linux/drivers/rtc/rtc-ab-b5ze-s3.c
<<
>>
Prefs
   1/*
   2 * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
   3 *                  I2C RTC / Alarm chip
   4 *
   5 * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
   6 *
   7 * Detailed datasheet of the chip is available here:
   8 *
   9 *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
  10 *
  11 * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/rtc.h>
  27#include <linux/i2c.h>
  28#include <linux/bcd.h>
  29#include <linux/of.h>
  30#include <linux/regmap.h>
  31#include <linux/interrupt.h>
  32
  33#define DRV_NAME "rtc-ab-b5ze-s3"
  34
  35/* Control section */
  36#define ABB5ZES3_REG_CTRL1         0x00    /* Control 1 register */
  37#define ABB5ZES3_REG_CTRL1_CIE     BIT(0)  /* Pulse interrupt enable */
  38#define ABB5ZES3_REG_CTRL1_AIE     BIT(1)  /* Alarm interrupt enable */
  39#define ABB5ZES3_REG_CTRL1_SIE     BIT(2)  /* Second interrupt enable */
  40#define ABB5ZES3_REG_CTRL1_PM      BIT(3)  /* 24h/12h mode */
  41#define ABB5ZES3_REG_CTRL1_SR      BIT(4)  /* Software reset */
  42#define ABB5ZES3_REG_CTRL1_STOP    BIT(5)  /* RTC circuit enable */
  43#define ABB5ZES3_REG_CTRL1_CAP     BIT(7)
  44
  45#define ABB5ZES3_REG_CTRL2         0x01    /* Control 2 register */
  46#define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
  47#define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
  48#define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
  49#define ABB5ZES3_REG_CTRL2_AF      BIT(3)  /* Alarm interrupt status */
  50#define ABB5ZES3_REG_CTRL2_SF      BIT(4)  /* Second interrupt status */
  51#define ABB5ZES3_REG_CTRL2_CTBF    BIT(5)  /* Countdown timer B int. status */
  52#define ABB5ZES3_REG_CTRL2_CTAF    BIT(6)  /* Countdown timer A int. status */
  53#define ABB5ZES3_REG_CTRL2_WTAF    BIT(7)  /* Watchdog timer A int. status */
  54
  55#define ABB5ZES3_REG_CTRL3         0x02    /* Control 3 register */
  56#define ABB5ZES3_REG_CTRL3_PM2     BIT(7)  /* Power Management bit 2 */
  57#define ABB5ZES3_REG_CTRL3_PM1     BIT(6)  /* Power Management bit 1 */
  58#define ABB5ZES3_REG_CTRL3_PM0     BIT(5)  /* Power Management bit 0 */
  59#define ABB5ZES3_REG_CTRL3_BSF     BIT(3)  /* Battery switchover int. status */
  60#define ABB5ZES3_REG_CTRL3_BLF     BIT(2)  /* Battery low int. status */
  61#define ABB5ZES3_REG_CTRL3_BSIE    BIT(1)  /* Battery switchover int. enable */
  62#define ABB5ZES3_REG_CTRL3_BLIE    BIT(0)  /* Battery low int. enable */
  63
  64#define ABB5ZES3_CTRL_SEC_LEN      3
  65
  66/* RTC section */
  67#define ABB5ZES3_REG_RTC_SC        0x03    /* RTC Seconds register */
  68#define ABB5ZES3_REG_RTC_SC_OSC    BIT(7)  /* Clock integrity status */
  69#define ABB5ZES3_REG_RTC_MN        0x04    /* RTC Minutes register */
  70#define ABB5ZES3_REG_RTC_HR        0x05    /* RTC Hours register */
  71#define ABB5ZES3_REG_RTC_HR_PM     BIT(5)  /* RTC Hours PM bit */
  72#define ABB5ZES3_REG_RTC_DT        0x06    /* RTC Date register */
  73#define ABB5ZES3_REG_RTC_DW        0x07    /* RTC Day of the week register */
  74#define ABB5ZES3_REG_RTC_MO        0x08    /* RTC Month register */
  75#define ABB5ZES3_REG_RTC_YR        0x09    /* RTC Year register */
  76
  77#define ABB5ZES3_RTC_SEC_LEN       7
  78
  79/* Alarm section (enable bits are all active low) */
  80#define ABB5ZES3_REG_ALRM_MN       0x0A    /* Alarm - minute register */
  81#define ABB5ZES3_REG_ALRM_MN_AE    BIT(7)  /* Minute enable */
  82#define ABB5ZES3_REG_ALRM_HR       0x0B    /* Alarm - hours register */
  83#define ABB5ZES3_REG_ALRM_HR_AE    BIT(7)  /* Hour enable */
  84#define ABB5ZES3_REG_ALRM_DT       0x0C    /* Alarm - date register */
  85#define ABB5ZES3_REG_ALRM_DT_AE    BIT(7)  /* Date (day of the month) enable */
  86#define ABB5ZES3_REG_ALRM_DW       0x0D    /* Alarm - day of the week reg. */
  87#define ABB5ZES3_REG_ALRM_DW_AE    BIT(7)  /* Day of the week enable */
  88
  89#define ABB5ZES3_ALRM_SEC_LEN      4
  90
  91/* Frequency offset section */
  92#define ABB5ZES3_REG_FREQ_OF       0x0E    /* Frequency offset register */
  93#define ABB5ZES3_REG_FREQ_OF_MODE  0x0E    /* Offset mode: 2 hours / minute */
  94
  95/* CLOCKOUT section */
  96#define ABB5ZES3_REG_TIM_CLK       0x0F    /* Timer & Clockout register */
  97#define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
  98#define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
  99#define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
 100#define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
 101#define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
 102#define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
 103#define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*          - 10 : timer     */
 104#define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
 105
 106/* Timer A Section */
 107#define ABB5ZES3_REG_TIMA_CLK      0x10    /* Timer A clock register */
 108#define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
 109#define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
 110#define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
 111#define ABB5ZES3_REG_TIMA          0x11    /* Timer A register */
 112
 113#define ABB5ZES3_TIMA_SEC_LEN      2
 114
 115/* Timer B Section */
 116#define ABB5ZES3_REG_TIMB_CLK      0x12    /* Timer B clock register */
 117#define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
 118#define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
 119#define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
 120#define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
 121#define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
 122#define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
 123#define ABB5ZES3_REG_TIMB          0x13    /* Timer B register */
 124#define ABB5ZES3_TIMB_SEC_LEN      2
 125
 126#define ABB5ZES3_MEM_MAP_LEN       0x14
 127
 128struct abb5zes3_rtc_data {
 129        struct rtc_device *rtc;
 130        struct regmap *regmap;
 131        struct mutex lock;
 132
 133        int irq;
 134
 135        bool battery_low;
 136        bool timer_alarm; /* current alarm is via timer A */
 137};
 138
 139/*
 140 * Try and match register bits w/ fixed null values to see whether we
 141 * are dealing with an ABB5ZES3. Note: this function is called early
 142 * during init and hence does need mutex protection.
 143 */
 144static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
 145{
 146        u8 regs[ABB5ZES3_MEM_MAP_LEN];
 147        static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
 148                                                       0x80, 0xc0, 0xc0, 0xf8,
 149                                                       0xe0, 0x00, 0x00, 0x40,
 150                                                       0x40, 0x78, 0x00, 0x00,
 151                                                       0xf8, 0x00, 0x88, 0x00 };
 152        int ret, i;
 153
 154        ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
 155        if (ret)
 156                return ret;
 157
 158        for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
 159                if (regs[i] & mask[i]) /* check if bits are cleared */
 160                        return -ENODEV;
 161        }
 162
 163        return 0;
 164}
 165
 166/* Clear alarm status bit. */
 167static int _abb5zes3_rtc_clear_alarm(struct device *dev)
 168{
 169        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 170        int ret;
 171
 172        ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
 173                                 ABB5ZES3_REG_CTRL2_AF, 0);
 174        if (ret)
 175                dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
 176
 177        return ret;
 178}
 179
 180/* Enable or disable alarm (i.e. alarm interrupt generation) */
 181static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
 182{
 183        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 184        int ret;
 185
 186        ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
 187                                 ABB5ZES3_REG_CTRL1_AIE,
 188                                 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
 189        if (ret)
 190                dev_err(dev, "%s: writing alarm INT failed (%d)\n",
 191                        __func__, ret);
 192
 193        return ret;
 194}
 195
 196/* Enable or disable timer (watchdog timer A interrupt generation) */
 197static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
 198{
 199        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 200        int ret;
 201
 202        ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
 203                                 ABB5ZES3_REG_CTRL2_WTAIE,
 204                                 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
 205        if (ret)
 206                dev_err(dev, "%s: writing timer INT failed (%d)\n",
 207                        __func__, ret);
 208
 209        return ret;
 210}
 211
 212/*
 213 * Note: we only read, so regmap inner lock protection is sufficient, i.e.
 214 * we do not need driver's main lock protection.
 215 */
 216static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
 217{
 218        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 219        u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
 220        int ret;
 221
 222        /*
 223         * As we need to read CTRL1 register anyway to access 24/12h
 224         * mode bit, we do a single bulk read of both control and RTC
 225         * sections (they are consecutive). This also ease indexing
 226         * of register values after bulk read.
 227         */
 228        ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
 229                               sizeof(regs));
 230        if (ret) {
 231                dev_err(dev, "%s: reading RTC time failed (%d)\n",
 232                        __func__, ret);
 233                goto err;
 234        }
 235
 236        /* If clock integrity is not guaranteed, do not return a time value */
 237        if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
 238                ret = -ENODATA;
 239                goto err;
 240        }
 241
 242        tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
 243        tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
 244
 245        if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
 246                tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
 247                if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
 248                        tm->tm_hour += 12;
 249        } else {                                                /* 24hr mode */
 250                tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
 251        }
 252
 253        tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
 254        tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
 255        tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
 256        tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
 257
 258        ret = rtc_valid_tm(tm);
 259
 260err:
 261        return ret;
 262}
 263
 264static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
 265{
 266        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 267        u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
 268        int ret;
 269
 270        /*
 271         * Year register is 8-bit wide and bcd-coded, i.e records values
 272         * between 0 and 99. tm_year is an offset from 1900 and we are
 273         * interested in the 2000-2099 range, so any value less than 100
 274         * is invalid.
 275         */
 276        if (tm->tm_year < 100)
 277                return -EINVAL;
 278
 279        regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
 280        regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
 281        regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
 282        regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
 283        regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
 284        regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
 285        regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
 286
 287        mutex_lock(&data->lock);
 288        ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
 289                                regs + ABB5ZES3_REG_RTC_SC,
 290                                ABB5ZES3_RTC_SEC_LEN);
 291        mutex_unlock(&data->lock);
 292
 293
 294        return ret;
 295}
 296
 297/*
 298 * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
 299 * given number of seconds.
 300 */
 301static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
 302{
 303        *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
 304        *timer_a = secs;
 305}
 306
 307/*
 308 * Return current number of seconds in Timer A. As we only use
 309 * timer A with a 1Hz freq, this is what we expect to have.
 310 */
 311static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
 312{
 313        if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
 314                return -EINVAL;
 315
 316        *secs = timer_a;
 317
 318        return 0;
 319}
 320
 321/*
 322 * Read alarm currently configured via a watchdog timer using timer A. This
 323 * is done by reading current RTC time and adding remaining timer time.
 324 */
 325static int _abb5zes3_rtc_read_timer(struct device *dev,
 326                                    struct rtc_wkalrm *alarm)
 327{
 328        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 329        struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
 330        u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
 331        unsigned long rtc_secs;
 332        unsigned int reg;
 333        u8 timer_secs;
 334        int ret;
 335
 336        /*
 337         * Instead of doing two separate calls, because they are consecutive,
 338         * we grab both clockout register and Timer A section. The latter is
 339         * used to decide if timer A is enabled (as a watchdog timer).
 340         */
 341        ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
 342                               ABB5ZES3_TIMA_SEC_LEN + 1);
 343        if (ret) {
 344                dev_err(dev, "%s: reading Timer A section failed (%d)\n",
 345                        __func__, ret);
 346                goto err;
 347        }
 348
 349        /* get current time ... */
 350        ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 351        if (ret)
 352                goto err;
 353
 354        /* ... convert to seconds ... */
 355        ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
 356        if (ret)
 357                goto err;
 358
 359        /* ... add remaining timer A time ... */
 360        ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
 361        if (ret)
 362                goto err;
 363
 364        /* ... and convert back. */
 365        rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
 366
 367        ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
 368        if (ret) {
 369                dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
 370                        __func__, ret);
 371                goto err;
 372        }
 373
 374        alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
 375
 376err:
 377        return ret;
 378}
 379
 380/* Read alarm currently configured via a RTC alarm registers. */
 381static int _abb5zes3_rtc_read_alarm(struct device *dev,
 382                                    struct rtc_wkalrm *alarm)
 383{
 384        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 385        struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
 386        unsigned long rtc_secs, alarm_secs;
 387        u8 regs[ABB5ZES3_ALRM_SEC_LEN];
 388        unsigned int reg;
 389        int ret;
 390
 391        ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
 392                               ABB5ZES3_ALRM_SEC_LEN);
 393        if (ret) {
 394                dev_err(dev, "%s: reading alarm section failed (%d)\n",
 395                        __func__, ret);
 396                goto err;
 397        }
 398
 399        alarm_tm->tm_sec  = 0;
 400        alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
 401        alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
 402        alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
 403        alarm_tm->tm_wday = -1;
 404
 405        /*
 406         * The alarm section does not store year/month. We use the ones in rtc
 407         * section as a basis and increment month and then year if needed to get
 408         * alarm after current time.
 409         */
 410        ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 411        if (ret)
 412                goto err;
 413
 414        alarm_tm->tm_year = rtc_tm.tm_year;
 415        alarm_tm->tm_mon = rtc_tm.tm_mon;
 416
 417        ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
 418        if (ret)
 419                goto err;
 420
 421        ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
 422        if (ret)
 423                goto err;
 424
 425        if (alarm_secs < rtc_secs) {
 426                if (alarm_tm->tm_mon == 11) {
 427                        alarm_tm->tm_mon = 0;
 428                        alarm_tm->tm_year += 1;
 429                } else {
 430                        alarm_tm->tm_mon += 1;
 431                }
 432        }
 433
 434        ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
 435        if (ret) {
 436                dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
 437                        __func__, ret);
 438                goto err;
 439        }
 440
 441        alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
 442
 443err:
 444        return ret;
 445}
 446
 447/*
 448 * As the Alarm mechanism supported by the chip is only accurate to the
 449 * minute, we use the watchdog timer mechanism provided by timer A
 450 * (up to 256 seconds w/ a second accuracy) for low alarm values (below
 451 * 4 minutes). Otherwise, we use the common alarm mechanism provided
 452 * by the chip. In order for that to work, we keep track of currently
 453 * configured timer type via 'timer_alarm' flag in our private data
 454 * structure.
 455 */
 456static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 457{
 458        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 459        int ret;
 460
 461        mutex_lock(&data->lock);
 462        if (data->timer_alarm)
 463                ret = _abb5zes3_rtc_read_timer(dev, alarm);
 464        else
 465                ret = _abb5zes3_rtc_read_alarm(dev, alarm);
 466        mutex_unlock(&data->lock);
 467
 468        return ret;
 469}
 470
 471/*
 472 * Set alarm using chip alarm mechanism. It is only accurate to the
 473 * minute (not the second). The function expects alarm interrupt to
 474 * be disabled.
 475 */
 476static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 477{
 478        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 479        struct rtc_time *alarm_tm = &alarm->time;
 480        unsigned long rtc_secs, alarm_secs;
 481        u8 regs[ABB5ZES3_ALRM_SEC_LEN];
 482        struct rtc_time rtc_tm;
 483        int ret, enable = 1;
 484
 485        ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 486        if (ret)
 487                goto err;
 488
 489        ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
 490        if (ret)
 491                goto err;
 492
 493        ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
 494        if (ret)
 495                goto err;
 496
 497        /* If alarm time is before current time, disable the alarm */
 498        if (!alarm->enabled || alarm_secs <= rtc_secs) {
 499                enable = 0;
 500        } else {
 501                /*
 502                 * Chip only support alarms up to one month in the future. Let's
 503                 * return an error if we get something after that limit.
 504                 * Comparison is done by incrementing rtc_tm month field by one
 505                 * and checking alarm value is still below.
 506                 */
 507                if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
 508                        rtc_tm.tm_mon = 0;
 509                        rtc_tm.tm_year += 1;
 510                } else {
 511                        rtc_tm.tm_mon += 1;
 512                }
 513
 514                ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
 515                if (ret)
 516                        goto err;
 517
 518                if (alarm_secs > rtc_secs) {
 519                        dev_err(dev, "%s: alarm maximum is one month in the "
 520                                "future (%d)\n", __func__, ret);
 521                        ret = -EINVAL;
 522                        goto err;
 523                }
 524        }
 525
 526        /*
 527         * Program all alarm registers but DW one. For each register, setting
 528         * MSB to 0 enables associated alarm.
 529         */
 530        regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
 531        regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
 532        regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
 533        regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
 534
 535        ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
 536                                ABB5ZES3_ALRM_SEC_LEN);
 537        if (ret < 0) {
 538                dev_err(dev, "%s: writing ALARM section failed (%d)\n",
 539                        __func__, ret);
 540                goto err;
 541        }
 542
 543        /* Record currently configured alarm is not a timer */
 544        data->timer_alarm = 0;
 545
 546        /* Enable or disable alarm interrupt generation */
 547        ret = _abb5zes3_rtc_update_alarm(dev, enable);
 548
 549err:
 550        return ret;
 551}
 552
 553/*
 554 * Set alarm using timer watchdog (via timer A) mechanism. The function expects
 555 * timer A interrupt to be disabled.
 556 */
 557static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
 558                                   u8 secs)
 559{
 560        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 561        u8 regs[ABB5ZES3_TIMA_SEC_LEN];
 562        u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
 563        int ret = 0;
 564
 565        /* Program given number of seconds to Timer A registers */
 566        sec_to_timer_a(secs, &regs[0], &regs[1]);
 567        ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
 568                                ABB5ZES3_TIMA_SEC_LEN);
 569        if (ret < 0) {
 570                dev_err(dev, "%s: writing timer section failed\n", __func__);
 571                goto err;
 572        }
 573
 574        /* Configure Timer A as a watchdog timer */
 575        ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
 576                                 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
 577        if (ret)
 578                dev_err(dev, "%s: failed to update timer\n", __func__);
 579
 580        /* Record currently configured alarm is a timer */
 581        data->timer_alarm = 1;
 582
 583        /* Enable or disable timer interrupt generation */
 584        ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
 585
 586err:
 587        return ret;
 588}
 589
 590/*
 591 * The chip has an alarm which is only accurate to the minute. In order to
 592 * handle alarms below that limit, we use the watchdog timer function of
 593 * timer A. More precisely, the timer method is used for alarms below 240
 594 * seconds.
 595 */
 596static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 597{
 598        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 599        struct rtc_time *alarm_tm = &alarm->time;
 600        unsigned long rtc_secs, alarm_secs;
 601        struct rtc_time rtc_tm;
 602        int ret;
 603
 604        mutex_lock(&data->lock);
 605        ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 606        if (ret)
 607                goto err;
 608
 609        ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
 610        if (ret)
 611                goto err;
 612
 613        ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
 614        if (ret)
 615                goto err;
 616
 617        /* Let's first disable both the alarm and the timer interrupts */
 618        ret = _abb5zes3_rtc_update_alarm(dev, false);
 619        if (ret < 0) {
 620                dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
 621                        ret);
 622                goto err;
 623        }
 624        ret = _abb5zes3_rtc_update_timer(dev, false);
 625        if (ret < 0) {
 626                dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
 627                        ret);
 628                goto err;
 629        }
 630
 631        data->timer_alarm = 0;
 632
 633        /*
 634         * Let's now configure the alarm; if we are expected to ring in
 635         * more than 240s, then we setup an alarm. Otherwise, a timer.
 636         */
 637        if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
 638                ret = _abb5zes3_rtc_set_timer(dev, alarm,
 639                                              alarm_secs - rtc_secs);
 640        else
 641                ret = _abb5zes3_rtc_set_alarm(dev, alarm);
 642
 643 err:
 644        mutex_unlock(&data->lock);
 645
 646        if (ret)
 647                dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
 648                        ret);
 649
 650        return ret;
 651 }
 652
 653/* Enable or disable battery low irq generation */
 654static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
 655                                                       bool enable)
 656{
 657        return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
 658                                  ABB5ZES3_REG_CTRL3_BLIE,
 659                                  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
 660}
 661
 662/*
 663 * Check current RTC status and enable/disable what needs to be. Return 0 if
 664 * everything went ok and a negative value upon error. Note: this function
 665 * is called early during init and hence does need mutex protection.
 666 */
 667static int abb5zes3_rtc_check_setup(struct device *dev)
 668{
 669        struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 670        struct regmap *regmap = data->regmap;
 671        unsigned int reg;
 672        int ret;
 673        u8 mask;
 674
 675        /*
 676         * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
 677         * is disabled here to prevent polluting the interrupt line and
 678         * uselessly triggering the IRQ handler we install for alarm and battery
 679         * low events. Note: this is done before clearing int. status below
 680         * in this function.
 681         * We also disable all timers and set timer interrupt to permanent (not
 682         * pulsed).
 683         */
 684        mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
 685                ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
 686                ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
 687                ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
 688        ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
 689                ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
 690                ABB5ZES3_REG_TIM_CLK_COF2);
 691        if (ret < 0) {
 692                dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
 693                        __func__, ret);
 694                return ret;
 695        }
 696
 697        /*
 698         * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
 699         * individually by clearing/setting MSB of each associated register. So,
 700         * we set all alarm enable bits to disable current alarm setting.
 701         */
 702        mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
 703                ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
 704        ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
 705        if (ret < 0) {
 706                dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
 707                        __func__, ret);
 708                return ret;
 709        }
 710
 711        /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
 712        mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
 713                ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
 714                ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
 715        ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
 716        if (ret < 0) {
 717                dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
 718                        __func__, ret);
 719                return ret;
 720        }
 721
 722        /*
 723         * Set Control 2 register (timer int. disabled, alarm status cleared).
 724         * WTAF is read-only and cleared automatically by reading the register.
 725         */
 726        mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
 727                ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
 728                ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
 729                ABB5ZES3_REG_CTRL2_CTAF);
 730        ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
 731        if (ret < 0) {
 732                dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
 733                        __func__, ret);
 734                return ret;
 735        }
 736
 737        /*
 738         * Enable battery low detection function and battery switchover function
 739         * (standard mode). Disable associated interrupts. Clear battery
 740         * switchover flag but not battery low flag. The latter is checked
 741         * later below.
 742         */
 743        mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
 744                ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
 745                ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
 746        ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
 747        if (ret < 0) {
 748                dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
 749                        __func__, ret);
 750                return ret;
 751        }
 752
 753        /* Check oscillator integrity flag */
 754        ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
 755        if (ret < 0) {
 756                dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
 757                        __func__, ret);
 758                return ret;
 759        }
 760
 761        if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
 762                dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
 763                        "or has been interrupted.\n");
 764                dev_err(dev, "change battery (if not already done) and  "
 765                        "then set time to reset osc. failure flag.\n");
 766        }
 767
 768        /*
 769         * Check battery low flag at startup: this allows reporting battery
 770         * is low at startup when IRQ line is not connected. Note: we record
 771         * current status to avoid reenabling this interrupt later in probe
 772         * function if battery is low.
 773         */
 774        ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
 775        if (ret < 0) {
 776                dev_err(dev, "%s: unable to read battery low flag (%d)\n",
 777                        __func__, ret);
 778                return ret;
 779        }
 780
 781        data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
 782        if (data->battery_low) {
 783                dev_err(dev, "RTC battery is low; please, consider "
 784                        "changing it!\n");
 785
 786                ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
 787                if (ret)
 788                        dev_err(dev, "%s: disabling battery low interrupt "
 789                                "generation failed (%d)\n", __func__, ret);
 790        }
 791
 792        return ret;
 793}
 794
 795static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
 796                                         unsigned int enable)
 797{
 798        struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 799        int ret = 0;
 800
 801        if (rtc_data->irq) {
 802                mutex_lock(&rtc_data->lock);
 803                if (rtc_data->timer_alarm)
 804                        ret = _abb5zes3_rtc_update_timer(dev, enable);
 805                else
 806                        ret = _abb5zes3_rtc_update_alarm(dev, enable);
 807                mutex_unlock(&rtc_data->lock);
 808        }
 809
 810        return ret;
 811}
 812
 813static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
 814{
 815        struct i2c_client *client = data;
 816        struct device *dev = &client->dev;
 817        struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 818        struct rtc_device *rtc = rtc_data->rtc;
 819        u8 regs[ABB5ZES3_CTRL_SEC_LEN];
 820        int ret, handled = IRQ_NONE;
 821
 822        ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
 823                               ABB5ZES3_CTRL_SEC_LEN);
 824        if (ret) {
 825                dev_err(dev, "%s: unable to read control section (%d)!\n",
 826                        __func__, ret);
 827                return handled;
 828        }
 829
 830        /*
 831         * Check battery low detection flag and disable battery low interrupt
 832         * generation if flag is set (interrupt can only be cleared when
 833         * battery is replaced).
 834         */
 835        if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
 836                dev_err(dev, "RTC battery is low; please change it!\n");
 837
 838                _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
 839
 840                handled = IRQ_HANDLED;
 841        }
 842
 843        /* Check alarm flag */
 844        if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
 845                dev_dbg(dev, "RTC alarm!\n");
 846
 847                rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
 848
 849                /* Acknowledge and disable the alarm */
 850                _abb5zes3_rtc_clear_alarm(dev);
 851                _abb5zes3_rtc_update_alarm(dev, 0);
 852
 853                handled = IRQ_HANDLED;
 854        }
 855
 856        /* Check watchdog Timer A flag */
 857        if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
 858                dev_dbg(dev, "RTC timer!\n");
 859
 860                rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
 861
 862                /*
 863                 * Acknowledge and disable the alarm. Note: WTAF
 864                 * flag had been cleared when reading CTRL2
 865                 */
 866                _abb5zes3_rtc_update_timer(dev, 0);
 867
 868                rtc_data->timer_alarm = 0;
 869
 870                handled = IRQ_HANDLED;
 871        }
 872
 873        return handled;
 874}
 875
 876static const struct rtc_class_ops rtc_ops = {
 877        .read_time = _abb5zes3_rtc_read_time,
 878        .set_time = abb5zes3_rtc_set_time,
 879        .read_alarm = abb5zes3_rtc_read_alarm,
 880        .set_alarm = abb5zes3_rtc_set_alarm,
 881        .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
 882};
 883
 884static const struct regmap_config abb5zes3_rtc_regmap_config = {
 885        .reg_bits = 8,
 886        .val_bits = 8,
 887};
 888
 889static int abb5zes3_probe(struct i2c_client *client,
 890                          const struct i2c_device_id *id)
 891{
 892        struct abb5zes3_rtc_data *data = NULL;
 893        struct device *dev = &client->dev;
 894        struct regmap *regmap;
 895        int ret;
 896
 897        if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
 898                                     I2C_FUNC_SMBUS_BYTE_DATA |
 899                                     I2C_FUNC_SMBUS_I2C_BLOCK)) {
 900                ret = -ENODEV;
 901                goto err;
 902        }
 903
 904        regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
 905        if (IS_ERR(regmap)) {
 906                ret = PTR_ERR(regmap);
 907                dev_err(dev, "%s: regmap allocation failed: %d\n",
 908                        __func__, ret);
 909                goto err;
 910        }
 911
 912        ret = abb5zes3_i2c_validate_chip(regmap);
 913        if (ret)
 914                goto err;
 915
 916        data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 917        if (!data) {
 918                ret = -ENOMEM;
 919                goto err;
 920        }
 921
 922        mutex_init(&data->lock);
 923        data->regmap = regmap;
 924        dev_set_drvdata(dev, data);
 925
 926        ret = abb5zes3_rtc_check_setup(dev);
 927        if (ret)
 928                goto err;
 929
 930        if (client->irq > 0) {
 931                ret = devm_request_threaded_irq(dev, client->irq, NULL,
 932                                                _abb5zes3_rtc_interrupt,
 933                                                IRQF_SHARED|IRQF_ONESHOT,
 934                                                DRV_NAME, client);
 935                if (!ret) {
 936                        device_init_wakeup(dev, true);
 937                        data->irq = client->irq;
 938                        dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
 939                                client->irq);
 940                } else {
 941                        dev_err(dev, "%s: irq %d unavailable (%d)\n",
 942                                __func__, client->irq, ret);
 943                        goto err;
 944                }
 945        }
 946
 947        data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
 948                                             THIS_MODULE);
 949        ret = PTR_ERR_OR_ZERO(data->rtc);
 950        if (ret) {
 951                dev_err(dev, "%s: unable to register RTC device (%d)\n",
 952                        __func__, ret);
 953                goto err;
 954        }
 955
 956        /* Enable battery low detection interrupt if battery not already low */
 957        if (!data->battery_low && data->irq) {
 958                ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
 959                if (ret) {
 960                        dev_err(dev, "%s: enabling battery low interrupt "
 961                                "generation failed (%d)\n", __func__, ret);
 962                        goto err;
 963                }
 964        }
 965
 966err:
 967        if (ret && data && data->irq)
 968                device_init_wakeup(dev, false);
 969        return ret;
 970}
 971
 972static int abb5zes3_remove(struct i2c_client *client)
 973{
 974        struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
 975
 976        if (rtc_data->irq > 0)
 977                device_init_wakeup(&client->dev, false);
 978
 979        return 0;
 980}
 981
 982#ifdef CONFIG_PM_SLEEP
 983static int abb5zes3_rtc_suspend(struct device *dev)
 984{
 985        struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 986
 987        if (device_may_wakeup(dev))
 988                return enable_irq_wake(rtc_data->irq);
 989
 990        return 0;
 991}
 992
 993static int abb5zes3_rtc_resume(struct device *dev)
 994{
 995        struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 996
 997        if (device_may_wakeup(dev))
 998                return disable_irq_wake(rtc_data->irq);
 999
1000        return 0;
1001}
1002#endif
1003
1004static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
1005                         abb5zes3_rtc_resume);
1006
1007#ifdef CONFIG_OF
1008static const struct of_device_id abb5zes3_dt_match[] = {
1009        { .compatible = "abracon,abb5zes3" },
1010        { },
1011};
1012MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
1013#endif
1014
1015static const struct i2c_device_id abb5zes3_id[] = {
1016        { "abb5zes3", 0 },
1017        { }
1018};
1019MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
1020
1021static struct i2c_driver abb5zes3_driver = {
1022        .driver = {
1023                .name = DRV_NAME,
1024                .pm = &abb5zes3_rtc_pm_ops,
1025                .of_match_table = of_match_ptr(abb5zes3_dt_match),
1026        },
1027        .probe    = abb5zes3_probe,
1028        .remove   = abb5zes3_remove,
1029        .id_table = abb5zes3_id,
1030};
1031module_i2c_driver(abb5zes3_driver);
1032
1033MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
1034MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
1035MODULE_LICENSE("GPL");
1036