linux/drivers/rtc/rtc-cmos.c
<<
>>
Prefs
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/spinlock.h>
  39#include <linux/platform_device.h>
  40#include <linux/log2.h>
  41#include <linux/pm.h>
  42#include <linux/of.h>
  43#include <linux/of_platform.h>
  44#ifdef CONFIG_X86
  45#include <asm/i8259.h>
  46#endif
  47
  48/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  49#include <linux/mc146818rtc.h>
  50
  51struct cmos_rtc {
  52        struct rtc_device       *rtc;
  53        struct device           *dev;
  54        int                     irq;
  55        struct resource         *iomem;
  56        time64_t                alarm_expires;
  57
  58        void                    (*wake_on)(struct device *);
  59        void                    (*wake_off)(struct device *);
  60
  61        u8                      enabled_wake;
  62        u8                      suspend_ctrl;
  63
  64        /* newer hardware extends the original register set */
  65        u8                      day_alrm;
  66        u8                      mon_alrm;
  67        u8                      century;
  68
  69        struct rtc_wkalrm       saved_wkalrm;
  70};
  71
  72/* both platform and pnp busses use negative numbers for invalid irqs */
  73#define is_valid_irq(n)         ((n) > 0)
  74
  75static const char driver_name[] = "rtc_cmos";
  76
  77/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  78 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  79 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  80 */
  81#define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
  82
  83static inline int is_intr(u8 rtc_intr)
  84{
  85        if (!(rtc_intr & RTC_IRQF))
  86                return 0;
  87        return rtc_intr & RTC_IRQMASK;
  88}
  89
  90/*----------------------------------------------------------------*/
  91
  92/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  93 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  94 * used in a broken "legacy replacement" mode.  The breakage includes
  95 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  96 * other (better) use.
  97 *
  98 * When that broken mode is in use, platform glue provides a partial
  99 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 100 * want to use HPET for anything except those IRQs though...
 101 */
 102#ifdef CONFIG_HPET_EMULATE_RTC
 103#include <asm/hpet.h>
 104#else
 105
 106static inline int is_hpet_enabled(void)
 107{
 108        return 0;
 109}
 110
 111static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 112{
 113        return 0;
 114}
 115
 116static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 117{
 118        return 0;
 119}
 120
 121static inline int
 122hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 123{
 124        return 0;
 125}
 126
 127static inline int hpet_set_periodic_freq(unsigned long freq)
 128{
 129        return 0;
 130}
 131
 132static inline int hpet_rtc_dropped_irq(void)
 133{
 134        return 0;
 135}
 136
 137static inline int hpet_rtc_timer_init(void)
 138{
 139        return 0;
 140}
 141
 142extern irq_handler_t hpet_rtc_interrupt;
 143
 144static inline int hpet_register_irq_handler(irq_handler_t handler)
 145{
 146        return 0;
 147}
 148
 149static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 150{
 151        return 0;
 152}
 153
 154#endif
 155
 156/*----------------------------------------------------------------*/
 157
 158#ifdef RTC_PORT
 159
 160/* Most newer x86 systems have two register banks, the first used
 161 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 162 * own rtc_lock ... and we won't worry about access during NMI.
 163 */
 164#define can_bank2       true
 165
 166static inline unsigned char cmos_read_bank2(unsigned char addr)
 167{
 168        outb(addr, RTC_PORT(2));
 169        return inb(RTC_PORT(3));
 170}
 171
 172static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 173{
 174        outb(addr, RTC_PORT(2));
 175        outb(val, RTC_PORT(3));
 176}
 177
 178#else
 179
 180#define can_bank2       false
 181
 182static inline unsigned char cmos_read_bank2(unsigned char addr)
 183{
 184        return 0;
 185}
 186
 187static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 188{
 189}
 190
 191#endif
 192
 193/*----------------------------------------------------------------*/
 194
 195static int cmos_read_time(struct device *dev, struct rtc_time *t)
 196{
 197        /*
 198         * If pm_trace abused the RTC for storage, set the timespec to 0,
 199         * which tells the caller that this RTC value is unusable.
 200         */
 201        if (!pm_trace_rtc_valid())
 202                return -EIO;
 203
 204        /* REVISIT:  if the clock has a "century" register, use
 205         * that instead of the heuristic in mc146818_get_time().
 206         * That'll make Y3K compatility (year > 2070) easy!
 207         */
 208        mc146818_get_time(t);
 209        return 0;
 210}
 211
 212static int cmos_set_time(struct device *dev, struct rtc_time *t)
 213{
 214        /* REVISIT:  set the "century" register if available
 215         *
 216         * NOTE: this ignores the issue whereby updating the seconds
 217         * takes effect exactly 500ms after we write the register.
 218         * (Also queueing and other delays before we get this far.)
 219         */
 220        return mc146818_set_time(t);
 221}
 222
 223static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 224{
 225        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 226        unsigned char   rtc_control;
 227
 228        if (!is_valid_irq(cmos->irq))
 229                return -EIO;
 230
 231        /* Basic alarms only support hour, minute, and seconds fields.
 232         * Some also support day and month, for alarms up to a year in
 233         * the future.
 234         */
 235
 236        spin_lock_irq(&rtc_lock);
 237        t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 238        t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 239        t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 240
 241        if (cmos->day_alrm) {
 242                /* ignore upper bits on readback per ACPI spec */
 243                t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 244                if (!t->time.tm_mday)
 245                        t->time.tm_mday = -1;
 246
 247                if (cmos->mon_alrm) {
 248                        t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 249                        if (!t->time.tm_mon)
 250                                t->time.tm_mon = -1;
 251                }
 252        }
 253
 254        rtc_control = CMOS_READ(RTC_CONTROL);
 255        spin_unlock_irq(&rtc_lock);
 256
 257        if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 258                if (((unsigned)t->time.tm_sec) < 0x60)
 259                        t->time.tm_sec = bcd2bin(t->time.tm_sec);
 260                else
 261                        t->time.tm_sec = -1;
 262                if (((unsigned)t->time.tm_min) < 0x60)
 263                        t->time.tm_min = bcd2bin(t->time.tm_min);
 264                else
 265                        t->time.tm_min = -1;
 266                if (((unsigned)t->time.tm_hour) < 0x24)
 267                        t->time.tm_hour = bcd2bin(t->time.tm_hour);
 268                else
 269                        t->time.tm_hour = -1;
 270
 271                if (cmos->day_alrm) {
 272                        if (((unsigned)t->time.tm_mday) <= 0x31)
 273                                t->time.tm_mday = bcd2bin(t->time.tm_mday);
 274                        else
 275                                t->time.tm_mday = -1;
 276
 277                        if (cmos->mon_alrm) {
 278                                if (((unsigned)t->time.tm_mon) <= 0x12)
 279                                        t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 280                                else
 281                                        t->time.tm_mon = -1;
 282                        }
 283                }
 284        }
 285
 286        t->enabled = !!(rtc_control & RTC_AIE);
 287        t->pending = 0;
 288
 289        return 0;
 290}
 291
 292static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 293{
 294        unsigned char   rtc_intr;
 295
 296        /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 297         * allegedly some older rtcs need that to handle irqs properly
 298         */
 299        rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 300
 301        if (is_hpet_enabled())
 302                return;
 303
 304        rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 305        if (is_intr(rtc_intr))
 306                rtc_update_irq(cmos->rtc, 1, rtc_intr);
 307}
 308
 309static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 310{
 311        unsigned char   rtc_control;
 312
 313        /* flush any pending IRQ status, notably for update irqs,
 314         * before we enable new IRQs
 315         */
 316        rtc_control = CMOS_READ(RTC_CONTROL);
 317        cmos_checkintr(cmos, rtc_control);
 318
 319        rtc_control |= mask;
 320        CMOS_WRITE(rtc_control, RTC_CONTROL);
 321        hpet_set_rtc_irq_bit(mask);
 322
 323        cmos_checkintr(cmos, rtc_control);
 324}
 325
 326static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 327{
 328        unsigned char   rtc_control;
 329
 330        rtc_control = CMOS_READ(RTC_CONTROL);
 331        rtc_control &= ~mask;
 332        CMOS_WRITE(rtc_control, RTC_CONTROL);
 333        hpet_mask_rtc_irq_bit(mask);
 334
 335        cmos_checkintr(cmos, rtc_control);
 336}
 337
 338static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 339{
 340        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 341        struct rtc_time now;
 342
 343        cmos_read_time(dev, &now);
 344
 345        if (!cmos->day_alrm) {
 346                time64_t t_max_date;
 347                time64_t t_alrm;
 348
 349                t_max_date = rtc_tm_to_time64(&now);
 350                t_max_date += 24 * 60 * 60 - 1;
 351                t_alrm = rtc_tm_to_time64(&t->time);
 352                if (t_alrm > t_max_date) {
 353                        dev_err(dev,
 354                                "Alarms can be up to one day in the future\n");
 355                        return -EINVAL;
 356                }
 357        } else if (!cmos->mon_alrm) {
 358                struct rtc_time max_date = now;
 359                time64_t t_max_date;
 360                time64_t t_alrm;
 361                int max_mday;
 362
 363                if (max_date.tm_mon == 11) {
 364                        max_date.tm_mon = 0;
 365                        max_date.tm_year += 1;
 366                } else {
 367                        max_date.tm_mon += 1;
 368                }
 369                max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 370                if (max_date.tm_mday > max_mday)
 371                        max_date.tm_mday = max_mday;
 372
 373                t_max_date = rtc_tm_to_time64(&max_date);
 374                t_max_date -= 1;
 375                t_alrm = rtc_tm_to_time64(&t->time);
 376                if (t_alrm > t_max_date) {
 377                        dev_err(dev,
 378                                "Alarms can be up to one month in the future\n");
 379                        return -EINVAL;
 380                }
 381        } else {
 382                struct rtc_time max_date = now;
 383                time64_t t_max_date;
 384                time64_t t_alrm;
 385                int max_mday;
 386
 387                max_date.tm_year += 1;
 388                max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 389                if (max_date.tm_mday > max_mday)
 390                        max_date.tm_mday = max_mday;
 391
 392                t_max_date = rtc_tm_to_time64(&max_date);
 393                t_max_date -= 1;
 394                t_alrm = rtc_tm_to_time64(&t->time);
 395                if (t_alrm > t_max_date) {
 396                        dev_err(dev,
 397                                "Alarms can be up to one year in the future\n");
 398                        return -EINVAL;
 399                }
 400        }
 401
 402        return 0;
 403}
 404
 405static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 406{
 407        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 408        unsigned char mon, mday, hrs, min, sec, rtc_control;
 409        int ret;
 410
 411        if (!is_valid_irq(cmos->irq))
 412                return -EIO;
 413
 414        ret = cmos_validate_alarm(dev, t);
 415        if (ret < 0)
 416                return ret;
 417
 418        mon = t->time.tm_mon + 1;
 419        mday = t->time.tm_mday;
 420        hrs = t->time.tm_hour;
 421        min = t->time.tm_min;
 422        sec = t->time.tm_sec;
 423
 424        rtc_control = CMOS_READ(RTC_CONTROL);
 425        if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 426                /* Writing 0xff means "don't care" or "match all".  */
 427                mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 428                mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 429                hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 430                min = (min < 60) ? bin2bcd(min) : 0xff;
 431                sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 432        }
 433
 434        spin_lock_irq(&rtc_lock);
 435
 436        /* next rtc irq must not be from previous alarm setting */
 437        cmos_irq_disable(cmos, RTC_AIE);
 438
 439        /* update alarm */
 440        CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 441        CMOS_WRITE(min, RTC_MINUTES_ALARM);
 442        CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 443
 444        /* the system may support an "enhanced" alarm */
 445        if (cmos->day_alrm) {
 446                CMOS_WRITE(mday, cmos->day_alrm);
 447                if (cmos->mon_alrm)
 448                        CMOS_WRITE(mon, cmos->mon_alrm);
 449        }
 450
 451        /* FIXME the HPET alarm glue currently ignores day_alrm
 452         * and mon_alrm ...
 453         */
 454        hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 455
 456        if (t->enabled)
 457                cmos_irq_enable(cmos, RTC_AIE);
 458
 459        spin_unlock_irq(&rtc_lock);
 460
 461        cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 462
 463        return 0;
 464}
 465
 466static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 467{
 468        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 469        unsigned long   flags;
 470
 471        if (!is_valid_irq(cmos->irq))
 472                return -EINVAL;
 473
 474        spin_lock_irqsave(&rtc_lock, flags);
 475
 476        if (enabled)
 477                cmos_irq_enable(cmos, RTC_AIE);
 478        else
 479                cmos_irq_disable(cmos, RTC_AIE);
 480
 481        spin_unlock_irqrestore(&rtc_lock, flags);
 482        return 0;
 483}
 484
 485#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 486
 487static int cmos_procfs(struct device *dev, struct seq_file *seq)
 488{
 489        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 490        unsigned char   rtc_control, valid;
 491
 492        spin_lock_irq(&rtc_lock);
 493        rtc_control = CMOS_READ(RTC_CONTROL);
 494        valid = CMOS_READ(RTC_VALID);
 495        spin_unlock_irq(&rtc_lock);
 496
 497        /* NOTE:  at least ICH6 reports battery status using a different
 498         * (non-RTC) bit; and SQWE is ignored on many current systems.
 499         */
 500        seq_printf(seq,
 501                   "periodic_IRQ\t: %s\n"
 502                   "update_IRQ\t: %s\n"
 503                   "HPET_emulated\t: %s\n"
 504                   // "square_wave\t: %s\n"
 505                   "BCD\t\t: %s\n"
 506                   "DST_enable\t: %s\n"
 507                   "periodic_freq\t: %d\n"
 508                   "batt_status\t: %s\n",
 509                   (rtc_control & RTC_PIE) ? "yes" : "no",
 510                   (rtc_control & RTC_UIE) ? "yes" : "no",
 511                   is_hpet_enabled() ? "yes" : "no",
 512                   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 513                   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 514                   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 515                   cmos->rtc->irq_freq,
 516                   (valid & RTC_VRT) ? "okay" : "dead");
 517
 518        return 0;
 519}
 520
 521#else
 522#define cmos_procfs     NULL
 523#endif
 524
 525static const struct rtc_class_ops cmos_rtc_ops = {
 526        .read_time              = cmos_read_time,
 527        .set_time               = cmos_set_time,
 528        .read_alarm             = cmos_read_alarm,
 529        .set_alarm              = cmos_set_alarm,
 530        .proc                   = cmos_procfs,
 531        .alarm_irq_enable       = cmos_alarm_irq_enable,
 532};
 533
 534/*----------------------------------------------------------------*/
 535
 536/*
 537 * All these chips have at least 64 bytes of address space, shared by
 538 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 539 * by boot firmware.  Modern chips have 128 or 256 bytes.
 540 */
 541
 542#define NVRAM_OFFSET    (RTC_REG_D + 1)
 543
 544static ssize_t
 545cmos_nvram_read(struct file *filp, struct kobject *kobj,
 546                struct bin_attribute *attr,
 547                char *buf, loff_t off, size_t count)
 548{
 549        int     retval;
 550
 551        off += NVRAM_OFFSET;
 552        spin_lock_irq(&rtc_lock);
 553        for (retval = 0; count; count--, off++, retval++) {
 554                if (off < 128)
 555                        *buf++ = CMOS_READ(off);
 556                else if (can_bank2)
 557                        *buf++ = cmos_read_bank2(off);
 558                else
 559                        break;
 560        }
 561        spin_unlock_irq(&rtc_lock);
 562
 563        return retval;
 564}
 565
 566static ssize_t
 567cmos_nvram_write(struct file *filp, struct kobject *kobj,
 568                struct bin_attribute *attr,
 569                char *buf, loff_t off, size_t count)
 570{
 571        struct cmos_rtc *cmos;
 572        int             retval;
 573
 574        cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
 575
 576        /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 577         * checksum on part of the NVRAM data.  That's currently ignored
 578         * here.  If userspace is smart enough to know what fields of
 579         * NVRAM to update, updating checksums is also part of its job.
 580         */
 581        off += NVRAM_OFFSET;
 582        spin_lock_irq(&rtc_lock);
 583        for (retval = 0; count; count--, off++, retval++) {
 584                /* don't trash RTC registers */
 585                if (off == cmos->day_alrm
 586                                || off == cmos->mon_alrm
 587                                || off == cmos->century)
 588                        buf++;
 589                else if (off < 128)
 590                        CMOS_WRITE(*buf++, off);
 591                else if (can_bank2)
 592                        cmos_write_bank2(*buf++, off);
 593                else
 594                        break;
 595        }
 596        spin_unlock_irq(&rtc_lock);
 597
 598        return retval;
 599}
 600
 601static struct bin_attribute nvram = {
 602        .attr = {
 603                .name   = "nvram",
 604                .mode   = S_IRUGO | S_IWUSR,
 605        },
 606
 607        .read   = cmos_nvram_read,
 608        .write  = cmos_nvram_write,
 609        /* size gets set up later */
 610};
 611
 612/*----------------------------------------------------------------*/
 613
 614static struct cmos_rtc  cmos_rtc;
 615
 616static irqreturn_t cmos_interrupt(int irq, void *p)
 617{
 618        u8              irqstat;
 619        u8              rtc_control;
 620
 621        spin_lock(&rtc_lock);
 622
 623        /* When the HPET interrupt handler calls us, the interrupt
 624         * status is passed as arg1 instead of the irq number.  But
 625         * always clear irq status, even when HPET is in the way.
 626         *
 627         * Note that HPET and RTC are almost certainly out of phase,
 628         * giving different IRQ status ...
 629         */
 630        irqstat = CMOS_READ(RTC_INTR_FLAGS);
 631        rtc_control = CMOS_READ(RTC_CONTROL);
 632        if (is_hpet_enabled())
 633                irqstat = (unsigned long)irq & 0xF0;
 634
 635        /* If we were suspended, RTC_CONTROL may not be accurate since the
 636         * bios may have cleared it.
 637         */
 638        if (!cmos_rtc.suspend_ctrl)
 639                irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 640        else
 641                irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 642
 643        /* All Linux RTC alarms should be treated as if they were oneshot.
 644         * Similar code may be needed in system wakeup paths, in case the
 645         * alarm woke the system.
 646         */
 647        if (irqstat & RTC_AIE) {
 648                cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 649                rtc_control &= ~RTC_AIE;
 650                CMOS_WRITE(rtc_control, RTC_CONTROL);
 651                hpet_mask_rtc_irq_bit(RTC_AIE);
 652                CMOS_READ(RTC_INTR_FLAGS);
 653        }
 654        spin_unlock(&rtc_lock);
 655
 656        if (is_intr(irqstat)) {
 657                rtc_update_irq(p, 1, irqstat);
 658                return IRQ_HANDLED;
 659        } else
 660                return IRQ_NONE;
 661}
 662
 663#ifdef  CONFIG_PNP
 664#define INITSECTION
 665
 666#else
 667#define INITSECTION     __init
 668#endif
 669
 670static int INITSECTION
 671cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 672{
 673        struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
 674        int                             retval = 0;
 675        unsigned char                   rtc_control;
 676        unsigned                        address_space;
 677        u32                             flags = 0;
 678
 679        /* there can be only one ... */
 680        if (cmos_rtc.dev)
 681                return -EBUSY;
 682
 683        if (!ports)
 684                return -ENODEV;
 685
 686        /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 687         *
 688         * REVISIT non-x86 systems may instead use memory space resources
 689         * (needing ioremap etc), not i/o space resources like this ...
 690         */
 691        if (RTC_IOMAPPED)
 692                ports = request_region(ports->start, resource_size(ports),
 693                                       driver_name);
 694        else
 695                ports = request_mem_region(ports->start, resource_size(ports),
 696                                           driver_name);
 697        if (!ports) {
 698                dev_dbg(dev, "i/o registers already in use\n");
 699                return -EBUSY;
 700        }
 701
 702        cmos_rtc.irq = rtc_irq;
 703        cmos_rtc.iomem = ports;
 704
 705        /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 706         * driver did, but don't reject unknown configs.   Old hardware
 707         * won't address 128 bytes.  Newer chips have multiple banks,
 708         * though they may not be listed in one I/O resource.
 709         */
 710#if     defined(CONFIG_ATARI)
 711        address_space = 64;
 712#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 713                        || defined(__sparc__) || defined(__mips__) \
 714                        || defined(__powerpc__) || defined(CONFIG_MN10300)
 715        address_space = 128;
 716#else
 717#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 718        address_space = 128;
 719#endif
 720        if (can_bank2 && ports->end > (ports->start + 1))
 721                address_space = 256;
 722
 723        /* For ACPI systems extension info comes from the FADT.  On others,
 724         * board specific setup provides it as appropriate.  Systems where
 725         * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 726         * some almost-clones) can provide hooks to make that behave.
 727         *
 728         * Note that ACPI doesn't preclude putting these registers into
 729         * "extended" areas of the chip, including some that we won't yet
 730         * expect CMOS_READ and friends to handle.
 731         */
 732        if (info) {
 733                if (info->flags)
 734                        flags = info->flags;
 735                if (info->address_space)
 736                        address_space = info->address_space;
 737
 738                if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 739                        cmos_rtc.day_alrm = info->rtc_day_alarm;
 740                if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 741                        cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 742                if (info->rtc_century && info->rtc_century < 128)
 743                        cmos_rtc.century = info->rtc_century;
 744
 745                if (info->wake_on && info->wake_off) {
 746                        cmos_rtc.wake_on = info->wake_on;
 747                        cmos_rtc.wake_off = info->wake_off;
 748                }
 749        }
 750
 751        cmos_rtc.dev = dev;
 752        dev_set_drvdata(dev, &cmos_rtc);
 753
 754        cmos_rtc.rtc = rtc_device_register(driver_name, dev,
 755                                &cmos_rtc_ops, THIS_MODULE);
 756        if (IS_ERR(cmos_rtc.rtc)) {
 757                retval = PTR_ERR(cmos_rtc.rtc);
 758                goto cleanup0;
 759        }
 760
 761        rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 762
 763        spin_lock_irq(&rtc_lock);
 764
 765        if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 766                /* force periodic irq to CMOS reset default of 1024Hz;
 767                 *
 768                 * REVISIT it's been reported that at least one x86_64 ALI
 769                 * mobo doesn't use 32KHz here ... for portability we might
 770                 * need to do something about other clock frequencies.
 771                 */
 772                cmos_rtc.rtc->irq_freq = 1024;
 773                hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 774                CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 775        }
 776
 777        /* disable irqs */
 778        if (is_valid_irq(rtc_irq))
 779                cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 780
 781        rtc_control = CMOS_READ(RTC_CONTROL);
 782
 783        spin_unlock_irq(&rtc_lock);
 784
 785        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 786                dev_warn(dev, "only 24-hr supported\n");
 787                retval = -ENXIO;
 788                goto cleanup1;
 789        }
 790
 791        hpet_rtc_timer_init();
 792
 793        if (is_valid_irq(rtc_irq)) {
 794                irq_handler_t rtc_cmos_int_handler;
 795
 796                if (is_hpet_enabled()) {
 797                        rtc_cmos_int_handler = hpet_rtc_interrupt;
 798                        retval = hpet_register_irq_handler(cmos_interrupt);
 799                        if (retval) {
 800                                hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 801                                dev_warn(dev, "hpet_register_irq_handler "
 802                                                " failed in rtc_init().");
 803                                goto cleanup1;
 804                        }
 805                } else
 806                        rtc_cmos_int_handler = cmos_interrupt;
 807
 808                retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 809                                IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
 810                                cmos_rtc.rtc);
 811                if (retval < 0) {
 812                        dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 813                        goto cleanup1;
 814                }
 815        }
 816
 817        /* export at least the first block of NVRAM */
 818        nvram.size = address_space - NVRAM_OFFSET;
 819        retval = sysfs_create_bin_file(&dev->kobj, &nvram);
 820        if (retval < 0) {
 821                dev_dbg(dev, "can't create nvram file? %d\n", retval);
 822                goto cleanup2;
 823        }
 824
 825        dev_info(dev, "%s%s, %zd bytes nvram%s\n",
 826                !is_valid_irq(rtc_irq) ? "no alarms" :
 827                        cmos_rtc.mon_alrm ? "alarms up to one year" :
 828                        cmos_rtc.day_alrm ? "alarms up to one month" :
 829                        "alarms up to one day",
 830                cmos_rtc.century ? ", y3k" : "",
 831                nvram.size,
 832                is_hpet_enabled() ? ", hpet irqs" : "");
 833
 834        return 0;
 835
 836cleanup2:
 837        if (is_valid_irq(rtc_irq))
 838                free_irq(rtc_irq, cmos_rtc.rtc);
 839cleanup1:
 840        cmos_rtc.dev = NULL;
 841        rtc_device_unregister(cmos_rtc.rtc);
 842cleanup0:
 843        if (RTC_IOMAPPED)
 844                release_region(ports->start, resource_size(ports));
 845        else
 846                release_mem_region(ports->start, resource_size(ports));
 847        return retval;
 848}
 849
 850static void cmos_do_shutdown(int rtc_irq)
 851{
 852        spin_lock_irq(&rtc_lock);
 853        if (is_valid_irq(rtc_irq))
 854                cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 855        spin_unlock_irq(&rtc_lock);
 856}
 857
 858static void cmos_do_remove(struct device *dev)
 859{
 860        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 861        struct resource *ports;
 862
 863        cmos_do_shutdown(cmos->irq);
 864
 865        sysfs_remove_bin_file(&dev->kobj, &nvram);
 866
 867        if (is_valid_irq(cmos->irq)) {
 868                free_irq(cmos->irq, cmos->rtc);
 869                hpet_unregister_irq_handler(cmos_interrupt);
 870        }
 871
 872        rtc_device_unregister(cmos->rtc);
 873        cmos->rtc = NULL;
 874
 875        ports = cmos->iomem;
 876        if (RTC_IOMAPPED)
 877                release_region(ports->start, resource_size(ports));
 878        else
 879                release_mem_region(ports->start, resource_size(ports));
 880        cmos->iomem = NULL;
 881
 882        cmos->dev = NULL;
 883}
 884
 885static int cmos_aie_poweroff(struct device *dev)
 886{
 887        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 888        struct rtc_time now;
 889        time64_t t_now;
 890        int retval = 0;
 891        unsigned char rtc_control;
 892
 893        if (!cmos->alarm_expires)
 894                return -EINVAL;
 895
 896        spin_lock_irq(&rtc_lock);
 897        rtc_control = CMOS_READ(RTC_CONTROL);
 898        spin_unlock_irq(&rtc_lock);
 899
 900        /* We only care about the situation where AIE is disabled. */
 901        if (rtc_control & RTC_AIE)
 902                return -EBUSY;
 903
 904        cmos_read_time(dev, &now);
 905        t_now = rtc_tm_to_time64(&now);
 906
 907        /*
 908         * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 909         * automatically right after shutdown on some buggy boxes.
 910         * This automatic rebooting issue won't happen when the alarm
 911         * time is larger than now+1 seconds.
 912         *
 913         * If the alarm time is equal to now+1 seconds, the issue can be
 914         * prevented by cancelling the alarm.
 915         */
 916        if (cmos->alarm_expires == t_now + 1) {
 917                struct rtc_wkalrm alarm;
 918
 919                /* Cancel the AIE timer by configuring the past time. */
 920                rtc_time64_to_tm(t_now - 1, &alarm.time);
 921                alarm.enabled = 0;
 922                retval = cmos_set_alarm(dev, &alarm);
 923        } else if (cmos->alarm_expires > t_now + 1) {
 924                retval = -EBUSY;
 925        }
 926
 927        return retval;
 928}
 929
 930static int cmos_suspend(struct device *dev)
 931{
 932        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 933        unsigned char   tmp;
 934
 935        /* only the alarm might be a wakeup event source */
 936        spin_lock_irq(&rtc_lock);
 937        cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 938        if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 939                unsigned char   mask;
 940
 941                if (device_may_wakeup(dev))
 942                        mask = RTC_IRQMASK & ~RTC_AIE;
 943                else
 944                        mask = RTC_IRQMASK;
 945                tmp &= ~mask;
 946                CMOS_WRITE(tmp, RTC_CONTROL);
 947                hpet_mask_rtc_irq_bit(mask);
 948
 949                cmos_checkintr(cmos, tmp);
 950        }
 951        spin_unlock_irq(&rtc_lock);
 952
 953        if (tmp & RTC_AIE) {
 954                cmos->enabled_wake = 1;
 955                if (cmos->wake_on)
 956                        cmos->wake_on(dev);
 957                else
 958                        enable_irq_wake(cmos->irq);
 959        }
 960
 961        cmos_read_alarm(dev, &cmos->saved_wkalrm);
 962
 963        dev_dbg(dev, "suspend%s, ctrl %02x\n",
 964                        (tmp & RTC_AIE) ? ", alarm may wake" : "",
 965                        tmp);
 966
 967        return 0;
 968}
 969
 970/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 971 * after a detour through G3 "mechanical off", although the ACPI spec
 972 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 973 * distinctions between S4 and S5 are pointless.  So when the hardware
 974 * allows, don't draw that distinction.
 975 */
 976static inline int cmos_poweroff(struct device *dev)
 977{
 978        if (!IS_ENABLED(CONFIG_PM))
 979                return -ENOSYS;
 980
 981        return cmos_suspend(dev);
 982}
 983
 984static void cmos_check_wkalrm(struct device *dev)
 985{
 986        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 987        struct rtc_wkalrm current_alarm;
 988        time64_t t_current_expires;
 989        time64_t t_saved_expires;
 990
 991        cmos_read_alarm(dev, &current_alarm);
 992        t_current_expires = rtc_tm_to_time64(&current_alarm.time);
 993        t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
 994        if (t_current_expires != t_saved_expires ||
 995            cmos->saved_wkalrm.enabled != current_alarm.enabled) {
 996                cmos_set_alarm(dev, &cmos->saved_wkalrm);
 997        }
 998}
 999
1000static void cmos_check_acpi_rtc_status(struct device *dev,
1001                                       unsigned char *rtc_control);
1002
1003static int __maybe_unused cmos_resume(struct device *dev)
1004{
1005        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1006        unsigned char tmp;
1007
1008        if (cmos->enabled_wake) {
1009                if (cmos->wake_off)
1010                        cmos->wake_off(dev);
1011                else
1012                        disable_irq_wake(cmos->irq);
1013                cmos->enabled_wake = 0;
1014        }
1015
1016        /* The BIOS might have changed the alarm, restore it */
1017        cmos_check_wkalrm(dev);
1018
1019        spin_lock_irq(&rtc_lock);
1020        tmp = cmos->suspend_ctrl;
1021        cmos->suspend_ctrl = 0;
1022        /* re-enable any irqs previously active */
1023        if (tmp & RTC_IRQMASK) {
1024                unsigned char   mask;
1025
1026                if (device_may_wakeup(dev))
1027                        hpet_rtc_timer_init();
1028
1029                do {
1030                        CMOS_WRITE(tmp, RTC_CONTROL);
1031                        hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1032
1033                        mask = CMOS_READ(RTC_INTR_FLAGS);
1034                        mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1035                        if (!is_hpet_enabled() || !is_intr(mask))
1036                                break;
1037
1038                        /* force one-shot behavior if HPET blocked
1039                         * the wake alarm's irq
1040                         */
1041                        rtc_update_irq(cmos->rtc, 1, mask);
1042                        tmp &= ~RTC_AIE;
1043                        hpet_mask_rtc_irq_bit(RTC_AIE);
1044                } while (mask & RTC_AIE);
1045
1046                if (tmp & RTC_AIE)
1047                        cmos_check_acpi_rtc_status(dev, &tmp);
1048        }
1049        spin_unlock_irq(&rtc_lock);
1050
1051        dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1052
1053        return 0;
1054}
1055
1056static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1057
1058/*----------------------------------------------------------------*/
1059
1060/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1061 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1062 * probably list them in similar PNPBIOS tables; so PNP is more common.
1063 *
1064 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1065 * predate even PNPBIOS should set up platform_bus devices.
1066 */
1067
1068#ifdef  CONFIG_ACPI
1069
1070#include <linux/acpi.h>
1071
1072static u32 rtc_handler(void *context)
1073{
1074        struct device *dev = context;
1075        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1076        unsigned char rtc_control = 0;
1077        unsigned char rtc_intr;
1078        unsigned long flags;
1079
1080        spin_lock_irqsave(&rtc_lock, flags);
1081        if (cmos_rtc.suspend_ctrl)
1082                rtc_control = CMOS_READ(RTC_CONTROL);
1083        if (rtc_control & RTC_AIE) {
1084                cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1085                CMOS_WRITE(rtc_control, RTC_CONTROL);
1086                rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1087                rtc_update_irq(cmos->rtc, 1, rtc_intr);
1088        }
1089        spin_unlock_irqrestore(&rtc_lock, flags);
1090
1091        pm_wakeup_hard_event(dev);
1092        acpi_clear_event(ACPI_EVENT_RTC);
1093        acpi_disable_event(ACPI_EVENT_RTC, 0);
1094        return ACPI_INTERRUPT_HANDLED;
1095}
1096
1097static inline void rtc_wake_setup(struct device *dev)
1098{
1099        acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1100        /*
1101         * After the RTC handler is installed, the Fixed_RTC event should
1102         * be disabled. Only when the RTC alarm is set will it be enabled.
1103         */
1104        acpi_clear_event(ACPI_EVENT_RTC);
1105        acpi_disable_event(ACPI_EVENT_RTC, 0);
1106}
1107
1108static void rtc_wake_on(struct device *dev)
1109{
1110        acpi_clear_event(ACPI_EVENT_RTC);
1111        acpi_enable_event(ACPI_EVENT_RTC, 0);
1112}
1113
1114static void rtc_wake_off(struct device *dev)
1115{
1116        acpi_disable_event(ACPI_EVENT_RTC, 0);
1117}
1118
1119/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1120 * its device node and pass extra config data.  This helps its driver use
1121 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1122 * that this board's RTC is wakeup-capable (per ACPI spec).
1123 */
1124static struct cmos_rtc_board_info acpi_rtc_info;
1125
1126static void cmos_wake_setup(struct device *dev)
1127{
1128        if (acpi_disabled)
1129                return;
1130
1131        rtc_wake_setup(dev);
1132        acpi_rtc_info.wake_on = rtc_wake_on;
1133        acpi_rtc_info.wake_off = rtc_wake_off;
1134
1135        /* workaround bug in some ACPI tables */
1136        if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1137                dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1138                        acpi_gbl_FADT.month_alarm);
1139                acpi_gbl_FADT.month_alarm = 0;
1140        }
1141
1142        acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1143        acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1144        acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1145
1146        /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1147        if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1148                dev_info(dev, "RTC can wake from S4\n");
1149
1150        dev->platform_data = &acpi_rtc_info;
1151
1152        /* RTC always wakes from S1/S2/S3, and often S4/STD */
1153        device_init_wakeup(dev, 1);
1154}
1155
1156static void cmos_check_acpi_rtc_status(struct device *dev,
1157                                       unsigned char *rtc_control)
1158{
1159        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1160        acpi_event_status rtc_status;
1161        acpi_status status;
1162
1163        if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1164                return;
1165
1166        status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1167        if (ACPI_FAILURE(status)) {
1168                dev_err(dev, "Could not get RTC status\n");
1169        } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1170                unsigned char mask;
1171                *rtc_control &= ~RTC_AIE;
1172                CMOS_WRITE(*rtc_control, RTC_CONTROL);
1173                mask = CMOS_READ(RTC_INTR_FLAGS);
1174                rtc_update_irq(cmos->rtc, 1, mask);
1175        }
1176}
1177
1178#else
1179
1180static void cmos_wake_setup(struct device *dev)
1181{
1182}
1183
1184static void cmos_check_acpi_rtc_status(struct device *dev,
1185                                       unsigned char *rtc_control)
1186{
1187}
1188
1189#endif
1190
1191#ifdef  CONFIG_PNP
1192
1193#include <linux/pnp.h>
1194
1195static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1196{
1197        cmos_wake_setup(&pnp->dev);
1198
1199        if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1200                unsigned int irq = 0;
1201#ifdef CONFIG_X86
1202                /* Some machines contain a PNP entry for the RTC, but
1203                 * don't define the IRQ. It should always be safe to
1204                 * hardcode it on systems with a legacy PIC.
1205                 */
1206                if (nr_legacy_irqs())
1207                        irq = 8;
1208#endif
1209                return cmos_do_probe(&pnp->dev,
1210                                pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1211        } else {
1212                return cmos_do_probe(&pnp->dev,
1213                                pnp_get_resource(pnp, IORESOURCE_IO, 0),
1214                                pnp_irq(pnp, 0));
1215        }
1216}
1217
1218static void cmos_pnp_remove(struct pnp_dev *pnp)
1219{
1220        cmos_do_remove(&pnp->dev);
1221}
1222
1223static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1224{
1225        struct device *dev = &pnp->dev;
1226        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1227
1228        if (system_state == SYSTEM_POWER_OFF) {
1229                int retval = cmos_poweroff(dev);
1230
1231                if (cmos_aie_poweroff(dev) < 0 && !retval)
1232                        return;
1233        }
1234
1235        cmos_do_shutdown(cmos->irq);
1236}
1237
1238static const struct pnp_device_id rtc_ids[] = {
1239        { .id = "PNP0b00", },
1240        { .id = "PNP0b01", },
1241        { .id = "PNP0b02", },
1242        { },
1243};
1244MODULE_DEVICE_TABLE(pnp, rtc_ids);
1245
1246static struct pnp_driver cmos_pnp_driver = {
1247        .name           = (char *) driver_name,
1248        .id_table       = rtc_ids,
1249        .probe          = cmos_pnp_probe,
1250        .remove         = cmos_pnp_remove,
1251        .shutdown       = cmos_pnp_shutdown,
1252
1253        /* flag ensures resume() gets called, and stops syslog spam */
1254        .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1255        .driver         = {
1256                        .pm = &cmos_pm_ops,
1257        },
1258};
1259
1260#endif  /* CONFIG_PNP */
1261
1262#ifdef CONFIG_OF
1263static const struct of_device_id of_cmos_match[] = {
1264        {
1265                .compatible = "motorola,mc146818",
1266        },
1267        { },
1268};
1269MODULE_DEVICE_TABLE(of, of_cmos_match);
1270
1271static __init void cmos_of_init(struct platform_device *pdev)
1272{
1273        struct device_node *node = pdev->dev.of_node;
1274        struct rtc_time time;
1275        int ret;
1276        const __be32 *val;
1277
1278        if (!node)
1279                return;
1280
1281        val = of_get_property(node, "ctrl-reg", NULL);
1282        if (val)
1283                CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1284
1285        val = of_get_property(node, "freq-reg", NULL);
1286        if (val)
1287                CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1288
1289        cmos_read_time(&pdev->dev, &time);
1290        ret = rtc_valid_tm(&time);
1291        if (ret) {
1292                struct rtc_time def_time = {
1293                        .tm_year = 1,
1294                        .tm_mday = 1,
1295                };
1296                cmos_set_time(&pdev->dev, &def_time);
1297        }
1298}
1299#else
1300static inline void cmos_of_init(struct platform_device *pdev) {}
1301#endif
1302/*----------------------------------------------------------------*/
1303
1304/* Platform setup should have set up an RTC device, when PNP is
1305 * unavailable ... this could happen even on (older) PCs.
1306 */
1307
1308static int __init cmos_platform_probe(struct platform_device *pdev)
1309{
1310        struct resource *resource;
1311        int irq;
1312
1313        cmos_of_init(pdev);
1314        cmos_wake_setup(&pdev->dev);
1315
1316        if (RTC_IOMAPPED)
1317                resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1318        else
1319                resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1320        irq = platform_get_irq(pdev, 0);
1321        if (irq < 0)
1322                irq = -1;
1323
1324        return cmos_do_probe(&pdev->dev, resource, irq);
1325}
1326
1327static int cmos_platform_remove(struct platform_device *pdev)
1328{
1329        cmos_do_remove(&pdev->dev);
1330        return 0;
1331}
1332
1333static void cmos_platform_shutdown(struct platform_device *pdev)
1334{
1335        struct device *dev = &pdev->dev;
1336        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1337
1338        if (system_state == SYSTEM_POWER_OFF) {
1339                int retval = cmos_poweroff(dev);
1340
1341                if (cmos_aie_poweroff(dev) < 0 && !retval)
1342                        return;
1343        }
1344
1345        cmos_do_shutdown(cmos->irq);
1346}
1347
1348/* work with hotplug and coldplug */
1349MODULE_ALIAS("platform:rtc_cmos");
1350
1351static struct platform_driver cmos_platform_driver = {
1352        .remove         = cmos_platform_remove,
1353        .shutdown       = cmos_platform_shutdown,
1354        .driver = {
1355                .name           = driver_name,
1356                .pm             = &cmos_pm_ops,
1357                .of_match_table = of_match_ptr(of_cmos_match),
1358        }
1359};
1360
1361#ifdef CONFIG_PNP
1362static bool pnp_driver_registered;
1363#endif
1364static bool platform_driver_registered;
1365
1366static int __init cmos_init(void)
1367{
1368        int retval = 0;
1369
1370#ifdef  CONFIG_PNP
1371        retval = pnp_register_driver(&cmos_pnp_driver);
1372        if (retval == 0)
1373                pnp_driver_registered = true;
1374#endif
1375
1376        if (!cmos_rtc.dev) {
1377                retval = platform_driver_probe(&cmos_platform_driver,
1378                                               cmos_platform_probe);
1379                if (retval == 0)
1380                        platform_driver_registered = true;
1381        }
1382
1383        if (retval == 0)
1384                return 0;
1385
1386#ifdef  CONFIG_PNP
1387        if (pnp_driver_registered)
1388                pnp_unregister_driver(&cmos_pnp_driver);
1389#endif
1390        return retval;
1391}
1392module_init(cmos_init);
1393
1394static void __exit cmos_exit(void)
1395{
1396#ifdef  CONFIG_PNP
1397        if (pnp_driver_registered)
1398                pnp_unregister_driver(&cmos_pnp_driver);
1399#endif
1400        if (platform_driver_registered)
1401                platform_driver_unregister(&cmos_platform_driver);
1402}
1403module_exit(cmos_exit);
1404
1405
1406MODULE_AUTHOR("David Brownell");
1407MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1408MODULE_LICENSE("GPL");
1409