1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/spinlock.h>
39#include <linux/platform_device.h>
40#include <linux/log2.h>
41#include <linux/pm.h>
42#include <linux/of.h>
43#include <linux/of_platform.h>
44#ifdef CONFIG_X86
45#include <asm/i8259.h>
46#endif
47
48
49#include <linux/mc146818rtc.h>
50
51struct cmos_rtc {
52 struct rtc_device *rtc;
53 struct device *dev;
54 int irq;
55 struct resource *iomem;
56 time64_t alarm_expires;
57
58 void (*wake_on)(struct device *);
59 void (*wake_off)(struct device *);
60
61 u8 enabled_wake;
62 u8 suspend_ctrl;
63
64
65 u8 day_alrm;
66 u8 mon_alrm;
67 u8 century;
68
69 struct rtc_wkalrm saved_wkalrm;
70};
71
72
73#define is_valid_irq(n) ((n) > 0)
74
75static const char driver_name[] = "rtc_cmos";
76
77
78
79
80
81#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
82
83static inline int is_intr(u8 rtc_intr)
84{
85 if (!(rtc_intr & RTC_IRQF))
86 return 0;
87 return rtc_intr & RTC_IRQMASK;
88}
89
90
91
92
93
94
95
96
97
98
99
100
101
102#ifdef CONFIG_HPET_EMULATE_RTC
103#include <asm/hpet.h>
104#else
105
106static inline int is_hpet_enabled(void)
107{
108 return 0;
109}
110
111static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
112{
113 return 0;
114}
115
116static inline int hpet_set_rtc_irq_bit(unsigned long mask)
117{
118 return 0;
119}
120
121static inline int
122hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
123{
124 return 0;
125}
126
127static inline int hpet_set_periodic_freq(unsigned long freq)
128{
129 return 0;
130}
131
132static inline int hpet_rtc_dropped_irq(void)
133{
134 return 0;
135}
136
137static inline int hpet_rtc_timer_init(void)
138{
139 return 0;
140}
141
142extern irq_handler_t hpet_rtc_interrupt;
143
144static inline int hpet_register_irq_handler(irq_handler_t handler)
145{
146 return 0;
147}
148
149static inline int hpet_unregister_irq_handler(irq_handler_t handler)
150{
151 return 0;
152}
153
154#endif
155
156
157
158#ifdef RTC_PORT
159
160
161
162
163
164#define can_bank2 true
165
166static inline unsigned char cmos_read_bank2(unsigned char addr)
167{
168 outb(addr, RTC_PORT(2));
169 return inb(RTC_PORT(3));
170}
171
172static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
173{
174 outb(addr, RTC_PORT(2));
175 outb(val, RTC_PORT(3));
176}
177
178#else
179
180#define can_bank2 false
181
182static inline unsigned char cmos_read_bank2(unsigned char addr)
183{
184 return 0;
185}
186
187static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
188{
189}
190
191#endif
192
193
194
195static int cmos_read_time(struct device *dev, struct rtc_time *t)
196{
197
198
199
200
201 if (!pm_trace_rtc_valid())
202 return -EIO;
203
204
205
206
207
208 mc146818_get_time(t);
209 return 0;
210}
211
212static int cmos_set_time(struct device *dev, struct rtc_time *t)
213{
214
215
216
217
218
219
220 return mc146818_set_time(t);
221}
222
223static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
224{
225 struct cmos_rtc *cmos = dev_get_drvdata(dev);
226 unsigned char rtc_control;
227
228 if (!is_valid_irq(cmos->irq))
229 return -EIO;
230
231
232
233
234
235
236 spin_lock_irq(&rtc_lock);
237 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
238 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
239 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
240
241 if (cmos->day_alrm) {
242
243 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
244 if (!t->time.tm_mday)
245 t->time.tm_mday = -1;
246
247 if (cmos->mon_alrm) {
248 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
249 if (!t->time.tm_mon)
250 t->time.tm_mon = -1;
251 }
252 }
253
254 rtc_control = CMOS_READ(RTC_CONTROL);
255 spin_unlock_irq(&rtc_lock);
256
257 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
258 if (((unsigned)t->time.tm_sec) < 0x60)
259 t->time.tm_sec = bcd2bin(t->time.tm_sec);
260 else
261 t->time.tm_sec = -1;
262 if (((unsigned)t->time.tm_min) < 0x60)
263 t->time.tm_min = bcd2bin(t->time.tm_min);
264 else
265 t->time.tm_min = -1;
266 if (((unsigned)t->time.tm_hour) < 0x24)
267 t->time.tm_hour = bcd2bin(t->time.tm_hour);
268 else
269 t->time.tm_hour = -1;
270
271 if (cmos->day_alrm) {
272 if (((unsigned)t->time.tm_mday) <= 0x31)
273 t->time.tm_mday = bcd2bin(t->time.tm_mday);
274 else
275 t->time.tm_mday = -1;
276
277 if (cmos->mon_alrm) {
278 if (((unsigned)t->time.tm_mon) <= 0x12)
279 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
280 else
281 t->time.tm_mon = -1;
282 }
283 }
284 }
285
286 t->enabled = !!(rtc_control & RTC_AIE);
287 t->pending = 0;
288
289 return 0;
290}
291
292static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
293{
294 unsigned char rtc_intr;
295
296
297
298
299 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
300
301 if (is_hpet_enabled())
302 return;
303
304 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
305 if (is_intr(rtc_intr))
306 rtc_update_irq(cmos->rtc, 1, rtc_intr);
307}
308
309static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
310{
311 unsigned char rtc_control;
312
313
314
315
316 rtc_control = CMOS_READ(RTC_CONTROL);
317 cmos_checkintr(cmos, rtc_control);
318
319 rtc_control |= mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_set_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324}
325
326static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
327{
328 unsigned char rtc_control;
329
330 rtc_control = CMOS_READ(RTC_CONTROL);
331 rtc_control &= ~mask;
332 CMOS_WRITE(rtc_control, RTC_CONTROL);
333 hpet_mask_rtc_irq_bit(mask);
334
335 cmos_checkintr(cmos, rtc_control);
336}
337
338static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
339{
340 struct cmos_rtc *cmos = dev_get_drvdata(dev);
341 struct rtc_time now;
342
343 cmos_read_time(dev, &now);
344
345 if (!cmos->day_alrm) {
346 time64_t t_max_date;
347 time64_t t_alrm;
348
349 t_max_date = rtc_tm_to_time64(&now);
350 t_max_date += 24 * 60 * 60 - 1;
351 t_alrm = rtc_tm_to_time64(&t->time);
352 if (t_alrm > t_max_date) {
353 dev_err(dev,
354 "Alarms can be up to one day in the future\n");
355 return -EINVAL;
356 }
357 } else if (!cmos->mon_alrm) {
358 struct rtc_time max_date = now;
359 time64_t t_max_date;
360 time64_t t_alrm;
361 int max_mday;
362
363 if (max_date.tm_mon == 11) {
364 max_date.tm_mon = 0;
365 max_date.tm_year += 1;
366 } else {
367 max_date.tm_mon += 1;
368 }
369 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
370 if (max_date.tm_mday > max_mday)
371 max_date.tm_mday = max_mday;
372
373 t_max_date = rtc_tm_to_time64(&max_date);
374 t_max_date -= 1;
375 t_alrm = rtc_tm_to_time64(&t->time);
376 if (t_alrm > t_max_date) {
377 dev_err(dev,
378 "Alarms can be up to one month in the future\n");
379 return -EINVAL;
380 }
381 } else {
382 struct rtc_time max_date = now;
383 time64_t t_max_date;
384 time64_t t_alrm;
385 int max_mday;
386
387 max_date.tm_year += 1;
388 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
389 if (max_date.tm_mday > max_mday)
390 max_date.tm_mday = max_mday;
391
392 t_max_date = rtc_tm_to_time64(&max_date);
393 t_max_date -= 1;
394 t_alrm = rtc_tm_to_time64(&t->time);
395 if (t_alrm > t_max_date) {
396 dev_err(dev,
397 "Alarms can be up to one year in the future\n");
398 return -EINVAL;
399 }
400 }
401
402 return 0;
403}
404
405static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
406{
407 struct cmos_rtc *cmos = dev_get_drvdata(dev);
408 unsigned char mon, mday, hrs, min, sec, rtc_control;
409 int ret;
410
411 if (!is_valid_irq(cmos->irq))
412 return -EIO;
413
414 ret = cmos_validate_alarm(dev, t);
415 if (ret < 0)
416 return ret;
417
418 mon = t->time.tm_mon + 1;
419 mday = t->time.tm_mday;
420 hrs = t->time.tm_hour;
421 min = t->time.tm_min;
422 sec = t->time.tm_sec;
423
424 rtc_control = CMOS_READ(RTC_CONTROL);
425 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
426
427 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
428 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
429 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
430 min = (min < 60) ? bin2bcd(min) : 0xff;
431 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
432 }
433
434 spin_lock_irq(&rtc_lock);
435
436
437 cmos_irq_disable(cmos, RTC_AIE);
438
439
440 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
441 CMOS_WRITE(min, RTC_MINUTES_ALARM);
442 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
443
444
445 if (cmos->day_alrm) {
446 CMOS_WRITE(mday, cmos->day_alrm);
447 if (cmos->mon_alrm)
448 CMOS_WRITE(mon, cmos->mon_alrm);
449 }
450
451
452
453
454 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
455
456 if (t->enabled)
457 cmos_irq_enable(cmos, RTC_AIE);
458
459 spin_unlock_irq(&rtc_lock);
460
461 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
462
463 return 0;
464}
465
466static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
467{
468 struct cmos_rtc *cmos = dev_get_drvdata(dev);
469 unsigned long flags;
470
471 if (!is_valid_irq(cmos->irq))
472 return -EINVAL;
473
474 spin_lock_irqsave(&rtc_lock, flags);
475
476 if (enabled)
477 cmos_irq_enable(cmos, RTC_AIE);
478 else
479 cmos_irq_disable(cmos, RTC_AIE);
480
481 spin_unlock_irqrestore(&rtc_lock, flags);
482 return 0;
483}
484
485#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
486
487static int cmos_procfs(struct device *dev, struct seq_file *seq)
488{
489 struct cmos_rtc *cmos = dev_get_drvdata(dev);
490 unsigned char rtc_control, valid;
491
492 spin_lock_irq(&rtc_lock);
493 rtc_control = CMOS_READ(RTC_CONTROL);
494 valid = CMOS_READ(RTC_VALID);
495 spin_unlock_irq(&rtc_lock);
496
497
498
499
500 seq_printf(seq,
501 "periodic_IRQ\t: %s\n"
502 "update_IRQ\t: %s\n"
503 "HPET_emulated\t: %s\n"
504
505 "BCD\t\t: %s\n"
506 "DST_enable\t: %s\n"
507 "periodic_freq\t: %d\n"
508 "batt_status\t: %s\n",
509 (rtc_control & RTC_PIE) ? "yes" : "no",
510 (rtc_control & RTC_UIE) ? "yes" : "no",
511 is_hpet_enabled() ? "yes" : "no",
512
513 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
514 (rtc_control & RTC_DST_EN) ? "yes" : "no",
515 cmos->rtc->irq_freq,
516 (valid & RTC_VRT) ? "okay" : "dead");
517
518 return 0;
519}
520
521#else
522#define cmos_procfs NULL
523#endif
524
525static const struct rtc_class_ops cmos_rtc_ops = {
526 .read_time = cmos_read_time,
527 .set_time = cmos_set_time,
528 .read_alarm = cmos_read_alarm,
529 .set_alarm = cmos_set_alarm,
530 .proc = cmos_procfs,
531 .alarm_irq_enable = cmos_alarm_irq_enable,
532};
533
534
535
536
537
538
539
540
541
542#define NVRAM_OFFSET (RTC_REG_D + 1)
543
544static ssize_t
545cmos_nvram_read(struct file *filp, struct kobject *kobj,
546 struct bin_attribute *attr,
547 char *buf, loff_t off, size_t count)
548{
549 int retval;
550
551 off += NVRAM_OFFSET;
552 spin_lock_irq(&rtc_lock);
553 for (retval = 0; count; count--, off++, retval++) {
554 if (off < 128)
555 *buf++ = CMOS_READ(off);
556 else if (can_bank2)
557 *buf++ = cmos_read_bank2(off);
558 else
559 break;
560 }
561 spin_unlock_irq(&rtc_lock);
562
563 return retval;
564}
565
566static ssize_t
567cmos_nvram_write(struct file *filp, struct kobject *kobj,
568 struct bin_attribute *attr,
569 char *buf, loff_t off, size_t count)
570{
571 struct cmos_rtc *cmos;
572 int retval;
573
574 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
575
576
577
578
579
580
581 off += NVRAM_OFFSET;
582 spin_lock_irq(&rtc_lock);
583 for (retval = 0; count; count--, off++, retval++) {
584
585 if (off == cmos->day_alrm
586 || off == cmos->mon_alrm
587 || off == cmos->century)
588 buf++;
589 else if (off < 128)
590 CMOS_WRITE(*buf++, off);
591 else if (can_bank2)
592 cmos_write_bank2(*buf++, off);
593 else
594 break;
595 }
596 spin_unlock_irq(&rtc_lock);
597
598 return retval;
599}
600
601static struct bin_attribute nvram = {
602 .attr = {
603 .name = "nvram",
604 .mode = S_IRUGO | S_IWUSR,
605 },
606
607 .read = cmos_nvram_read,
608 .write = cmos_nvram_write,
609
610};
611
612
613
614static struct cmos_rtc cmos_rtc;
615
616static irqreturn_t cmos_interrupt(int irq, void *p)
617{
618 u8 irqstat;
619 u8 rtc_control;
620
621 spin_lock(&rtc_lock);
622
623
624
625
626
627
628
629
630 irqstat = CMOS_READ(RTC_INTR_FLAGS);
631 rtc_control = CMOS_READ(RTC_CONTROL);
632 if (is_hpet_enabled())
633 irqstat = (unsigned long)irq & 0xF0;
634
635
636
637
638 if (!cmos_rtc.suspend_ctrl)
639 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
640 else
641 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
642
643
644
645
646
647 if (irqstat & RTC_AIE) {
648 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
649 rtc_control &= ~RTC_AIE;
650 CMOS_WRITE(rtc_control, RTC_CONTROL);
651 hpet_mask_rtc_irq_bit(RTC_AIE);
652 CMOS_READ(RTC_INTR_FLAGS);
653 }
654 spin_unlock(&rtc_lock);
655
656 if (is_intr(irqstat)) {
657 rtc_update_irq(p, 1, irqstat);
658 return IRQ_HANDLED;
659 } else
660 return IRQ_NONE;
661}
662
663#ifdef CONFIG_PNP
664#define INITSECTION
665
666#else
667#define INITSECTION __init
668#endif
669
670static int INITSECTION
671cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
672{
673 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
674 int retval = 0;
675 unsigned char rtc_control;
676 unsigned address_space;
677 u32 flags = 0;
678
679
680 if (cmos_rtc.dev)
681 return -EBUSY;
682
683 if (!ports)
684 return -ENODEV;
685
686
687
688
689
690
691 if (RTC_IOMAPPED)
692 ports = request_region(ports->start, resource_size(ports),
693 driver_name);
694 else
695 ports = request_mem_region(ports->start, resource_size(ports),
696 driver_name);
697 if (!ports) {
698 dev_dbg(dev, "i/o registers already in use\n");
699 return -EBUSY;
700 }
701
702 cmos_rtc.irq = rtc_irq;
703 cmos_rtc.iomem = ports;
704
705
706
707
708
709
710#if defined(CONFIG_ATARI)
711 address_space = 64;
712#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
713 || defined(__sparc__) || defined(__mips__) \
714 || defined(__powerpc__) || defined(CONFIG_MN10300)
715 address_space = 128;
716#else
717#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
718 address_space = 128;
719#endif
720 if (can_bank2 && ports->end > (ports->start + 1))
721 address_space = 256;
722
723
724
725
726
727
728
729
730
731
732 if (info) {
733 if (info->flags)
734 flags = info->flags;
735 if (info->address_space)
736 address_space = info->address_space;
737
738 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
739 cmos_rtc.day_alrm = info->rtc_day_alarm;
740 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
741 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
742 if (info->rtc_century && info->rtc_century < 128)
743 cmos_rtc.century = info->rtc_century;
744
745 if (info->wake_on && info->wake_off) {
746 cmos_rtc.wake_on = info->wake_on;
747 cmos_rtc.wake_off = info->wake_off;
748 }
749 }
750
751 cmos_rtc.dev = dev;
752 dev_set_drvdata(dev, &cmos_rtc);
753
754 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
755 &cmos_rtc_ops, THIS_MODULE);
756 if (IS_ERR(cmos_rtc.rtc)) {
757 retval = PTR_ERR(cmos_rtc.rtc);
758 goto cleanup0;
759 }
760
761 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
762
763 spin_lock_irq(&rtc_lock);
764
765 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
766
767
768
769
770
771
772 cmos_rtc.rtc->irq_freq = 1024;
773 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
774 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
775 }
776
777
778 if (is_valid_irq(rtc_irq))
779 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
780
781 rtc_control = CMOS_READ(RTC_CONTROL);
782
783 spin_unlock_irq(&rtc_lock);
784
785 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
786 dev_warn(dev, "only 24-hr supported\n");
787 retval = -ENXIO;
788 goto cleanup1;
789 }
790
791 hpet_rtc_timer_init();
792
793 if (is_valid_irq(rtc_irq)) {
794 irq_handler_t rtc_cmos_int_handler;
795
796 if (is_hpet_enabled()) {
797 rtc_cmos_int_handler = hpet_rtc_interrupt;
798 retval = hpet_register_irq_handler(cmos_interrupt);
799 if (retval) {
800 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
801 dev_warn(dev, "hpet_register_irq_handler "
802 " failed in rtc_init().");
803 goto cleanup1;
804 }
805 } else
806 rtc_cmos_int_handler = cmos_interrupt;
807
808 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
809 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
810 cmos_rtc.rtc);
811 if (retval < 0) {
812 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
813 goto cleanup1;
814 }
815 }
816
817
818 nvram.size = address_space - NVRAM_OFFSET;
819 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
820 if (retval < 0) {
821 dev_dbg(dev, "can't create nvram file? %d\n", retval);
822 goto cleanup2;
823 }
824
825 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
826 !is_valid_irq(rtc_irq) ? "no alarms" :
827 cmos_rtc.mon_alrm ? "alarms up to one year" :
828 cmos_rtc.day_alrm ? "alarms up to one month" :
829 "alarms up to one day",
830 cmos_rtc.century ? ", y3k" : "",
831 nvram.size,
832 is_hpet_enabled() ? ", hpet irqs" : "");
833
834 return 0;
835
836cleanup2:
837 if (is_valid_irq(rtc_irq))
838 free_irq(rtc_irq, cmos_rtc.rtc);
839cleanup1:
840 cmos_rtc.dev = NULL;
841 rtc_device_unregister(cmos_rtc.rtc);
842cleanup0:
843 if (RTC_IOMAPPED)
844 release_region(ports->start, resource_size(ports));
845 else
846 release_mem_region(ports->start, resource_size(ports));
847 return retval;
848}
849
850static void cmos_do_shutdown(int rtc_irq)
851{
852 spin_lock_irq(&rtc_lock);
853 if (is_valid_irq(rtc_irq))
854 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
855 spin_unlock_irq(&rtc_lock);
856}
857
858static void cmos_do_remove(struct device *dev)
859{
860 struct cmos_rtc *cmos = dev_get_drvdata(dev);
861 struct resource *ports;
862
863 cmos_do_shutdown(cmos->irq);
864
865 sysfs_remove_bin_file(&dev->kobj, &nvram);
866
867 if (is_valid_irq(cmos->irq)) {
868 free_irq(cmos->irq, cmos->rtc);
869 hpet_unregister_irq_handler(cmos_interrupt);
870 }
871
872 rtc_device_unregister(cmos->rtc);
873 cmos->rtc = NULL;
874
875 ports = cmos->iomem;
876 if (RTC_IOMAPPED)
877 release_region(ports->start, resource_size(ports));
878 else
879 release_mem_region(ports->start, resource_size(ports));
880 cmos->iomem = NULL;
881
882 cmos->dev = NULL;
883}
884
885static int cmos_aie_poweroff(struct device *dev)
886{
887 struct cmos_rtc *cmos = dev_get_drvdata(dev);
888 struct rtc_time now;
889 time64_t t_now;
890 int retval = 0;
891 unsigned char rtc_control;
892
893 if (!cmos->alarm_expires)
894 return -EINVAL;
895
896 spin_lock_irq(&rtc_lock);
897 rtc_control = CMOS_READ(RTC_CONTROL);
898 spin_unlock_irq(&rtc_lock);
899
900
901 if (rtc_control & RTC_AIE)
902 return -EBUSY;
903
904 cmos_read_time(dev, &now);
905 t_now = rtc_tm_to_time64(&now);
906
907
908
909
910
911
912
913
914
915
916 if (cmos->alarm_expires == t_now + 1) {
917 struct rtc_wkalrm alarm;
918
919
920 rtc_time64_to_tm(t_now - 1, &alarm.time);
921 alarm.enabled = 0;
922 retval = cmos_set_alarm(dev, &alarm);
923 } else if (cmos->alarm_expires > t_now + 1) {
924 retval = -EBUSY;
925 }
926
927 return retval;
928}
929
930static int cmos_suspend(struct device *dev)
931{
932 struct cmos_rtc *cmos = dev_get_drvdata(dev);
933 unsigned char tmp;
934
935
936 spin_lock_irq(&rtc_lock);
937 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
938 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
939 unsigned char mask;
940
941 if (device_may_wakeup(dev))
942 mask = RTC_IRQMASK & ~RTC_AIE;
943 else
944 mask = RTC_IRQMASK;
945 tmp &= ~mask;
946 CMOS_WRITE(tmp, RTC_CONTROL);
947 hpet_mask_rtc_irq_bit(mask);
948
949 cmos_checkintr(cmos, tmp);
950 }
951 spin_unlock_irq(&rtc_lock);
952
953 if (tmp & RTC_AIE) {
954 cmos->enabled_wake = 1;
955 if (cmos->wake_on)
956 cmos->wake_on(dev);
957 else
958 enable_irq_wake(cmos->irq);
959 }
960
961 cmos_read_alarm(dev, &cmos->saved_wkalrm);
962
963 dev_dbg(dev, "suspend%s, ctrl %02x\n",
964 (tmp & RTC_AIE) ? ", alarm may wake" : "",
965 tmp);
966
967 return 0;
968}
969
970
971
972
973
974
975
976static inline int cmos_poweroff(struct device *dev)
977{
978 if (!IS_ENABLED(CONFIG_PM))
979 return -ENOSYS;
980
981 return cmos_suspend(dev);
982}
983
984static void cmos_check_wkalrm(struct device *dev)
985{
986 struct cmos_rtc *cmos = dev_get_drvdata(dev);
987 struct rtc_wkalrm current_alarm;
988 time64_t t_current_expires;
989 time64_t t_saved_expires;
990
991 cmos_read_alarm(dev, ¤t_alarm);
992 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
993 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
994 if (t_current_expires != t_saved_expires ||
995 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
996 cmos_set_alarm(dev, &cmos->saved_wkalrm);
997 }
998}
999
1000static void cmos_check_acpi_rtc_status(struct device *dev,
1001 unsigned char *rtc_control);
1002
1003static int __maybe_unused cmos_resume(struct device *dev)
1004{
1005 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1006 unsigned char tmp;
1007
1008 if (cmos->enabled_wake) {
1009 if (cmos->wake_off)
1010 cmos->wake_off(dev);
1011 else
1012 disable_irq_wake(cmos->irq);
1013 cmos->enabled_wake = 0;
1014 }
1015
1016
1017 cmos_check_wkalrm(dev);
1018
1019 spin_lock_irq(&rtc_lock);
1020 tmp = cmos->suspend_ctrl;
1021 cmos->suspend_ctrl = 0;
1022
1023 if (tmp & RTC_IRQMASK) {
1024 unsigned char mask;
1025
1026 if (device_may_wakeup(dev))
1027 hpet_rtc_timer_init();
1028
1029 do {
1030 CMOS_WRITE(tmp, RTC_CONTROL);
1031 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1032
1033 mask = CMOS_READ(RTC_INTR_FLAGS);
1034 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1035 if (!is_hpet_enabled() || !is_intr(mask))
1036 break;
1037
1038
1039
1040
1041 rtc_update_irq(cmos->rtc, 1, mask);
1042 tmp &= ~RTC_AIE;
1043 hpet_mask_rtc_irq_bit(RTC_AIE);
1044 } while (mask & RTC_AIE);
1045
1046 if (tmp & RTC_AIE)
1047 cmos_check_acpi_rtc_status(dev, &tmp);
1048 }
1049 spin_unlock_irq(&rtc_lock);
1050
1051 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1052
1053 return 0;
1054}
1055
1056static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068#ifdef CONFIG_ACPI
1069
1070#include <linux/acpi.h>
1071
1072static u32 rtc_handler(void *context)
1073{
1074 struct device *dev = context;
1075 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1076 unsigned char rtc_control = 0;
1077 unsigned char rtc_intr;
1078 unsigned long flags;
1079
1080 spin_lock_irqsave(&rtc_lock, flags);
1081 if (cmos_rtc.suspend_ctrl)
1082 rtc_control = CMOS_READ(RTC_CONTROL);
1083 if (rtc_control & RTC_AIE) {
1084 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1085 CMOS_WRITE(rtc_control, RTC_CONTROL);
1086 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1087 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1088 }
1089 spin_unlock_irqrestore(&rtc_lock, flags);
1090
1091 pm_wakeup_hard_event(dev);
1092 acpi_clear_event(ACPI_EVENT_RTC);
1093 acpi_disable_event(ACPI_EVENT_RTC, 0);
1094 return ACPI_INTERRUPT_HANDLED;
1095}
1096
1097static inline void rtc_wake_setup(struct device *dev)
1098{
1099 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1100
1101
1102
1103
1104 acpi_clear_event(ACPI_EVENT_RTC);
1105 acpi_disable_event(ACPI_EVENT_RTC, 0);
1106}
1107
1108static void rtc_wake_on(struct device *dev)
1109{
1110 acpi_clear_event(ACPI_EVENT_RTC);
1111 acpi_enable_event(ACPI_EVENT_RTC, 0);
1112}
1113
1114static void rtc_wake_off(struct device *dev)
1115{
1116 acpi_disable_event(ACPI_EVENT_RTC, 0);
1117}
1118
1119
1120
1121
1122
1123
1124static struct cmos_rtc_board_info acpi_rtc_info;
1125
1126static void cmos_wake_setup(struct device *dev)
1127{
1128 if (acpi_disabled)
1129 return;
1130
1131 rtc_wake_setup(dev);
1132 acpi_rtc_info.wake_on = rtc_wake_on;
1133 acpi_rtc_info.wake_off = rtc_wake_off;
1134
1135
1136 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1137 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1138 acpi_gbl_FADT.month_alarm);
1139 acpi_gbl_FADT.month_alarm = 0;
1140 }
1141
1142 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1143 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1144 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1145
1146
1147 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1148 dev_info(dev, "RTC can wake from S4\n");
1149
1150 dev->platform_data = &acpi_rtc_info;
1151
1152
1153 device_init_wakeup(dev, 1);
1154}
1155
1156static void cmos_check_acpi_rtc_status(struct device *dev,
1157 unsigned char *rtc_control)
1158{
1159 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1160 acpi_event_status rtc_status;
1161 acpi_status status;
1162
1163 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1164 return;
1165
1166 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1167 if (ACPI_FAILURE(status)) {
1168 dev_err(dev, "Could not get RTC status\n");
1169 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1170 unsigned char mask;
1171 *rtc_control &= ~RTC_AIE;
1172 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1173 mask = CMOS_READ(RTC_INTR_FLAGS);
1174 rtc_update_irq(cmos->rtc, 1, mask);
1175 }
1176}
1177
1178#else
1179
1180static void cmos_wake_setup(struct device *dev)
1181{
1182}
1183
1184static void cmos_check_acpi_rtc_status(struct device *dev,
1185 unsigned char *rtc_control)
1186{
1187}
1188
1189#endif
1190
1191#ifdef CONFIG_PNP
1192
1193#include <linux/pnp.h>
1194
1195static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1196{
1197 cmos_wake_setup(&pnp->dev);
1198
1199 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1200 unsigned int irq = 0;
1201#ifdef CONFIG_X86
1202
1203
1204
1205
1206 if (nr_legacy_irqs())
1207 irq = 8;
1208#endif
1209 return cmos_do_probe(&pnp->dev,
1210 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1211 } else {
1212 return cmos_do_probe(&pnp->dev,
1213 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1214 pnp_irq(pnp, 0));
1215 }
1216}
1217
1218static void cmos_pnp_remove(struct pnp_dev *pnp)
1219{
1220 cmos_do_remove(&pnp->dev);
1221}
1222
1223static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1224{
1225 struct device *dev = &pnp->dev;
1226 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1227
1228 if (system_state == SYSTEM_POWER_OFF) {
1229 int retval = cmos_poweroff(dev);
1230
1231 if (cmos_aie_poweroff(dev) < 0 && !retval)
1232 return;
1233 }
1234
1235 cmos_do_shutdown(cmos->irq);
1236}
1237
1238static const struct pnp_device_id rtc_ids[] = {
1239 { .id = "PNP0b00", },
1240 { .id = "PNP0b01", },
1241 { .id = "PNP0b02", },
1242 { },
1243};
1244MODULE_DEVICE_TABLE(pnp, rtc_ids);
1245
1246static struct pnp_driver cmos_pnp_driver = {
1247 .name = (char *) driver_name,
1248 .id_table = rtc_ids,
1249 .probe = cmos_pnp_probe,
1250 .remove = cmos_pnp_remove,
1251 .shutdown = cmos_pnp_shutdown,
1252
1253
1254 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1255 .driver = {
1256 .pm = &cmos_pm_ops,
1257 },
1258};
1259
1260#endif
1261
1262#ifdef CONFIG_OF
1263static const struct of_device_id of_cmos_match[] = {
1264 {
1265 .compatible = "motorola,mc146818",
1266 },
1267 { },
1268};
1269MODULE_DEVICE_TABLE(of, of_cmos_match);
1270
1271static __init void cmos_of_init(struct platform_device *pdev)
1272{
1273 struct device_node *node = pdev->dev.of_node;
1274 struct rtc_time time;
1275 int ret;
1276 const __be32 *val;
1277
1278 if (!node)
1279 return;
1280
1281 val = of_get_property(node, "ctrl-reg", NULL);
1282 if (val)
1283 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1284
1285 val = of_get_property(node, "freq-reg", NULL);
1286 if (val)
1287 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1288
1289 cmos_read_time(&pdev->dev, &time);
1290 ret = rtc_valid_tm(&time);
1291 if (ret) {
1292 struct rtc_time def_time = {
1293 .tm_year = 1,
1294 .tm_mday = 1,
1295 };
1296 cmos_set_time(&pdev->dev, &def_time);
1297 }
1298}
1299#else
1300static inline void cmos_of_init(struct platform_device *pdev) {}
1301#endif
1302
1303
1304
1305
1306
1307
1308static int __init cmos_platform_probe(struct platform_device *pdev)
1309{
1310 struct resource *resource;
1311 int irq;
1312
1313 cmos_of_init(pdev);
1314 cmos_wake_setup(&pdev->dev);
1315
1316 if (RTC_IOMAPPED)
1317 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1318 else
1319 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1320 irq = platform_get_irq(pdev, 0);
1321 if (irq < 0)
1322 irq = -1;
1323
1324 return cmos_do_probe(&pdev->dev, resource, irq);
1325}
1326
1327static int cmos_platform_remove(struct platform_device *pdev)
1328{
1329 cmos_do_remove(&pdev->dev);
1330 return 0;
1331}
1332
1333static void cmos_platform_shutdown(struct platform_device *pdev)
1334{
1335 struct device *dev = &pdev->dev;
1336 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1337
1338 if (system_state == SYSTEM_POWER_OFF) {
1339 int retval = cmos_poweroff(dev);
1340
1341 if (cmos_aie_poweroff(dev) < 0 && !retval)
1342 return;
1343 }
1344
1345 cmos_do_shutdown(cmos->irq);
1346}
1347
1348
1349MODULE_ALIAS("platform:rtc_cmos");
1350
1351static struct platform_driver cmos_platform_driver = {
1352 .remove = cmos_platform_remove,
1353 .shutdown = cmos_platform_shutdown,
1354 .driver = {
1355 .name = driver_name,
1356 .pm = &cmos_pm_ops,
1357 .of_match_table = of_match_ptr(of_cmos_match),
1358 }
1359};
1360
1361#ifdef CONFIG_PNP
1362static bool pnp_driver_registered;
1363#endif
1364static bool platform_driver_registered;
1365
1366static int __init cmos_init(void)
1367{
1368 int retval = 0;
1369
1370#ifdef CONFIG_PNP
1371 retval = pnp_register_driver(&cmos_pnp_driver);
1372 if (retval == 0)
1373 pnp_driver_registered = true;
1374#endif
1375
1376 if (!cmos_rtc.dev) {
1377 retval = platform_driver_probe(&cmos_platform_driver,
1378 cmos_platform_probe);
1379 if (retval == 0)
1380 platform_driver_registered = true;
1381 }
1382
1383 if (retval == 0)
1384 return 0;
1385
1386#ifdef CONFIG_PNP
1387 if (pnp_driver_registered)
1388 pnp_unregister_driver(&cmos_pnp_driver);
1389#endif
1390 return retval;
1391}
1392module_init(cmos_init);
1393
1394static void __exit cmos_exit(void)
1395{
1396#ifdef CONFIG_PNP
1397 if (pnp_driver_registered)
1398 pnp_unregister_driver(&cmos_pnp_driver);
1399#endif
1400 if (platform_driver_registered)
1401 platform_driver_unregister(&cmos_platform_driver);
1402}
1403module_exit(cmos_exit);
1404
1405
1406MODULE_AUTHOR("David Brownell");
1407MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1408MODULE_LICENSE("GPL");
1409