linux/drivers/net/irda/au1k_ir.c
<<
>>
Prefs
   1/*
   2 * Alchemy Semi Au1000 IrDA driver
   3 *
   4 * Copyright 2001 MontaVista Software Inc.
   5 * Author: MontaVista Software, Inc.
   6 *              ppopov@mvista.com or source@mvista.com
   7 *
   8 *  This program is free software; you can distribute it and/or modify it
   9 *  under the terms of the GNU General Public License (Version 2) as
  10 *  published by the Free Software Foundation.
  11 *
  12 *  This program is distributed in the hope it will be useful, but WITHOUT
  13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15 *  for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License along
  18 *  with this program; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include <linux/clk.h>
  22#include <linux/module.h>
  23#include <linux/netdevice.h>
  24#include <linux/interrupt.h>
  25#include <linux/platform_device.h>
  26#include <linux/slab.h>
  27#include <linux/types.h>
  28
  29#include <net/irda/irda.h>
  30#include <net/irda/irmod.h>
  31#include <net/irda/wrapper.h>
  32#include <net/irda/irda_device.h>
  33#include <asm/mach-au1x00/au1000.h>
  34
  35/* registers */
  36#define IR_RING_PTR_STATUS      0x00
  37#define IR_RING_BASE_ADDR_H     0x04
  38#define IR_RING_BASE_ADDR_L     0x08
  39#define IR_RING_SIZE            0x0C
  40#define IR_RING_PROMPT          0x10
  41#define IR_RING_ADDR_CMPR       0x14
  42#define IR_INT_CLEAR            0x18
  43#define IR_CONFIG_1             0x20
  44#define IR_SIR_FLAGS            0x24
  45#define IR_STATUS               0x28
  46#define IR_READ_PHY_CONFIG      0x2C
  47#define IR_WRITE_PHY_CONFIG     0x30
  48#define IR_MAX_PKT_LEN          0x34
  49#define IR_RX_BYTE_CNT          0x38
  50#define IR_CONFIG_2             0x3C
  51#define IR_ENABLE               0x40
  52
  53/* Config1 */
  54#define IR_RX_INVERT_LED        (1 << 0)
  55#define IR_TX_INVERT_LED        (1 << 1)
  56#define IR_ST                   (1 << 2)
  57#define IR_SF                   (1 << 3)
  58#define IR_SIR                  (1 << 4)
  59#define IR_MIR                  (1 << 5)
  60#define IR_FIR                  (1 << 6)
  61#define IR_16CRC                (1 << 7)
  62#define IR_TD                   (1 << 8)
  63#define IR_RX_ALL               (1 << 9)
  64#define IR_DMA_ENABLE           (1 << 10)
  65#define IR_RX_ENABLE            (1 << 11)
  66#define IR_TX_ENABLE            (1 << 12)
  67#define IR_LOOPBACK             (1 << 14)
  68#define IR_SIR_MODE             (IR_SIR | IR_DMA_ENABLE | \
  69                                 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
  70                                 IR_16CRC)
  71
  72/* ir_status */
  73#define IR_RX_STATUS            (1 << 9)
  74#define IR_TX_STATUS            (1 << 10)
  75#define IR_PHYEN                (1 << 15)
  76
  77/* ir_write_phy_config */
  78#define IR_BR(x)                (((x) & 0x3f) << 10)    /* baud rate */
  79#define IR_PW(x)                (((x) & 0x1f) << 5)     /* pulse width */
  80#define IR_P(x)                 ((x) & 0x1f)            /* preamble bits */
  81
  82/* Config2 */
  83#define IR_MODE_INV             (1 << 0)
  84#define IR_ONE_PIN              (1 << 1)
  85#define IR_PHYCLK_40MHZ         (0 << 2)
  86#define IR_PHYCLK_48MHZ         (1 << 2)
  87#define IR_PHYCLK_56MHZ         (2 << 2)
  88#define IR_PHYCLK_64MHZ         (3 << 2)
  89#define IR_DP                   (1 << 4)
  90#define IR_DA                   (1 << 5)
  91#define IR_FLT_HIGH             (0 << 6)
  92#define IR_FLT_MEDHI            (1 << 6)
  93#define IR_FLT_MEDLO            (2 << 6)
  94#define IR_FLT_LO               (3 << 6)
  95#define IR_IEN                  (1 << 8)
  96
  97/* ir_enable */
  98#define IR_HC                   (1 << 3)        /* divide SBUS clock by 2 */
  99#define IR_CE                   (1 << 2)        /* clock enable */
 100#define IR_C                    (1 << 1)        /* coherency bit */
 101#define IR_BE                   (1 << 0)        /* set in big endian mode */
 102
 103#define NUM_IR_DESC     64
 104#define RING_SIZE_4     0x0
 105#define RING_SIZE_16    0x3
 106#define RING_SIZE_64    0xF
 107#define MAX_NUM_IR_DESC 64
 108#define MAX_BUF_SIZE    2048
 109
 110/* Ring descriptor flags */
 111#define AU_OWN          (1 << 7) /* tx,rx */
 112#define IR_DIS_CRC      (1 << 6) /* tx */
 113#define IR_BAD_CRC      (1 << 5) /* tx */
 114#define IR_NEED_PULSE   (1 << 4) /* tx */
 115#define IR_FORCE_UNDER  (1 << 3) /* tx */
 116#define IR_DISABLE_TX   (1 << 2) /* tx */
 117#define IR_HW_UNDER     (1 << 0) /* tx */
 118#define IR_TX_ERROR     (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
 119
 120#define IR_PHY_ERROR    (1 << 6) /* rx */
 121#define IR_CRC_ERROR    (1 << 5) /* rx */
 122#define IR_MAX_LEN      (1 << 4) /* rx */
 123#define IR_FIFO_OVER    (1 << 3) /* rx */
 124#define IR_SIR_ERROR    (1 << 2) /* rx */
 125#define IR_RX_ERROR     (IR_PHY_ERROR | IR_CRC_ERROR | \
 126                         IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
 127
 128struct db_dest {
 129        struct db_dest *pnext;
 130        volatile u32 *vaddr;
 131        dma_addr_t dma_addr;
 132};
 133
 134struct ring_dest {
 135        u8 count_0;     /* 7:0  */
 136        u8 count_1;     /* 12:8 */
 137        u8 reserved;
 138        u8 flags;
 139        u8 addr_0;      /* 7:0   */
 140        u8 addr_1;      /* 15:8  */
 141        u8 addr_2;      /* 23:16 */
 142        u8 addr_3;      /* 31:24 */
 143};
 144
 145/* Private data for each instance */
 146struct au1k_private {
 147        void __iomem *iobase;
 148        int irq_rx, irq_tx;
 149
 150        struct db_dest *pDBfree;
 151        struct db_dest db[2 * NUM_IR_DESC];
 152        volatile struct ring_dest *rx_ring[NUM_IR_DESC];
 153        volatile struct ring_dest *tx_ring[NUM_IR_DESC];
 154        struct db_dest *rx_db_inuse[NUM_IR_DESC];
 155        struct db_dest *tx_db_inuse[NUM_IR_DESC];
 156        u32 rx_head;
 157        u32 tx_head;
 158        u32 tx_tail;
 159        u32 tx_full;
 160
 161        iobuff_t rx_buff;
 162
 163        struct net_device *netdev;
 164        struct qos_info qos;
 165        struct irlap_cb *irlap;
 166
 167        u8 open;
 168        u32 speed;
 169        u32 newspeed;
 170
 171        struct resource *ioarea;
 172        struct au1k_irda_platform_data *platdata;
 173        struct clk *irda_clk;
 174};
 175
 176static int qos_mtt_bits = 0x07;  /* 1 ms or more */
 177
 178static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
 179{
 180        if (p->platdata && p->platdata->set_phy_mode)
 181                p->platdata->set_phy_mode(mode);
 182}
 183
 184static inline unsigned long irda_read(struct au1k_private *p,
 185                                      unsigned long ofs)
 186{
 187        /*
 188        * IrDA peripheral bug. You have to read the register
 189        * twice to get the right value.
 190        */
 191        (void)__raw_readl(p->iobase + ofs);
 192        return __raw_readl(p->iobase + ofs);
 193}
 194
 195static inline void irda_write(struct au1k_private *p, unsigned long ofs,
 196                              unsigned long val)
 197{
 198        __raw_writel(val, p->iobase + ofs);
 199        wmb();
 200}
 201
 202/*
 203 * Buffer allocation/deallocation routines. The buffer descriptor returned
 204 * has the virtual and dma address of a buffer suitable for
 205 * both, receive and transmit operations.
 206 */
 207static struct db_dest *GetFreeDB(struct au1k_private *aup)
 208{
 209        struct db_dest *db;
 210        db = aup->pDBfree;
 211
 212        if (db)
 213                aup->pDBfree = db->pnext;
 214        return db;
 215}
 216
 217/*
 218  DMA memory allocation, derived from pci_alloc_consistent.
 219  However, the Au1000 data cache is coherent (when programmed
 220  so), therefore we return KSEG0 address, not KSEG1.
 221*/
 222static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
 223{
 224        void *ret;
 225        int gfp = GFP_ATOMIC | GFP_DMA;
 226
 227        ret = (void *)__get_free_pages(gfp, get_order(size));
 228
 229        if (ret != NULL) {
 230                memset(ret, 0, size);
 231                *dma_handle = virt_to_bus(ret);
 232                ret = (void *)KSEG0ADDR(ret);
 233        }
 234        return ret;
 235}
 236
 237static void dma_free(void *vaddr, size_t size)
 238{
 239        vaddr = (void *)KSEG0ADDR(vaddr);
 240        free_pages((unsigned long) vaddr, get_order(size));
 241}
 242
 243
 244static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
 245{
 246        int i;
 247        for (i = 0; i < NUM_IR_DESC; i++) {
 248                aup->rx_ring[i] = (volatile struct ring_dest *)
 249                        (rx_base + sizeof(struct ring_dest) * i);
 250        }
 251        for (i = 0; i < NUM_IR_DESC; i++) {
 252                aup->tx_ring[i] = (volatile struct ring_dest *)
 253                        (tx_base + sizeof(struct ring_dest) * i);
 254        }
 255}
 256
 257static int au1k_irda_init_iobuf(iobuff_t *io, int size)
 258{
 259        io->head = kmalloc(size, GFP_KERNEL);
 260        if (io->head != NULL) {
 261                io->truesize    = size;
 262                io->in_frame    = FALSE;
 263                io->state       = OUTSIDE_FRAME;
 264                io->data        = io->head;
 265        }
 266        return io->head ? 0 : -ENOMEM;
 267}
 268
 269/*
 270 * Set the IrDA communications speed.
 271 */
 272static int au1k_irda_set_speed(struct net_device *dev, int speed)
 273{
 274        struct au1k_private *aup = netdev_priv(dev);
 275        volatile struct ring_dest *ptxd;
 276        unsigned long control;
 277        int ret = 0, timeout = 10, i;
 278
 279        if (speed == aup->speed)
 280                return ret;
 281
 282        /* disable PHY first */
 283        au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
 284        irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
 285
 286        /* disable RX/TX */
 287        irda_write(aup, IR_CONFIG_1,
 288            irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
 289        msleep(20);
 290        while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
 291                msleep(20);
 292                if (!timeout--) {
 293                        printk(KERN_ERR "%s: rx/tx disable timeout\n",
 294                                        dev->name);
 295                        break;
 296                }
 297        }
 298
 299        /* disable DMA */
 300        irda_write(aup, IR_CONFIG_1,
 301                   irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
 302        msleep(20);
 303
 304        /* After we disable tx/rx. the index pointers go back to zero. */
 305        aup->tx_head = aup->tx_tail = aup->rx_head = 0;
 306        for (i = 0; i < NUM_IR_DESC; i++) {
 307                ptxd = aup->tx_ring[i];
 308                ptxd->flags = 0;
 309                ptxd->count_0 = 0;
 310                ptxd->count_1 = 0;
 311        }
 312
 313        for (i = 0; i < NUM_IR_DESC; i++) {
 314                ptxd = aup->rx_ring[i];
 315                ptxd->count_0 = 0;
 316                ptxd->count_1 = 0;
 317                ptxd->flags = AU_OWN;
 318        }
 319
 320        if (speed == 4000000)
 321                au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
 322        else
 323                au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
 324
 325        switch (speed) {
 326        case 9600:
 327                irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
 328                irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
 329                break;
 330        case 19200:
 331                irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
 332                irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
 333                break;
 334        case 38400:
 335                irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
 336                irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
 337                break;
 338        case 57600:
 339                irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
 340                irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
 341                break;
 342        case 115200:
 343                irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
 344                irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
 345                break;
 346        case 4000000:
 347                irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
 348                irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
 349                                IR_RX_ENABLE);
 350                break;
 351        default:
 352                printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
 353                ret = -EINVAL;
 354                break;
 355        }
 356
 357        aup->speed = speed;
 358        irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
 359
 360        control = irda_read(aup, IR_STATUS);
 361        irda_write(aup, IR_RING_PROMPT, 0);
 362
 363        if (control & (1 << 14)) {
 364                printk(KERN_ERR "%s: configuration error\n", dev->name);
 365        } else {
 366                if (control & (1 << 11))
 367                        printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
 368                if (control & (1 << 12))
 369                        printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
 370                if (control & (1 << 13))
 371                        printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
 372                if (control & (1 << 10))
 373                        printk(KERN_DEBUG "%s TX enabled\n", dev->name);
 374                if (control & (1 << 9))
 375                        printk(KERN_DEBUG "%s RX enabled\n", dev->name);
 376        }
 377
 378        return ret;
 379}
 380
 381static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
 382{
 383        struct net_device_stats *ps = &dev->stats;
 384
 385        ps->rx_packets++;
 386
 387        if (status & IR_RX_ERROR) {
 388                ps->rx_errors++;
 389                if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
 390                        ps->rx_missed_errors++;
 391                if (status & IR_MAX_LEN)
 392                        ps->rx_length_errors++;
 393                if (status & IR_CRC_ERROR)
 394                        ps->rx_crc_errors++;
 395        } else
 396                ps->rx_bytes += count;
 397}
 398
 399static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
 400{
 401        struct net_device_stats *ps = &dev->stats;
 402
 403        ps->tx_packets++;
 404        ps->tx_bytes += pkt_len;
 405
 406        if (status & IR_TX_ERROR) {
 407                ps->tx_errors++;
 408                ps->tx_aborted_errors++;
 409        }
 410}
 411
 412static void au1k_tx_ack(struct net_device *dev)
 413{
 414        struct au1k_private *aup = netdev_priv(dev);
 415        volatile struct ring_dest *ptxd;
 416
 417        ptxd = aup->tx_ring[aup->tx_tail];
 418        while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
 419                update_tx_stats(dev, ptxd->flags,
 420                                (ptxd->count_1 << 8) | ptxd->count_0);
 421                ptxd->count_0 = 0;
 422                ptxd->count_1 = 0;
 423                wmb();
 424                aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
 425                ptxd = aup->tx_ring[aup->tx_tail];
 426
 427                if (aup->tx_full) {
 428                        aup->tx_full = 0;
 429                        netif_wake_queue(dev);
 430                }
 431        }
 432
 433        if (aup->tx_tail == aup->tx_head) {
 434                if (aup->newspeed) {
 435                        au1k_irda_set_speed(dev, aup->newspeed);
 436                        aup->newspeed = 0;
 437                } else {
 438                        irda_write(aup, IR_CONFIG_1,
 439                            irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
 440                        irda_write(aup, IR_CONFIG_1,
 441                            irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
 442                        irda_write(aup, IR_RING_PROMPT, 0);
 443                }
 444        }
 445}
 446
 447static int au1k_irda_rx(struct net_device *dev)
 448{
 449        struct au1k_private *aup = netdev_priv(dev);
 450        volatile struct ring_dest *prxd;
 451        struct sk_buff *skb;
 452        struct db_dest *pDB;
 453        u32 flags, count;
 454
 455        prxd = aup->rx_ring[aup->rx_head];
 456        flags = prxd->flags;
 457
 458        while (!(flags & AU_OWN))  {
 459                pDB = aup->rx_db_inuse[aup->rx_head];
 460                count = (prxd->count_1 << 8) | prxd->count_0;
 461                if (!(flags & IR_RX_ERROR)) {
 462                        /* good frame */
 463                        update_rx_stats(dev, flags, count);
 464                        skb = alloc_skb(count + 1, GFP_ATOMIC);
 465                        if (skb == NULL) {
 466                                dev->stats.rx_dropped++;
 467                                continue;
 468                        }
 469                        skb_reserve(skb, 1);
 470                        if (aup->speed == 4000000)
 471                                skb_put(skb, count);
 472                        else
 473                                skb_put(skb, count - 2);
 474                        skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
 475                                                count - 2);
 476                        skb->dev = dev;
 477                        skb_reset_mac_header(skb);
 478                        skb->protocol = htons(ETH_P_IRDA);
 479                        netif_rx(skb);
 480                        prxd->count_0 = 0;
 481                        prxd->count_1 = 0;
 482                }
 483                prxd->flags |= AU_OWN;
 484                aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
 485                irda_write(aup, IR_RING_PROMPT, 0);
 486
 487                /* next descriptor */
 488                prxd = aup->rx_ring[aup->rx_head];
 489                flags = prxd->flags;
 490
 491        }
 492        return 0;
 493}
 494
 495static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
 496{
 497        struct net_device *dev = dev_id;
 498        struct au1k_private *aup = netdev_priv(dev);
 499
 500        irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
 501
 502        au1k_irda_rx(dev);
 503        au1k_tx_ack(dev);
 504
 505        return IRQ_HANDLED;
 506}
 507
 508static int au1k_init(struct net_device *dev)
 509{
 510        struct au1k_private *aup = netdev_priv(dev);
 511        u32 enable, ring_address, phyck;
 512        struct clk *c;
 513        int i;
 514
 515        c = clk_get(NULL, "irda_clk");
 516        if (IS_ERR(c))
 517                return PTR_ERR(c);
 518        i = clk_prepare_enable(c);
 519        if (i) {
 520                clk_put(c);
 521                return i;
 522        }
 523
 524        switch (clk_get_rate(c)) {
 525        case 40000000:
 526                phyck = IR_PHYCLK_40MHZ;
 527                break;
 528        case 48000000:
 529                phyck = IR_PHYCLK_48MHZ;
 530                break;
 531        case 56000000:
 532                phyck = IR_PHYCLK_56MHZ;
 533                break;
 534        case 64000000:
 535                phyck = IR_PHYCLK_64MHZ;
 536                break;
 537        default:
 538                clk_disable_unprepare(c);
 539                clk_put(c);
 540                return -EINVAL;
 541        }
 542        aup->irda_clk = c;
 543
 544        enable = IR_HC | IR_CE | IR_C;
 545#ifndef CONFIG_CPU_LITTLE_ENDIAN
 546        enable |= IR_BE;
 547#endif
 548        aup->tx_head = 0;
 549        aup->tx_tail = 0;
 550        aup->rx_head = 0;
 551
 552        for (i = 0; i < NUM_IR_DESC; i++)
 553                aup->rx_ring[i]->flags = AU_OWN;
 554
 555        irda_write(aup, IR_ENABLE, enable);
 556        msleep(20);
 557
 558        /* disable PHY */
 559        au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
 560        irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
 561        msleep(20);
 562
 563        irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
 564
 565        ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
 566        irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
 567        irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
 568
 569        irda_write(aup, IR_RING_SIZE,
 570                                (RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
 571
 572        irda_write(aup, IR_CONFIG_2, phyck | IR_ONE_PIN);
 573        irda_write(aup, IR_RING_ADDR_CMPR, 0);
 574
 575        au1k_irda_set_speed(dev, 9600);
 576        return 0;
 577}
 578
 579static int au1k_irda_start(struct net_device *dev)
 580{
 581        struct au1k_private *aup = netdev_priv(dev);
 582        char hwname[32];
 583        int retval;
 584
 585        retval = au1k_init(dev);
 586        if (retval) {
 587                printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
 588                return retval;
 589        }
 590
 591        retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
 592                             dev->name, dev);
 593        if (retval) {
 594                printk(KERN_ERR "%s: unable to get IRQ %d\n",
 595                                dev->name, dev->irq);
 596                return retval;
 597        }
 598        retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
 599                             dev->name, dev);
 600        if (retval) {
 601                free_irq(aup->irq_tx, dev);
 602                printk(KERN_ERR "%s: unable to get IRQ %d\n",
 603                                dev->name, dev->irq);
 604                return retval;
 605        }
 606
 607        /* Give self a hardware name */
 608        sprintf(hwname, "Au1000 SIR/FIR");
 609        aup->irlap = irlap_open(dev, &aup->qos, hwname);
 610        netif_start_queue(dev);
 611
 612        /* int enable */
 613        irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
 614
 615        /* power up */
 616        au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
 617
 618        return 0;
 619}
 620
 621static int au1k_irda_stop(struct net_device *dev)
 622{
 623        struct au1k_private *aup = netdev_priv(dev);
 624
 625        au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
 626
 627        /* disable interrupts */
 628        irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
 629        irda_write(aup, IR_CONFIG_1, 0);
 630        irda_write(aup, IR_ENABLE, 0); /* disable clock */
 631
 632        if (aup->irlap) {
 633                irlap_close(aup->irlap);
 634                aup->irlap = NULL;
 635        }
 636
 637        netif_stop_queue(dev);
 638
 639        /* disable the interrupt */
 640        free_irq(aup->irq_tx, dev);
 641        free_irq(aup->irq_rx, dev);
 642
 643        clk_disable_unprepare(aup->irda_clk);
 644        clk_put(aup->irda_clk);
 645
 646        return 0;
 647}
 648
 649/*
 650 * Au1000 transmit routine.
 651 */
 652static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
 653{
 654        struct au1k_private *aup = netdev_priv(dev);
 655        int speed = irda_get_next_speed(skb);
 656        volatile struct ring_dest *ptxd;
 657        struct db_dest *pDB;
 658        u32 len, flags;
 659
 660        if (speed != aup->speed && speed != -1)
 661                aup->newspeed = speed;
 662
 663        if ((skb->len == 0) && (aup->newspeed)) {
 664                if (aup->tx_tail == aup->tx_head) {
 665                        au1k_irda_set_speed(dev, speed);
 666                        aup->newspeed = 0;
 667                }
 668                dev_kfree_skb(skb);
 669                return NETDEV_TX_OK;
 670        }
 671
 672        ptxd = aup->tx_ring[aup->tx_head];
 673        flags = ptxd->flags;
 674
 675        if (flags & AU_OWN) {
 676                printk(KERN_DEBUG "%s: tx_full\n", dev->name);
 677                netif_stop_queue(dev);
 678                aup->tx_full = 1;
 679                return 1;
 680        } else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
 681                printk(KERN_DEBUG "%s: tx_full\n", dev->name);
 682                netif_stop_queue(dev);
 683                aup->tx_full = 1;
 684                return 1;
 685        }
 686
 687        pDB = aup->tx_db_inuse[aup->tx_head];
 688
 689#if 0
 690        if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
 691                printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
 692                                irda_read(aup, IR_RX_BYTE_CNT));
 693        }
 694#endif
 695
 696        if (aup->speed == 4000000) {
 697                /* FIR */
 698                skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 699                ptxd->count_0 = skb->len & 0xff;
 700                ptxd->count_1 = (skb->len >> 8) & 0xff;
 701        } else {
 702                /* SIR */
 703                len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
 704                ptxd->count_0 = len & 0xff;
 705                ptxd->count_1 = (len >> 8) & 0xff;
 706                ptxd->flags |= IR_DIS_CRC;
 707        }
 708        ptxd->flags |= AU_OWN;
 709        wmb();
 710
 711        irda_write(aup, IR_CONFIG_1,
 712                   irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
 713        irda_write(aup, IR_RING_PROMPT, 0);
 714
 715        dev_kfree_skb(skb);
 716        aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
 717        return NETDEV_TX_OK;
 718}
 719
 720/*
 721 * The Tx ring has been full longer than the watchdog timeout
 722 * value. The transmitter must be hung?
 723 */
 724static void au1k_tx_timeout(struct net_device *dev)
 725{
 726        u32 speed;
 727        struct au1k_private *aup = netdev_priv(dev);
 728
 729        printk(KERN_ERR "%s: tx timeout\n", dev->name);
 730        speed = aup->speed;
 731        aup->speed = 0;
 732        au1k_irda_set_speed(dev, speed);
 733        aup->tx_full = 0;
 734        netif_wake_queue(dev);
 735}
 736
 737static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
 738{
 739        struct if_irda_req *rq = (struct if_irda_req *)ifreq;
 740        struct au1k_private *aup = netdev_priv(dev);
 741        int ret = -EOPNOTSUPP;
 742
 743        switch (cmd) {
 744        case SIOCSBANDWIDTH:
 745                if (capable(CAP_NET_ADMIN)) {
 746                        /*
 747                         * We are unable to set the speed if the
 748                         * device is not running.
 749                         */
 750                        if (aup->open)
 751                                ret = au1k_irda_set_speed(dev,
 752                                                rq->ifr_baudrate);
 753                        else {
 754                                printk(KERN_ERR "%s ioctl: !netif_running\n",
 755                                                dev->name);
 756                                ret = 0;
 757                        }
 758                }
 759                break;
 760
 761        case SIOCSMEDIABUSY:
 762                ret = -EPERM;
 763                if (capable(CAP_NET_ADMIN)) {
 764                        irda_device_set_media_busy(dev, TRUE);
 765                        ret = 0;
 766                }
 767                break;
 768
 769        case SIOCGRECEIVING:
 770                rq->ifr_receiving = 0;
 771                break;
 772        default:
 773                break;
 774        }
 775        return ret;
 776}
 777
 778static const struct net_device_ops au1k_irda_netdev_ops = {
 779        .ndo_open               = au1k_irda_start,
 780        .ndo_stop               = au1k_irda_stop,
 781        .ndo_start_xmit         = au1k_irda_hard_xmit,
 782        .ndo_tx_timeout         = au1k_tx_timeout,
 783        .ndo_do_ioctl           = au1k_irda_ioctl,
 784};
 785
 786static int au1k_irda_net_init(struct net_device *dev)
 787{
 788        struct au1k_private *aup = netdev_priv(dev);
 789        struct db_dest *pDB, *pDBfree;
 790        int i, err, retval = 0;
 791        dma_addr_t temp;
 792
 793        err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
 794        if (err)
 795                goto out1;
 796
 797        dev->netdev_ops = &au1k_irda_netdev_ops;
 798
 799        irda_init_max_qos_capabilies(&aup->qos);
 800
 801        /* The only value we must override it the baudrate */
 802        aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
 803                IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
 804
 805        aup->qos.min_turn_time.bits = qos_mtt_bits;
 806        irda_qos_bits_to_value(&aup->qos);
 807
 808        retval = -ENOMEM;
 809
 810        /* Tx ring follows rx ring + 512 bytes */
 811        /* we need a 1k aligned buffer */
 812        aup->rx_ring[0] = (struct ring_dest *)
 813                dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
 814                          &temp);
 815        if (!aup->rx_ring[0])
 816                goto out2;
 817
 818        /* allocate the data buffers */
 819        aup->db[0].vaddr =
 820                dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
 821        if (!aup->db[0].vaddr)
 822                goto out3;
 823
 824        setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
 825
 826        pDBfree = NULL;
 827        pDB = aup->db;
 828        for (i = 0; i < (2 * NUM_IR_DESC); i++) {
 829                pDB->pnext = pDBfree;
 830                pDBfree = pDB;
 831                pDB->vaddr =
 832                       (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
 833                pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
 834                pDB++;
 835        }
 836        aup->pDBfree = pDBfree;
 837
 838        /* attach a data buffer to each descriptor */
 839        for (i = 0; i < NUM_IR_DESC; i++) {
 840                pDB = GetFreeDB(aup);
 841                if (!pDB)
 842                        goto out3;
 843                aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
 844                aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
 845                aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
 846                aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
 847                aup->rx_db_inuse[i] = pDB;
 848        }
 849        for (i = 0; i < NUM_IR_DESC; i++) {
 850                pDB = GetFreeDB(aup);
 851                if (!pDB)
 852                        goto out3;
 853                aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
 854                aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
 855                aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
 856                aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
 857                aup->tx_ring[i]->count_0 = 0;
 858                aup->tx_ring[i]->count_1 = 0;
 859                aup->tx_ring[i]->flags = 0;
 860                aup->tx_db_inuse[i] = pDB;
 861        }
 862
 863        return 0;
 864
 865out3:
 866        dma_free((void *)aup->rx_ring[0],
 867                2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
 868out2:
 869        kfree(aup->rx_buff.head);
 870out1:
 871        printk(KERN_ERR "au1k_irda_net_init() failed.  Returns %d\n", retval);
 872        return retval;
 873}
 874
 875static int au1k_irda_probe(struct platform_device *pdev)
 876{
 877        struct au1k_private *aup;
 878        struct net_device *dev;
 879        struct resource *r;
 880        struct clk *c;
 881        int err;
 882
 883        dev = alloc_irdadev(sizeof(struct au1k_private));
 884        if (!dev)
 885                return -ENOMEM;
 886
 887        aup = netdev_priv(dev);
 888
 889        aup->platdata = pdev->dev.platform_data;
 890
 891        err = -EINVAL;
 892        r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
 893        if (!r)
 894                goto out;
 895
 896        aup->irq_tx = r->start;
 897
 898        r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
 899        if (!r)
 900                goto out;
 901
 902        aup->irq_rx = r->start;
 903
 904        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 905        if (!r)
 906                goto out;
 907
 908        err = -EBUSY;
 909        aup->ioarea = request_mem_region(r->start, resource_size(r),
 910                                         pdev->name);
 911        if (!aup->ioarea)
 912                goto out;
 913
 914        /* bail out early if clock doesn't exist */
 915        c = clk_get(NULL, "irda_clk");
 916        if (IS_ERR(c)) {
 917                err = PTR_ERR(c);
 918                goto out;
 919        }
 920        clk_put(c);
 921
 922        aup->iobase = ioremap_nocache(r->start, resource_size(r));
 923        if (!aup->iobase)
 924                goto out2;
 925
 926        dev->irq = aup->irq_rx;
 927
 928        err = au1k_irda_net_init(dev);
 929        if (err)
 930                goto out3;
 931        err = register_netdev(dev);
 932        if (err)
 933                goto out4;
 934
 935        platform_set_drvdata(pdev, dev);
 936
 937        printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
 938        return 0;
 939
 940out4:
 941        dma_free((void *)aup->db[0].vaddr,
 942                MAX_BUF_SIZE * 2 * NUM_IR_DESC);
 943        dma_free((void *)aup->rx_ring[0],
 944                2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
 945        kfree(aup->rx_buff.head);
 946out3:
 947        iounmap(aup->iobase);
 948out2:
 949        release_resource(aup->ioarea);
 950        kfree(aup->ioarea);
 951out:
 952        free_netdev(dev);
 953        return err;
 954}
 955
 956static int au1k_irda_remove(struct platform_device *pdev)
 957{
 958        struct net_device *dev = platform_get_drvdata(pdev);
 959        struct au1k_private *aup = netdev_priv(dev);
 960
 961        unregister_netdev(dev);
 962
 963        dma_free((void *)aup->db[0].vaddr,
 964                MAX_BUF_SIZE * 2 * NUM_IR_DESC);
 965        dma_free((void *)aup->rx_ring[0],
 966                2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
 967        kfree(aup->rx_buff.head);
 968
 969        iounmap(aup->iobase);
 970        release_resource(aup->ioarea);
 971        kfree(aup->ioarea);
 972
 973        free_netdev(dev);
 974
 975        return 0;
 976}
 977
 978static struct platform_driver au1k_irda_driver = {
 979        .driver = {
 980                .name   = "au1000-irda",
 981        },
 982        .probe          = au1k_irda_probe,
 983        .remove         = au1k_irda_remove,
 984};
 985
 986module_platform_driver(au1k_irda_driver);
 987
 988MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
 989MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
 990