linux/drivers/spi/spi.c
<<
>>
Prefs
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/property.h>
  35#include <linux/export.h>
  36#include <linux/sched/rt.h>
  37#include <uapi/linux/sched/types.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/ioport.h>
  41#include <linux/acpi.h>
  42#include <linux/highmem.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/spi.h>
  46
  47static void spidev_release(struct device *dev)
  48{
  49        struct spi_device       *spi = to_spi_device(dev);
  50
  51        /* spi masters may cleanup for released devices */
  52        if (spi->master->cleanup)
  53                spi->master->cleanup(spi);
  54
  55        spi_master_put(spi->master);
  56        kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62        const struct spi_device *spi = to_spi_device(dev);
  63        int len;
  64
  65        len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66        if (len != -ENODEV)
  67                return len;
  68
  69        return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73#define SPI_STATISTICS_ATTRS(field, file)                               \
  74static ssize_t spi_master_##field##_show(struct device *dev,            \
  75                                         struct device_attribute *attr, \
  76                                         char *buf)                     \
  77{                                                                       \
  78        struct spi_master *master = container_of(dev,                   \
  79                                                 struct spi_master, dev); \
  80        return spi_statistics_##field##_show(&master->statistics, buf); \
  81}                                                                       \
  82static struct device_attribute dev_attr_spi_master_##field = {          \
  83        .attr = { .name = file, .mode = S_IRUGO },                      \
  84        .show = spi_master_##field##_show,                              \
  85};                                                                      \
  86static ssize_t spi_device_##field##_show(struct device *dev,            \
  87                                         struct device_attribute *attr, \
  88                                        char *buf)                      \
  89{                                                                       \
  90        struct spi_device *spi = to_spi_device(dev);                    \
  91        return spi_statistics_##field##_show(&spi->statistics, buf);    \
  92}                                                                       \
  93static struct device_attribute dev_attr_spi_device_##field = {          \
  94        .attr = { .name = file, .mode = S_IRUGO },                      \
  95        .show = spi_device_##field##_show,                              \
  96}
  97
  98#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
  99static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 100                                            char *buf)                  \
 101{                                                                       \
 102        unsigned long flags;                                            \
 103        ssize_t len;                                                    \
 104        spin_lock_irqsave(&stat->lock, flags);                          \
 105        len = sprintf(buf, format_string, stat->field);                 \
 106        spin_unlock_irqrestore(&stat->lock, flags);                     \
 107        return len;                                                     \
 108}                                                                       \
 109SPI_STATISTICS_ATTRS(name, file)
 110
 111#define SPI_STATISTICS_SHOW(field, format_string)                       \
 112        SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
 113                                 field, format_string)
 114
 115SPI_STATISTICS_SHOW(messages, "%lu");
 116SPI_STATISTICS_SHOW(transfers, "%lu");
 117SPI_STATISTICS_SHOW(errors, "%lu");
 118SPI_STATISTICS_SHOW(timedout, "%lu");
 119
 120SPI_STATISTICS_SHOW(spi_sync, "%lu");
 121SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 122SPI_STATISTICS_SHOW(spi_async, "%lu");
 123
 124SPI_STATISTICS_SHOW(bytes, "%llu");
 125SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 126SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 127
 128#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
 129        SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
 130                                 "transfer_bytes_histo_" number,        \
 131                                 transfer_bytes_histo[index],  "%lu")
 132SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 133SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 134SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 135SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 147SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 148SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 149
 150SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 151
 152static struct attribute *spi_dev_attrs[] = {
 153        &dev_attr_modalias.attr,
 154        NULL,
 155};
 156
 157static const struct attribute_group spi_dev_group = {
 158        .attrs  = spi_dev_attrs,
 159};
 160
 161static struct attribute *spi_device_statistics_attrs[] = {
 162        &dev_attr_spi_device_messages.attr,
 163        &dev_attr_spi_device_transfers.attr,
 164        &dev_attr_spi_device_errors.attr,
 165        &dev_attr_spi_device_timedout.attr,
 166        &dev_attr_spi_device_spi_sync.attr,
 167        &dev_attr_spi_device_spi_sync_immediate.attr,
 168        &dev_attr_spi_device_spi_async.attr,
 169        &dev_attr_spi_device_bytes.attr,
 170        &dev_attr_spi_device_bytes_rx.attr,
 171        &dev_attr_spi_device_bytes_tx.attr,
 172        &dev_attr_spi_device_transfer_bytes_histo0.attr,
 173        &dev_attr_spi_device_transfer_bytes_histo1.attr,
 174        &dev_attr_spi_device_transfer_bytes_histo2.attr,
 175        &dev_attr_spi_device_transfer_bytes_histo3.attr,
 176        &dev_attr_spi_device_transfer_bytes_histo4.attr,
 177        &dev_attr_spi_device_transfer_bytes_histo5.attr,
 178        &dev_attr_spi_device_transfer_bytes_histo6.attr,
 179        &dev_attr_spi_device_transfer_bytes_histo7.attr,
 180        &dev_attr_spi_device_transfer_bytes_histo8.attr,
 181        &dev_attr_spi_device_transfer_bytes_histo9.attr,
 182        &dev_attr_spi_device_transfer_bytes_histo10.attr,
 183        &dev_attr_spi_device_transfer_bytes_histo11.attr,
 184        &dev_attr_spi_device_transfer_bytes_histo12.attr,
 185        &dev_attr_spi_device_transfer_bytes_histo13.attr,
 186        &dev_attr_spi_device_transfer_bytes_histo14.attr,
 187        &dev_attr_spi_device_transfer_bytes_histo15.attr,
 188        &dev_attr_spi_device_transfer_bytes_histo16.attr,
 189        &dev_attr_spi_device_transfers_split_maxsize.attr,
 190        NULL,
 191};
 192
 193static const struct attribute_group spi_device_statistics_group = {
 194        .name  = "statistics",
 195        .attrs  = spi_device_statistics_attrs,
 196};
 197
 198static const struct attribute_group *spi_dev_groups[] = {
 199        &spi_dev_group,
 200        &spi_device_statistics_group,
 201        NULL,
 202};
 203
 204static struct attribute *spi_master_statistics_attrs[] = {
 205        &dev_attr_spi_master_messages.attr,
 206        &dev_attr_spi_master_transfers.attr,
 207        &dev_attr_spi_master_errors.attr,
 208        &dev_attr_spi_master_timedout.attr,
 209        &dev_attr_spi_master_spi_sync.attr,
 210        &dev_attr_spi_master_spi_sync_immediate.attr,
 211        &dev_attr_spi_master_spi_async.attr,
 212        &dev_attr_spi_master_bytes.attr,
 213        &dev_attr_spi_master_bytes_rx.attr,
 214        &dev_attr_spi_master_bytes_tx.attr,
 215        &dev_attr_spi_master_transfer_bytes_histo0.attr,
 216        &dev_attr_spi_master_transfer_bytes_histo1.attr,
 217        &dev_attr_spi_master_transfer_bytes_histo2.attr,
 218        &dev_attr_spi_master_transfer_bytes_histo3.attr,
 219        &dev_attr_spi_master_transfer_bytes_histo4.attr,
 220        &dev_attr_spi_master_transfer_bytes_histo5.attr,
 221        &dev_attr_spi_master_transfer_bytes_histo6.attr,
 222        &dev_attr_spi_master_transfer_bytes_histo7.attr,
 223        &dev_attr_spi_master_transfer_bytes_histo8.attr,
 224        &dev_attr_spi_master_transfer_bytes_histo9.attr,
 225        &dev_attr_spi_master_transfer_bytes_histo10.attr,
 226        &dev_attr_spi_master_transfer_bytes_histo11.attr,
 227        &dev_attr_spi_master_transfer_bytes_histo12.attr,
 228        &dev_attr_spi_master_transfer_bytes_histo13.attr,
 229        &dev_attr_spi_master_transfer_bytes_histo14.attr,
 230        &dev_attr_spi_master_transfer_bytes_histo15.attr,
 231        &dev_attr_spi_master_transfer_bytes_histo16.attr,
 232        &dev_attr_spi_master_transfers_split_maxsize.attr,
 233        NULL,
 234};
 235
 236static const struct attribute_group spi_master_statistics_group = {
 237        .name  = "statistics",
 238        .attrs  = spi_master_statistics_attrs,
 239};
 240
 241static const struct attribute_group *spi_master_groups[] = {
 242        &spi_master_statistics_group,
 243        NULL,
 244};
 245
 246void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 247                                       struct spi_transfer *xfer,
 248                                       struct spi_master *master)
 249{
 250        unsigned long flags;
 251        int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 252
 253        if (l2len < 0)
 254                l2len = 0;
 255
 256        spin_lock_irqsave(&stats->lock, flags);
 257
 258        stats->transfers++;
 259        stats->transfer_bytes_histo[l2len]++;
 260
 261        stats->bytes += xfer->len;
 262        if ((xfer->tx_buf) &&
 263            (xfer->tx_buf != master->dummy_tx))
 264                stats->bytes_tx += xfer->len;
 265        if ((xfer->rx_buf) &&
 266            (xfer->rx_buf != master->dummy_rx))
 267                stats->bytes_rx += xfer->len;
 268
 269        spin_unlock_irqrestore(&stats->lock, flags);
 270}
 271EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 272
 273/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 274 * and the sysfs version makes coldplug work too.
 275 */
 276
 277static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 278                                                const struct spi_device *sdev)
 279{
 280        while (id->name[0]) {
 281                if (!strcmp(sdev->modalias, id->name))
 282                        return id;
 283                id++;
 284        }
 285        return NULL;
 286}
 287
 288const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 289{
 290        const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 291
 292        return spi_match_id(sdrv->id_table, sdev);
 293}
 294EXPORT_SYMBOL_GPL(spi_get_device_id);
 295
 296static int spi_match_device(struct device *dev, struct device_driver *drv)
 297{
 298        const struct spi_device *spi = to_spi_device(dev);
 299        const struct spi_driver *sdrv = to_spi_driver(drv);
 300
 301        /* Attempt an OF style match */
 302        if (of_driver_match_device(dev, drv))
 303                return 1;
 304
 305        /* Then try ACPI */
 306        if (acpi_driver_match_device(dev, drv))
 307                return 1;
 308
 309        if (sdrv->id_table)
 310                return !!spi_match_id(sdrv->id_table, spi);
 311
 312        return strcmp(spi->modalias, drv->name) == 0;
 313}
 314
 315static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 316{
 317        const struct spi_device         *spi = to_spi_device(dev);
 318        int rc;
 319
 320        rc = acpi_device_uevent_modalias(dev, env);
 321        if (rc != -ENODEV)
 322                return rc;
 323
 324        add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 325        return 0;
 326}
 327
 328struct bus_type spi_bus_type = {
 329        .name           = "spi",
 330        .dev_groups     = spi_dev_groups,
 331        .match          = spi_match_device,
 332        .uevent         = spi_uevent,
 333};
 334EXPORT_SYMBOL_GPL(spi_bus_type);
 335
 336
 337static int spi_drv_probe(struct device *dev)
 338{
 339        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 340        struct spi_device               *spi = to_spi_device(dev);
 341        int ret;
 342
 343        ret = of_clk_set_defaults(dev->of_node, false);
 344        if (ret)
 345                return ret;
 346
 347        if (dev->of_node) {
 348                spi->irq = of_irq_get(dev->of_node, 0);
 349                if (spi->irq == -EPROBE_DEFER)
 350                        return -EPROBE_DEFER;
 351                if (spi->irq < 0)
 352                        spi->irq = 0;
 353        }
 354
 355        ret = dev_pm_domain_attach(dev, true);
 356        if (ret != -EPROBE_DEFER) {
 357                ret = sdrv->probe(spi);
 358                if (ret)
 359                        dev_pm_domain_detach(dev, true);
 360        }
 361
 362        return ret;
 363}
 364
 365static int spi_drv_remove(struct device *dev)
 366{
 367        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 368        int ret;
 369
 370        ret = sdrv->remove(to_spi_device(dev));
 371        dev_pm_domain_detach(dev, true);
 372
 373        return ret;
 374}
 375
 376static void spi_drv_shutdown(struct device *dev)
 377{
 378        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 379
 380        sdrv->shutdown(to_spi_device(dev));
 381}
 382
 383/**
 384 * __spi_register_driver - register a SPI driver
 385 * @owner: owner module of the driver to register
 386 * @sdrv: the driver to register
 387 * Context: can sleep
 388 *
 389 * Return: zero on success, else a negative error code.
 390 */
 391int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 392{
 393        sdrv->driver.owner = owner;
 394        sdrv->driver.bus = &spi_bus_type;
 395        if (sdrv->probe)
 396                sdrv->driver.probe = spi_drv_probe;
 397        if (sdrv->remove)
 398                sdrv->driver.remove = spi_drv_remove;
 399        if (sdrv->shutdown)
 400                sdrv->driver.shutdown = spi_drv_shutdown;
 401        return driver_register(&sdrv->driver);
 402}
 403EXPORT_SYMBOL_GPL(__spi_register_driver);
 404
 405/*-------------------------------------------------------------------------*/
 406
 407/* SPI devices should normally not be created by SPI device drivers; that
 408 * would make them board-specific.  Similarly with SPI master drivers.
 409 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 410 * with other readonly (flashable) information about mainboard devices.
 411 */
 412
 413struct boardinfo {
 414        struct list_head        list;
 415        struct spi_board_info   board_info;
 416};
 417
 418static LIST_HEAD(board_list);
 419static LIST_HEAD(spi_master_list);
 420
 421/*
 422 * Used to protect add/del opertion for board_info list and
 423 * spi_master list, and their matching process
 424 */
 425static DEFINE_MUTEX(board_lock);
 426
 427/**
 428 * spi_alloc_device - Allocate a new SPI device
 429 * @master: Controller to which device is connected
 430 * Context: can sleep
 431 *
 432 * Allows a driver to allocate and initialize a spi_device without
 433 * registering it immediately.  This allows a driver to directly
 434 * fill the spi_device with device parameters before calling
 435 * spi_add_device() on it.
 436 *
 437 * Caller is responsible to call spi_add_device() on the returned
 438 * spi_device structure to add it to the SPI master.  If the caller
 439 * needs to discard the spi_device without adding it, then it should
 440 * call spi_dev_put() on it.
 441 *
 442 * Return: a pointer to the new device, or NULL.
 443 */
 444struct spi_device *spi_alloc_device(struct spi_master *master)
 445{
 446        struct spi_device       *spi;
 447
 448        if (!spi_master_get(master))
 449                return NULL;
 450
 451        spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 452        if (!spi) {
 453                spi_master_put(master);
 454                return NULL;
 455        }
 456
 457        spi->master = master;
 458        spi->dev.parent = &master->dev;
 459        spi->dev.bus = &spi_bus_type;
 460        spi->dev.release = spidev_release;
 461        spi->cs_gpio = -ENOENT;
 462
 463        spin_lock_init(&spi->statistics.lock);
 464
 465        device_initialize(&spi->dev);
 466        return spi;
 467}
 468EXPORT_SYMBOL_GPL(spi_alloc_device);
 469
 470static void spi_dev_set_name(struct spi_device *spi)
 471{
 472        struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 473
 474        if (adev) {
 475                dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 476                return;
 477        }
 478
 479        dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 480                     spi->chip_select);
 481}
 482
 483static int spi_dev_check(struct device *dev, void *data)
 484{
 485        struct spi_device *spi = to_spi_device(dev);
 486        struct spi_device *new_spi = data;
 487
 488        if (spi->master == new_spi->master &&
 489            spi->chip_select == new_spi->chip_select)
 490                return -EBUSY;
 491        return 0;
 492}
 493
 494/**
 495 * spi_add_device - Add spi_device allocated with spi_alloc_device
 496 * @spi: spi_device to register
 497 *
 498 * Companion function to spi_alloc_device.  Devices allocated with
 499 * spi_alloc_device can be added onto the spi bus with this function.
 500 *
 501 * Return: 0 on success; negative errno on failure
 502 */
 503int spi_add_device(struct spi_device *spi)
 504{
 505        static DEFINE_MUTEX(spi_add_lock);
 506        struct spi_master *master = spi->master;
 507        struct device *dev = master->dev.parent;
 508        int status;
 509
 510        /* Chipselects are numbered 0..max; validate. */
 511        if (spi->chip_select >= master->num_chipselect) {
 512                dev_err(dev, "cs%d >= max %d\n",
 513                        spi->chip_select,
 514                        master->num_chipselect);
 515                return -EINVAL;
 516        }
 517
 518        /* Set the bus ID string */
 519        spi_dev_set_name(spi);
 520
 521        /* We need to make sure there's no other device with this
 522         * chipselect **BEFORE** we call setup(), else we'll trash
 523         * its configuration.  Lock against concurrent add() calls.
 524         */
 525        mutex_lock(&spi_add_lock);
 526
 527        status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 528        if (status) {
 529                dev_err(dev, "chipselect %d already in use\n",
 530                                spi->chip_select);
 531                goto done;
 532        }
 533
 534        if (master->cs_gpios)
 535                spi->cs_gpio = master->cs_gpios[spi->chip_select];
 536
 537        /* Drivers may modify this initial i/o setup, but will
 538         * normally rely on the device being setup.  Devices
 539         * using SPI_CS_HIGH can't coexist well otherwise...
 540         */
 541        status = spi_setup(spi);
 542        if (status < 0) {
 543                dev_err(dev, "can't setup %s, status %d\n",
 544                                dev_name(&spi->dev), status);
 545                goto done;
 546        }
 547
 548        /* Device may be bound to an active driver when this returns */
 549        status = device_add(&spi->dev);
 550        if (status < 0)
 551                dev_err(dev, "can't add %s, status %d\n",
 552                                dev_name(&spi->dev), status);
 553        else
 554                dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 555
 556done:
 557        mutex_unlock(&spi_add_lock);
 558        return status;
 559}
 560EXPORT_SYMBOL_GPL(spi_add_device);
 561
 562/**
 563 * spi_new_device - instantiate one new SPI device
 564 * @master: Controller to which device is connected
 565 * @chip: Describes the SPI device
 566 * Context: can sleep
 567 *
 568 * On typical mainboards, this is purely internal; and it's not needed
 569 * after board init creates the hard-wired devices.  Some development
 570 * platforms may not be able to use spi_register_board_info though, and
 571 * this is exported so that for example a USB or parport based adapter
 572 * driver could add devices (which it would learn about out-of-band).
 573 *
 574 * Return: the new device, or NULL.
 575 */
 576struct spi_device *spi_new_device(struct spi_master *master,
 577                                  struct spi_board_info *chip)
 578{
 579        struct spi_device       *proxy;
 580        int                     status;
 581
 582        /* NOTE:  caller did any chip->bus_num checks necessary.
 583         *
 584         * Also, unless we change the return value convention to use
 585         * error-or-pointer (not NULL-or-pointer), troubleshootability
 586         * suggests syslogged diagnostics are best here (ugh).
 587         */
 588
 589        proxy = spi_alloc_device(master);
 590        if (!proxy)
 591                return NULL;
 592
 593        WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 594
 595        proxy->chip_select = chip->chip_select;
 596        proxy->max_speed_hz = chip->max_speed_hz;
 597        proxy->mode = chip->mode;
 598        proxy->irq = chip->irq;
 599        strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 600        proxy->dev.platform_data = (void *) chip->platform_data;
 601        proxy->controller_data = chip->controller_data;
 602        proxy->controller_state = NULL;
 603
 604        if (chip->properties) {
 605                status = device_add_properties(&proxy->dev, chip->properties);
 606                if (status) {
 607                        dev_err(&master->dev,
 608                                "failed to add properties to '%s': %d\n",
 609                                chip->modalias, status);
 610                        goto err_dev_put;
 611                }
 612        }
 613
 614        status = spi_add_device(proxy);
 615        if (status < 0)
 616                goto err_remove_props;
 617
 618        return proxy;
 619
 620err_remove_props:
 621        if (chip->properties)
 622                device_remove_properties(&proxy->dev);
 623err_dev_put:
 624        spi_dev_put(proxy);
 625        return NULL;
 626}
 627EXPORT_SYMBOL_GPL(spi_new_device);
 628
 629/**
 630 * spi_unregister_device - unregister a single SPI device
 631 * @spi: spi_device to unregister
 632 *
 633 * Start making the passed SPI device vanish. Normally this would be handled
 634 * by spi_unregister_master().
 635 */
 636void spi_unregister_device(struct spi_device *spi)
 637{
 638        if (!spi)
 639                return;
 640
 641        if (spi->dev.of_node) {
 642                of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 643                of_node_put(spi->dev.of_node);
 644        }
 645        if (ACPI_COMPANION(&spi->dev))
 646                acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 647        device_unregister(&spi->dev);
 648}
 649EXPORT_SYMBOL_GPL(spi_unregister_device);
 650
 651static void spi_match_master_to_boardinfo(struct spi_master *master,
 652                                struct spi_board_info *bi)
 653{
 654        struct spi_device *dev;
 655
 656        if (master->bus_num != bi->bus_num)
 657                return;
 658
 659        dev = spi_new_device(master, bi);
 660        if (!dev)
 661                dev_err(master->dev.parent, "can't create new device for %s\n",
 662                        bi->modalias);
 663}
 664
 665/**
 666 * spi_register_board_info - register SPI devices for a given board
 667 * @info: array of chip descriptors
 668 * @n: how many descriptors are provided
 669 * Context: can sleep
 670 *
 671 * Board-specific early init code calls this (probably during arch_initcall)
 672 * with segments of the SPI device table.  Any device nodes are created later,
 673 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 674 * this table of devices forever, so that reloading a controller driver will
 675 * not make Linux forget about these hard-wired devices.
 676 *
 677 * Other code can also call this, e.g. a particular add-on board might provide
 678 * SPI devices through its expansion connector, so code initializing that board
 679 * would naturally declare its SPI devices.
 680 *
 681 * The board info passed can safely be __initdata ... but be careful of
 682 * any embedded pointers (platform_data, etc), they're copied as-is.
 683 * Device properties are deep-copied though.
 684 *
 685 * Return: zero on success, else a negative error code.
 686 */
 687int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 688{
 689        struct boardinfo *bi;
 690        int i;
 691
 692        if (!n)
 693                return 0;
 694
 695        bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 696        if (!bi)
 697                return -ENOMEM;
 698
 699        for (i = 0; i < n; i++, bi++, info++) {
 700                struct spi_master *master;
 701
 702                memcpy(&bi->board_info, info, sizeof(*info));
 703                if (info->properties) {
 704                        bi->board_info.properties =
 705                                        property_entries_dup(info->properties);
 706                        if (IS_ERR(bi->board_info.properties))
 707                                return PTR_ERR(bi->board_info.properties);
 708                }
 709
 710                mutex_lock(&board_lock);
 711                list_add_tail(&bi->list, &board_list);
 712                list_for_each_entry(master, &spi_master_list, list)
 713                        spi_match_master_to_boardinfo(master, &bi->board_info);
 714                mutex_unlock(&board_lock);
 715        }
 716
 717        return 0;
 718}
 719
 720/*-------------------------------------------------------------------------*/
 721
 722static void spi_set_cs(struct spi_device *spi, bool enable)
 723{
 724        if (spi->mode & SPI_CS_HIGH)
 725                enable = !enable;
 726
 727        if (gpio_is_valid(spi->cs_gpio)) {
 728                gpio_set_value(spi->cs_gpio, !enable);
 729                /* Some SPI masters need both GPIO CS & slave_select */
 730                if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
 731                    spi->master->set_cs)
 732                        spi->master->set_cs(spi, !enable);
 733        } else if (spi->master->set_cs) {
 734                spi->master->set_cs(spi, !enable);
 735        }
 736}
 737
 738#ifdef CONFIG_HAS_DMA
 739static int spi_map_buf(struct spi_master *master, struct device *dev,
 740                       struct sg_table *sgt, void *buf, size_t len,
 741                       enum dma_data_direction dir)
 742{
 743        const bool vmalloced_buf = is_vmalloc_addr(buf);
 744        unsigned int max_seg_size = dma_get_max_seg_size(dev);
 745#ifdef CONFIG_HIGHMEM
 746        const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 747                                (unsigned long)buf < (PKMAP_BASE +
 748                                        (LAST_PKMAP * PAGE_SIZE)));
 749#else
 750        const bool kmap_buf = false;
 751#endif
 752        int desc_len;
 753        int sgs;
 754        struct page *vm_page;
 755        struct scatterlist *sg;
 756        void *sg_buf;
 757        size_t min;
 758        int i, ret;
 759
 760        if (vmalloced_buf || kmap_buf) {
 761                desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 762                sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 763        } else if (virt_addr_valid(buf)) {
 764                desc_len = min_t(int, max_seg_size, master->max_dma_len);
 765                sgs = DIV_ROUND_UP(len, desc_len);
 766        } else {
 767                return -EINVAL;
 768        }
 769
 770        ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 771        if (ret != 0)
 772                return ret;
 773
 774        sg = &sgt->sgl[0];
 775        for (i = 0; i < sgs; i++) {
 776
 777                if (vmalloced_buf || kmap_buf) {
 778                        min = min_t(size_t,
 779                                    len, desc_len - offset_in_page(buf));
 780                        if (vmalloced_buf)
 781                                vm_page = vmalloc_to_page(buf);
 782                        else
 783                                vm_page = kmap_to_page(buf);
 784                        if (!vm_page) {
 785                                sg_free_table(sgt);
 786                                return -ENOMEM;
 787                        }
 788                        sg_set_page(sg, vm_page,
 789                                    min, offset_in_page(buf));
 790                } else {
 791                        min = min_t(size_t, len, desc_len);
 792                        sg_buf = buf;
 793                        sg_set_buf(sg, sg_buf, min);
 794                }
 795
 796                buf += min;
 797                len -= min;
 798                sg = sg_next(sg);
 799        }
 800
 801        ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 802        if (!ret)
 803                ret = -ENOMEM;
 804        if (ret < 0) {
 805                sg_free_table(sgt);
 806                return ret;
 807        }
 808
 809        sgt->nents = ret;
 810
 811        return 0;
 812}
 813
 814static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 815                          struct sg_table *sgt, enum dma_data_direction dir)
 816{
 817        if (sgt->orig_nents) {
 818                dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 819                sg_free_table(sgt);
 820        }
 821}
 822
 823static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 824{
 825        struct device *tx_dev, *rx_dev;
 826        struct spi_transfer *xfer;
 827        int ret;
 828
 829        if (!master->can_dma)
 830                return 0;
 831
 832        if (master->dma_tx)
 833                tx_dev = master->dma_tx->device->dev;
 834        else
 835                tx_dev = master->dev.parent;
 836
 837        if (master->dma_rx)
 838                rx_dev = master->dma_rx->device->dev;
 839        else
 840                rx_dev = master->dev.parent;
 841
 842        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 843                if (!master->can_dma(master, msg->spi, xfer))
 844                        continue;
 845
 846                if (xfer->tx_buf != NULL) {
 847                        ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 848                                          (void *)xfer->tx_buf, xfer->len,
 849                                          DMA_TO_DEVICE);
 850                        if (ret != 0)
 851                                return ret;
 852                }
 853
 854                if (xfer->rx_buf != NULL) {
 855                        ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 856                                          xfer->rx_buf, xfer->len,
 857                                          DMA_FROM_DEVICE);
 858                        if (ret != 0) {
 859                                spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 860                                              DMA_TO_DEVICE);
 861                                return ret;
 862                        }
 863                }
 864        }
 865
 866        master->cur_msg_mapped = true;
 867
 868        return 0;
 869}
 870
 871static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 872{
 873        struct spi_transfer *xfer;
 874        struct device *tx_dev, *rx_dev;
 875
 876        if (!master->cur_msg_mapped || !master->can_dma)
 877                return 0;
 878
 879        if (master->dma_tx)
 880                tx_dev = master->dma_tx->device->dev;
 881        else
 882                tx_dev = master->dev.parent;
 883
 884        if (master->dma_rx)
 885                rx_dev = master->dma_rx->device->dev;
 886        else
 887                rx_dev = master->dev.parent;
 888
 889        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 890                if (!master->can_dma(master, msg->spi, xfer))
 891                        continue;
 892
 893                spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 894                spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 895        }
 896
 897        return 0;
 898}
 899#else /* !CONFIG_HAS_DMA */
 900static inline int spi_map_buf(struct spi_master *master,
 901                              struct device *dev, struct sg_table *sgt,
 902                              void *buf, size_t len,
 903                              enum dma_data_direction dir)
 904{
 905        return -EINVAL;
 906}
 907
 908static inline void spi_unmap_buf(struct spi_master *master,
 909                                 struct device *dev, struct sg_table *sgt,
 910                                 enum dma_data_direction dir)
 911{
 912}
 913
 914static inline int __spi_map_msg(struct spi_master *master,
 915                                struct spi_message *msg)
 916{
 917        return 0;
 918}
 919
 920static inline int __spi_unmap_msg(struct spi_master *master,
 921                                  struct spi_message *msg)
 922{
 923        return 0;
 924}
 925#endif /* !CONFIG_HAS_DMA */
 926
 927static inline int spi_unmap_msg(struct spi_master *master,
 928                                struct spi_message *msg)
 929{
 930        struct spi_transfer *xfer;
 931
 932        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 933                /*
 934                 * Restore the original value of tx_buf or rx_buf if they are
 935                 * NULL.
 936                 */
 937                if (xfer->tx_buf == master->dummy_tx)
 938                        xfer->tx_buf = NULL;
 939                if (xfer->rx_buf == master->dummy_rx)
 940                        xfer->rx_buf = NULL;
 941        }
 942
 943        return __spi_unmap_msg(master, msg);
 944}
 945
 946static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 947{
 948        struct spi_transfer *xfer;
 949        void *tmp;
 950        unsigned int max_tx, max_rx;
 951
 952        if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 953                max_tx = 0;
 954                max_rx = 0;
 955
 956                list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 957                        if ((master->flags & SPI_MASTER_MUST_TX) &&
 958                            !xfer->tx_buf)
 959                                max_tx = max(xfer->len, max_tx);
 960                        if ((master->flags & SPI_MASTER_MUST_RX) &&
 961                            !xfer->rx_buf)
 962                                max_rx = max(xfer->len, max_rx);
 963                }
 964
 965                if (max_tx) {
 966                        tmp = krealloc(master->dummy_tx, max_tx,
 967                                       GFP_KERNEL | GFP_DMA);
 968                        if (!tmp)
 969                                return -ENOMEM;
 970                        master->dummy_tx = tmp;
 971                        memset(tmp, 0, max_tx);
 972                }
 973
 974                if (max_rx) {
 975                        tmp = krealloc(master->dummy_rx, max_rx,
 976                                       GFP_KERNEL | GFP_DMA);
 977                        if (!tmp)
 978                                return -ENOMEM;
 979                        master->dummy_rx = tmp;
 980                }
 981
 982                if (max_tx || max_rx) {
 983                        list_for_each_entry(xfer, &msg->transfers,
 984                                            transfer_list) {
 985                                if (!xfer->tx_buf)
 986                                        xfer->tx_buf = master->dummy_tx;
 987                                if (!xfer->rx_buf)
 988                                        xfer->rx_buf = master->dummy_rx;
 989                        }
 990                }
 991        }
 992
 993        return __spi_map_msg(master, msg);
 994}
 995
 996/*
 997 * spi_transfer_one_message - Default implementation of transfer_one_message()
 998 *
 999 * This is a standard implementation of transfer_one_message() for
1000 * drivers which implement a transfer_one() operation.  It provides
1001 * standard handling of delays and chip select management.
1002 */
1003static int spi_transfer_one_message(struct spi_master *master,
1004                                    struct spi_message *msg)
1005{
1006        struct spi_transfer *xfer;
1007        bool keep_cs = false;
1008        int ret = 0;
1009        unsigned long long ms = 1;
1010        struct spi_statistics *statm = &master->statistics;
1011        struct spi_statistics *stats = &msg->spi->statistics;
1012
1013        spi_set_cs(msg->spi, true);
1014
1015        SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1016        SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1017
1018        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1019                trace_spi_transfer_start(msg, xfer);
1020
1021                spi_statistics_add_transfer_stats(statm, xfer, master);
1022                spi_statistics_add_transfer_stats(stats, xfer, master);
1023
1024                if (xfer->tx_buf || xfer->rx_buf) {
1025                        reinit_completion(&master->xfer_completion);
1026
1027                        ret = master->transfer_one(master, msg->spi, xfer);
1028                        if (ret < 0) {
1029                                SPI_STATISTICS_INCREMENT_FIELD(statm,
1030                                                               errors);
1031                                SPI_STATISTICS_INCREMENT_FIELD(stats,
1032                                                               errors);
1033                                dev_err(&msg->spi->dev,
1034                                        "SPI transfer failed: %d\n", ret);
1035                                goto out;
1036                        }
1037
1038                        if (ret > 0) {
1039                                ret = 0;
1040                                ms = 8LL * 1000LL * xfer->len;
1041                                do_div(ms, xfer->speed_hz);
1042                                ms += ms + 200; /* some tolerance */
1043
1044                                if (ms > UINT_MAX)
1045                                        ms = UINT_MAX;
1046
1047                                ms = wait_for_completion_timeout(&master->xfer_completion,
1048                                                                 msecs_to_jiffies(ms));
1049                        }
1050
1051                        if (ms == 0) {
1052                                SPI_STATISTICS_INCREMENT_FIELD(statm,
1053                                                               timedout);
1054                                SPI_STATISTICS_INCREMENT_FIELD(stats,
1055                                                               timedout);
1056                                dev_err(&msg->spi->dev,
1057                                        "SPI transfer timed out\n");
1058                                msg->status = -ETIMEDOUT;
1059                        }
1060                } else {
1061                        if (xfer->len)
1062                                dev_err(&msg->spi->dev,
1063                                        "Bufferless transfer has length %u\n",
1064                                        xfer->len);
1065                }
1066
1067                trace_spi_transfer_stop(msg, xfer);
1068
1069                if (msg->status != -EINPROGRESS)
1070                        goto out;
1071
1072                if (xfer->delay_usecs) {
1073                        u16 us = xfer->delay_usecs;
1074
1075                        if (us <= 10)
1076                                udelay(us);
1077                        else
1078                                usleep_range(us, us + DIV_ROUND_UP(us, 10));
1079                }
1080
1081                if (xfer->cs_change) {
1082                        if (list_is_last(&xfer->transfer_list,
1083                                         &msg->transfers)) {
1084                                keep_cs = true;
1085                        } else {
1086                                spi_set_cs(msg->spi, false);
1087                                udelay(10);
1088                                spi_set_cs(msg->spi, true);
1089                        }
1090                }
1091
1092                msg->actual_length += xfer->len;
1093        }
1094
1095out:
1096        if (ret != 0 || !keep_cs)
1097                spi_set_cs(msg->spi, false);
1098
1099        if (msg->status == -EINPROGRESS)
1100                msg->status = ret;
1101
1102        if (msg->status && master->handle_err)
1103                master->handle_err(master, msg);
1104
1105        spi_res_release(master, msg);
1106
1107        spi_finalize_current_message(master);
1108
1109        return ret;
1110}
1111
1112/**
1113 * spi_finalize_current_transfer - report completion of a transfer
1114 * @master: the master reporting completion
1115 *
1116 * Called by SPI drivers using the core transfer_one_message()
1117 * implementation to notify it that the current interrupt driven
1118 * transfer has finished and the next one may be scheduled.
1119 */
1120void spi_finalize_current_transfer(struct spi_master *master)
1121{
1122        complete(&master->xfer_completion);
1123}
1124EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1125
1126/**
1127 * __spi_pump_messages - function which processes spi message queue
1128 * @master: master to process queue for
1129 * @in_kthread: true if we are in the context of the message pump thread
1130 *
1131 * This function checks if there is any spi message in the queue that
1132 * needs processing and if so call out to the driver to initialize hardware
1133 * and transfer each message.
1134 *
1135 * Note that it is called both from the kthread itself and also from
1136 * inside spi_sync(); the queue extraction handling at the top of the
1137 * function should deal with this safely.
1138 */
1139static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1140{
1141        unsigned long flags;
1142        bool was_busy = false;
1143        int ret;
1144
1145        /* Lock queue */
1146        spin_lock_irqsave(&master->queue_lock, flags);
1147
1148        /* Make sure we are not already running a message */
1149        if (master->cur_msg) {
1150                spin_unlock_irqrestore(&master->queue_lock, flags);
1151                return;
1152        }
1153
1154        /* If another context is idling the device then defer */
1155        if (master->idling) {
1156                kthread_queue_work(&master->kworker, &master->pump_messages);
1157                spin_unlock_irqrestore(&master->queue_lock, flags);
1158                return;
1159        }
1160
1161        /* Check if the queue is idle */
1162        if (list_empty(&master->queue) || !master->running) {
1163                if (!master->busy) {
1164                        spin_unlock_irqrestore(&master->queue_lock, flags);
1165                        return;
1166                }
1167
1168                /* Only do teardown in the thread */
1169                if (!in_kthread) {
1170                        kthread_queue_work(&master->kworker,
1171                                           &master->pump_messages);
1172                        spin_unlock_irqrestore(&master->queue_lock, flags);
1173                        return;
1174                }
1175
1176                master->busy = false;
1177                master->idling = true;
1178                spin_unlock_irqrestore(&master->queue_lock, flags);
1179
1180                kfree(master->dummy_rx);
1181                master->dummy_rx = NULL;
1182                kfree(master->dummy_tx);
1183                master->dummy_tx = NULL;
1184                if (master->unprepare_transfer_hardware &&
1185                    master->unprepare_transfer_hardware(master))
1186                        dev_err(&master->dev,
1187                                "failed to unprepare transfer hardware\n");
1188                if (master->auto_runtime_pm) {
1189                        pm_runtime_mark_last_busy(master->dev.parent);
1190                        pm_runtime_put_autosuspend(master->dev.parent);
1191                }
1192                trace_spi_master_idle(master);
1193
1194                spin_lock_irqsave(&master->queue_lock, flags);
1195                master->idling = false;
1196                spin_unlock_irqrestore(&master->queue_lock, flags);
1197                return;
1198        }
1199
1200        /* Extract head of queue */
1201        master->cur_msg =
1202                list_first_entry(&master->queue, struct spi_message, queue);
1203
1204        list_del_init(&master->cur_msg->queue);
1205        if (master->busy)
1206                was_busy = true;
1207        else
1208                master->busy = true;
1209        spin_unlock_irqrestore(&master->queue_lock, flags);
1210
1211        mutex_lock(&master->io_mutex);
1212
1213        if (!was_busy && master->auto_runtime_pm) {
1214                ret = pm_runtime_get_sync(master->dev.parent);
1215                if (ret < 0) {
1216                        dev_err(&master->dev, "Failed to power device: %d\n",
1217                                ret);
1218                        mutex_unlock(&master->io_mutex);
1219                        return;
1220                }
1221        }
1222
1223        if (!was_busy)
1224                trace_spi_master_busy(master);
1225
1226        if (!was_busy && master->prepare_transfer_hardware) {
1227                ret = master->prepare_transfer_hardware(master);
1228                if (ret) {
1229                        dev_err(&master->dev,
1230                                "failed to prepare transfer hardware\n");
1231
1232                        if (master->auto_runtime_pm)
1233                                pm_runtime_put(master->dev.parent);
1234                        mutex_unlock(&master->io_mutex);
1235                        return;
1236                }
1237        }
1238
1239        trace_spi_message_start(master->cur_msg);
1240
1241        if (master->prepare_message) {
1242                ret = master->prepare_message(master, master->cur_msg);
1243                if (ret) {
1244                        dev_err(&master->dev,
1245                                "failed to prepare message: %d\n", ret);
1246                        master->cur_msg->status = ret;
1247                        spi_finalize_current_message(master);
1248                        goto out;
1249                }
1250                master->cur_msg_prepared = true;
1251        }
1252
1253        ret = spi_map_msg(master, master->cur_msg);
1254        if (ret) {
1255                master->cur_msg->status = ret;
1256                spi_finalize_current_message(master);
1257                goto out;
1258        }
1259
1260        ret = master->transfer_one_message(master, master->cur_msg);
1261        if (ret) {
1262                dev_err(&master->dev,
1263                        "failed to transfer one message from queue\n");
1264                goto out;
1265        }
1266
1267out:
1268        mutex_unlock(&master->io_mutex);
1269
1270        /* Prod the scheduler in case transfer_one() was busy waiting */
1271        if (!ret)
1272                cond_resched();
1273}
1274
1275/**
1276 * spi_pump_messages - kthread work function which processes spi message queue
1277 * @work: pointer to kthread work struct contained in the master struct
1278 */
1279static void spi_pump_messages(struct kthread_work *work)
1280{
1281        struct spi_master *master =
1282                container_of(work, struct spi_master, pump_messages);
1283
1284        __spi_pump_messages(master, true);
1285}
1286
1287static int spi_init_queue(struct spi_master *master)
1288{
1289        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1290
1291        master->running = false;
1292        master->busy = false;
1293
1294        kthread_init_worker(&master->kworker);
1295        master->kworker_task = kthread_run(kthread_worker_fn,
1296                                           &master->kworker, "%s",
1297                                           dev_name(&master->dev));
1298        if (IS_ERR(master->kworker_task)) {
1299                dev_err(&master->dev, "failed to create message pump task\n");
1300                return PTR_ERR(master->kworker_task);
1301        }
1302        kthread_init_work(&master->pump_messages, spi_pump_messages);
1303
1304        /*
1305         * Master config will indicate if this controller should run the
1306         * message pump with high (realtime) priority to reduce the transfer
1307         * latency on the bus by minimising the delay between a transfer
1308         * request and the scheduling of the message pump thread. Without this
1309         * setting the message pump thread will remain at default priority.
1310         */
1311        if (master->rt) {
1312                dev_info(&master->dev,
1313                        "will run message pump with realtime priority\n");
1314                sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1315        }
1316
1317        return 0;
1318}
1319
1320/**
1321 * spi_get_next_queued_message() - called by driver to check for queued
1322 * messages
1323 * @master: the master to check for queued messages
1324 *
1325 * If there are more messages in the queue, the next message is returned from
1326 * this call.
1327 *
1328 * Return: the next message in the queue, else NULL if the queue is empty.
1329 */
1330struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1331{
1332        struct spi_message *next;
1333        unsigned long flags;
1334
1335        /* get a pointer to the next message, if any */
1336        spin_lock_irqsave(&master->queue_lock, flags);
1337        next = list_first_entry_or_null(&master->queue, struct spi_message,
1338                                        queue);
1339        spin_unlock_irqrestore(&master->queue_lock, flags);
1340
1341        return next;
1342}
1343EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1344
1345/**
1346 * spi_finalize_current_message() - the current message is complete
1347 * @master: the master to return the message to
1348 *
1349 * Called by the driver to notify the core that the message in the front of the
1350 * queue is complete and can be removed from the queue.
1351 */
1352void spi_finalize_current_message(struct spi_master *master)
1353{
1354        struct spi_message *mesg;
1355        unsigned long flags;
1356        int ret;
1357
1358        spin_lock_irqsave(&master->queue_lock, flags);
1359        mesg = master->cur_msg;
1360        spin_unlock_irqrestore(&master->queue_lock, flags);
1361
1362        spi_unmap_msg(master, mesg);
1363
1364        if (master->cur_msg_prepared && master->unprepare_message) {
1365                ret = master->unprepare_message(master, mesg);
1366                if (ret) {
1367                        dev_err(&master->dev,
1368                                "failed to unprepare message: %d\n", ret);
1369                }
1370        }
1371
1372        spin_lock_irqsave(&master->queue_lock, flags);
1373        master->cur_msg = NULL;
1374        master->cur_msg_prepared = false;
1375        kthread_queue_work(&master->kworker, &master->pump_messages);
1376        spin_unlock_irqrestore(&master->queue_lock, flags);
1377
1378        trace_spi_message_done(mesg);
1379
1380        mesg->state = NULL;
1381        if (mesg->complete)
1382                mesg->complete(mesg->context);
1383}
1384EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1385
1386static int spi_start_queue(struct spi_master *master)
1387{
1388        unsigned long flags;
1389
1390        spin_lock_irqsave(&master->queue_lock, flags);
1391
1392        if (master->running || master->busy) {
1393                spin_unlock_irqrestore(&master->queue_lock, flags);
1394                return -EBUSY;
1395        }
1396
1397        master->running = true;
1398        master->cur_msg = NULL;
1399        spin_unlock_irqrestore(&master->queue_lock, flags);
1400
1401        kthread_queue_work(&master->kworker, &master->pump_messages);
1402
1403        return 0;
1404}
1405
1406static int spi_stop_queue(struct spi_master *master)
1407{
1408        unsigned long flags;
1409        unsigned limit = 500;
1410        int ret = 0;
1411
1412        spin_lock_irqsave(&master->queue_lock, flags);
1413
1414        /*
1415         * This is a bit lame, but is optimized for the common execution path.
1416         * A wait_queue on the master->busy could be used, but then the common
1417         * execution path (pump_messages) would be required to call wake_up or
1418         * friends on every SPI message. Do this instead.
1419         */
1420        while ((!list_empty(&master->queue) || master->busy) && limit--) {
1421                spin_unlock_irqrestore(&master->queue_lock, flags);
1422                usleep_range(10000, 11000);
1423                spin_lock_irqsave(&master->queue_lock, flags);
1424        }
1425
1426        if (!list_empty(&master->queue) || master->busy)
1427                ret = -EBUSY;
1428        else
1429                master->running = false;
1430
1431        spin_unlock_irqrestore(&master->queue_lock, flags);
1432
1433        if (ret) {
1434                dev_warn(&master->dev,
1435                         "could not stop message queue\n");
1436                return ret;
1437        }
1438        return ret;
1439}
1440
1441static int spi_destroy_queue(struct spi_master *master)
1442{
1443        int ret;
1444
1445        ret = spi_stop_queue(master);
1446
1447        /*
1448         * kthread_flush_worker will block until all work is done.
1449         * If the reason that stop_queue timed out is that the work will never
1450         * finish, then it does no good to call flush/stop thread, so
1451         * return anyway.
1452         */
1453        if (ret) {
1454                dev_err(&master->dev, "problem destroying queue\n");
1455                return ret;
1456        }
1457
1458        kthread_flush_worker(&master->kworker);
1459        kthread_stop(master->kworker_task);
1460
1461        return 0;
1462}
1463
1464static int __spi_queued_transfer(struct spi_device *spi,
1465                                 struct spi_message *msg,
1466                                 bool need_pump)
1467{
1468        struct spi_master *master = spi->master;
1469        unsigned long flags;
1470
1471        spin_lock_irqsave(&master->queue_lock, flags);
1472
1473        if (!master->running) {
1474                spin_unlock_irqrestore(&master->queue_lock, flags);
1475                return -ESHUTDOWN;
1476        }
1477        msg->actual_length = 0;
1478        msg->status = -EINPROGRESS;
1479
1480        list_add_tail(&msg->queue, &master->queue);
1481        if (!master->busy && need_pump)
1482                kthread_queue_work(&master->kworker, &master->pump_messages);
1483
1484        spin_unlock_irqrestore(&master->queue_lock, flags);
1485        return 0;
1486}
1487
1488/**
1489 * spi_queued_transfer - transfer function for queued transfers
1490 * @spi: spi device which is requesting transfer
1491 * @msg: spi message which is to handled is queued to driver queue
1492 *
1493 * Return: zero on success, else a negative error code.
1494 */
1495static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1496{
1497        return __spi_queued_transfer(spi, msg, true);
1498}
1499
1500static int spi_master_initialize_queue(struct spi_master *master)
1501{
1502        int ret;
1503
1504        master->transfer = spi_queued_transfer;
1505        if (!master->transfer_one_message)
1506                master->transfer_one_message = spi_transfer_one_message;
1507
1508        /* Initialize and start queue */
1509        ret = spi_init_queue(master);
1510        if (ret) {
1511                dev_err(&master->dev, "problem initializing queue\n");
1512                goto err_init_queue;
1513        }
1514        master->queued = true;
1515        ret = spi_start_queue(master);
1516        if (ret) {
1517                dev_err(&master->dev, "problem starting queue\n");
1518                goto err_start_queue;
1519        }
1520
1521        return 0;
1522
1523err_start_queue:
1524        spi_destroy_queue(master);
1525err_init_queue:
1526        return ret;
1527}
1528
1529/*-------------------------------------------------------------------------*/
1530
1531#if defined(CONFIG_OF)
1532static int of_spi_parse_dt(struct spi_master *master, struct spi_device *spi,
1533                           struct device_node *nc)
1534{
1535        u32 value;
1536        int rc;
1537
1538        /* Device address */
1539        rc = of_property_read_u32(nc, "reg", &value);
1540        if (rc) {
1541                dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1542                        nc->full_name, rc);
1543                return rc;
1544        }
1545        spi->chip_select = value;
1546
1547        /* Mode (clock phase/polarity/etc.) */
1548        if (of_find_property(nc, "spi-cpha", NULL))
1549                spi->mode |= SPI_CPHA;
1550        if (of_find_property(nc, "spi-cpol", NULL))
1551                spi->mode |= SPI_CPOL;
1552        if (of_find_property(nc, "spi-cs-high", NULL))
1553                spi->mode |= SPI_CS_HIGH;
1554        if (of_find_property(nc, "spi-3wire", NULL))
1555                spi->mode |= SPI_3WIRE;
1556        if (of_find_property(nc, "spi-lsb-first", NULL))
1557                spi->mode |= SPI_LSB_FIRST;
1558
1559        /* Device DUAL/QUAD mode */
1560        if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1561                switch (value) {
1562                case 1:
1563                        break;
1564                case 2:
1565                        spi->mode |= SPI_TX_DUAL;
1566                        break;
1567                case 4:
1568                        spi->mode |= SPI_TX_QUAD;
1569                        break;
1570                default:
1571                        dev_warn(&master->dev,
1572                                "spi-tx-bus-width %d not supported\n",
1573                                value);
1574                        break;
1575                }
1576        }
1577
1578        if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1579                switch (value) {
1580                case 1:
1581                        break;
1582                case 2:
1583                        spi->mode |= SPI_RX_DUAL;
1584                        break;
1585                case 4:
1586                        spi->mode |= SPI_RX_QUAD;
1587                        break;
1588                default:
1589                        dev_warn(&master->dev,
1590                                "spi-rx-bus-width %d not supported\n",
1591                                value);
1592                        break;
1593                }
1594        }
1595
1596        /* Device speed */
1597        rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1598        if (rc) {
1599                dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1600                        nc->full_name, rc);
1601                return rc;
1602        }
1603        spi->max_speed_hz = value;
1604
1605        return 0;
1606}
1607
1608static struct spi_device *
1609of_register_spi_device(struct spi_master *master, struct device_node *nc)
1610{
1611        struct spi_device *spi;
1612        int rc;
1613
1614        /* Alloc an spi_device */
1615        spi = spi_alloc_device(master);
1616        if (!spi) {
1617                dev_err(&master->dev, "spi_device alloc error for %s\n",
1618                        nc->full_name);
1619                rc = -ENOMEM;
1620                goto err_out;
1621        }
1622
1623        /* Select device driver */
1624        rc = of_modalias_node(nc, spi->modalias,
1625                                sizeof(spi->modalias));
1626        if (rc < 0) {
1627                dev_err(&master->dev, "cannot find modalias for %s\n",
1628                        nc->full_name);
1629                goto err_out;
1630        }
1631
1632        rc = of_spi_parse_dt(master, spi, nc);
1633        if (rc)
1634                goto err_out;
1635
1636        /* Store a pointer to the node in the device structure */
1637        of_node_get(nc);
1638        spi->dev.of_node = nc;
1639
1640        /* Register the new device */
1641        rc = spi_add_device(spi);
1642        if (rc) {
1643                dev_err(&master->dev, "spi_device register error %s\n",
1644                        nc->full_name);
1645                goto err_of_node_put;
1646        }
1647
1648        return spi;
1649
1650err_of_node_put:
1651        of_node_put(nc);
1652err_out:
1653        spi_dev_put(spi);
1654        return ERR_PTR(rc);
1655}
1656
1657/**
1658 * of_register_spi_devices() - Register child devices onto the SPI bus
1659 * @master:     Pointer to spi_master device
1660 *
1661 * Registers an spi_device for each child node of master node which has a 'reg'
1662 * property.
1663 */
1664static void of_register_spi_devices(struct spi_master *master)
1665{
1666        struct spi_device *spi;
1667        struct device_node *nc;
1668
1669        if (!master->dev.of_node)
1670                return;
1671
1672        for_each_available_child_of_node(master->dev.of_node, nc) {
1673                if (of_node_test_and_set_flag(nc, OF_POPULATED))
1674                        continue;
1675                spi = of_register_spi_device(master, nc);
1676                if (IS_ERR(spi)) {
1677                        dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1678                                nc->full_name);
1679                        of_node_clear_flag(nc, OF_POPULATED);
1680                }
1681        }
1682}
1683#else
1684static void of_register_spi_devices(struct spi_master *master) { }
1685#endif
1686
1687#ifdef CONFIG_ACPI
1688static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1689{
1690        struct spi_device *spi = data;
1691        struct spi_master *master = spi->master;
1692
1693        if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1694                struct acpi_resource_spi_serialbus *sb;
1695
1696                sb = &ares->data.spi_serial_bus;
1697                if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1698                        /*
1699                         * ACPI DeviceSelection numbering is handled by the
1700                         * host controller driver in Windows and can vary
1701                         * from driver to driver. In Linux we always expect
1702                         * 0 .. max - 1 so we need to ask the driver to
1703                         * translate between the two schemes.
1704                         */
1705                        if (master->fw_translate_cs) {
1706                                int cs = master->fw_translate_cs(master,
1707                                                sb->device_selection);
1708                                if (cs < 0)
1709                                        return cs;
1710                                spi->chip_select = cs;
1711                        } else {
1712                                spi->chip_select = sb->device_selection;
1713                        }
1714
1715                        spi->max_speed_hz = sb->connection_speed;
1716
1717                        if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1718                                spi->mode |= SPI_CPHA;
1719                        if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1720                                spi->mode |= SPI_CPOL;
1721                        if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1722                                spi->mode |= SPI_CS_HIGH;
1723                }
1724        } else if (spi->irq < 0) {
1725                struct resource r;
1726
1727                if (acpi_dev_resource_interrupt(ares, 0, &r))
1728                        spi->irq = r.start;
1729        }
1730
1731        /* Always tell the ACPI core to skip this resource */
1732        return 1;
1733}
1734
1735static acpi_status acpi_register_spi_device(struct spi_master *master,
1736                                            struct acpi_device *adev)
1737{
1738        struct list_head resource_list;
1739        struct spi_device *spi;
1740        int ret;
1741
1742        if (acpi_bus_get_status(adev) || !adev->status.present ||
1743            acpi_device_enumerated(adev))
1744                return AE_OK;
1745
1746        spi = spi_alloc_device(master);
1747        if (!spi) {
1748                dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1749                        dev_name(&adev->dev));
1750                return AE_NO_MEMORY;
1751        }
1752
1753        ACPI_COMPANION_SET(&spi->dev, adev);
1754        spi->irq = -1;
1755
1756        INIT_LIST_HEAD(&resource_list);
1757        ret = acpi_dev_get_resources(adev, &resource_list,
1758                                     acpi_spi_add_resource, spi);
1759        acpi_dev_free_resource_list(&resource_list);
1760
1761        if (ret < 0 || !spi->max_speed_hz) {
1762                spi_dev_put(spi);
1763                return AE_OK;
1764        }
1765
1766        acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1767                          sizeof(spi->modalias));
1768
1769        if (spi->irq < 0)
1770                spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1771
1772        acpi_device_set_enumerated(adev);
1773
1774        adev->power.flags.ignore_parent = true;
1775        if (spi_add_device(spi)) {
1776                adev->power.flags.ignore_parent = false;
1777                dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1778                        dev_name(&adev->dev));
1779                spi_dev_put(spi);
1780        }
1781
1782        return AE_OK;
1783}
1784
1785static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1786                                       void *data, void **return_value)
1787{
1788        struct spi_master *master = data;
1789        struct acpi_device *adev;
1790
1791        if (acpi_bus_get_device(handle, &adev))
1792                return AE_OK;
1793
1794        return acpi_register_spi_device(master, adev);
1795}
1796
1797static void acpi_register_spi_devices(struct spi_master *master)
1798{
1799        acpi_status status;
1800        acpi_handle handle;
1801
1802        handle = ACPI_HANDLE(master->dev.parent);
1803        if (!handle)
1804                return;
1805
1806        status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1807                                     acpi_spi_add_device, NULL,
1808                                     master, NULL);
1809        if (ACPI_FAILURE(status))
1810                dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1811}
1812#else
1813static inline void acpi_register_spi_devices(struct spi_master *master) {}
1814#endif /* CONFIG_ACPI */
1815
1816static void spi_master_release(struct device *dev)
1817{
1818        struct spi_master *master;
1819
1820        master = container_of(dev, struct spi_master, dev);
1821        kfree(master);
1822}
1823
1824static struct class spi_master_class = {
1825        .name           = "spi_master",
1826        .owner          = THIS_MODULE,
1827        .dev_release    = spi_master_release,
1828        .dev_groups     = spi_master_groups,
1829};
1830
1831
1832/**
1833 * spi_alloc_master - allocate SPI master controller
1834 * @dev: the controller, possibly using the platform_bus
1835 * @size: how much zeroed driver-private data to allocate; the pointer to this
1836 *      memory is in the driver_data field of the returned device,
1837 *      accessible with spi_master_get_devdata().
1838 * Context: can sleep
1839 *
1840 * This call is used only by SPI master controller drivers, which are the
1841 * only ones directly touching chip registers.  It's how they allocate
1842 * an spi_master structure, prior to calling spi_register_master().
1843 *
1844 * This must be called from context that can sleep.
1845 *
1846 * The caller is responsible for assigning the bus number and initializing
1847 * the master's methods before calling spi_register_master(); and (after errors
1848 * adding the device) calling spi_master_put() to prevent a memory leak.
1849 *
1850 * Return: the SPI master structure on success, else NULL.
1851 */
1852struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1853{
1854        struct spi_master       *master;
1855
1856        if (!dev)
1857                return NULL;
1858
1859        master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1860        if (!master)
1861                return NULL;
1862
1863        device_initialize(&master->dev);
1864        master->bus_num = -1;
1865        master->num_chipselect = 1;
1866        master->dev.class = &spi_master_class;
1867        master->dev.parent = dev;
1868        pm_suspend_ignore_children(&master->dev, true);
1869        spi_master_set_devdata(master, &master[1]);
1870
1871        return master;
1872}
1873EXPORT_SYMBOL_GPL(spi_alloc_master);
1874
1875#ifdef CONFIG_OF
1876static int of_spi_register_master(struct spi_master *master)
1877{
1878        int nb, i, *cs;
1879        struct device_node *np = master->dev.of_node;
1880
1881        if (!np)
1882                return 0;
1883
1884        nb = of_gpio_named_count(np, "cs-gpios");
1885        master->num_chipselect = max_t(int, nb, master->num_chipselect);
1886
1887        /* Return error only for an incorrectly formed cs-gpios property */
1888        if (nb == 0 || nb == -ENOENT)
1889                return 0;
1890        else if (nb < 0)
1891                return nb;
1892
1893        cs = devm_kzalloc(&master->dev,
1894                          sizeof(int) * master->num_chipselect,
1895                          GFP_KERNEL);
1896        master->cs_gpios = cs;
1897
1898        if (!master->cs_gpios)
1899                return -ENOMEM;
1900
1901        for (i = 0; i < master->num_chipselect; i++)
1902                cs[i] = -ENOENT;
1903
1904        for (i = 0; i < nb; i++)
1905                cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1906
1907        return 0;
1908}
1909#else
1910static int of_spi_register_master(struct spi_master *master)
1911{
1912        return 0;
1913}
1914#endif
1915
1916/**
1917 * spi_register_master - register SPI master controller
1918 * @master: initialized master, originally from spi_alloc_master()
1919 * Context: can sleep
1920 *
1921 * SPI master controllers connect to their drivers using some non-SPI bus,
1922 * such as the platform bus.  The final stage of probe() in that code
1923 * includes calling spi_register_master() to hook up to this SPI bus glue.
1924 *
1925 * SPI controllers use board specific (often SOC specific) bus numbers,
1926 * and board-specific addressing for SPI devices combines those numbers
1927 * with chip select numbers.  Since SPI does not directly support dynamic
1928 * device identification, boards need configuration tables telling which
1929 * chip is at which address.
1930 *
1931 * This must be called from context that can sleep.  It returns zero on
1932 * success, else a negative error code (dropping the master's refcount).
1933 * After a successful return, the caller is responsible for calling
1934 * spi_unregister_master().
1935 *
1936 * Return: zero on success, else a negative error code.
1937 */
1938int spi_register_master(struct spi_master *master)
1939{
1940        static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1941        struct device           *dev = master->dev.parent;
1942        struct boardinfo        *bi;
1943        int                     status = -ENODEV;
1944        int                     dynamic = 0;
1945
1946        if (!dev)
1947                return -ENODEV;
1948
1949        status = of_spi_register_master(master);
1950        if (status)
1951                return status;
1952
1953        /* even if it's just one always-selected device, there must
1954         * be at least one chipselect
1955         */
1956        if (master->num_chipselect == 0)
1957                return -EINVAL;
1958
1959        if ((master->bus_num < 0) && master->dev.of_node)
1960                master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1961
1962        /* convention:  dynamically assigned bus IDs count down from the max */
1963        if (master->bus_num < 0) {
1964                /* FIXME switch to an IDR based scheme, something like
1965                 * I2C now uses, so we can't run out of "dynamic" IDs
1966                 */
1967                master->bus_num = atomic_dec_return(&dyn_bus_id);
1968                dynamic = 1;
1969        }
1970
1971        INIT_LIST_HEAD(&master->queue);
1972        spin_lock_init(&master->queue_lock);
1973        spin_lock_init(&master->bus_lock_spinlock);
1974        mutex_init(&master->bus_lock_mutex);
1975        mutex_init(&master->io_mutex);
1976        master->bus_lock_flag = 0;
1977        init_completion(&master->xfer_completion);
1978        if (!master->max_dma_len)
1979                master->max_dma_len = INT_MAX;
1980
1981        /* register the device, then userspace will see it.
1982         * registration fails if the bus ID is in use.
1983         */
1984        dev_set_name(&master->dev, "spi%u", master->bus_num);
1985        status = device_add(&master->dev);
1986        if (status < 0)
1987                goto done;
1988        dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1989                        dynamic ? " (dynamic)" : "");
1990
1991        /* If we're using a queued driver, start the queue */
1992        if (master->transfer)
1993                dev_info(dev, "master is unqueued, this is deprecated\n");
1994        else {
1995                status = spi_master_initialize_queue(master);
1996                if (status) {
1997                        device_del(&master->dev);
1998                        goto done;
1999                }
2000        }
2001        /* add statistics */
2002        spin_lock_init(&master->statistics.lock);
2003
2004        mutex_lock(&board_lock);
2005        list_add_tail(&master->list, &spi_master_list);
2006        list_for_each_entry(bi, &board_list, list)
2007                spi_match_master_to_boardinfo(master, &bi->board_info);
2008        mutex_unlock(&board_lock);
2009
2010        /* Register devices from the device tree and ACPI */
2011        of_register_spi_devices(master);
2012        acpi_register_spi_devices(master);
2013done:
2014        return status;
2015}
2016EXPORT_SYMBOL_GPL(spi_register_master);
2017
2018static void devm_spi_unregister(struct device *dev, void *res)
2019{
2020        spi_unregister_master(*(struct spi_master **)res);
2021}
2022
2023/**
2024 * dev_spi_register_master - register managed SPI master controller
2025 * @dev:    device managing SPI master
2026 * @master: initialized master, originally from spi_alloc_master()
2027 * Context: can sleep
2028 *
2029 * Register a SPI device as with spi_register_master() which will
2030 * automatically be unregister
2031 *
2032 * Return: zero on success, else a negative error code.
2033 */
2034int devm_spi_register_master(struct device *dev, struct spi_master *master)
2035{
2036        struct spi_master **ptr;
2037        int ret;
2038
2039        ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2040        if (!ptr)
2041                return -ENOMEM;
2042
2043        ret = spi_register_master(master);
2044        if (!ret) {
2045                *ptr = master;
2046                devres_add(dev, ptr);
2047        } else {
2048                devres_free(ptr);
2049        }
2050
2051        return ret;
2052}
2053EXPORT_SYMBOL_GPL(devm_spi_register_master);
2054
2055static int __unregister(struct device *dev, void *null)
2056{
2057        spi_unregister_device(to_spi_device(dev));
2058        return 0;
2059}
2060
2061/**
2062 * spi_unregister_master - unregister SPI master controller
2063 * @master: the master being unregistered
2064 * Context: can sleep
2065 *
2066 * This call is used only by SPI master controller drivers, which are the
2067 * only ones directly touching chip registers.
2068 *
2069 * This must be called from context that can sleep.
2070 */
2071void spi_unregister_master(struct spi_master *master)
2072{
2073        int dummy;
2074
2075        if (master->queued) {
2076                if (spi_destroy_queue(master))
2077                        dev_err(&master->dev, "queue remove failed\n");
2078        }
2079
2080        mutex_lock(&board_lock);
2081        list_del(&master->list);
2082        mutex_unlock(&board_lock);
2083
2084        dummy = device_for_each_child(&master->dev, NULL, __unregister);
2085        device_unregister(&master->dev);
2086}
2087EXPORT_SYMBOL_GPL(spi_unregister_master);
2088
2089int spi_master_suspend(struct spi_master *master)
2090{
2091        int ret;
2092
2093        /* Basically no-ops for non-queued masters */
2094        if (!master->queued)
2095                return 0;
2096
2097        ret = spi_stop_queue(master);
2098        if (ret)
2099                dev_err(&master->dev, "queue stop failed\n");
2100
2101        return ret;
2102}
2103EXPORT_SYMBOL_GPL(spi_master_suspend);
2104
2105int spi_master_resume(struct spi_master *master)
2106{
2107        int ret;
2108
2109        if (!master->queued)
2110                return 0;
2111
2112        ret = spi_start_queue(master);
2113        if (ret)
2114                dev_err(&master->dev, "queue restart failed\n");
2115
2116        return ret;
2117}
2118EXPORT_SYMBOL_GPL(spi_master_resume);
2119
2120static int __spi_master_match(struct device *dev, const void *data)
2121{
2122        struct spi_master *m;
2123        const u16 *bus_num = data;
2124
2125        m = container_of(dev, struct spi_master, dev);
2126        return m->bus_num == *bus_num;
2127}
2128
2129/**
2130 * spi_busnum_to_master - look up master associated with bus_num
2131 * @bus_num: the master's bus number
2132 * Context: can sleep
2133 *
2134 * This call may be used with devices that are registered after
2135 * arch init time.  It returns a refcounted pointer to the relevant
2136 * spi_master (which the caller must release), or NULL if there is
2137 * no such master registered.
2138 *
2139 * Return: the SPI master structure on success, else NULL.
2140 */
2141struct spi_master *spi_busnum_to_master(u16 bus_num)
2142{
2143        struct device           *dev;
2144        struct spi_master       *master = NULL;
2145
2146        dev = class_find_device(&spi_master_class, NULL, &bus_num,
2147                                __spi_master_match);
2148        if (dev)
2149                master = container_of(dev, struct spi_master, dev);
2150        /* reference got in class_find_device */
2151        return master;
2152}
2153EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2154
2155/*-------------------------------------------------------------------------*/
2156
2157/* Core methods for SPI resource management */
2158
2159/**
2160 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2161 *                 during the processing of a spi_message while using
2162 *                 spi_transfer_one
2163 * @spi:     the spi device for which we allocate memory
2164 * @release: the release code to execute for this resource
2165 * @size:    size to alloc and return
2166 * @gfp:     GFP allocation flags
2167 *
2168 * Return: the pointer to the allocated data
2169 *
2170 * This may get enhanced in the future to allocate from a memory pool
2171 * of the @spi_device or @spi_master to avoid repeated allocations.
2172 */
2173void *spi_res_alloc(struct spi_device *spi,
2174                    spi_res_release_t release,
2175                    size_t size, gfp_t gfp)
2176{
2177        struct spi_res *sres;
2178
2179        sres = kzalloc(sizeof(*sres) + size, gfp);
2180        if (!sres)
2181                return NULL;
2182
2183        INIT_LIST_HEAD(&sres->entry);
2184        sres->release = release;
2185
2186        return sres->data;
2187}
2188EXPORT_SYMBOL_GPL(spi_res_alloc);
2189
2190/**
2191 * spi_res_free - free an spi resource
2192 * @res: pointer to the custom data of a resource
2193 *
2194 */
2195void spi_res_free(void *res)
2196{
2197        struct spi_res *sres = container_of(res, struct spi_res, data);
2198
2199        if (!res)
2200                return;
2201
2202        WARN_ON(!list_empty(&sres->entry));
2203        kfree(sres);
2204}
2205EXPORT_SYMBOL_GPL(spi_res_free);
2206
2207/**
2208 * spi_res_add - add a spi_res to the spi_message
2209 * @message: the spi message
2210 * @res:     the spi_resource
2211 */
2212void spi_res_add(struct spi_message *message, void *res)
2213{
2214        struct spi_res *sres = container_of(res, struct spi_res, data);
2215
2216        WARN_ON(!list_empty(&sres->entry));
2217        list_add_tail(&sres->entry, &message->resources);
2218}
2219EXPORT_SYMBOL_GPL(spi_res_add);
2220
2221/**
2222 * spi_res_release - release all spi resources for this message
2223 * @master:  the @spi_master
2224 * @message: the @spi_message
2225 */
2226void spi_res_release(struct spi_master *master,
2227                     struct spi_message *message)
2228{
2229        struct spi_res *res;
2230
2231        while (!list_empty(&message->resources)) {
2232                res = list_last_entry(&message->resources,
2233                                      struct spi_res, entry);
2234
2235                if (res->release)
2236                        res->release(master, message, res->data);
2237
2238                list_del(&res->entry);
2239
2240                kfree(res);
2241        }
2242}
2243EXPORT_SYMBOL_GPL(spi_res_release);
2244
2245/*-------------------------------------------------------------------------*/
2246
2247/* Core methods for spi_message alterations */
2248
2249static void __spi_replace_transfers_release(struct spi_master *master,
2250                                            struct spi_message *msg,
2251                                            void *res)
2252{
2253        struct spi_replaced_transfers *rxfer = res;
2254        size_t i;
2255
2256        /* call extra callback if requested */
2257        if (rxfer->release)
2258                rxfer->release(master, msg, res);
2259
2260        /* insert replaced transfers back into the message */
2261        list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2262
2263        /* remove the formerly inserted entries */
2264        for (i = 0; i < rxfer->inserted; i++)
2265                list_del(&rxfer->inserted_transfers[i].transfer_list);
2266}
2267
2268/**
2269 * spi_replace_transfers - replace transfers with several transfers
2270 *                         and register change with spi_message.resources
2271 * @msg:           the spi_message we work upon
2272 * @xfer_first:    the first spi_transfer we want to replace
2273 * @remove:        number of transfers to remove
2274 * @insert:        the number of transfers we want to insert instead
2275 * @release:       extra release code necessary in some circumstances
2276 * @extradatasize: extra data to allocate (with alignment guarantees
2277 *                 of struct @spi_transfer)
2278 * @gfp:           gfp flags
2279 *
2280 * Returns: pointer to @spi_replaced_transfers,
2281 *          PTR_ERR(...) in case of errors.
2282 */
2283struct spi_replaced_transfers *spi_replace_transfers(
2284        struct spi_message *msg,
2285        struct spi_transfer *xfer_first,
2286        size_t remove,
2287        size_t insert,
2288        spi_replaced_release_t release,
2289        size_t extradatasize,
2290        gfp_t gfp)
2291{
2292        struct spi_replaced_transfers *rxfer;
2293        struct spi_transfer *xfer;
2294        size_t i;
2295
2296        /* allocate the structure using spi_res */
2297        rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2298                              insert * sizeof(struct spi_transfer)
2299                              + sizeof(struct spi_replaced_transfers)
2300                              + extradatasize,
2301                              gfp);
2302        if (!rxfer)
2303                return ERR_PTR(-ENOMEM);
2304
2305        /* the release code to invoke before running the generic release */
2306        rxfer->release = release;
2307
2308        /* assign extradata */
2309        if (extradatasize)
2310                rxfer->extradata =
2311                        &rxfer->inserted_transfers[insert];
2312
2313        /* init the replaced_transfers list */
2314        INIT_LIST_HEAD(&rxfer->replaced_transfers);
2315
2316        /* assign the list_entry after which we should reinsert
2317         * the @replaced_transfers - it may be spi_message.messages!
2318         */
2319        rxfer->replaced_after = xfer_first->transfer_list.prev;
2320
2321        /* remove the requested number of transfers */
2322        for (i = 0; i < remove; i++) {
2323                /* if the entry after replaced_after it is msg->transfers
2324                 * then we have been requested to remove more transfers
2325                 * than are in the list
2326                 */
2327                if (rxfer->replaced_after->next == &msg->transfers) {
2328                        dev_err(&msg->spi->dev,
2329                                "requested to remove more spi_transfers than are available\n");
2330                        /* insert replaced transfers back into the message */
2331                        list_splice(&rxfer->replaced_transfers,
2332                                    rxfer->replaced_after);
2333
2334                        /* free the spi_replace_transfer structure */
2335                        spi_res_free(rxfer);
2336
2337                        /* and return with an error */
2338                        return ERR_PTR(-EINVAL);
2339                }
2340
2341                /* remove the entry after replaced_after from list of
2342                 * transfers and add it to list of replaced_transfers
2343                 */
2344                list_move_tail(rxfer->replaced_after->next,
2345                               &rxfer->replaced_transfers);
2346        }
2347
2348        /* create copy of the given xfer with identical settings
2349         * based on the first transfer to get removed
2350         */
2351        for (i = 0; i < insert; i++) {
2352                /* we need to run in reverse order */
2353                xfer = &rxfer->inserted_transfers[insert - 1 - i];
2354
2355                /* copy all spi_transfer data */
2356                memcpy(xfer, xfer_first, sizeof(*xfer));
2357
2358                /* add to list */
2359                list_add(&xfer->transfer_list, rxfer->replaced_after);
2360
2361                /* clear cs_change and delay_usecs for all but the last */
2362                if (i) {
2363                        xfer->cs_change = false;
2364                        xfer->delay_usecs = 0;
2365                }
2366        }
2367
2368        /* set up inserted */
2369        rxfer->inserted = insert;
2370
2371        /* and register it with spi_res/spi_message */
2372        spi_res_add(msg, rxfer);
2373
2374        return rxfer;
2375}
2376EXPORT_SYMBOL_GPL(spi_replace_transfers);
2377
2378static int __spi_split_transfer_maxsize(struct spi_master *master,
2379                                        struct spi_message *msg,
2380                                        struct spi_transfer **xferp,
2381                                        size_t maxsize,
2382                                        gfp_t gfp)
2383{
2384        struct spi_transfer *xfer = *xferp, *xfers;
2385        struct spi_replaced_transfers *srt;
2386        size_t offset;
2387        size_t count, i;
2388
2389        /* warn once about this fact that we are splitting a transfer */
2390        dev_warn_once(&msg->spi->dev,
2391                      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2392                      xfer->len, maxsize);
2393
2394        /* calculate how many we have to replace */
2395        count = DIV_ROUND_UP(xfer->len, maxsize);
2396
2397        /* create replacement */
2398        srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2399        if (IS_ERR(srt))
2400                return PTR_ERR(srt);
2401        xfers = srt->inserted_transfers;
2402
2403        /* now handle each of those newly inserted spi_transfers
2404         * note that the replacements spi_transfers all are preset
2405         * to the same values as *xferp, so tx_buf, rx_buf and len
2406         * are all identical (as well as most others)
2407         * so we just have to fix up len and the pointers.
2408         *
2409         * this also includes support for the depreciated
2410         * spi_message.is_dma_mapped interface
2411         */
2412
2413        /* the first transfer just needs the length modified, so we
2414         * run it outside the loop
2415         */
2416        xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2417
2418        /* all the others need rx_buf/tx_buf also set */
2419        for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2420                /* update rx_buf, tx_buf and dma */
2421                if (xfers[i].rx_buf)
2422                        xfers[i].rx_buf += offset;
2423                if (xfers[i].rx_dma)
2424                        xfers[i].rx_dma += offset;
2425                if (xfers[i].tx_buf)
2426                        xfers[i].tx_buf += offset;
2427                if (xfers[i].tx_dma)
2428                        xfers[i].tx_dma += offset;
2429
2430                /* update length */
2431                xfers[i].len = min(maxsize, xfers[i].len - offset);
2432        }
2433
2434        /* we set up xferp to the last entry we have inserted,
2435         * so that we skip those already split transfers
2436         */
2437        *xferp = &xfers[count - 1];
2438
2439        /* increment statistics counters */
2440        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2441                                       transfers_split_maxsize);
2442        SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2443                                       transfers_split_maxsize);
2444
2445        return 0;
2446}
2447
2448/**
2449 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2450 *                              when an individual transfer exceeds a
2451 *                              certain size
2452 * @master:    the @spi_master for this transfer
2453 * @msg:   the @spi_message to transform
2454 * @maxsize:  the maximum when to apply this
2455 * @gfp: GFP allocation flags
2456 *
2457 * Return: status of transformation
2458 */
2459int spi_split_transfers_maxsize(struct spi_master *master,
2460                                struct spi_message *msg,
2461                                size_t maxsize,
2462                                gfp_t gfp)
2463{
2464        struct spi_transfer *xfer;
2465        int ret;
2466
2467        /* iterate over the transfer_list,
2468         * but note that xfer is advanced to the last transfer inserted
2469         * to avoid checking sizes again unnecessarily (also xfer does
2470         * potentiall belong to a different list by the time the
2471         * replacement has happened
2472         */
2473        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2474                if (xfer->len > maxsize) {
2475                        ret = __spi_split_transfer_maxsize(
2476                                master, msg, &xfer, maxsize, gfp);
2477                        if (ret)
2478                                return ret;
2479                }
2480        }
2481
2482        return 0;
2483}
2484EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2485
2486/*-------------------------------------------------------------------------*/
2487
2488/* Core methods for SPI master protocol drivers.  Some of the
2489 * other core methods are currently defined as inline functions.
2490 */
2491
2492static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2493{
2494        if (master->bits_per_word_mask) {
2495                /* Only 32 bits fit in the mask */
2496                if (bits_per_word > 32)
2497                        return -EINVAL;
2498                if (!(master->bits_per_word_mask &
2499                                SPI_BPW_MASK(bits_per_word)))
2500                        return -EINVAL;
2501        }
2502
2503        return 0;
2504}
2505
2506/**
2507 * spi_setup - setup SPI mode and clock rate
2508 * @spi: the device whose settings are being modified
2509 * Context: can sleep, and no requests are queued to the device
2510 *
2511 * SPI protocol drivers may need to update the transfer mode if the
2512 * device doesn't work with its default.  They may likewise need
2513 * to update clock rates or word sizes from initial values.  This function
2514 * changes those settings, and must be called from a context that can sleep.
2515 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2516 * effect the next time the device is selected and data is transferred to
2517 * or from it.  When this function returns, the spi device is deselected.
2518 *
2519 * Note that this call will fail if the protocol driver specifies an option
2520 * that the underlying controller or its driver does not support.  For
2521 * example, not all hardware supports wire transfers using nine bit words,
2522 * LSB-first wire encoding, or active-high chipselects.
2523 *
2524 * Return: zero on success, else a negative error code.
2525 */
2526int spi_setup(struct spi_device *spi)
2527{
2528        unsigned        bad_bits, ugly_bits;
2529        int             status;
2530
2531        /* check mode to prevent that DUAL and QUAD set at the same time
2532         */
2533        if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2534                ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2535                dev_err(&spi->dev,
2536                "setup: can not select dual and quad at the same time\n");
2537                return -EINVAL;
2538        }
2539        /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2540         */
2541        if ((spi->mode & SPI_3WIRE) && (spi->mode &
2542                (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2543                return -EINVAL;
2544        /* help drivers fail *cleanly* when they need options
2545         * that aren't supported with their current master
2546         */
2547        bad_bits = spi->mode & ~spi->master->mode_bits;
2548        ugly_bits = bad_bits &
2549                    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2550        if (ugly_bits) {
2551                dev_warn(&spi->dev,
2552                         "setup: ignoring unsupported mode bits %x\n",
2553                         ugly_bits);
2554                spi->mode &= ~ugly_bits;
2555                bad_bits &= ~ugly_bits;
2556        }
2557        if (bad_bits) {
2558                dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2559                        bad_bits);
2560                return -EINVAL;
2561        }
2562
2563        if (!spi->bits_per_word)
2564                spi->bits_per_word = 8;
2565
2566        status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2567        if (status)
2568                return status;
2569
2570        if (!spi->max_speed_hz)
2571                spi->max_speed_hz = spi->master->max_speed_hz;
2572
2573        if (spi->master->setup)
2574                status = spi->master->setup(spi);
2575
2576        spi_set_cs(spi, false);
2577
2578        dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2579                        (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2580                        (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2581                        (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2582                        (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2583                        (spi->mode & SPI_LOOP) ? "loopback, " : "",
2584                        spi->bits_per_word, spi->max_speed_hz,
2585                        status);
2586
2587        return status;
2588}
2589EXPORT_SYMBOL_GPL(spi_setup);
2590
2591static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2592{
2593        struct spi_master *master = spi->master;
2594        struct spi_transfer *xfer;
2595        int w_size;
2596
2597        if (list_empty(&message->transfers))
2598                return -EINVAL;
2599
2600        /* Half-duplex links include original MicroWire, and ones with
2601         * only one data pin like SPI_3WIRE (switches direction) or where
2602         * either MOSI or MISO is missing.  They can also be caused by
2603         * software limitations.
2604         */
2605        if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2606                        || (spi->mode & SPI_3WIRE)) {
2607                unsigned flags = master->flags;
2608
2609                list_for_each_entry(xfer, &message->transfers, transfer_list) {
2610                        if (xfer->rx_buf && xfer->tx_buf)
2611                                return -EINVAL;
2612                        if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2613                                return -EINVAL;
2614                        if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2615                                return -EINVAL;
2616                }
2617        }
2618
2619        /**
2620         * Set transfer bits_per_word and max speed as spi device default if
2621         * it is not set for this transfer.
2622         * Set transfer tx_nbits and rx_nbits as single transfer default
2623         * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2624         */
2625        message->frame_length = 0;
2626        list_for_each_entry(xfer, &message->transfers, transfer_list) {
2627                message->frame_length += xfer->len;
2628                if (!xfer->bits_per_word)
2629                        xfer->bits_per_word = spi->bits_per_word;
2630
2631                if (!xfer->speed_hz)
2632                        xfer->speed_hz = spi->max_speed_hz;
2633                if (!xfer->speed_hz)
2634                        xfer->speed_hz = master->max_speed_hz;
2635
2636                if (master->max_speed_hz &&
2637                    xfer->speed_hz > master->max_speed_hz)
2638                        xfer->speed_hz = master->max_speed_hz;
2639
2640                if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2641                        return -EINVAL;
2642
2643                /*
2644                 * SPI transfer length should be multiple of SPI word size
2645                 * where SPI word size should be power-of-two multiple
2646                 */
2647                if (xfer->bits_per_word <= 8)
2648                        w_size = 1;
2649                else if (xfer->bits_per_word <= 16)
2650                        w_size = 2;
2651                else
2652                        w_size = 4;
2653
2654                /* No partial transfers accepted */
2655                if (xfer->len % w_size)
2656                        return -EINVAL;
2657
2658                if (xfer->speed_hz && master->min_speed_hz &&
2659                    xfer->speed_hz < master->min_speed_hz)
2660                        return -EINVAL;
2661
2662                if (xfer->tx_buf && !xfer->tx_nbits)
2663                        xfer->tx_nbits = SPI_NBITS_SINGLE;
2664                if (xfer->rx_buf && !xfer->rx_nbits)
2665                        xfer->rx_nbits = SPI_NBITS_SINGLE;
2666                /* check transfer tx/rx_nbits:
2667                 * 1. check the value matches one of single, dual and quad
2668                 * 2. check tx/rx_nbits match the mode in spi_device
2669                 */
2670                if (xfer->tx_buf) {
2671                        if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2672                                xfer->tx_nbits != SPI_NBITS_DUAL &&
2673                                xfer->tx_nbits != SPI_NBITS_QUAD)
2674                                return -EINVAL;
2675                        if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2676                                !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2677                                return -EINVAL;
2678                        if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2679                                !(spi->mode & SPI_TX_QUAD))
2680                                return -EINVAL;
2681                }
2682                /* check transfer rx_nbits */
2683                if (xfer->rx_buf) {
2684                        if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2685                                xfer->rx_nbits != SPI_NBITS_DUAL &&
2686                                xfer->rx_nbits != SPI_NBITS_QUAD)
2687                                return -EINVAL;
2688                        if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2689                                !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2690                                return -EINVAL;
2691                        if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2692                                !(spi->mode & SPI_RX_QUAD))
2693                                return -EINVAL;
2694                }
2695        }
2696
2697        message->status = -EINPROGRESS;
2698
2699        return 0;
2700}
2701
2702static int __spi_async(struct spi_device *spi, struct spi_message *message)
2703{
2704        struct spi_master *master = spi->master;
2705
2706        message->spi = spi;
2707
2708        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2709        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2710
2711        trace_spi_message_submit(message);
2712
2713        return master->transfer(spi, message);
2714}
2715
2716/**
2717 * spi_async - asynchronous SPI transfer
2718 * @spi: device with which data will be exchanged
2719 * @message: describes the data transfers, including completion callback
2720 * Context: any (irqs may be blocked, etc)
2721 *
2722 * This call may be used in_irq and other contexts which can't sleep,
2723 * as well as from task contexts which can sleep.
2724 *
2725 * The completion callback is invoked in a context which can't sleep.
2726 * Before that invocation, the value of message->status is undefined.
2727 * When the callback is issued, message->status holds either zero (to
2728 * indicate complete success) or a negative error code.  After that
2729 * callback returns, the driver which issued the transfer request may
2730 * deallocate the associated memory; it's no longer in use by any SPI
2731 * core or controller driver code.
2732 *
2733 * Note that although all messages to a spi_device are handled in
2734 * FIFO order, messages may go to different devices in other orders.
2735 * Some device might be higher priority, or have various "hard" access
2736 * time requirements, for example.
2737 *
2738 * On detection of any fault during the transfer, processing of
2739 * the entire message is aborted, and the device is deselected.
2740 * Until returning from the associated message completion callback,
2741 * no other spi_message queued to that device will be processed.
2742 * (This rule applies equally to all the synchronous transfer calls,
2743 * which are wrappers around this core asynchronous primitive.)
2744 *
2745 * Return: zero on success, else a negative error code.
2746 */
2747int spi_async(struct spi_device *spi, struct spi_message *message)
2748{
2749        struct spi_master *master = spi->master;
2750        int ret;
2751        unsigned long flags;
2752
2753        ret = __spi_validate(spi, message);
2754        if (ret != 0)
2755                return ret;
2756
2757        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2758
2759        if (master->bus_lock_flag)
2760                ret = -EBUSY;
2761        else
2762                ret = __spi_async(spi, message);
2763
2764        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2765
2766        return ret;
2767}
2768EXPORT_SYMBOL_GPL(spi_async);
2769
2770/**
2771 * spi_async_locked - version of spi_async with exclusive bus usage
2772 * @spi: device with which data will be exchanged
2773 * @message: describes the data transfers, including completion callback
2774 * Context: any (irqs may be blocked, etc)
2775 *
2776 * This call may be used in_irq and other contexts which can't sleep,
2777 * as well as from task contexts which can sleep.
2778 *
2779 * The completion callback is invoked in a context which can't sleep.
2780 * Before that invocation, the value of message->status is undefined.
2781 * When the callback is issued, message->status holds either zero (to
2782 * indicate complete success) or a negative error code.  After that
2783 * callback returns, the driver which issued the transfer request may
2784 * deallocate the associated memory; it's no longer in use by any SPI
2785 * core or controller driver code.
2786 *
2787 * Note that although all messages to a spi_device are handled in
2788 * FIFO order, messages may go to different devices in other orders.
2789 * Some device might be higher priority, or have various "hard" access
2790 * time requirements, for example.
2791 *
2792 * On detection of any fault during the transfer, processing of
2793 * the entire message is aborted, and the device is deselected.
2794 * Until returning from the associated message completion callback,
2795 * no other spi_message queued to that device will be processed.
2796 * (This rule applies equally to all the synchronous transfer calls,
2797 * which are wrappers around this core asynchronous primitive.)
2798 *
2799 * Return: zero on success, else a negative error code.
2800 */
2801int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2802{
2803        struct spi_master *master = spi->master;
2804        int ret;
2805        unsigned long flags;
2806
2807        ret = __spi_validate(spi, message);
2808        if (ret != 0)
2809                return ret;
2810
2811        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2812
2813        ret = __spi_async(spi, message);
2814
2815        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2816
2817        return ret;
2818
2819}
2820EXPORT_SYMBOL_GPL(spi_async_locked);
2821
2822
2823int spi_flash_read(struct spi_device *spi,
2824                   struct spi_flash_read_message *msg)
2825
2826{
2827        struct spi_master *master = spi->master;
2828        struct device *rx_dev = NULL;
2829        int ret;
2830
2831        if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2832             msg->addr_nbits == SPI_NBITS_DUAL) &&
2833            !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2834                return -EINVAL;
2835        if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2836             msg->addr_nbits == SPI_NBITS_QUAD) &&
2837            !(spi->mode & SPI_TX_QUAD))
2838                return -EINVAL;
2839        if (msg->data_nbits == SPI_NBITS_DUAL &&
2840            !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2841                return -EINVAL;
2842        if (msg->data_nbits == SPI_NBITS_QUAD &&
2843            !(spi->mode &  SPI_RX_QUAD))
2844                return -EINVAL;
2845
2846        if (master->auto_runtime_pm) {
2847                ret = pm_runtime_get_sync(master->dev.parent);
2848                if (ret < 0) {
2849                        dev_err(&master->dev, "Failed to power device: %d\n",
2850                                ret);
2851                        return ret;
2852                }
2853        }
2854
2855        mutex_lock(&master->bus_lock_mutex);
2856        mutex_lock(&master->io_mutex);
2857        if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
2858                rx_dev = master->dma_rx->device->dev;
2859                ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2860                                  msg->buf, msg->len,
2861                                  DMA_FROM_DEVICE);
2862                if (!ret)
2863                        msg->cur_msg_mapped = true;
2864        }
2865        ret = master->spi_flash_read(spi, msg);
2866        if (msg->cur_msg_mapped)
2867                spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2868                              DMA_FROM_DEVICE);
2869        mutex_unlock(&master->io_mutex);
2870        mutex_unlock(&master->bus_lock_mutex);
2871
2872        if (master->auto_runtime_pm)
2873                pm_runtime_put(master->dev.parent);
2874
2875        return ret;
2876}
2877EXPORT_SYMBOL_GPL(spi_flash_read);
2878
2879/*-------------------------------------------------------------------------*/
2880
2881/* Utility methods for SPI master protocol drivers, layered on
2882 * top of the core.  Some other utility methods are defined as
2883 * inline functions.
2884 */
2885
2886static void spi_complete(void *arg)
2887{
2888        complete(arg);
2889}
2890
2891static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2892{
2893        DECLARE_COMPLETION_ONSTACK(done);
2894        int status;
2895        struct spi_master *master = spi->master;
2896        unsigned long flags;
2897
2898        status = __spi_validate(spi, message);
2899        if (status != 0)
2900                return status;
2901
2902        message->complete = spi_complete;
2903        message->context = &done;
2904        message->spi = spi;
2905
2906        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2907        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2908
2909        /* If we're not using the legacy transfer method then we will
2910         * try to transfer in the calling context so special case.
2911         * This code would be less tricky if we could remove the
2912         * support for driver implemented message queues.
2913         */
2914        if (master->transfer == spi_queued_transfer) {
2915                spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2916
2917                trace_spi_message_submit(message);
2918
2919                status = __spi_queued_transfer(spi, message, false);
2920
2921                spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2922        } else {
2923                status = spi_async_locked(spi, message);
2924        }
2925
2926        if (status == 0) {
2927                /* Push out the messages in the calling context if we
2928                 * can.
2929                 */
2930                if (master->transfer == spi_queued_transfer) {
2931                        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2932                                                       spi_sync_immediate);
2933                        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2934                                                       spi_sync_immediate);
2935                        __spi_pump_messages(master, false);
2936                }
2937
2938                wait_for_completion(&done);
2939                status = message->status;
2940        }
2941        message->context = NULL;
2942        return status;
2943}
2944
2945/**
2946 * spi_sync - blocking/synchronous SPI data transfers
2947 * @spi: device with which data will be exchanged
2948 * @message: describes the data transfers
2949 * Context: can sleep
2950 *
2951 * This call may only be used from a context that may sleep.  The sleep
2952 * is non-interruptible, and has no timeout.  Low-overhead controller
2953 * drivers may DMA directly into and out of the message buffers.
2954 *
2955 * Note that the SPI device's chip select is active during the message,
2956 * and then is normally disabled between messages.  Drivers for some
2957 * frequently-used devices may want to minimize costs of selecting a chip,
2958 * by leaving it selected in anticipation that the next message will go
2959 * to the same chip.  (That may increase power usage.)
2960 *
2961 * Also, the caller is guaranteeing that the memory associated with the
2962 * message will not be freed before this call returns.
2963 *
2964 * Return: zero on success, else a negative error code.
2965 */
2966int spi_sync(struct spi_device *spi, struct spi_message *message)
2967{
2968        int ret;
2969
2970        mutex_lock(&spi->master->bus_lock_mutex);
2971        ret = __spi_sync(spi, message);
2972        mutex_unlock(&spi->master->bus_lock_mutex);
2973
2974        return ret;
2975}
2976EXPORT_SYMBOL_GPL(spi_sync);
2977
2978/**
2979 * spi_sync_locked - version of spi_sync with exclusive bus usage
2980 * @spi: device with which data will be exchanged
2981 * @message: describes the data transfers
2982 * Context: can sleep
2983 *
2984 * This call may only be used from a context that may sleep.  The sleep
2985 * is non-interruptible, and has no timeout.  Low-overhead controller
2986 * drivers may DMA directly into and out of the message buffers.
2987 *
2988 * This call should be used by drivers that require exclusive access to the
2989 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2990 * be released by a spi_bus_unlock call when the exclusive access is over.
2991 *
2992 * Return: zero on success, else a negative error code.
2993 */
2994int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2995{
2996        return __spi_sync(spi, message);
2997}
2998EXPORT_SYMBOL_GPL(spi_sync_locked);
2999
3000/**
3001 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3002 * @master: SPI bus master that should be locked for exclusive bus access
3003 * Context: can sleep
3004 *
3005 * This call may only be used from a context that may sleep.  The sleep
3006 * is non-interruptible, and has no timeout.
3007 *
3008 * This call should be used by drivers that require exclusive access to the
3009 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3010 * exclusive access is over. Data transfer must be done by spi_sync_locked
3011 * and spi_async_locked calls when the SPI bus lock is held.
3012 *
3013 * Return: always zero.
3014 */
3015int spi_bus_lock(struct spi_master *master)
3016{
3017        unsigned long flags;
3018
3019        mutex_lock(&master->bus_lock_mutex);
3020
3021        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
3022        master->bus_lock_flag = 1;
3023        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
3024
3025        /* mutex remains locked until spi_bus_unlock is called */
3026
3027        return 0;
3028}
3029EXPORT_SYMBOL_GPL(spi_bus_lock);
3030
3031/**
3032 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3033 * @master: SPI bus master that was locked for exclusive bus access
3034 * Context: can sleep
3035 *
3036 * This call may only be used from a context that may sleep.  The sleep
3037 * is non-interruptible, and has no timeout.
3038 *
3039 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3040 * call.
3041 *
3042 * Return: always zero.
3043 */
3044int spi_bus_unlock(struct spi_master *master)
3045{
3046        master->bus_lock_flag = 0;
3047
3048        mutex_unlock(&master->bus_lock_mutex);
3049
3050        return 0;
3051}
3052EXPORT_SYMBOL_GPL(spi_bus_unlock);
3053
3054/* portable code must never pass more than 32 bytes */
3055#define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3056
3057static u8       *buf;
3058
3059/**
3060 * spi_write_then_read - SPI synchronous write followed by read
3061 * @spi: device with which data will be exchanged
3062 * @txbuf: data to be written (need not be dma-safe)
3063 * @n_tx: size of txbuf, in bytes
3064 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3065 * @n_rx: size of rxbuf, in bytes
3066 * Context: can sleep
3067 *
3068 * This performs a half duplex MicroWire style transaction with the
3069 * device, sending txbuf and then reading rxbuf.  The return value
3070 * is zero for success, else a negative errno status code.
3071 * This call may only be used from a context that may sleep.
3072 *
3073 * Parameters to this routine are always copied using a small buffer;
3074 * portable code should never use this for more than 32 bytes.
3075 * Performance-sensitive or bulk transfer code should instead use
3076 * spi_{async,sync}() calls with dma-safe buffers.
3077 *
3078 * Return: zero on success, else a negative error code.
3079 */
3080int spi_write_then_read(struct spi_device *spi,
3081                const void *txbuf, unsigned n_tx,
3082                void *rxbuf, unsigned n_rx)
3083{
3084        static DEFINE_MUTEX(lock);
3085
3086        int                     status;
3087        struct spi_message      message;
3088        struct spi_transfer     x[2];
3089        u8                      *local_buf;
3090
3091        /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3092         * copying here, (as a pure convenience thing), but we can
3093         * keep heap costs out of the hot path unless someone else is
3094         * using the pre-allocated buffer or the transfer is too large.
3095         */
3096        if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3097                local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3098                                    GFP_KERNEL | GFP_DMA);
3099                if (!local_buf)
3100                        return -ENOMEM;
3101        } else {
3102                local_buf = buf;
3103        }
3104
3105        spi_message_init(&message);
3106        memset(x, 0, sizeof(x));
3107        if (n_tx) {
3108                x[0].len = n_tx;
3109                spi_message_add_tail(&x[0], &message);
3110        }
3111        if (n_rx) {
3112                x[1].len = n_rx;
3113                spi_message_add_tail(&x[1], &message);
3114        }
3115
3116        memcpy(local_buf, txbuf, n_tx);
3117        x[0].tx_buf = local_buf;
3118        x[1].rx_buf = local_buf + n_tx;
3119
3120        /* do the i/o */
3121        status = spi_sync(spi, &message);
3122        if (status == 0)
3123                memcpy(rxbuf, x[1].rx_buf, n_rx);
3124
3125        if (x[0].tx_buf == buf)
3126                mutex_unlock(&lock);
3127        else
3128                kfree(local_buf);
3129
3130        return status;
3131}
3132EXPORT_SYMBOL_GPL(spi_write_then_read);
3133
3134/*-------------------------------------------------------------------------*/
3135
3136#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3137static int __spi_of_device_match(struct device *dev, void *data)
3138{
3139        return dev->of_node == data;
3140}
3141
3142/* must call put_device() when done with returned spi_device device */
3143static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3144{
3145        struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3146                                                __spi_of_device_match);
3147        return dev ? to_spi_device(dev) : NULL;
3148}
3149
3150static int __spi_of_master_match(struct device *dev, const void *data)
3151{
3152        return dev->of_node == data;
3153}
3154
3155/* the spi masters are not using spi_bus, so we find it with another way */
3156static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3157{
3158        struct device *dev;
3159
3160        dev = class_find_device(&spi_master_class, NULL, node,
3161                                __spi_of_master_match);
3162        if (!dev)
3163                return NULL;
3164
3165        /* reference got in class_find_device */
3166        return container_of(dev, struct spi_master, dev);
3167}
3168
3169static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3170                         void *arg)
3171{
3172        struct of_reconfig_data *rd = arg;
3173        struct spi_master *master;
3174        struct spi_device *spi;
3175
3176        switch (of_reconfig_get_state_change(action, arg)) {
3177        case OF_RECONFIG_CHANGE_ADD:
3178                master = of_find_spi_master_by_node(rd->dn->parent);
3179                if (master == NULL)
3180                        return NOTIFY_OK;       /* not for us */
3181
3182                if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3183                        put_device(&master->dev);
3184                        return NOTIFY_OK;
3185                }
3186
3187                spi = of_register_spi_device(master, rd->dn);
3188                put_device(&master->dev);
3189
3190                if (IS_ERR(spi)) {
3191                        pr_err("%s: failed to create for '%s'\n",
3192                                        __func__, rd->dn->full_name);
3193                        of_node_clear_flag(rd->dn, OF_POPULATED);
3194                        return notifier_from_errno(PTR_ERR(spi));
3195                }
3196                break;
3197
3198        case OF_RECONFIG_CHANGE_REMOVE:
3199                /* already depopulated? */
3200                if (!of_node_check_flag(rd->dn, OF_POPULATED))
3201                        return NOTIFY_OK;
3202
3203                /* find our device by node */
3204                spi = of_find_spi_device_by_node(rd->dn);
3205                if (spi == NULL)
3206                        return NOTIFY_OK;       /* no? not meant for us */
3207
3208                /* unregister takes one ref away */
3209                spi_unregister_device(spi);
3210
3211                /* and put the reference of the find */
3212                put_device(&spi->dev);
3213                break;
3214        }
3215
3216        return NOTIFY_OK;
3217}
3218
3219static struct notifier_block spi_of_notifier = {
3220        .notifier_call = of_spi_notify,
3221};
3222#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3223extern struct notifier_block spi_of_notifier;
3224#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3225
3226#if IS_ENABLED(CONFIG_ACPI)
3227static int spi_acpi_master_match(struct device *dev, const void *data)
3228{
3229        return ACPI_COMPANION(dev->parent) == data;
3230}
3231
3232static int spi_acpi_device_match(struct device *dev, void *data)
3233{
3234        return ACPI_COMPANION(dev) == data;
3235}
3236
3237static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3238{
3239        struct device *dev;
3240
3241        dev = class_find_device(&spi_master_class, NULL, adev,
3242                                spi_acpi_master_match);
3243        if (!dev)
3244                return NULL;
3245
3246        return container_of(dev, struct spi_master, dev);
3247}
3248
3249static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3250{
3251        struct device *dev;
3252
3253        dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3254
3255        return dev ? to_spi_device(dev) : NULL;
3256}
3257
3258static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3259                           void *arg)
3260{
3261        struct acpi_device *adev = arg;
3262        struct spi_master *master;
3263        struct spi_device *spi;
3264
3265        switch (value) {
3266        case ACPI_RECONFIG_DEVICE_ADD:
3267                master = acpi_spi_find_master_by_adev(adev->parent);
3268                if (!master)
3269                        break;
3270
3271                acpi_register_spi_device(master, adev);
3272                put_device(&master->dev);
3273                break;
3274        case ACPI_RECONFIG_DEVICE_REMOVE:
3275                if (!acpi_device_enumerated(adev))
3276                        break;
3277
3278                spi = acpi_spi_find_device_by_adev(adev);
3279                if (!spi)
3280                        break;
3281
3282                spi_unregister_device(spi);
3283                put_device(&spi->dev);
3284                break;
3285        }
3286
3287        return NOTIFY_OK;
3288}
3289
3290static struct notifier_block spi_acpi_notifier = {
3291        .notifier_call = acpi_spi_notify,
3292};
3293#else
3294extern struct notifier_block spi_acpi_notifier;
3295#endif
3296
3297static int __init spi_init(void)
3298{
3299        int     status;
3300
3301        buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3302        if (!buf) {
3303                status = -ENOMEM;
3304                goto err0;
3305        }
3306
3307        status = bus_register(&spi_bus_type);
3308        if (status < 0)
3309                goto err1;
3310
3311        status = class_register(&spi_master_class);
3312        if (status < 0)
3313                goto err2;
3314
3315        if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3316                WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3317        if (IS_ENABLED(CONFIG_ACPI))
3318                WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3319
3320        return 0;
3321
3322err2:
3323        bus_unregister(&spi_bus_type);
3324err1:
3325        kfree(buf);
3326        buf = NULL;
3327err0:
3328        return status;
3329}
3330
3331/* board_info is normally registered in arch_initcall(),
3332 * but even essential drivers wait till later
3333 *
3334 * REVISIT only boardinfo really needs static linking. the rest (device and
3335 * driver registration) _could_ be dynamically linked (modular) ... costs
3336 * include needing to have boardinfo data structures be much more public.
3337 */
3338postcore_initcall(spi_init);
3339
3340