
1070                WARN(1, "cannot free all buffers in pool %d\n",
1071                     bm_pool->id);
1072                goto bm_mtu_err;
1073        }
1074
1075        bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1076        bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1077        hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1078                        SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1079
1080        /* Fill entire long pool */
1081        num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1082        if (num != hwbm_pool->size) {
1083                WARN(1, "pool %d: %d of %d allocated\n",
1084                     bm_pool->id, num, hwbm_pool->size);
1085                goto bm_mtu_err;
1086        }
1087        mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1088
1089        return;
1090
1091bm_mtu_err:
1092        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1093        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1094
1095        pp->bm_priv = NULL;
1096        mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1097        netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1098}
1099
1100/* Start the Ethernet port RX and TX activity */
1101static void mvneta_port_up(struct mvneta_port *pp)
1102{
1103        int queue;
1104        u32 q_map;
1105
1106        /* Enable all initialized TXs. */
1107        q_map = 0;
1108        for (queue = 0; queue < txq_number; queue++) {
1109                struct mvneta_tx_queue *txq = &pp->txqs[queue];
1110                if (txq->descs)
1111                        q_map |= (1 << queue);
1112        }
1113        mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1114
1115        /* Enable all initialized RXQs. */
1116        for (queue = 0; queue < rxq_number; queue++) {
1117                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1118
1119                if (rxq->descs)
1120                        q_map |= (1 << queue);
1121        }
1122        mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1123}
1124
1125/* Stop the Ethernet port activity */
1126static void mvneta_port_down(struct mvneta_port *pp)
1127{
1128        u32 val;
1129        int count;
1130
1131        /* Stop Rx port activity. Check port Rx activity. */
1132        val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1133
1134        /* Issue stop command for active channels only */
1135        if (val != 0)
1136                mvreg_write(pp, MVNETA_RXQ_CMD,
1137                            val << MVNETA_RXQ_DISABLE_SHIFT);
1138
1139        /* Wait for all Rx activity to terminate. */
1140        count = 0;
1141        do {
1142                if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1143                        netdev_warn(pp->dev,
1144                                    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1145                                    val);
1146                        break;
1147                }
1148                mdelay(1);
1149
1150                val = mvreg_read(pp, MVNETA_RXQ_CMD);
1151        } while (val & MVNETA_RXQ_ENABLE_MASK);
1152
1153        /* Stop Tx port activity. Check port Tx activity. Issue stop
1154         * command for active channels only
1155         */
1156        val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1157
1158        if (val != 0)
1159                mvreg_write(pp, MVNETA_TXQ_CMD,
1160                            (val << MVNETA_TXQ_DISABLE_SHIFT));
1161
1162        /* Wait for all Tx activity to terminate. */
1163        count = 0;
1164        do {
1165                if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1166                        netdev_warn(pp->dev,
1167                                    "TIMEOUT for TX stopped status=0x%08x\n",
1168                                    val);
1169                        break;
1170                }
1171                mdelay(1);
1172
1173                /* Check TX Command reg that all Txqs are stopped */
1174                val = mvreg_read(pp, MVNETA_TXQ_CMD);
1175
1176        } while (val & MVNETA_TXQ_ENABLE_MASK);
1177
1178        /* Double check to verify that TX FIFO is empty */
1179        count = 0;
1180        do {
1181                if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1182                        netdev_warn(pp->dev,
1183                                    "TX FIFO empty timeout status=0x%08x\n",
1184                                    val);
1185                        break;
1186                }
1187                mdelay(1);
1188
1189                val = mvreg_read(pp, MVNETA_PORT_STATUS);
1190        } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1191                 (val & MVNETA_TX_IN_PRGRS));
1192
1193        udelay(200);
1194}
1195
1196/* Enable the port by setting the port enable bit of the MAC control register */
1197static void mvneta_port_enable(struct mvneta_port *pp)
1198{
1199        u32 val;
1200
1201        /* Enable port */
1202        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1203        val |= MVNETA_GMAC0_PORT_ENABLE;
1204        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1205}
1206
1207/* Disable the port and wait for about 200 usec before retuning */
1208static void mvneta_port_disable(struct mvneta_port *pp)
1209{
1210        u32 val;
1211
1212        /* Reset the Enable bit in the Serial Control Register */
1213        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1214        val &= ~MVNETA_GMAC0_PORT_ENABLE;
1215        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1216
1217        udelay(200);
1218}
1219
1220/* Multicast tables methods */
1221
1222/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1223static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1224{
1225        int offset;
1226        u32 val;
1227
1228        if (queue == -1) {
1229                val = 0;
1230        } else {
1231                val = 0x1 | (queue << 1);
1232                val |= (val << 24) | (val << 16) | (val << 8);
1233        }
1234
1235        for (offset = 0; offset <= 0xc; offset += 4)
1236                mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1237}
1238
1239/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1240static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1241{
1242        int offset;
1243        u32 val;
1244
1245        if (queue == -1) {
1246                val = 0;
1247        } else {
1248                val = 0x1 | (queue << 1);
1249                val |= (val << 24) | (val << 16) | (val << 8);
1250        }
1251
1252        for (offset = 0; offset <= 0xfc; offset += 4)
1253                mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1254
1255}
1256
1257/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1258static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1259{
1260        int offset;
1261        u32 val;
1262
1263        if (queue == -1) {
1264                memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1265                val = 0;
1266        } else {
1267                memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1268                val = 0x1 | (queue << 1);
1269                val |= (val << 24) | (val << 16) | (val << 8);
1270        }
1271
1272        for (offset = 0; offset <= 0xfc; offset += 4)
1273                mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1274}
1275
1276static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1277{
1278        u32 val;
1279
1280        if (enable) {
1281                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1282                val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1283                         MVNETA_GMAC_FORCE_LINK_DOWN |
1284                         MVNETA_GMAC_AN_FLOW_CTRL_EN);
1285                val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1286                       MVNETA_GMAC_AN_SPEED_EN |
1287                       MVNETA_GMAC_AN_DUPLEX_EN;
1288                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1289
1290                val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1291                val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1292                mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1293
1294                val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1295                val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1296                mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1297        } else {
1298                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1299                val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1300                       MVNETA_GMAC_AN_SPEED_EN |
1301                       MVNETA_GMAC_AN_DUPLEX_EN);
1302                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1303
1304                val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1305                val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1306                mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1307
1308                val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1309                val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1310                mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1311        }
1312}
1313
1314static void mvneta_percpu_unmask_interrupt(void *arg)
1315{
1316        struct mvneta_port *pp = arg;
1317
1318        /* All the queue are unmasked, but actually only the ones
1319         * mapped to this CPU will be unmasked
1320         */
1321        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1322                    MVNETA_RX_INTR_MASK_ALL |
1323                    MVNETA_TX_INTR_MASK_ALL |
1324                    MVNETA_MISCINTR_INTR_MASK);
1325}
1326
1327static void mvneta_percpu_mask_interrupt(void *arg)
1328{
1329        struct mvneta_port *pp = arg;
1330
1331        /* All the queue are masked, but actually only the ones
1332         * mapped to this CPU will be masked
1333         */
1334        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1335        mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1336        mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1337}
1338
1339static void mvneta_percpu_clear_intr_cause(void *arg)
1340{
1341        struct mvneta_port *pp = arg;
1342
1343        /* All the queue are cleared, but actually only the ones
1344         * mapped to this CPU will be cleared
1345         */
1346        mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1347        mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1348        mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1349}
1350
1351/* This method sets defaults to the NETA port:
1352 *      Clears interrupt Cause and Mask registers.
1353 *      Clears all MAC tables.
1354 *      Sets defaults to all registers.
1355 *      Resets RX and TX descriptor rings.
1356 *      Resets PHY.
1357 * This method can be called after mvneta_port_down() to return the port
1358 *      settings to defaults.
1359 */
1360static void mvneta_defaults_set(struct mvneta_port *pp)
1361{
1362        int cpu;
1363        int queue;
1364        u32 val;
1365        int max_cpu = num_present_cpus();
1366
1367        /* Clear all Cause registers */
1368        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1369
1370        /* Mask all interrupts */
1371        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1372        mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1373
1374        /* Enable MBUS Retry bit16 */
1375        mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1376
1377        /* Set CPU queue access map. CPUs are assigned to the RX and
1378         * TX queues modulo their number. If there is only one TX
1379         * queue then it is assigned to the CPU associated to the
1380         * default RX queue.
1381         */
1382        for_each_present_cpu(cpu) {
1383                int rxq_map = 0, txq_map = 0;
1384                int rxq, txq;
1385                if (!pp->neta_armada3700) {
1386                        for (rxq = 0; rxq < rxq_number; rxq++)
1387                                if ((rxq % max_cpu) == cpu)
1388                                        rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1389
1390                        for (txq = 0; txq < txq_number; txq++)
1391                                if ((txq % max_cpu) == cpu)
1392                                        txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1393
1394                        /* With only one TX queue we configure a special case
1395                         * which will allow to get all the irq on a single
1396                         * CPU
1397                         */
1398                        if (txq_number == 1)
1399                                txq_map = (cpu == pp->rxq_def) ?
1400                                        MVNETA_CPU_TXQ_ACCESS(1) : 0;
1401
1402                } else {
1403                        txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1404                        rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1405                }
1406
1407                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1408        }
1409
1410        /* Reset RX and TX DMAs */
1411        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1412        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1413
1414        /* Disable Legacy WRR, Disable EJP, Release from reset */
1415        mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1416        for (queue = 0; queue < txq_number; queue++) {
1417                mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1418                mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1419        }
1420
1421        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1422        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1423
1424        /* Set Port Acceleration Mode */
1425        if (pp->bm_priv)
1426                /* HW buffer management + legacy parser */
1427                val = MVNETA_ACC_MODE_EXT2;
1428        else
1429                /* SW buffer management + legacy parser */
1430                val = MVNETA_ACC_MODE_EXT1;
1431        mvreg_write(pp, MVNETA_ACC_MODE, val);
1432
1433        if (pp->bm_priv)
1434                mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1435
1436        /* Update val of portCfg register accordingly with all RxQueue types */
1437        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1438        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1439
1440        val = 0;
1441        mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1442        mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1443
1444        /* Build PORT_SDMA_CONFIG_REG */
1445        val = 0;
1446
1447        /* Default burst size */
1448        val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1449        val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1450        val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1451
1452#if defined(__BIG_ENDIAN)
1453        val |= MVNETA_DESC_SWAP;
1454#endif
1455
1456        /* Assign port SDMA configuration */
1457        mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1458
1459        /* Disable PHY polling in hardware, since we're using the
1460         * kernel phylib to do this.
1461         */
1462        val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1463        val &= ~MVNETA_PHY_POLLING_ENABLE;
1464        mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1465
1466        mvneta_set_autoneg(pp, pp->use_inband_status);
1467        mvneta_set_ucast_table(pp, -1);
1468        mvneta_set_special_mcast_table(pp, -1);
1469        mvneta_set_other_mcast_table(pp, -1);
1470
1471        /* Set port interrupt enable register - default enable all */
1472        mvreg_write(pp, MVNETA_INTR_ENABLE,
1473                    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1474                     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1475
1476        mvneta_mib_counters_clear(pp);
1477}
1478
1479/* Set max sizes for tx queues */
1480static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1481
1482{
1483        u32 val, size, mtu;
1484        int queue;
1485
1486        mtu = max_tx_size * 8;
1487        if (mtu > MVNETA_TX_MTU_MAX)
1488                mtu = MVNETA_TX_MTU_MAX;
1489
1490        /* Set MTU */
1491        val = mvreg_read(pp, MVNETA_TX_MTU);
1492        val &= ~MVNETA_TX_MTU_MAX;
1493        val |= mtu;
1494        mvreg_write(pp, MVNETA_TX_MTU, val);
1495
1496        /* TX token size and all TXQs token size must be larger that MTU */
1497        val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1498
1499        size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1500        if (size < mtu) {
1501                size = mtu;
1502                val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1503                val |= size;
1504                mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1505        }
1506        for (queue = 0; queue < txq_number; queue++) {
1507                val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1508
1509                size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1510                if (size < mtu) {
1511                        size = mtu;
1512                        val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1513                        val |= size;
1514                        mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1515                }
1516        }
1517}
1518
1519/* Set unicast address */
1520static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1521                                  int queue)
1522{
1523        unsigned int unicast_reg;
1524        unsigned int tbl_offset;
1525        unsigned int reg_offset;
1526
1527        /* Locate the Unicast table entry */
1528        last_nibble = (0xf & last_nibble);
1529
1530        /* offset from unicast tbl base */
1531        tbl_offset = (last_nibble / 4) * 4;
1532
1533        /* offset within the above reg  */
1534        reg_offset = last_nibble % 4;
1535
1536        unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1537
1538        if (queue == -1) {
1539                /* Clear accepts frame bit at specified unicast DA tbl entry */
1540                unicast_reg &= ~(0xff << (8 * reg_offset));
1541        } else {
1542                unicast_reg &= ~(0xff << (8 * reg_offset));
1543                unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1544        }
1545
1546        mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1547}
1548
1549/* Set mac address */
1550static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1551                                int queue)
1552{
1553        unsigned int mac_h;
1554        unsigned int mac_l;
1555
1556        if (queue != -1) {
1557                mac_l = (addr[4] << 8) | (addr[5]);
1558                mac_h = (addr[0] << 24) | (addr[1] << 16) |
1559                        (addr[2] << 8) | (addr[3] << 0);
1560
1561                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1562                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1563        }
1564
1565        /* Accept frames of this address */
1566        mvneta_set_ucast_addr(pp, addr[5], queue);
1567}
1568
1569/* Set the number of packets that will be received before RX interrupt
1570 * will be generated by HW.
1571 */
1572static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1573                                    struct mvneta_rx_queue *rxq, u32 value)
1574{
1575        mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1576                    value | MVNETA_RXQ_NON_OCCUPIED(0));
1577        rxq->pkts_coal = value;
1578}
1579
1580/* Set the time delay in usec before RX interrupt will be generated by
1581 * HW.
1582 */
1583static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1584                                    struct mvneta_rx_queue *rxq, u32 value)
1585{
1586        u32 val;
1587        unsigned long clk_rate;
1588
1589        clk_rate = clk_get_rate(pp->clk);
1590        val = (clk_rate / 1000000) * value;
1591
1592        mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1593        rxq->time_coal = value;
1594}
1595
1596/* Set threshold for TX_DONE pkts coalescing */
1597static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1598                                         struct mvneta_tx_queue *txq, u32 value)
1599{
1600        u32 val;
1601
1602        val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1603
1604        val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1605        val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1606
1607        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1608
1609        txq->done_pkts_coal = value;
1610}
1611
1612/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1613static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1614                                u32 phys_addr, void *virt_addr,
1615                                struct mvneta_rx_queue *rxq)
1616{
1617        int i;
1618
1619        rx_desc->buf_phys_addr = phys_addr;
1620        i = rx_desc - rxq->descs;
1621        rxq->buf_virt_addr[i] = virt_addr;
1622}
1623
1624/* Decrement sent descriptors counter */
1625static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1626                                     struct mvneta_tx_queue *txq,
1627                                     int sent_desc)
1628{
1629        u32 val;
1630
1631        /* Only 255 TX descriptors can be updated at once */
1632        while (sent_desc > 0xff) {
1633                val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1634                mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1635                sent_desc = sent_desc - 0xff;
1636        }
1637
1638        val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1639        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1640}
1641
1642/* Get number of TX descriptors already sent by HW */
1643static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1644                                        struct mvneta_tx_queue *txq)
1645{
1646        u32 val;
1647        int sent_desc;
1648
1649        val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1650        sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1651                MVNETA_TXQ_SENT_DESC_SHIFT;
1652
1653        return sent_desc;
1654}
1655
1656/* Get number of sent descriptors and decrement counter.
1657 *  The number of sent descriptors is returned.
1658 */
1659static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1660                                     struct mvneta_tx_queue *txq)
1661{
1662        int sent_desc;
1663
1664        /* Get number of sent descriptors */
1665        sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1666
1667        /* Decrement sent descriptors counter */
1668        if (sent_desc)
1669                mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1670
1671        return sent_desc;
1672}
1673
1674/* Set TXQ descriptors fields relevant for CSUM calculation */
1675static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1676                                int ip_hdr_len, int l4_proto)
1677{
1678        u32 command;
1679
1680        /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1681         * G_L4_chk, L4_type; required only for checksum
1682         * calculation
1683         */
1684        command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1685        command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1686
1687        if (l3_proto == htons(ETH_P_IP))
1688                command |= MVNETA_TXD_IP_CSUM;
1689        else
1690                command |= MVNETA_TX_L3_IP6;
1691
1692        if (l4_proto == IPPROTO_TCP)
1693                command |=  MVNETA_TX_L4_CSUM_FULL;
1694        else if (l4_proto == IPPROTO_UDP)
1695                command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1696        else
1697                command |= MVNETA_TX_L4_CSUM_NOT;
1698
1699        return command;
1700}
1701
1702
1703/* Display more error info */
1704static void mvneta_rx_error(struct mvneta_port *pp,
1705                            struct mvneta_rx_desc *rx_desc)
1706{
1707        u32 status = rx_desc->status;
1708
1709        if (!mvneta_rxq_desc_is_first_last(status)) {
1710                netdev_err(pp->dev,
1711                           "bad rx status %08x (buffer oversize), size=%d\n",
1712                           status, rx_desc->data_size);
1713                return;
1714        }
1715
1716        switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1717        case MVNETA_RXD_ERR_CRC:
1718                netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1719                           status, rx_desc->data_size);
1720                break;
1721        case MVNETA_RXD_ERR_OVERRUN:
1722                netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1723                           status, rx_desc->data_size);
1724                break;
1725        case MVNETA_RXD_ERR_LEN:
1726                netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1727                           status, rx_desc->data_size);
1728                break;
1729        case MVNETA_RXD_ERR_RESOURCE:
1730                netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1731                           status, rx_desc->data_size);
1732                break;
1733        }
1734}
1735
1736/* Handle RX checksum offload based on the descriptor's status */
1737static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1738                           struct sk_buff *skb)
1739{
1740        if ((status & MVNETA_RXD_L3_IP4) &&
1741            (status & MVNETA_RXD_L4_CSUM_OK)) {
1742                skb->csum = 0;
1743                skb->ip_summed = CHECKSUM_UNNECESSARY;
1744                return;
1745        }
1746
1747        skb->ip_summed = CHECKSUM_NONE;
1748}
1749
1750/* Return tx queue pointer (find last set bit) according to <cause> returned
1751 * form tx_done reg. <cause> must not be null. The return value is always a
1752 * valid queue for matching the first one found in <cause>.
1753 */
1754static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1755                                                     u32 cause)
1756{
1757        int queue = fls(cause) - 1;
1758
1759        return &pp->txqs[queue];
1760}
1761
1762/* Free tx queue skbuffs */
1763static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1764                                 struct mvneta_tx_queue *txq, int num,
1765                                 struct netdev_queue *nq)
1766{
1767        unsigned int bytes_compl = 0, pkts_compl = 0;
1768        int i;
1769
1770        for (i = 0; i < num; i++) {
1771                struct mvneta_tx_desc *tx_desc = txq->descs +
1772                        txq->txq_get_index;
1773                struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1774
1775                if (skb) {
1776                        bytes_compl += skb->len;
1777                        pkts_compl++;
1778                }
1779
1780                mvneta_txq_inc_get(txq);
1781
1782                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1783                        dma_unmap_single(pp->dev->dev.parent,
1784                                         tx_desc->buf_phys_addr,
1785                                         tx_desc->data_size, DMA_TO_DEVICE);
1786                if (!skb)
1787                        continue;
1788                dev_kfree_skb_any(skb);
1789        }
1790
1791        netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1792}
1793
1794/* Handle end of transmission */
1795static void mvneta_txq_done(struct mvneta_port *pp,
1796                           struct mvneta_tx_queue *txq)
1797{
1798        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1799        int tx_done;
1800
1801        tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1802        if (!tx_done)
1803                return;
1804
1805        mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1806
1807        txq->count -= tx_done;
1808
1809        if (netif_tx_queue_stopped(nq)) {
1810                if (txq->count <= txq->tx_wake_threshold)
1811                        netif_tx_wake_queue(nq);
1812        }
1813}
1814
1815void *mvneta_frag_alloc(unsigned int frag_size)
1816{
1817        if (likely(frag_size <= PAGE_SIZE))
1818                return netdev_alloc_frag(frag_size);
1819        else
1820                return kmalloc(frag_size, GFP_ATOMIC);
1821}
1822EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1823
1824void mvneta_frag_free(unsigned int frag_size, void *data)
1825{
1826        if (likely(frag_size <= PAGE_SIZE))
1827                skb_free_frag(data);
1828        else
1829                kfree(data);
1830}
1831EXPORT_SYMBOL_GPL(mvneta_frag_free);
1832
1833/* Refill processing for SW buffer management */
1834static int mvneta_rx_refill(struct mvneta_port *pp,
1835                            struct mvneta_rx_desc *rx_desc,
1836                            struct mvneta_rx_queue *rxq)
1837
1838{
1839        dma_addr_t phys_addr;
1840        void *data;
1841
1842        data = mvneta_frag_alloc(pp->frag_size);
1843        if (!data)
1844                return -ENOMEM;
1845
1846        phys_addr = dma_map_single(pp->dev->dev.parent, data,
1847                                   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1848                                   DMA_FROM_DEVICE);
1849        if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1850                mvneta_frag_free(pp->frag_size, data);
1851                return -ENOMEM;
1852        }
1853
1854        phys_addr += pp->rx_offset_correction;
1855        mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1856        return 0;
1857}
1858
1859/* Handle tx checksum */
1860static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1861{
1862        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1863                int ip_hdr_len = 0;
1864                __be16 l3_proto = vlan_get_protocol(skb);
1865                u8 l4_proto;
1866
1867                if (l3_proto == htons(ETH_P_IP)) {
1868                        struct iphdr *ip4h = ip_hdr(skb);
1869
1870                        /* Calculate IPv4 checksum and L4 checksum */
1871                        ip_hdr_len = ip4h->ihl;
1872                        l4_proto = ip4h->protocol;
1873                } else if (l3_proto == htons(ETH_P_IPV6)) {
1874                        struct ipv6hdr *ip6h = ipv6_hdr(skb);
1875
1876                        /* Read l4_protocol from one of IPv6 extra headers */
1877                        if (skb_network_header_len(skb) > 0)
1878                                ip_hdr_len = (skb_network_header_len(skb) >> 2);
1879                        l4_proto = ip6h->nexthdr;
1880                } else
1881                        return MVNETA_TX_L4_CSUM_NOT;
1882
1883                return mvneta_txq_desc_csum(skb_network_offset(skb),
1884                                            l3_proto, ip_hdr_len, l4_proto);
1885        }
1886
1887        return MVNETA_TX_L4_CSUM_NOT;
1888}
1889
1890/* Drop packets received by the RXQ and free buffers */
1891static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1892                                 struct mvneta_rx_queue *rxq)
1893{
1894        int rx_done, i;
1895
1896        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1897        if (rx_done)
1898                mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1899
1900        if (pp->bm_priv) {
1901                for (i = 0; i < rx_done; i++) {
1902                        struct mvneta_rx_desc *rx_desc =
1903                                                  mvneta_rxq_next_desc_get(rxq);
1904                        u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1905                        struct mvneta_bm_pool *bm_pool;
1906
1907                        bm_pool = &pp->bm_priv->bm_pools[pool_id];
1908                        /* Return dropped buffer to the pool */
1909                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1910                                              rx_desc->buf_phys_addr);
1911                }
1912                return;
1913        }
1914
1915        for (i = 0; i < rxq->size; i++) {
1916                struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1917                void *data = rxq->buf_virt_addr[i];
1918
1919                dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1920                                 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1921                mvneta_frag_free(pp->frag_size, data);
1922        }
1923}
1924
1925/* Main rx processing when using software buffer management */
1926static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1927                          struct mvneta_rx_queue *rxq)
1928{
1929        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1930        struct net_device *dev = pp->dev;
1931        int rx_done;
1932        u32 rcvd_pkts = 0;
1933        u32 rcvd_bytes = 0;
1934
1935        /* Get number of received packets */
1936        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1937
1938        if (rx_todo > rx_done)
1939                rx_todo = rx_done;
1940
1941        rx_done = 0;
1942
1943        /* Fairness NAPI loop */
1944        while (rx_done < rx_todo) {
1945                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1946                struct sk_buff *skb;
1947                unsigned char *data;
1948                dma_addr_t phys_addr;
1949                u32 rx_status, frag_size;
1950                int rx_bytes, err, index;
1951
1952                rx_done++;
1953                rx_status = rx_desc->status;
1954                rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1955                index = rx_desc - rxq->descs;
1956                data = rxq->buf_virt_addr[index];
1957                phys_addr = rx_desc->buf_phys_addr;
1958
1959                if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1960                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1961err_drop_frame:
1962                        dev->stats.rx_errors++;
1963                        mvneta_rx_error(pp, rx_desc);
1964                        /* leave the descriptor untouched */
1965                        continue;
1966                }
1967
1968                if (rx_bytes <= rx_copybreak) {
1969                /* better copy a small frame and not unmap the DMA region */
1970                        skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1971                        if (unlikely(!skb))
1972                                goto err_drop_frame;
1973
1974                        dma_sync_single_range_for_cpu(dev->dev.parent,
1975                                                      phys_addr,
1976                                                      MVNETA_MH_SIZE + NET_SKB_PAD,
1977                                                      rx_bytes,
1978                                                      DMA_FROM_DEVICE);
1979                        memcpy(skb_put(skb, rx_bytes),
1980                               data + MVNETA_MH_SIZE + NET_SKB_PAD,
1981                               rx_bytes);
1982
1983                        skb->protocol = eth_type_trans(skb, dev);
1984                        mvneta_rx_csum(pp, rx_status, skb);
1985                        napi_gro_receive(&port->napi, skb);
1986
1987                        rcvd_pkts++;
1988                        rcvd_bytes += rx_bytes;
1989
1990                        /* leave the descriptor and buffer untouched */
1991                        continue;
1992                }
1993
1994                /* Refill processing */
1995                err = mvneta_rx_refill(pp, rx_desc, rxq);
1996                if (err) {
1997                        netdev_err(dev, "Linux processing - Can't refill\n");
1998                        rxq->missed++;
1999                        goto err_drop_frame;
2000                }
2001
2002                frag_size = pp->frag_size;
2003
2004                skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2005
2006                /* After refill old buffer has to be unmapped regardless
2007                 * the skb is successfully built or not.
2008                 */
2009                dma_unmap_single(dev->dev.parent, phys_addr,
2010                                 MVNETA_RX_BUF_SIZE(pp->pkt_size),
2011                                 DMA_FROM_DEVICE);
2012
2013                if (!skb)
2014                        goto err_drop_frame;
2015
2016                rcvd_pkts++;
2017                rcvd_bytes += rx_bytes;
2018
2019                /* Linux processing */
2020                skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2021                skb_put(skb, rx_bytes);
2022
2023                skb->protocol = eth_type_trans(skb, dev);
2024
2025                mvneta_rx_csum(pp, rx_status, skb);
2026
2027                napi_gro_receive(&port->napi, skb);
2028        }
2029
2030        if (rcvd_pkts) {
2031                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2032
2033                u64_stats_update_begin(&stats->syncp);
2034                stats->rx_packets += rcvd_pkts;
2035                stats->rx_bytes   += rcvd_bytes;
2036                u64_stats_update_end(&stats->syncp);
2037        }
2038
2039        /* Update rxq management counters */
2040        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2041
2042        return rx_done;
2043}
2044
2045/* Main rx processing when using hardware buffer management */
2046static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2047                          struct mvneta_rx_queue *rxq)
2048{
2049        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2050        struct net_device *dev = pp->dev;
2051        int rx_done;
2052        u32 rcvd_pkts = 0;
2053        u32 rcvd_bytes = 0;
2054
2055        /* Get number of received packets */
2056        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2057
2058        if (rx_todo > rx_done)
2059                rx_todo = rx_done;
2060
2061        rx_done = 0;
2062
2063        /* Fairness NAPI loop */
2064        while (rx_done < rx_todo) {
2065                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2066                struct mvneta_bm_pool *bm_pool = NULL;
2067                struct sk_buff *skb;
2068                unsigned char *data;
2069                dma_addr_t phys_addr;
2070                u32 rx_status, frag_size;
2071                int rx_bytes, err;
2072                u8 pool_id;
2073
2074                rx_done++;
2075                rx_status = rx_desc->status;
2076                rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2077                data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2078                phys_addr = rx_desc->buf_phys_addr;
2079                pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2080                bm_pool = &pp->bm_priv->bm_pools[pool_id];
2081
2082                if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2083                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2084err_drop_frame_ret_pool:
2085                        /* Return the buffer to the pool */
2086                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2087                                              rx_desc->buf_phys_addr);
2088err_drop_frame:
2089                        dev->stats.rx_errors++;
2090                        mvneta_rx_error(pp, rx_desc);
2091                        /* leave the descriptor untouched */
2092                        continue;
2093                }
2094
2095                if (rx_bytes <= rx_copybreak) {
2096                        /* better copy a small frame and not unmap the DMA region */
2097                        skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2098                        if (unlikely(!skb))
2099                                goto err_drop_frame_ret_pool;
2100
2101                        dma_sync_single_range_for_cpu(dev->dev.parent,
2102                                                      rx_desc->buf_phys_addr,
2103                                                      MVNETA_MH_SIZE + NET_SKB_PAD,
2104                                                      rx_bytes,
2105                                                      DMA_FROM_DEVICE);
2106                        memcpy(skb_put(skb, rx_bytes),
2107                               data + MVNETA_MH_SIZE + NET_SKB_PAD,
2108                               rx_bytes);
2109
2110                        skb->protocol = eth_type_trans(skb, dev);
2111                        mvneta_rx_csum(pp, rx_status, skb);
2112                        napi_gro_receive(&port->napi, skb);
2113
2114                        rcvd_pkts++;
2115                        rcvd_bytes += rx_bytes;
2116
2117                        /* Return the buffer to the pool */
2118                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2119                                              rx_desc->buf_phys_addr);
2120
2121                        /* leave the descriptor and buffer untouched */
2122                        continue;
2123                }
2124
2125                /* Refill processing */
2126                err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2127                if (err) {
2128                        netdev_err(dev, "Linux processing - Can't refill\n");
2129                        rxq->missed++;
2130                        goto err_drop_frame_ret_pool;
2131                }
2132
2133                frag_size = bm_pool->hwbm_pool.frag_size;
2134
2135                skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2136
2137                /* After refill old buffer has to be unmapped regardless
2138                 * the skb is successfully built or not.
2139                 */
2140                dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2141                                 bm_pool->buf_size, DMA_FROM_DEVICE);
2142                if (!skb)
2143                        goto err_drop_frame;
2144
2145                rcvd_pkts++;
2146                rcvd_bytes += rx_bytes;
2147
2148                /* Linux processing */
2149                skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2150                skb_put(skb, rx_bytes);
2151
2152                skb->protocol = eth_type_trans(skb, dev);
2153
2154                mvneta_rx_csum(pp, rx_status, skb);
2155
2156                napi_gro_receive(&port->napi, skb);
2157        }
2158
2159        if (rcvd_pkts) {
2160                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2161
2162                u64_stats_update_begin(&stats->syncp);
2163                stats->rx_packets += rcvd_pkts;
2164                stats->rx_bytes   += rcvd_bytes;
2165                u64_stats_update_end(&stats->syncp);
2166        }
2167
2168        /* Update rxq management counters */
2169        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2170
2171        return rx_done;
2172}
2173
2174static inline void
2175mvneta_tso_put_hdr(struct sk_buff *skb,
2176                   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2177{
2178        struct mvneta_tx_desc *tx_desc;
2179        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2180
2181        txq->tx_skb[txq->txq_put_index] = NULL;
2182        tx_desc = mvneta_txq_next_desc_get(txq);
2183        tx_desc->data_size = hdr_len;
2184        tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2185        tx_desc->command |= MVNETA_TXD_F_DESC;
2186        tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2187                                 txq->txq_put_index * TSO_HEADER_SIZE;
2188        mvneta_txq_inc_put(txq);
2189}
2190
2191static inline int
2192mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2193                    struct sk_buff *skb, char *data, int size,
2194                    bool last_tcp, bool is_last)
2195{
2196        struct mvneta_tx_desc *tx_desc;
2197
2198        tx_desc = mvneta_txq_next_desc_get(txq);
2199        tx_desc->data_size = size;
2200        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2201                                                size, DMA_TO_DEVICE);
2202        if (unlikely(dma_mapping_error(dev->dev.parent,
2203                     tx_desc->buf_phys_addr))) {
2204                mvneta_txq_desc_put(txq);
2205                return -ENOMEM;
2206        }
2207
2208        tx_desc->command = 0;
2209        txq->tx_skb[txq->txq_put_index] = NULL;
2210
2211        if (last_tcp) {
2212                /* last descriptor in the TCP packet */
2213                tx_desc->command = MVNETA_TXD_L_DESC;
2214
2215                /* last descriptor in SKB */
2216                if (is_last)
2217                        txq->tx_skb[txq->txq_put_index] = skb;
2218        }
2219        mvneta_txq_inc_put(txq);
2220        return 0;
2221}
2222
2223static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2224                         struct mvneta_tx_queue *txq)
2225{
2226        int total_len, data_left;
2227        int desc_count = 0;
2228        struct mvneta_port *pp = netdev_priv(dev);
2229        struct tso_t tso;
2230        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2231        int i;
2232
2233        /* Count needed descriptors */
2234        if ((txq->count + tso_count_descs(skb)) >= txq->size)
2235                return 0;
2236
2237        if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2238                pr_info("*** Is this even  possible???!?!?\n");
2239                return 0;
2240        }
2241
2242        /* Initialize the TSO handler, and prepare the first payload */
2243        tso_start(skb, &tso);
2244
2245        total_len = skb->len - hdr_len;
2246        while (total_len > 0) {
2247                char *hdr;
2248
2249                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2250                total_len -= data_left;
2251                desc_count++;
2252
2253                /* prepare packet headers: MAC + IP + TCP */
2254                hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2255                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2256
2257                mvneta_tso_put_hdr(skb, pp, txq);
2258
2259                while (data_left > 0) {
2260                        int size;
2261                        desc_count++;
2262
2263                        size = min_t(int, tso.size, data_left);
2264
2265                        if (mvneta_tso_put_data(dev, txq, skb,
2266                                                 tso.data, size,
2267                                                 size == data_left,
2268                                                 total_len == 0))
2269                                goto err_release;
2270                        data_left -= size;
2271
2272                        tso_build_data(skb, &tso, size);
2273                }
2274        }
2275
2276        return desc_count;
2277
2278err_release:
2279        /* Release all used data descriptors; header descriptors must not
2280         * be DMA-unmapped.
2281         */
2282        for (i = desc_count - 1; i >= 0; i--) {
2283                struct mvneta_tx_desc *tx_desc = txq->descs + i;
2284                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2285                        dma_unmap_single(pp->dev->dev.parent,
2286                                         tx_desc->buf_phys_addr,
2287                                         tx_desc->data_size,
2288                                         DMA_TO_DEVICE);
2289                mvneta_txq_desc_put(txq);
2290        }
2291        return 0;
2292}
2293
2294/* Handle tx fragmentation processing */
2295static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2296                                  struct mvneta_tx_queue *txq)
2297{
2298        struct mvneta_tx_desc *tx_desc;
2299        int i, nr_frags = skb_shinfo(skb)->nr_frags;
2300
2301        for (i = 0; i < nr_frags; i++) {
2302                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2303                void *addr = page_address(frag->page.p) + frag->page_offset;
2304
2305                tx_desc = mvneta_txq_next_desc_get(txq);
2306                tx_desc->data_size = frag->size;
2307
2308                tx_desc->buf_phys_addr =
2309                        dma_map_single(pp->dev->dev.parent, addr,
2310                                       tx_desc->data_size, DMA_TO_DEVICE);
2311
2312                if (dma_mapping_error(pp->dev->dev.parent,
2313                                      tx_desc->buf_phys_addr)) {
2314                        mvneta_txq_desc_put(txq);
2315                        goto error;
2316                }
2317
2318                if (i == nr_frags - 1) {
2319                        /* Last descriptor */
2320                        tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2321                        txq->tx_skb[txq->txq_put_index] = skb;
2322                } else {
2323                        /* Descriptor in the middle: Not First, Not Last */
2324                        tx_desc->command = 0;
2325                        txq->tx_skb[txq->txq_put_index] = NULL;
2326                }
2327                mvneta_txq_inc_put(txq);
2328        }
2329
2330        return 0;
2331
2332error:
2333        /* Release all descriptors that were used to map fragments of
2334         * this packet, as well as the corresponding DMA mappings
2335         */
2336        for (i = i - 1; i >= 0; i--) {
2337                tx_desc = txq->descs + i;
2338                dma_unmap_single(pp->dev->dev.parent,
2339                                 tx_desc->buf_phys_addr,
2340                                 tx_desc->data_size,
2341                                 DMA_TO_DEVICE);
2342                mvneta_txq_desc_put(txq);
2343        }
2344
2345        return -ENOMEM;
2346}
2347
2348/* Main tx processing */
2349static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2350{
2351        struct mvneta_port *pp = netdev_priv(dev);
2352        u16 txq_id = skb_get_queue_mapping(skb);
2353        struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2354        struct mvneta_tx_desc *tx_desc;
2355        int len = skb->len;
2356        int frags = 0;
2357        u32 tx_cmd;
2358
2359        if (!netif_running(dev))
2360                goto out;
2361
2362        if (skb_is_gso(skb)) {
2363                frags = mvneta_tx_tso(skb, dev, txq);
2364                goto out;
2365        }
2366
2367        frags = skb_shinfo(skb)->nr_frags + 1;
2368
2369        /* Get a descriptor for the first part of the packet */
2370        tx_desc = mvneta_txq_next_desc_get(txq);
2371
2372        tx_cmd = mvneta_skb_tx_csum(pp, skb);
2373
2374        tx_desc->data_size = skb_headlen(skb);
2375
2376        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2377                                                tx_desc->data_size,
2378                                                DMA_TO_DEVICE);
2379        if (unlikely(dma_mapping_error(dev->dev.parent,
2380                                       tx_desc->buf_phys_addr))) {
2381                mvneta_txq_desc_put(txq);
2382                frags = 0;
2383                goto out;
2384        }
2385
2386        if (frags == 1) {
2387                /* First and Last descriptor */
2388                tx_cmd |= MVNETA_TXD_FLZ_DESC;
2389                tx_desc->command = tx_cmd;
2390                txq->tx_skb[txq->txq_put_index] = skb;
2391                mvneta_txq_inc_put(txq);
2392        } else {
2393                /* First but not Last */
2394                tx_cmd |= MVNETA_TXD_F_DESC;
2395                txq->tx_skb[txq->txq_put_index] = NULL;
2396                mvneta_txq_inc_put(txq);
2397                tx_desc->command = tx_cmd;
2398                /* Continue with other skb fragments */
2399                if (mvneta_tx_frag_process(pp, skb, txq)) {
2400                        dma_unmap_single(dev->dev.parent,
2401                                         tx_desc->buf_phys_addr,
2402                                         tx_desc->data_size,
2403                                         DMA_TO_DEVICE);
2404                        mvneta_txq_desc_put(txq);
2405                        frags = 0;
2406                        goto out;
2407                }
2408        }
2409
2410out:
2411        if (frags > 0) {
2412                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2413                struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2414
2415                netdev_tx_sent_queue(nq, len);
2416
2417                txq->count += frags;
2418                if (txq->count >= txq->tx_stop_threshold)
2419                        netif_tx_stop_queue(nq);
2420
2421                if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2422                    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2423                        mvneta_txq_pend_desc_add(pp, txq, frags);
2424                else
2425                        txq->pending += frags;
2426
2427                u64_stats_update_begin(&stats->syncp);
2428                stats->tx_packets++;
2429                stats->tx_bytes  += len;
2430                u64_stats_update_end(&stats->syncp);
2431        } else {
2432                dev->stats.tx_dropped++;
2433                dev_kfree_skb_any(skb);
2434        }
2435
2436        return NETDEV_TX_OK;
2437}
2438
2439
2440/* Free tx resources, when resetting a port */
2441static void mvneta_txq_done_force(struct mvneta_port *pp,
2442                                  struct mvneta_tx_queue *txq)
2443
2444{
2445        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2446        int tx_done = txq->count;
2447
2448        mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2449
2450        /* reset txq */
2451        txq->count = 0;
2452        txq->txq_put_index = 0;
2453        txq->txq_get_index = 0;
2454}
2455
2456/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2457 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2458 */
2459static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2460{
2461        struct mvneta_tx_queue *txq;
2462        struct netdev_queue *nq;
2463
2464        while (cause_tx_done) {
2465                txq = mvneta_tx_done_policy(pp, cause_tx_done);
2466
2467                nq = netdev_get_tx_queue(pp->dev, txq->id);
2468                __netif_tx_lock(nq, smp_processor_id());
2469
2470                if (txq->count)
2471                        mvneta_txq_done(pp, txq);
2472
2473                __netif_tx_unlock(nq);
2474                cause_tx_done &= ~((1 << txq->id));
2475        }
2476}
2477
2478/* Compute crc8 of the specified address, using a unique algorithm ,
2479 * according to hw spec, different than generic crc8 algorithm
2480 */
2481static int mvneta_addr_crc(unsigned char *addr)
2482{
2483        int crc = 0;
2484        int i;
2485
2486        for (i = 0; i < ETH_ALEN; i++) {
2487                int j;
2488
2489                crc = (crc ^ addr[i]) << 8;
2490                for (j = 7; j >= 0; j--) {
2491                        if (crc & (0x100 << j))
2492                                crc ^= 0x107 << j;
2493                }
2494        }
2495
2496        return crc;
2497}
2498
2499/* This method controls the net device special MAC multicast support.
2500 * The Special Multicast Table for MAC addresses supports MAC of the form
2501 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2502 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2503 * Table entries in the DA-Filter table. This method set the Special
2504 * Multicast Table appropriate entry.
2505 */
2506static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2507                                          unsigned char last_byte,
2508                                          int queue)
2509{
2510        unsigned int smc_table_reg;
2511        unsigned int tbl_offset;
2512        unsigned int reg_offset;
2513
2514        /* Register offset from SMC table base    */
2515        tbl_offset = (last_byte / 4);
2516        /* Entry offset within the above reg */
2517        reg_offset = last_byte % 4;
2518
2519        smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2520                                        + tbl_offset * 4));
2521
2522        if (queue == -1)
2523                smc_table_reg &= ~(0xff << (8 * reg_offset));
2524        else {
2525                smc_table_reg &= ~(0xff << (8 * reg_offset));
2526                smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2527        }
2528
2529        mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2530                    smc_table_reg);
2531}
2532
2533/* This method controls the network device Other MAC multicast support.
2534 * The Other Multicast Table is used for multicast of another type.
2535 * A CRC-8 is used as an index to the Other Multicast Table entries
2536 * in the DA-Filter table.
2537 * The method gets the CRC-8 value from the calling routine and
2538 * sets the Other Multicast Table appropriate entry according to the
2539 * specified CRC-8 .
2540 */
2541static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2542                                        unsigned char crc8,
2543                                        int queue)
2544{
2545        unsigned int omc_table_reg;
2546        unsigned int tbl_offset;
2547        unsigned int reg_offset;
2548
2549        tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2550        reg_offset = crc8 % 4;       /* Entry offset within the above reg   */
2551
2552        omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2553
2554        if (queue == -1) {
2555                /* Clear accepts frame bit at specified Other DA table entry */
2556                omc_table_reg &= ~(0xff << (8 * reg_offset));
2557        } else {
2558                omc_table_reg &= ~(0xff << (8 * reg_offset));
2559                omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2560        }
2561
2562        mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2563}
2564
2565/* The network device supports multicast using two tables:
2566 *    1) Special Multicast Table for MAC addresses of the form
2567 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2568 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2569 *       Table entries in the DA-Filter table.
2570 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2571 *       is used as an index to the Other Multicast Table entries in the
2572 *       DA-Filter table.
2573 */
2574static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2575                                 int queue)
2576{
2577        unsigned char crc_result = 0;
2578
2579        if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2580                mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2581                return 0;
2582        }
2583
2584        crc_result = mvneta_addr_crc(p_addr);
2585        if (queue == -1) {
2586                if (pp->mcast_count[crc_result] == 0) {
2587                        netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2588                                    crc_result);
2589                        return -EINVAL;
2590                }
2591
2592                pp->mcast_count[crc_result]--;
2593                if (pp->mcast_count[crc_result] != 0) {
2594                        netdev_info(pp->dev,
2595                                    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2596                                    pp->mcast_count[crc_result], crc_result);
2597                        return -EINVAL;
2598                }
2599        } else
2600                pp->mcast_count[crc_result]++;
2601
2602        mvneta_set_other_mcast_addr(pp, crc_result, queue);
2603
2604        return 0;
2605}
2606
2607/* Configure Fitering mode of Ethernet port */
2608static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2609                                          int is_promisc)
2610{
2611        u32 port_cfg_reg, val;
2612
2613        port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2614
2615        val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2616
2617        /* Set / Clear UPM bit in port configuration register */
2618        if (is_promisc) {
2619                /* Accept all Unicast addresses */
2620                port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2621                val |= MVNETA_FORCE_UNI;
2622                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2623                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2624        } else {
2625                /* Reject all Unicast addresses */
2626                port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2627                val &= ~MVNETA_FORCE_UNI;
2628        }
2629
2630        mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2631        mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2632}
2633
2634/* register unicast and multicast addresses */
2635static void mvneta_set_rx_mode(struct net_device *dev)
2636{
2637        struct mvneta_port *pp = netdev_priv(dev);
2638        struct netdev_hw_addr *ha;
2639
2640        if (dev->flags & IFF_PROMISC) {
2641                /* Accept all: Multicast + Unicast */
2642                mvneta_rx_unicast_promisc_set(pp, 1);
2643                mvneta_set_ucast_table(pp, pp->rxq_def);
2644                mvneta_set_special_mcast_table(pp, pp->rxq_def);
2645                mvneta_set_other_mcast_table(pp, pp->rxq_def);
2646        } else {
2647                /* Accept single Unicast */
2648                mvneta_rx_unicast_promisc_set(pp, 0);
2649                mvneta_set_ucast_table(pp, -1);
2650                mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2651
2652                if (dev->flags & IFF_ALLMULTI) {
2653                        /* Accept all multicast */
2654                        mvneta_set_special_mcast_table(pp, pp->rxq_def);
2655                        mvneta_set_other_mcast_table(pp, pp->rxq_def);
2656                } else {
2657                        /* Accept only initialized multicast */
2658                        mvneta_set_special_mcast_table(pp, -1);
2659                        mvneta_set_other_mcast_table(pp, -1);
2660
2661                        if (!netdev_mc_empty(dev)) {
2662                                netdev_for_each_mc_addr(ha, dev) {
2663                                        mvneta_mcast_addr_set(pp, ha->addr,
2664                                                              pp->rxq_def);
2665                                }
2666                        }
2667                }
2668        }
2669}
2670
2671/* Interrupt handling - the callback for request_irq() */
2672static irqreturn_t mvneta_isr(int irq, void *dev_id)
2673{
2674        struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2675
2676        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2677        napi_schedule(&pp->napi);
2678
2679        return IRQ_HANDLED;
2680}
2681
2682/* Interrupt handling - the callback for request_percpu_irq() */
2683static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2684{
2685        struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2686
2687        disable_percpu_irq(port->pp->dev->irq);
2688        napi_schedule(&port->napi);
2689
2690        return IRQ_HANDLED;
2691}
2692
2693static int mvneta_fixed_link_update(struct mvneta_port *pp,
2694                                    struct phy_device *phy)
2695{
2696        struct fixed_phy_status status;
2697        struct fixed_phy_status changed = {};
2698        u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2699
2700        status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2701        if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2702                status.speed = SPEED_1000;
2703        else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2704                status.speed = SPEED_100;
2705        else
2706                status.speed = SPEED_10;
2707        status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2708        changed.link = 1;
2709        changed.speed = 1;
2710        changed.duplex = 1;
2711        fixed_phy_update_state(phy, &status, &changed);
2712        return 0;
2713}
2714
2715/* NAPI handler
2716 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2717 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2718 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2719 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2720 * Each CPU has its own causeRxTx register
2721 */
2722static int mvneta_poll(struct napi_struct *napi, int budget)
2723{
2724        int rx_done = 0;
2725        u32 cause_rx_tx;
2726        int rx_queue;
2727        struct mvneta_port *pp = netdev_priv(napi->dev);
2728        struct net_device *ndev = pp->dev;
2729        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2730
2731        if (!netif_running(pp->dev)) {
2732                napi_complete(napi);
2733                return rx_done;
2734        }
2735
2736        /* Read cause register */
2737        cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2738        if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2739                u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2740
2741                mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2742                if (pp->use_inband_status && (cause_misc &
2743                                (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2744                                 MVNETA_CAUSE_LINK_CHANGE |
2745                                 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2746                        mvneta_fixed_link_update(pp, ndev->phydev);
2747                }
2748        }
2749
2750        /* Release Tx descriptors */
2751        if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2752                mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2753                cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2754        }
2755
2756        /* For the case where the last mvneta_poll did not process all
2757         * RX packets
2758         */
2759        rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2760
2761        cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2762                port->cause_rx_tx;
2763
2764        if (rx_queue) {
2765                rx_queue = rx_queue - 1;
2766                if (pp->bm_priv)
2767                        rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2768                else
2769                        rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2770        }
2771
2772        if (rx_done < budget) {
2773                cause_rx_tx = 0;
2774                napi_complete_done(napi, rx_done);
2775
2776                if (pp->neta_armada3700) {
2777                        unsigned long flags;
2778
2779                        local_irq_save(flags);
2780                        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2781                                    MVNETA_RX_INTR_MASK(rxq_number) |
2782                                    MVNETA_TX_INTR_MASK(txq_number) |
2783                                    MVNETA_MISCINTR_INTR_MASK);
2784                        local_irq_restore(flags);
2785                } else {
2786                        enable_percpu_irq(pp->dev->irq, 0);
2787                }
2788        }
2789
2790        if (pp->neta_armada3700)
2791                pp->cause_rx_tx = cause_rx_tx;
2792        else
2793                port->cause_rx_tx = cause_rx_tx;
2794
2795        return rx_done;
2796}
2797
2798/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2799static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2800                           int num)
2801{
2802        int i;
2803
2804        for (i = 0; i < num; i++) {
2805                memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2806                if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2807                        netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2808                                __func__, rxq->id, i, num);
2809                        break;
2810                }
2811        }
2812
2813        /* Add this number of RX descriptors as non occupied (ready to
2814         * get packets)
2815         */
2816        mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2817
2818        return i;
2819}
2820
2821/* Free all packets pending transmit from all TXQs and reset TX port */
2822static void mvneta_tx_reset(struct mvneta_port *pp)
2823{
2824        int queue;
2825
2826        /* free the skb's in the tx ring */
2827        for (queue = 0; queue < txq_number; queue++)
2828                mvneta_txq_done_force(pp, &pp->txqs[queue]);
2829
2830        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2831        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2832}
2833
2834static void mvneta_rx_reset(struct mvneta_port *pp)
2835{
2836        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2837        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2838}
2839
2840/* Rx/Tx queue initialization/cleanup methods */
2841
2842/* Create a specified RX queue */
2843static int mvneta_rxq_init(struct mvneta_port *pp,
2844                           struct mvneta_rx_queue *rxq)
2845
2846{
2847        rxq->size = pp->rx_ring_size;
2848
2849        /* Allocate memory for RX descriptors */
2850        rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2851                                        rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2852                                        &rxq->descs_phys, GFP_KERNEL);
2853        if (!rxq->descs)
2854                return -ENOMEM;
2855
2856        rxq->last_desc = rxq->size - 1;
2857
2858        /* Set Rx descriptors queue starting address */
2859        mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2860        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2861
2862        /* Set Offset */
2863        mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2864
2865        /* Set coalescing pkts and time */
2866        mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2867        mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2868
2869        if (!pp->bm_priv) {
2870                /* Fill RXQ with buffers from RX pool */
2871                mvneta_rxq_buf_size_set(pp, rxq,
2872                                        MVNETA_RX_BUF_SIZE(pp->pkt_size));
2873                mvneta_rxq_bm_disable(pp, rxq);
2874                mvneta_rxq_fill(pp, rxq, rxq->size);
2875        } else {
2876                mvneta_rxq_bm_enable(pp, rxq);
2877                mvneta_rxq_long_pool_set(pp, rxq);
2878                mvneta_rxq_short_pool_set(pp, rxq);
2879                mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2880        }
2881
2882        return 0;
2883}
2884
2885/* Cleanup Rx queue */
2886static void mvneta_rxq_deinit(struct mvneta_port *pp,
2887                              struct mvneta_rx_queue *rxq)
2888{
2889        mvneta_rxq_drop_pkts(pp, rxq);
2890
2891        if (rxq->descs)
2892                dma_free_coherent(pp->dev->dev.parent,
2893                                  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2894                                  rxq->descs,
2895                                  rxq->descs_phys);
2896
2897        rxq->descs             = NULL;
2898        rxq->last_desc         = 0;
2899        rxq->next_desc_to_proc = 0;
2900        rxq->descs_phys        = 0;
2901}
2902
2903/* Create and initialize a tx queue */
2904static int mvneta_txq_init(struct mvneta_port *pp,
2905                           struct mvneta_tx_queue *txq)
2906{
2907        int cpu;
2908
2909        txq->size = pp->tx_ring_size;
2910
2911        /* A queue must always have room for at least one skb.
2912         * Therefore, stop the queue when the free entries reaches
2913         * the maximum number of descriptors per skb.
2914         */
2915        txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2916        txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2917
2918
2919        /* Allocate memory for TX descriptors */
2920        txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2921                                        txq->size * MVNETA_DESC_ALIGNED_SIZE,
2922                                        &txq->descs_phys, GFP_KERNEL);
2923        if (!txq->descs)
2924                return -ENOMEM;
2925
2926        txq->last_desc = txq->size - 1;
2927
2928        /* Set maximum bandwidth for enabled TXQs */
2929        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2930        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2931
2932        /* Set Tx descriptors queue starting address */
2933        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2934        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2935
2936        txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2937                                    GFP_KERNEL);
2938        if (!txq->tx_skb) {
2939                dma_free_coherent(pp->dev->dev.parent,
2940                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2941                                  txq->descs, txq->descs_phys);
2942                return -ENOMEM;
2943        }
2944
2945        /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2946        txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2947                                           txq->size * TSO_HEADER_SIZE,
2948                                           &txq->tso_hdrs_phys, GFP_KERNEL);
2949        if (!txq->tso_hdrs) {
2950                kfree(txq->tx_skb);
2951                dma_free_coherent(pp->dev->dev.parent,
2952                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2953                                  txq->descs, txq->descs_phys);
2954                return -ENOMEM;
2955        }
2956        mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2957
2958        /* Setup XPS mapping */
2959        if (txq_number > 1)
2960                cpu = txq->id % num_present_cpus();
2961        else
2962                cpu = pp->rxq_def % num_present_cpus();
2963        cpumask_set_cpu(cpu, &txq->affinity_mask);
2964        netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2965
2966        return 0;
2967}
2968
2969/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2970static void mvneta_txq_deinit(struct mvneta_port *pp,
2971                              struct mvneta_tx_queue *txq)
2972{
2973        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2974
2975        kfree(txq->tx_skb);
2976
2977        if (txq->tso_hdrs)
2978                dma_free_coherent(pp->dev->dev.parent,
2979                                  txq->size * TSO_HEADER_SIZE,
2980                                  txq->tso_hdrs, txq->tso_hdrs_phys);
2981        if (txq->descs)
2982                dma_free_coherent(pp->dev->dev.parent,
2983                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2984                                  txq->descs, txq->descs_phys);
2985
2986        netdev_tx_reset_queue(nq);
2987
2988        txq->descs             = NULL;
2989        txq->last_desc         = 0;
2990        txq->next_desc_to_proc = 0;
2991        txq->descs_phys        = 0;
2992
2993        /* Set minimum bandwidth for disabled TXQs */
2994        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2995        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2996
2997        /* Set Tx descriptors queue starting address and size */
2998        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2999        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3000}
3001
3002/* Cleanup all Tx queues */
3003static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3004{
3005        int queue;
3006
3007        for (queue = 0; queue < txq_number; queue++)
3008                mvneta_txq_deinit(pp, &pp->txqs[queue]);
3009}
3010
3011/* Cleanup all Rx queues */
3012static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3013{
3014        int queue;
3015
3016        for (queue = 0; queue < txq_number; queue++)
3017                mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3018}
3019
3020
3021/* Init all Rx queues */
3022static int mvneta_setup_rxqs(struct mvneta_port *pp)
3023{
3024        int queue;
3025
3026        for (queue = 0; queue < rxq_number; queue++) {
3027                int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3028
3029                if (err) {
3030                        netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3031                                   __func__, queue);
3032                        mvneta_cleanup_rxqs(pp);
3033                        return err;
3034                }
3035        }
3036
3037        return 0;
3038}
3039
3040/* Init all tx queues */
3041static int mvneta_setup_txqs(struct mvneta_port *pp)
3042{
3043        int queue;
3044
3045        for (queue = 0; queue < txq_number; queue++) {
3046                int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3047                if (err) {
3048                        netdev_err(pp->dev, "%s: can't create txq=%d\n",
3049                                   __func__, queue);
3050                        mvneta_cleanup_txqs(pp);
3051                        return err;
3052                }
3053        }
3054
3055        return 0;
3056}
3057
3058static void mvneta_start_dev(struct mvneta_port *pp)
3059{
3060        int cpu;
3061        struct net_device *ndev = pp->dev;
3062
3063        mvneta_max_rx_size_set(pp, pp->pkt_size);
3064        mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3065
3066        /* start the Rx/Tx activity */
3067        mvneta_port_enable(pp);
3068
3069        if (!pp->neta_armada3700) {
3070                /* Enable polling on the port */
3071                for_each_online_cpu(cpu) {
3072                        struct mvneta_pcpu_port *port =
3073                                per_cpu_ptr(pp->ports, cpu);
3074
3075                        napi_enable(&port->napi);
3076                }
3077        } else {
3078                napi_enable(&pp->napi);
3079        }
3080
3081        /* Unmask interrupts. It has to be done from each CPU */
3082        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3083
3084        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3085                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3086                    MVNETA_CAUSE_LINK_CHANGE |
3087                    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3088
3089        phy_start(ndev->phydev);
3090        netif_tx_start_all_queues(pp->dev);
3091}
3092
3093static void mvneta_stop_dev(struct mvneta_port *pp)
3094{
3095        unsigned int cpu;
3096        struct net_device *ndev = pp->dev;
3097
3098        phy_stop(ndev->phydev);
3099
3100        if (!pp->neta_armada3700) {
3101                for_each_online_cpu(cpu) {
3102                        struct mvneta_pcpu_port *port =
3103                                per_cpu_ptr(pp->ports, cpu);
3104
3105                        napi_disable(&port->napi);
3106                }
3107        } else {
3108                napi_disable(&pp->napi);
3109        }
3110
3111        netif_carrier_off(pp->dev);
3112
3113        mvneta_port_down(pp);
3114        netif_tx_stop_all_queues(pp->dev);
3115
3116        /* Stop the port activity */
3117        mvneta_port_disable(pp);
3118
3119        /* Clear all ethernet port interrupts */
3120        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3121
3122        /* Mask all ethernet port interrupts */
3123        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3124
3125        mvneta_tx_reset(pp);
3126        mvneta_rx_reset(pp);
3127}
3128
3129static void mvneta_percpu_enable(void *arg)
3130{
3131        struct mvneta_port *pp = arg;
3132
3133        enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3134}
3135
3136static void mvneta_percpu_disable(void *arg)
3137{
3138        struct mvneta_port *pp = arg;
3139
3140        disable_percpu_irq(pp->dev->irq);
3141}
3142
3143/* Change the device mtu */
3144static int mvneta_change_mtu(struct net_device *dev, int mtu)
3145{
3146        struct mvneta_port *pp = netdev_priv(dev);
3147        int ret;
3148
3149        if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3150                netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3151                            mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3152                mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3153        }
3154
3155        dev->mtu = mtu;
3156
3157        if (!netif_running(dev)) {
3158                if (pp->bm_priv)
3159                        mvneta_bm_update_mtu(pp, mtu);
3160
3161                netdev_update_features(dev);
3162                return 0;
3163        }
3164
3165        /* The interface is running, so we have to force a
3166         * reallocation of the queues
3167         */
3168        mvneta_stop_dev(pp);
3169        on_each_cpu(mvneta_percpu_disable, pp, true);
3170
3171        mvneta_cleanup_txqs(pp);
3172        mvneta_cleanup_rxqs(pp);
3173
3174        if (pp->bm_priv)
3175                mvneta_bm_update_mtu(pp, mtu);
3176
3177        pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3178        pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3179                        SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3180
3181        ret = mvneta_setup_rxqs(pp);
3182        if (ret) {
3183                netdev_err(dev, "unable to setup rxqs after MTU change\n");
3184                return ret;
3185        }
3186
3187        ret = mvneta_setup_txqs(pp);
3188        if (ret) {
3189                netdev_err(dev, "unable to setup txqs after MTU change\n");
3190                return ret;
3191        }
3192
3193        on_each_cpu(mvneta_percpu_enable, pp, true);
3194        mvneta_start_dev(pp);
3195        mvneta_port_up(pp);
3196
3197        netdev_update_features(dev);
3198
3199        return 0;
3200}
3201
3202static netdev_features_t mvneta_fix_features(struct net_device *dev,
3203                                             netdev_features_t features)
3204{
3205        struct mvneta_port *pp = netdev_priv(dev);
3206
3207        if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3208                features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3209                netdev_info(dev,
3210                            "Disable IP checksum for MTU greater than %dB\n",
3211                            pp->tx_csum_limit);
3212        }
3213
3214        return features;
3215}
3216
3217/* Get mac address */
3218static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3219{
3220        u32 mac_addr_l, mac_addr_h;
3221
3222        mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3223        mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3224        addr[0] = (mac_addr_h >> 24) & 0xFF;
3225        addr[1] = (mac_addr_h >> 16) & 0xFF;
3226        addr[2] = (mac_addr_h >> 8) & 0xFF;
3227        addr[3] = mac_addr_h & 0xFF;
3228        addr[4] = (mac_addr_l >> 8) & 0xFF;
3229        addr[5] = mac_addr_l & 0xFF;
3230}
3231
3232/* Handle setting mac address */
3233static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3234{
3235        struct mvneta_port *pp = netdev_priv(dev);
3236        struct sockaddr *sockaddr = addr;
3237        int ret;
3238
3239        ret = eth_prepare_mac_addr_change(dev, addr);
3240        if (ret < 0)
3241                return ret;
3242        /* Remove previous address table entry */
3243        mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3244
3245        /* Set new addr in hw */
3246        mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3247
3248        eth_commit_mac_addr_change(dev, addr);
3249        return 0;
3250}
3251
3252static void mvneta_adjust_link(struct net_device *ndev)
3253{
3254        struct mvneta_port *pp = netdev_priv(ndev);
3255        struct phy_device *phydev = ndev->phydev;
3256        int status_change = 0;
3257
3258        if (phydev->link) {
3259                if ((pp->speed != phydev->speed) ||
3260                    (pp->duplex != phydev->duplex)) {
3261                        u32 val;
3262
3263                        val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3264                        val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3265                                 MVNETA_GMAC_CONFIG_GMII_SPEED |
3266                                 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3267
3268                        if (phydev->duplex)
3269                                val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3270
3271                        if (phydev->speed == SPEED_1000)
3272                                val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3273                        else if (phydev->speed == SPEED_100)
3274                                val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3275
3276                        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3277
3278                        pp->duplex = phydev->duplex;
3279                        pp->speed  = phydev->speed;
3280                }
3281        }
3282
3283        if (phydev->link != pp->link) {
3284                if (!phydev->link) {
3285                        pp->duplex = -1;
3286                        pp->speed = 0;
3287                }
3288
3289                pp->link = phydev->link;
3290                status_change = 1;
3291        }
3292
3293        if (status_change) {
3294                if (phydev->link) {
3295                        if (!pp->use_inband_status) {
3296                                u32 val = mvreg_read(pp,
3297                                                  MVNETA_GMAC_AUTONEG_CONFIG);
3298                                val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3299                                val |= MVNETA_GMAC_FORCE_LINK_PASS;
3300                                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3301                                            val);
3302                        }
3303                        mvneta_port_up(pp);
3304                } else {
3305                        if (!pp->use_inband_status) {
3306                                u32 val = mvreg_read(pp,
3307                                                  MVNETA_GMAC_AUTONEG_CONFIG);
3308                                val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3309                                val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3310                                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3311                                            val);
3312                        }
3313                        mvneta_port_down(pp);
3314                }
3315                phy_print_status(phydev);
3316        }
3317}
3318
3319static int mvneta_mdio_probe(struct mvneta_port *pp)
3320{
3321        struct phy_device *phy_dev;
3322        struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3323
3324        phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3325                                 pp->phy_interface);
3326        if (!phy_dev) {
3327                netdev_err(pp->dev, "could not find the PHY\n");
3328                return -ENODEV;
3329        }
3330
3331        phy_ethtool_get_wol(phy_dev, &wol);
3332        device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3333
3334        phy_dev->supported &= PHY_GBIT_FEATURES;
3335        phy_dev->advertising = phy_dev->supported;
3336
3337        pp->link    = 0;
3338        pp->duplex  = 0;
3339        pp->speed   = 0;
3340
3341        return 0;
3342}
3343
3344static void mvneta_mdio_remove(struct mvneta_port *pp)
3345{
3346        struct net_device *ndev = pp->dev;
3347
3348        phy_disconnect(ndev->phydev);
3349}
3350
3351/* Electing a CPU must be done in an atomic way: it should be done
3352 * after or before the removal/insertion of a CPU and this function is
3353 * not reentrant.
3354 */
3355static void mvneta_percpu_elect(struct mvneta_port *pp)
3356{
3357        int elected_cpu = 0, max_cpu, cpu, i = 0;
3358
3359        /* Use the cpu associated to the rxq when it is online, in all
3360         * the other cases, use the cpu 0 which can't be offline.
3361         */
3362        if (cpu_online(pp->rxq_def))
3363                elected_cpu = pp->rxq_def;
3364
3365        max_cpu = num_present_cpus();
3366
3367        for_each_online_cpu(cpu) {
3368                int rxq_map = 0, txq_map = 0;
3369                int rxq;
3370
3371                for (rxq = 0; rxq < rxq_number; rxq++)
3372                        if ((rxq % max_cpu) == cpu)
3373                                rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3374
3375                if (cpu == elected_cpu)
3376                        /* Map the default receive queue queue to the
3377                         * elected CPU
3378                         */
3379                        rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3380
3381                /* We update the TX queue map only if we have one
3382                 * queue. In this case we associate the TX queue to
3383                 * the CPU bound to the default RX queue
3384                 */
3385                if (txq_number == 1)
3386                        txq_map = (cpu == elected_cpu) ?
3387                                MVNETA_CPU_TXQ_ACCESS(1) : 0;
3388                else
3389                        txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3390                                MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3391
3392                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3393
3394                /* Update the interrupt mask on each CPU according the
3395                 * new mapping
3396                 */
3397                smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3398                                         pp, true);
3399                i++;
3400
3401        }
3402};
3403
3404static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3405{
3406        int other_cpu;
3407        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3408                                                  node_online);
3409        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3410
3411
3412        spin_lock(&pp->lock);
3413        /*
3414         * Configuring the driver for a new CPU while the driver is
3415         * stopping is racy, so just avoid it.
3416         */
3417        if (pp->is_stopped) {
3418                spin_unlock(&pp->lock);
3419                return 0;
3420        }
3421        netif_tx_stop_all_queues(pp->dev);
3422
3423        /*
3424         * We have to synchronise on tha napi of each CPU except the one
3425         * just being woken up
3426         */
3427        for_each_online_cpu(other_cpu) {
3428                if (other_cpu != cpu) {
3429                        struct mvneta_pcpu_port *other_port =
3430                                per_cpu_ptr(pp->ports, other_cpu);
3431
3432                        napi_synchronize(&other_port->napi);
3433                }
3434        }
3435
3436        /* Mask all ethernet port interrupts */
3437        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3438        napi_enable(&port->napi);
3439
3440        /*
3441         * Enable per-CPU interrupts on the CPU that is
3442         * brought up.
3443         */
3444        mvneta_percpu_enable(pp);
3445
3446        /*
3447         * Enable per-CPU interrupt on the one CPU we care
3448         * about.
3449         */
3450        mvneta_percpu_elect(pp);
3451
3452        /* Unmask all ethernet port interrupts */
3453        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3454        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3455                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3456                    MVNETA_CAUSE_LINK_CHANGE |
3457                    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3458        netif_tx_start_all_queues(pp->dev);
3459        spin_unlock(&pp->lock);
3460        return 0;
3461}
3462
3463static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3464{
3465        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3466                                                  node_online);
3467        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3468
3469        /*
3470         * Thanks to this lock we are sure that any pending cpu election is
3471         * done.
3472         */
3473        spin_lock(&pp->lock);
3474        /* Mask all ethernet port interrupts */
3475        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3476        spin_unlock(&pp->lock);
3477
3478        napi_synchronize(&port->napi);
3479        napi_disable(&port->napi);
3480        /* Disable per-CPU interrupts on the CPU that is brought down. */
3481        mvneta_percpu_disable(pp);
3482        return 0;
3483}
3484
3485static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3486{
3487        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3488                                                  node_dead);
3489
3490        /* Check if a new CPU must be elected now this on is down */
3491        spin_lock(&pp->lock);
3492        mvneta_percpu_elect(pp);
3493        spin_unlock(&pp->lock);
3494        /* Unmask all ethernet port interrupts */
3495        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3496        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3497                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3498                    MVNETA_CAUSE_LINK_CHANGE |
3499                    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3500        netif_tx_start_all_queues(pp->dev);
3501        return 0;
3502}
3503
3504static int mvneta_open(struct net_device *dev)
3505{
3506        struct mvneta_port *pp = netdev_priv(dev);
3507        int ret;
3508
3509        pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3510        pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3511                        SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3512
3513        ret = mvneta_setup_rxqs(pp);
3514        if (ret)
3515                return ret;
3516
3517        ret = mvneta_setup_txqs(pp);
3518        if (ret)
3519                goto err_cleanup_rxqs;
3520
3521        /* Connect to port interrupt line */
3522        if (pp->neta_armada3700)
3523                ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3524                                  dev->name, pp);
3525        else
3526                ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3527                                         dev->name, pp->ports);
3528        if (ret) {
3529                netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3530                goto err_cleanup_txqs;
3531        }
3532
3533        if (!pp->neta_armada3700) {
3534                /* Enable per-CPU interrupt on all the CPU to handle our RX
3535                 * queue interrupts
3536                 */
3537                on_each_cpu(mvneta_percpu_enable, pp, true);
3538
3539                pp->is_stopped = false;
3540                /* Register a CPU notifier to handle the case where our CPU
3541                 * might be taken offline.
3542                 */
3543                ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3544                                                       &pp->node_online);
3545                if (ret)
3546                        goto err_free_irq;
3547
3548                ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3549                                                       &pp->node_dead);
3550                if (ret)
3551                        goto err_free_online_hp;
3552        }
3553
3554        /* In default link is down */
3555        netif_carrier_off(pp->dev);
3556
3557        ret = mvneta_mdio_probe(pp);
3558        if (ret < 0) {
3559                netdev_err(dev, "cannot probe MDIO bus\n");
3560                goto err_free_dead_hp;
3561        }
3562
3563        mvneta_start_dev(pp);
3564
3565        return 0;
3566
3567err_free_dead_hp:
3568        if (!pp->neta_armada3700)
3569                cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3570                                                    &pp->node_dead);
3571err_free_online_hp:
3572        if (!pp->neta_armada3700)
3573                cpuhp_state_remove_instance_nocalls(online_hpstate,
3574                                                    &pp->node_online);
3575err_free_irq:
3576        if (pp->neta_armada3700) {
3577                free_irq(pp->dev->irq, pp);
3578        } else {
3579                on_each_cpu(mvneta_percpu_disable, pp, true);
3580                free_percpu_irq(pp->dev->irq, pp->ports);
3581        }
3582err_cleanup_txqs:
3583        mvneta_cleanup_txqs(pp);
3584err_cleanup_rxqs:
3585        mvneta_cleanup_rxqs(pp);
3586        return ret;
3587}
3588
3589/* Stop the port, free port interrupt line */
3590static int mvneta_stop(struct net_device *dev)
3591{
3592        struct mvneta_port *pp = netdev_priv(dev);
3593
3594        if (!pp->neta_armada3700) {
3595                /* Inform that we are stopping so we don't want to setup the
3596                 * driver for new CPUs in the notifiers. The code of the
3597                 * notifier for CPU online is protected by the same spinlock,
3598                 * so when we get the lock, the notifer work is done.
3599                 */
3600                spin_lock(&pp->lock);
3601                pp->is_stopped = true;
3602                spin_unlock(&pp->lock);
3603
3604                mvneta_stop_dev(pp);
3605                mvneta_mdio_remove(pp);
3606
3607                cpuhp_state_remove_instance_nocalls(online_hpstate,
3608                                                    &pp->node_online);
3609                cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3610                                                    &pp->node_dead);
3611                on_each_cpu(mvneta_percpu_disable, pp, true);
3612                free_percpu_irq(dev->irq, pp->ports);
3613        } else {
3614                mvneta_stop_dev(pp);
3615                mvneta_mdio_remove(pp);
3616                free_irq(dev->irq, pp);
3617        }
3618
3619        mvneta_cleanup_rxqs(pp);
3620        mvneta_cleanup_txqs(pp);
3621
3622        return 0;
3623}
3624
3625static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3626{
3627        if (!dev->phydev)
3628                return -ENOTSUPP;
3629
3630        return phy_mii_ioctl(dev->phydev, ifr, cmd);
3631}
3632
3633/* Ethtool methods */
3634
3635/* Set link ksettings (phy address, speed) for ethtools */
3636static int
3637mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3638                                  const struct ethtool_link_ksettings *cmd)
3639{
3640        struct mvneta_port *pp = netdev_priv(ndev);
3641        struct phy_device *phydev = ndev->phydev;
3642
3643        if (!phydev)
3644                return -ENODEV;
3645
3646        if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3647                u32 val;
3648
3649                mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3650
3651                if (cmd->base.autoneg == AUTONEG_DISABLE) {
3652                        val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3653                        val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3654                                 MVNETA_GMAC_CONFIG_GMII_SPEED |
3655                                 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3656
3657                        if (phydev->duplex)
3658                                val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3659
3660                        if (phydev->speed == SPEED_1000)
3661                                val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3662                        else if (phydev->speed == SPEED_100)
3663                                val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3664
3665                        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3666                }
3667
3668                pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3669                netdev_info(pp->dev, "autoneg status set to %i\n",
3670                            pp->use_inband_status);
3671
3672                if (netif_running(ndev)) {
3673                        mvneta_port_down(pp);
3674                        mvneta_port_up(pp);
3675                }
3676        }
3677
3678        return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3679}
3680
3681/* Set interrupt coalescing for ethtools */
3682static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3683                                       struct ethtool_coalesce *c)
3684{
3685        struct mvneta_port *pp = netdev_priv(dev);
3686        int queue;
3687
3688        for (queue = 0; queue < rxq_number; queue++) {
3689                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3690                rxq->time_coal = c->rx_coalesce_usecs;
3691                rxq->pkts_coal = c->rx_max_coalesced_frames;
3692                mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3693                mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3694        }
3695
3696        for (queue = 0; queue < txq_number; queue++) {
3697                struct mvneta_tx_queue *txq = &pp->txqs[queue];
3698                txq->done_pkts_coal = c->tx_max_coalesced_frames;
3699                mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3700        }
3701
3702        return 0;
3703}
3704
3705/* get coalescing for ethtools */
3706static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3707                                       struct ethtool_coalesce *c)
3708{
3709        struct mvneta_port *pp = netdev_priv(dev);
3710
3711        c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3712        c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3713
3714        c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3715        return 0;
3716}
3717
3718
3719static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3720                                    struct ethtool_drvinfo *drvinfo)
3721{
3722        strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3723                sizeof(drvinfo->driver));
3724        strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3725                sizeof(drvinfo->version));
3726        strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3727                sizeof(drvinfo->bus_info));
3728}
3729
3730
3731static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3732                                         struct ethtool_ringparam *ring)
3733{
3734        struct mvneta_port *pp = netdev_priv(netdev);
3735
3736        ring->rx_max_pending = MVNETA_MAX_RXD;
3737        ring->tx_max_pending = MVNETA_MAX_TXD;
3738        ring->rx_pending = pp->rx_ring_size;
3739        ring->tx_pending = pp->tx_ring_size;
3740}
3741
3742static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3743                                        struct ethtool_ringparam *ring)
3744{
3745        struct mvneta_port *pp = netdev_priv(dev);
3746
3747        if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3748                return -EINVAL;
3749        pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3750                ring->rx_pending : MVNETA_MAX_RXD;
3751
3752        pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3753                                   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3754        if (pp->tx_ring_size != ring->tx_pending)
3755                netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3756                            pp->tx_ring_size, ring->tx_pending);
3757
3758        if (netif_running(dev)) {
3759                mvneta_stop(dev);
3760                if (mvneta_open(dev)) {
3761                        netdev_err(dev,
3762                                   "error on opening device after ring param change\n");
3763                        return -ENOMEM;
3764                }
3765        }
3766
3767        return 0;
3768}
3769
3770static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3771                                       u8 *data)
3772{
3773        if (sset == ETH_SS_STATS) {
3774                int i;
3775
3776                for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3777                        memcpy(data + i * ETH_GSTRING_LEN,
3778                               mvneta_statistics[i].name, ETH_GSTRING_LEN);
3779        }
3780}
3781
3782static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3783{
3784        const struct mvneta_statistic *s;
3785        void __iomem *base = pp->base;
3786        u32 high, low, val;
3787        u64 val64;
3788        int i;
3789
3790        for (i = 0, s = mvneta_statistics;
3791             s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3792             s++, i++) {
3793                switch (s->type) {
3794                case T_REG_32:
3795                        val = readl_relaxed(base + s->offset);
3796                        pp->ethtool_stats[i] += val;
3797                        break;
3798                case T_REG_64:
3799                        /* Docs say to read low 32-bit then high */
3800                        low = readl_relaxed(base + s->offset);
3801                        high = readl_relaxed(base + s->offset + 4);
3802                        val64 = (u64)high << 32 | low;
3803                        pp->ethtool_stats[i] += val64;
3804                        break;
3805                }
3806        }
3807}
3808
3809static void mvneta_ethtool_get_stats(struct net_device *dev,
3810                                     struct ethtool_stats *stats, u64 *data)
3811{
3812        struct mvneta_port *pp = netdev_priv(dev);
3813        int i;
3814
3815        mvneta_ethtool_update_stats(pp);
3816
3817        for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3818                *data++ = pp->ethtool_stats[i];
3819}
3820
3821static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3822{
3823        if (sset == ETH_SS_STATS)
3824                return ARRAY_SIZE(mvneta_statistics);
3825        return -EOPNOTSUPP;
3826}
3827
3828static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3829{
3830        return MVNETA_RSS_LU_TABLE_SIZE;
3831}
3832
3833static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3834                                    struct ethtool_rxnfc *info,
3835                                    u32 *rules __always_unused)
3836{
3837        switch (info->cmd) {
3838        case ETHTOOL_GRXRINGS:
3839                info->data =  rxq_number;
3840                return 0;
3841        case ETHTOOL_GRXFH:
3842                return -EOPNOTSUPP;
3843        default:
3844                return -EOPNOTSUPP;
3845        }
3846}
3847
3848static int  mvneta_config_rss(struct mvneta_port *pp)
3849{
3850        int cpu;
3851        u32 val;
3852
3853        netif_tx_stop_all_queues(pp->dev);
3854
3855        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3856
3857        /* We have to synchronise on the napi of each CPU */
3858        for_each_online_cpu(cpu) {
3859                struct mvneta_pcpu_port *pcpu_port =
3860                        per_cpu_ptr(pp->ports, cpu);
3861
3862                napi_synchronize(&pcpu_port->napi);
3863                napi_disable(&pcpu_port->napi);
3864        }
3865
3866        pp->rxq_def = pp->indir[0];
3867
3868        /* Update unicast mapping */
3869        mvneta_set_rx_mode(pp->dev);
3870
3871        /* Update val of portCfg register accordingly with all RxQueue types */
3872        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3873        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3874
3875        /* Update the elected CPU matching the new rxq_def */
3876        spin_lock(&pp->lock);
3877        mvneta_percpu_elect(pp);
3878        spin_unlock(&pp->lock);
3879
3880        /* We have to synchronise on the napi of each CPU */
3881        for_each_online_cpu(cpu) {
3882                struct mvneta_pcpu_port *pcpu_port =
3883                        per_cpu_ptr(pp->ports, cpu);
3884
3885                napi_enable(&pcpu_port->napi);
3886        }
3887
3888        netif_tx_start_all_queues(pp->dev);
3889
3890        return 0;
3891}
3892
3893static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3894                                   const u8 *key, const u8 hfunc)
3895{
3896        struct mvneta_port *pp = netdev_priv(dev);
3897
3898        /* Current code for Armada 3700 doesn't support RSS features yet */
3899        if (pp->neta_armada3700)
3900                return -EOPNOTSUPP;
3901
3902        /* We require at least one supported parameter to be changed
3903         * and no change in any of the unsupported parameters
3904         */
3905        if (key ||
3906            (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3907                return -EOPNOTSUPP;
3908
3909        if (!indir)
3910                return 0;
3911
3912        memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3913
3914        return mvneta_config_rss(pp);
3915}
3916
3917static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3918                                   u8 *hfunc)
3919{
3920        struct mvneta_port *pp = netdev_priv(dev);
3921
3922        /* Current code for Armada 3700 doesn't support RSS features yet */
3923        if (pp->neta_armada3700)
3924                return -EOPNOTSUPP;
3925
3926        if (hfunc)
3927                *hfunc = ETH_RSS_HASH_TOP;
3928
3929        if (!indir)
3930                return 0;
3931
3932        memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3933
3934        return 0;
3935}
3936
3937static void mvneta_ethtool_get_wol(struct net_device *dev,
3938                                   struct ethtool_wolinfo *wol)
3939{
3940        wol->supported = 0;
3941        wol->wolopts = 0;
3942
3943        if (dev->phydev)
3944                phy_ethtool_get_wol(dev->phydev, wol);
3945}
3946
3947static int mvneta_ethtool_set_wol(struct net_device *dev,
3948                                  struct ethtool_wolinfo *wol)
3949{
3950        int ret;
3951
3952        if (!dev->phydev)
3953                return -EOPNOTSUPP;
3954
3955        ret = phy_ethtool_set_wol(dev->phydev, wol);
3956        if (!ret)
3957                device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
3958
3959        return ret;
3960}
3961
3962static const struct net_device_ops mvneta_netdev_ops = {
3963        .ndo_open            = mvneta_open,
3964        .ndo_stop            = mvneta_stop,
3965        .ndo_start_xmit      = mvneta_tx,
3966        .ndo_set_rx_mode     = mvneta_set_rx_mode,
3967        .ndo_set_mac_address = mvneta_set_mac_addr,
3968        .ndo_change_mtu      = mvneta_change_mtu,
3969        .ndo_fix_features    = mvneta_fix_features,
3970        .ndo_get_stats64     = mvneta_get_stats64,
3971        .ndo_do_ioctl        = mvneta_ioctl,
3972};
3973
3974static const struct ethtool_ops mvneta_eth_tool_ops = {
3975        .nway_reset     = phy_ethtool_nway_reset,
3976        .get_link       = ethtool_op_get_link,
3977        .set_coalesce   = mvneta_ethtool_set_coalesce,
3978        .get_coalesce   = mvneta_ethtool_get_coalesce,
3979        .get_drvinfo    = mvneta_ethtool_get_drvinfo,
3980        .get_ringparam  = mvneta_ethtool_get_ringparam,
3981        .set_ringparam  = mvneta_ethtool_set_ringparam,
3982        .get_strings    = mvneta_ethtool_get_strings,
3983        .get_ethtool_stats = mvneta_ethtool_get_stats,
3984        .get_sset_count = mvneta_ethtool_get_sset_count,
3985        .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3986        .get_rxnfc      = mvneta_ethtool_get_rxnfc,
3987        .get_rxfh       = mvneta_ethtool_get_rxfh,
3988        .set_rxfh       = mvneta_ethtool_set_rxfh,
3989        .get_link_ksettings = phy_ethtool_get_link_ksettings,
3990        .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3991        .get_wol        = mvneta_ethtool_get_wol,
3992        .set_wol        = mvneta_ethtool_set_wol,
3993};
3994
3995/* Initialize hw */
3996static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3997{
3998        int queue;
3999
4000        /* Disable port */
4001        mvneta_port_disable(pp);
4002
4003        /* Set port default values */
4004        mvneta_defaults_set(pp);
4005
4006        pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4007        if (!pp->txqs)
4008                return -ENOMEM;
4009
4010        /* Initialize TX descriptor rings */
4011        for (queue = 0; queue < txq_number; queue++) {
4012                struct mvneta_tx_queue *txq = &pp->txqs[queue];
4013                txq->id = queue;
4014                txq->size = pp->tx_ring_size;
4015                txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4016        }
4017
4018        pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4019        if (!pp->rxqs)
4020                return -ENOMEM;
4021
4022        /* Create Rx descriptor rings */
4023        for (queue = 0; queue < rxq_number; queue++) {
4024                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4025                rxq->id = queue;
4026                rxq->size = pp->rx_ring_size;
4027                rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4028                rxq->time_coal = MVNETA_RX_COAL_USEC;
4029                rxq->buf_virt_addr
4030                        = devm_kmalloc_array(pp->dev->dev.parent,
4031                                             rxq->size,
4032                                             sizeof(*rxq->buf_virt_addr),
4033                                             GFP_KERNEL);
4034                if (!rxq->buf_virt_addr)
4035                        return -ENOMEM;
4036        }
4037
4038        return 0;
4039}
4040
4041/* platform glue : initialize decoding windows */
4042static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4043                                     const struct mbus_dram_target_info *dram)
4044{
4045        u32 win_enable;
4046        u32 win_protect;
4047        int i;
4048
4049        for (i = 0; i < 6; i++) {
4050                mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4051                mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4052
4053                if (i < 4)
4054                        mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4055        }
4056
4057        win_enable = 0x3f;
4058        win_protect = 0;
4059
4060        if (dram) {
4061                for (i = 0; i < dram->num_cs; i++) {
4062                        const struct mbus_dram_window *cs = dram->cs + i;
4063
4064                        mvreg_write(pp, MVNETA_WIN_BASE(i),
4065                                    (cs->base & 0xffff0000) |
4066                                    (cs->mbus_attr << 8) |
4067                                    dram->mbus_dram_target_id);
4068
4069                        mvreg_write(pp, MVNETA_WIN_SIZE(i),
4070                                    (cs->size - 1) & 0xffff0000);
4071
4072                        win_enable &= ~(1 << i);
4073                        win_protect |= 3 << (2 * i);
4074                }
4075        } else {
4076                /* For Armada3700 open default 4GB Mbus window, leaving
4077                 * arbitration of target/attribute to a different layer
4078                 * of configuration.
4079                 */
4080                mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4081                win_enable &= ~BIT(0);
4082                win_protect = 3;
4083        }
4084
4085        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4086        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4087}
4088
4089/* Power up the port */
4090static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4091{
4092        u32 ctrl;
4093
4094        /* MAC Cause register should be cleared */
4095        mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4096
4097        ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4098
4099        /* Even though it might look weird, when we're configured in
4100         * SGMII or QSGMII mode, the RGMII bit needs to be set.
4101         */
4102        switch(phy_mode) {
4103        case PHY_INTERFACE_MODE_QSGMII:
4104                mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4105                ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4106                break;
4107        case PHY_INTERFACE_MODE_SGMII:
4108                mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4109                ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4110                break;
4111        case PHY_INTERFACE_MODE_RGMII:
4112        case PHY_INTERFACE_MODE_RGMII_ID:
4113        case PHY_INTERFACE_MODE_RGMII_RXID:
4114        case PHY_INTERFACE_MODE_RGMII_TXID:
4115                ctrl |= MVNETA_GMAC2_PORT_RGMII;
4116                break;
4117        default:
4118                return -EINVAL;
4119        }
4120
4121        /* Cancel Port Reset */
4122        ctrl &= ~MVNETA_GMAC2_PORT_RESET;
4123        mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4124
4125        while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4126                MVNETA_GMAC2_PORT_RESET) != 0)
4127                continue;
4128
4129        return 0;
4130}
4131
4132/* Device initialization routine */
4133static int mvneta_probe(struct platform_device *pdev)
4134{
4135        struct resource *res;
4136        struct device_node *dn = pdev->dev.of_node;
4137        struct device_node *phy_node;
4138        struct device_node *bm_node;
4139        struct mvneta_port *pp;
4140        struct net_device *dev;
4141        const char *dt_mac_addr;
4142        char hw_mac_addr[ETH_ALEN];
4143        const char *mac_from;
4144        const char *managed;
4145        int tx_csum_limit;
4146        int phy_mode;
4147        int err;
4148        int cpu;
4149
4150        dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4151        if (!dev)
4152                return -ENOMEM;
4153
4154        dev->irq = irq_of_parse_and_map(dn, 0);
4155        if (dev->irq == 0) {
4156                err = -EINVAL;
4157                goto err_free_netdev;
4158        }
4159
4160        phy_node = of_parse_phandle(dn, "phy", 0);
4161        if (!phy_node) {
4162                if (!of_phy_is_fixed_link(dn)) {
4163                        dev_err(&pdev->dev, "no PHY specified\n");
4164                        err = -ENODEV;
4165                        goto err_free_irq;
4166                }
4167
4168                err = of_phy_register_fixed_link(dn);
4169                if (err < 0) {
4170                        dev_err(&pdev->dev, "cannot register fixed PHY\n");
4171                        goto err_free_irq;
4172                }
4173
4174                /* In the case of a fixed PHY, the DT node associated
4175                 * to the PHY is the Ethernet MAC DT node.
4176                 */
4177                phy_node = of_node_get(dn);
4178        }
4179
4180        phy_mode = of_get_phy_mode(dn);
4181        if (phy_mode < 0) {
4182                dev_err(&pdev->dev, "incorrect phy-mode\n");
4183                err = -EINVAL;
4184                goto err_put_phy_node;
4185        }
4186
4187        dev->tx_queue_len = MVNETA_MAX_TXD;
4188        dev->watchdog_timeo = 5 * HZ;
4189        dev->netdev_ops = &mvneta_netdev_ops;
4190
4191        dev->ethtool_ops = &mvneta_eth_tool_ops;
4192
4193        pp = netdev_priv(dev);
4194        spin_lock_init(&pp->lock);
4195        pp->phy_node = phy_node;
4196        pp->phy_interface = phy_mode;
4197
4198        err = of_property_read_string(dn, "managed", &managed);
4199        pp->use_inband_status = (err == 0 &&
4200                                 strcmp(managed, "in-band-status") == 0);
4201
4202        pp->rxq_def = rxq_def;
4203
4204        /* Set RX packet offset correction for platforms, whose
4205         * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4206         * platforms and 0B for 32-bit ones.
4207         */
4208        pp->rx_offset_correction =
4209                max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4210
4211        pp->indir[0] = rxq_def;
4212
4213        /* Get special SoC configurations */
4214        if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4215                pp->neta_armada3700 = true;
4216
4217        pp->clk = devm_clk_get(&pdev->dev, "core");
4218        if (IS_ERR(pp->clk))
4219                pp->clk = devm_clk_get(&pdev->dev, NULL);
4220        if (IS_ERR(pp->clk)) {
4221                err = PTR_ERR(pp->clk);
4222                goto err_put_phy_node;
4223        }
4224
4225        clk_prepare_enable(pp->clk);
4226
4227        pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4228        if (!IS_ERR(pp->clk_bus))
4229                clk_prepare_enable(pp->clk_bus);
4230
4231        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4232        pp->base = devm_ioremap_resource(&pdev->dev, res);
4233        if (IS_ERR(pp->base)) {
4234                err = PTR_ERR(pp->base);
4235                goto err_clk;
4236        }
4237
4238        /* Alloc per-cpu port structure */
4239        pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4240        if (!pp->ports) {
4241                err = -ENOMEM;
4242                goto err_clk;
4243        }
4244
4245        /* Alloc per-cpu stats */
4246        pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4247        if (!pp->stats) {
4248                err = -ENOMEM;
4249                goto err_free_ports;
4250        }
4251
4252        dt_mac_addr = of_get_mac_address(dn);
4253        if (dt_mac_addr) {
4254                mac_from = "device tree";
4255                memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4256        } else {
4257                mvneta_get_mac_addr(pp, hw_mac_addr);
4258                if (is_valid_ether_addr(hw_mac_addr)) {
4259                        mac_from = "hardware";
4260                        memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4261                } else {
4262                        mac_from = "random";
4263                        eth_hw_addr_random(dev);
4264                }
4265        }
4266
4267        if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4268                if (tx_csum_limit < 0 ||
4269                    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4270                        tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4271                        dev_info(&pdev->dev,
4272                                 "Wrong TX csum limit in DT, set to %dB\n",
4273                                 MVNETA_TX_CSUM_DEF_SIZE);
4274                }
4275        } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4276                tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4277        } else {
4278                tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4279        }
4280
4281        pp->tx_csum_limit = tx_csum_limit;
4282
4283        pp->dram_target_info = mv_mbus_dram_info();
4284        /* Armada3700 requires setting default configuration of Mbus
4285         * windows, however without using filled mbus_dram_target_info
4286         * structure.
4287         */
4288        if (pp->dram_target_info || pp->neta_armada3700)
4289                mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4290
4291        pp->tx_ring_size = MVNETA_MAX_TXD;
4292        pp->rx_ring_size = MVNETA_MAX_RXD;
4293
4294        pp->dev = dev;
4295        SET_NETDEV_DEV(dev, &pdev->dev);
4296
4297        pp->id = global_port_id++;
4298
4299        /* Obtain access to BM resources if enabled and already initialized */
4300        bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4301        if (bm_node && bm_node->data) {
4302                pp->bm_priv = bm_node->data;
4303                err = mvneta_bm_port_init(pdev, pp);
4304                if (err < 0) {
4305                        dev_info(&pdev->dev, "use SW buffer management\n");
4306                        pp->bm_priv = NULL;
4307                }
4308        }
4309        of_node_put(bm_node);
4310
4311        err = mvneta_init(&pdev->dev, pp);
4312        if (err < 0)
4313                goto err_netdev;
4314
4315        err = mvneta_port_power_up(pp, phy_mode);
4316        if (err < 0) {
4317                dev_err(&pdev->dev, "can't power up port\n");
4318                goto err_netdev;
4319        }
4320
4321        /* Armada3700 network controller does not support per-cpu
4322         * operation, so only single NAPI should be initialized.
4323         */
4324        if (pp->neta_armada3700) {
4325                netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4326        } else {
4327                for_each_present_cpu(cpu) {
4328                        struct mvneta_pcpu_port *port =
4329                                per_cpu_ptr(pp->ports, cpu);
4330
4331                        netif_napi_add(dev, &port->napi, mvneta_poll,
4332                                       NAPI_POLL_WEIGHT);
4333                        port->pp = pp;
4334                }
4335        }
4336
4337        dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4338        dev->hw_features |= dev->features;
4339        dev->vlan_features |= dev->features;
4340        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4341        dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4342
4343        /* MTU range: 68 - 9676 */
4344        dev->min_mtu = ETH_MIN_MTU;
4345        /* 9676 == 9700 - 20 and rounding to 8 */
4346        dev->max_mtu = 9676;
4347
4348        err = register_netdev(dev);
4349        if (err < 0) {
4350                dev_err(&pdev->dev, "failed to register\n");
4351                goto err_free_stats;
4352        }
4353
4354        netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4355                    dev->dev_addr);
4356
4357        platform_set_drvdata(pdev, pp->dev);
4358
4359        if (pp->use_inband_status) {
4360                struct phy_device *phy = of_phy_find_device(dn);
4361
4362                mvneta_fixed_link_update(pp, phy);
4363
4364                put_device(&phy->mdio.dev);
4365        }
4366
4367        return 0;
4368
4369err_netdev:
4370        unregister_netdev(dev);
4371        if (pp->bm_priv) {
4372                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4373                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4374                                       1 << pp->id);
4375        }
4376err_free_stats:
4377        free_percpu(pp->stats);
4378err_free_ports:
4379        free_percpu(pp->ports);
4380err_clk:
4381        clk_disable_unprepare(pp->clk_bus);
4382        clk_disable_unprepare(pp->clk);
4383err_put_phy_node:
4384        of_node_put(phy_node);
4385        if (of_phy_is_fixed_link(dn))
4386                of_phy_deregister_fixed_link(dn);
4387err_free_irq:
4388        irq_dispose_mapping(dev->irq);
4389err_free_netdev:
4390        free_netdev(dev);
4391        return err;
4392}
4393
4394/* Device removal routine */
4395static int mvneta_remove(struct platform_device *pdev)
4396{
4397        struct net_device  *dev = platform_get_drvdata(pdev);
4398        struct device_node *dn = pdev->dev.of_node;
4399        struct mvneta_port *pp = netdev_priv(dev);
4400
4401        unregister_netdev(dev);
4402        clk_disable_unprepare(pp->clk_bus);
4403        clk_disable_unprepare(pp->clk);
4404        free_percpu(pp->ports);
4405        free_percpu(pp->stats);
4406        if (of_phy_is_fixed_link(dn))
4407                of_phy_deregister_fixed_link(dn);
4408        irq_dispose_mapping(dev->irq);
4409        of_node_put(pp->phy_node);
4410        free_netdev(dev);
4411
4412        if (pp->bm_priv) {
4413                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4414                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4415                                       1 << pp->id);
4416        }
4417
4418        return 0;
4419}
4420
4421#ifdef CONFIG_PM_SLEEP
4422static int mvneta_suspend(struct device *device)
4423{
4424        struct net_device *dev = dev_get_drvdata(device);
4425        struct mvneta_port *pp = netdev_priv(dev);
4426
4427        if (netif_running(dev))
4428                mvneta_stop(dev);
4429        netif_device_detach(dev);
4430        clk_disable_unprepare(pp->clk_bus);
4431        clk_disable_unprepare(pp->clk);
4432        return 0;
4433}
4434
4435static int mvneta_resume(struct device *device)
4436{
4437        struct platform_device *pdev = to_platform_device(device);
4438        struct net_device *dev = dev_get_drvdata(device);
4439        struct mvneta_port *pp = netdev_priv(dev);
4440        int err;
4441
4442        clk_prepare_enable(pp->clk);
4443        if (!IS_ERR(pp->clk_bus))
4444                clk_prepare_enable(pp->clk_bus);
4445        if (pp->dram_target_info || pp->neta_armada3700)
4446                mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4447        if (pp->bm_priv) {
4448                err = mvneta_bm_port_init(pdev, pp);
4449                if (err < 0) {
4450                        dev_info(&pdev->dev, "use SW buffer management\n");
4451                        pp->bm_priv = NULL;
4452                }
4453        }
4454        mvneta_defaults_set(pp);
4455        err = mvneta_port_power_up(pp, pp->phy_interface);
4456        if (err < 0) {
4457                dev_err(device, "can't power up port\n");
4458                return err;
4459        }
4460
4461        if (pp->use_inband_status)
4462                mvneta_fixed_link_update(pp, dev->phydev);
4463
4464        netif_device_attach(dev);
4465        if (netif_running(dev)) {
4466                mvneta_open(dev);
4467                mvneta_set_rx_mode(dev);
4468        }
4469
4470        return 0;
4471}
4472#endif
4473
4474static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4475
4476static const struct of_device_id mvneta_match[] = {
4477        { .compatible = "marvell,armada-370-neta" },
4478        { .compatible = "marvell,armada-xp-neta" },
4479        { .compatible = "marvell,armada-3700-neta" },
4480        { }
4481};
4482MODULE_DEVICE_TABLE(of, mvneta_match);
4483
4484static struct platform_driver mvneta_driver = {
4485        .probe = mvneta_probe,
4486        .remove = mvneta_remove,
4487        .driver = {
4488                .name = MVNETA_DRIVER_NAME,
4489                .of_match_table = mvneta_match,
4490                .pm = &mvneta_pm_ops,
4491        },
4492};
4493
4494static int __init mvneta_driver_init(void)
4495{
4496        int ret;
4497
4498        ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4499                                      mvneta_cpu_online,
4500                                      mvneta_cpu_down_prepare);
4501        if (ret < 0)
4502                goto out;
4503        online_hpstate = ret;
4504        ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4505                                      NULL, mvneta_cpu_dead);
4506        if (ret)
4507                goto err_dead;
4508
4509        ret = platform_driver_register(&mvneta_driver);
4510        if (ret)
4511                goto err;
4512        return 0;
4513
4514err:
4515        cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4516err_dead:
4517        cpuhp_remove_multi_state(online_hpstate);
4518out:
4519        return ret;
4520}
4521module_init(mvneta_driver_init);
4522
4523static void __exit mvneta_driver_exit(void)
4524{
4525        platform_driver_unregister(&mvneta_driver);
4526        cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4527        cpuhp_remove_multi_state(online_hpstate);
4528}
4529module_exit(mvneta_driver_exit);
4530
4531MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4532MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4533MODULE_LICENSE("GPL");
4534
4535module_param(rxq_number, int, S_IRUGO);
4536module_param(txq_number, int, S_IRUGO);
4537
4538module_param(rxq_def, int, S_IRUGO);
4539module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4540