linux/fs/btrfs/compression.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "ordered-data.h"
  41#include "compression.h"
  42#include "extent_io.h"
  43#include "extent_map.h"
  44
  45struct compressed_bio {
  46        /* number of bios pending for this compressed extent */
  47        refcount_t pending_bios;
  48
  49        /* the pages with the compressed data on them */
  50        struct page **compressed_pages;
  51
  52        /* inode that owns this data */
  53        struct inode *inode;
  54
  55        /* starting offset in the inode for our pages */
  56        u64 start;
  57
  58        /* number of bytes in the inode we're working on */
  59        unsigned long len;
  60
  61        /* number of bytes on disk */
  62        unsigned long compressed_len;
  63
  64        /* the compression algorithm for this bio */
  65        int compress_type;
  66
  67        /* number of compressed pages in the array */
  68        unsigned long nr_pages;
  69
  70        /* IO errors */
  71        int errors;
  72        int mirror_num;
  73
  74        /* for reads, this is the bio we are copying the data into */
  75        struct bio *orig_bio;
  76
  77        /*
  78         * the start of a variable length array of checksums only
  79         * used by reads
  80         */
  81        u32 sums;
  82};
  83
  84static int btrfs_decompress_bio(int type, struct page **pages_in,
  85                                   u64 disk_start, struct bio *orig_bio,
  86                                   size_t srclen);
  87
  88static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
  89                                      unsigned long disk_size)
  90{
  91        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  92
  93        return sizeof(struct compressed_bio) +
  94                (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
  95}
  96
  97static struct bio *compressed_bio_alloc(struct block_device *bdev,
  98                                        u64 first_byte, gfp_t gfp_flags)
  99{
 100        return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
 101}
 102
 103static int check_compressed_csum(struct btrfs_inode *inode,
 104                                 struct compressed_bio *cb,
 105                                 u64 disk_start)
 106{
 107        int ret;
 108        struct page *page;
 109        unsigned long i;
 110        char *kaddr;
 111        u32 csum;
 112        u32 *cb_sum = &cb->sums;
 113
 114        if (inode->flags & BTRFS_INODE_NODATASUM)
 115                return 0;
 116
 117        for (i = 0; i < cb->nr_pages; i++) {
 118                page = cb->compressed_pages[i];
 119                csum = ~(u32)0;
 120
 121                kaddr = kmap_atomic(page);
 122                csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
 123                btrfs_csum_final(csum, (u8 *)&csum);
 124                kunmap_atomic(kaddr);
 125
 126                if (csum != *cb_sum) {
 127                        btrfs_print_data_csum_error(inode, disk_start, csum,
 128                                        *cb_sum, cb->mirror_num);
 129                        ret = -EIO;
 130                        goto fail;
 131                }
 132                cb_sum++;
 133
 134        }
 135        ret = 0;
 136fail:
 137        return ret;
 138}
 139
 140/* when we finish reading compressed pages from the disk, we
 141 * decompress them and then run the bio end_io routines on the
 142 * decompressed pages (in the inode address space).
 143 *
 144 * This allows the checksumming and other IO error handling routines
 145 * to work normally
 146 *
 147 * The compressed pages are freed here, and it must be run
 148 * in process context
 149 */
 150static void end_compressed_bio_read(struct bio *bio)
 151{
 152        struct compressed_bio *cb = bio->bi_private;
 153        struct inode *inode;
 154        struct page *page;
 155        unsigned long index;
 156        int ret;
 157
 158        if (bio->bi_error)
 159                cb->errors = 1;
 160
 161        /* if there are more bios still pending for this compressed
 162         * extent, just exit
 163         */
 164        if (!refcount_dec_and_test(&cb->pending_bios))
 165                goto out;
 166
 167        inode = cb->inode;
 168        ret = check_compressed_csum(BTRFS_I(inode), cb,
 169                                    (u64)bio->bi_iter.bi_sector << 9);
 170        if (ret)
 171                goto csum_failed;
 172
 173        /* ok, we're the last bio for this extent, lets start
 174         * the decompression.
 175         */
 176        ret = btrfs_decompress_bio(cb->compress_type,
 177                                      cb->compressed_pages,
 178                                      cb->start,
 179                                      cb->orig_bio,
 180                                      cb->compressed_len);
 181csum_failed:
 182        if (ret)
 183                cb->errors = 1;
 184
 185        /* release the compressed pages */
 186        index = 0;
 187        for (index = 0; index < cb->nr_pages; index++) {
 188                page = cb->compressed_pages[index];
 189                page->mapping = NULL;
 190                put_page(page);
 191        }
 192
 193        /* do io completion on the original bio */
 194        if (cb->errors) {
 195                bio_io_error(cb->orig_bio);
 196        } else {
 197                int i;
 198                struct bio_vec *bvec;
 199
 200                /*
 201                 * we have verified the checksum already, set page
 202                 * checked so the end_io handlers know about it
 203                 */
 204                bio_for_each_segment_all(bvec, cb->orig_bio, i)
 205                        SetPageChecked(bvec->bv_page);
 206
 207                bio_endio(cb->orig_bio);
 208        }
 209
 210        /* finally free the cb struct */
 211        kfree(cb->compressed_pages);
 212        kfree(cb);
 213out:
 214        bio_put(bio);
 215}
 216
 217/*
 218 * Clear the writeback bits on all of the file
 219 * pages for a compressed write
 220 */
 221static noinline void end_compressed_writeback(struct inode *inode,
 222                                              const struct compressed_bio *cb)
 223{
 224        unsigned long index = cb->start >> PAGE_SHIFT;
 225        unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 226        struct page *pages[16];
 227        unsigned long nr_pages = end_index - index + 1;
 228        int i;
 229        int ret;
 230
 231        if (cb->errors)
 232                mapping_set_error(inode->i_mapping, -EIO);
 233
 234        while (nr_pages > 0) {
 235                ret = find_get_pages_contig(inode->i_mapping, index,
 236                                     min_t(unsigned long,
 237                                     nr_pages, ARRAY_SIZE(pages)), pages);
 238                if (ret == 0) {
 239                        nr_pages -= 1;
 240                        index += 1;
 241                        continue;
 242                }
 243                for (i = 0; i < ret; i++) {
 244                        if (cb->errors)
 245                                SetPageError(pages[i]);
 246                        end_page_writeback(pages[i]);
 247                        put_page(pages[i]);
 248                }
 249                nr_pages -= ret;
 250                index += ret;
 251        }
 252        /* the inode may be gone now */
 253}
 254
 255/*
 256 * do the cleanup once all the compressed pages hit the disk.
 257 * This will clear writeback on the file pages and free the compressed
 258 * pages.
 259 *
 260 * This also calls the writeback end hooks for the file pages so that
 261 * metadata and checksums can be updated in the file.
 262 */
 263static void end_compressed_bio_write(struct bio *bio)
 264{
 265        struct extent_io_tree *tree;
 266        struct compressed_bio *cb = bio->bi_private;
 267        struct inode *inode;
 268        struct page *page;
 269        unsigned long index;
 270
 271        if (bio->bi_error)
 272                cb->errors = 1;
 273
 274        /* if there are more bios still pending for this compressed
 275         * extent, just exit
 276         */
 277        if (!refcount_dec_and_test(&cb->pending_bios))
 278                goto out;
 279
 280        /* ok, we're the last bio for this extent, step one is to
 281         * call back into the FS and do all the end_io operations
 282         */
 283        inode = cb->inode;
 284        tree = &BTRFS_I(inode)->io_tree;
 285        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 286        tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 287                                         cb->start,
 288                                         cb->start + cb->len - 1,
 289                                         NULL,
 290                                         bio->bi_error ? 0 : 1);
 291        cb->compressed_pages[0]->mapping = NULL;
 292
 293        end_compressed_writeback(inode, cb);
 294        /* note, our inode could be gone now */
 295
 296        /*
 297         * release the compressed pages, these came from alloc_page and
 298         * are not attached to the inode at all
 299         */
 300        index = 0;
 301        for (index = 0; index < cb->nr_pages; index++) {
 302                page = cb->compressed_pages[index];
 303                page->mapping = NULL;
 304                put_page(page);
 305        }
 306
 307        /* finally free the cb struct */
 308        kfree(cb->compressed_pages);
 309        kfree(cb);
 310out:
 311        bio_put(bio);
 312}
 313
 314/*
 315 * worker function to build and submit bios for previously compressed pages.
 316 * The corresponding pages in the inode should be marked for writeback
 317 * and the compressed pages should have a reference on them for dropping
 318 * when the IO is complete.
 319 *
 320 * This also checksums the file bytes and gets things ready for
 321 * the end io hooks.
 322 */
 323int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 324                                 unsigned long len, u64 disk_start,
 325                                 unsigned long compressed_len,
 326                                 struct page **compressed_pages,
 327                                 unsigned long nr_pages)
 328{
 329        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 330        struct bio *bio = NULL;
 331        struct compressed_bio *cb;
 332        unsigned long bytes_left;
 333        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 334        int pg_index = 0;
 335        struct page *page;
 336        u64 first_byte = disk_start;
 337        struct block_device *bdev;
 338        int ret;
 339        int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 340
 341        WARN_ON(start & ((u64)PAGE_SIZE - 1));
 342        cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 343        if (!cb)
 344                return -ENOMEM;
 345        refcount_set(&cb->pending_bios, 0);
 346        cb->errors = 0;
 347        cb->inode = inode;
 348        cb->start = start;
 349        cb->len = len;
 350        cb->mirror_num = 0;
 351        cb->compressed_pages = compressed_pages;
 352        cb->compressed_len = compressed_len;
 353        cb->orig_bio = NULL;
 354        cb->nr_pages = nr_pages;
 355
 356        bdev = fs_info->fs_devices->latest_bdev;
 357
 358        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 359        if (!bio) {
 360                kfree(cb);
 361                return -ENOMEM;
 362        }
 363        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 364        bio->bi_private = cb;
 365        bio->bi_end_io = end_compressed_bio_write;
 366        refcount_set(&cb->pending_bios, 1);
 367
 368        /* create and submit bios for the compressed pages */
 369        bytes_left = compressed_len;
 370        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 371                page = compressed_pages[pg_index];
 372                page->mapping = inode->i_mapping;
 373                if (bio->bi_iter.bi_size)
 374                        ret = io_tree->ops->merge_bio_hook(page, 0,
 375                                                           PAGE_SIZE,
 376                                                           bio, 0);
 377                else
 378                        ret = 0;
 379
 380                page->mapping = NULL;
 381                if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
 382                    PAGE_SIZE) {
 383                        bio_get(bio);
 384
 385                        /*
 386                         * inc the count before we submit the bio so
 387                         * we know the end IO handler won't happen before
 388                         * we inc the count.  Otherwise, the cb might get
 389                         * freed before we're done setting it up
 390                         */
 391                        refcount_inc(&cb->pending_bios);
 392                        ret = btrfs_bio_wq_end_io(fs_info, bio,
 393                                                  BTRFS_WQ_ENDIO_DATA);
 394                        BUG_ON(ret); /* -ENOMEM */
 395
 396                        if (!skip_sum) {
 397                                ret = btrfs_csum_one_bio(inode, bio, start, 1);
 398                                BUG_ON(ret); /* -ENOMEM */
 399                        }
 400
 401                        ret = btrfs_map_bio(fs_info, bio, 0, 1);
 402                        if (ret) {
 403                                bio->bi_error = ret;
 404                                bio_endio(bio);
 405                        }
 406
 407                        bio_put(bio);
 408
 409                        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 410                        BUG_ON(!bio);
 411                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 412                        bio->bi_private = cb;
 413                        bio->bi_end_io = end_compressed_bio_write;
 414                        bio_add_page(bio, page, PAGE_SIZE, 0);
 415                }
 416                if (bytes_left < PAGE_SIZE) {
 417                        btrfs_info(fs_info,
 418                                        "bytes left %lu compress len %lu nr %lu",
 419                               bytes_left, cb->compressed_len, cb->nr_pages);
 420                }
 421                bytes_left -= PAGE_SIZE;
 422                first_byte += PAGE_SIZE;
 423                cond_resched();
 424        }
 425        bio_get(bio);
 426
 427        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 428        BUG_ON(ret); /* -ENOMEM */
 429
 430        if (!skip_sum) {
 431                ret = btrfs_csum_one_bio(inode, bio, start, 1);
 432                BUG_ON(ret); /* -ENOMEM */
 433        }
 434
 435        ret = btrfs_map_bio(fs_info, bio, 0, 1);
 436        if (ret) {
 437                bio->bi_error = ret;
 438                bio_endio(bio);
 439        }
 440
 441        bio_put(bio);
 442        return 0;
 443}
 444
 445static u64 bio_end_offset(struct bio *bio)
 446{
 447        struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
 448
 449        return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 450}
 451
 452static noinline int add_ra_bio_pages(struct inode *inode,
 453                                     u64 compressed_end,
 454                                     struct compressed_bio *cb)
 455{
 456        unsigned long end_index;
 457        unsigned long pg_index;
 458        u64 last_offset;
 459        u64 isize = i_size_read(inode);
 460        int ret;
 461        struct page *page;
 462        unsigned long nr_pages = 0;
 463        struct extent_map *em;
 464        struct address_space *mapping = inode->i_mapping;
 465        struct extent_map_tree *em_tree;
 466        struct extent_io_tree *tree;
 467        u64 end;
 468        int misses = 0;
 469
 470        last_offset = bio_end_offset(cb->orig_bio);
 471        em_tree = &BTRFS_I(inode)->extent_tree;
 472        tree = &BTRFS_I(inode)->io_tree;
 473
 474        if (isize == 0)
 475                return 0;
 476
 477        end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 478
 479        while (last_offset < compressed_end) {
 480                pg_index = last_offset >> PAGE_SHIFT;
 481
 482                if (pg_index > end_index)
 483                        break;
 484
 485                rcu_read_lock();
 486                page = radix_tree_lookup(&mapping->page_tree, pg_index);
 487                rcu_read_unlock();
 488                if (page && !radix_tree_exceptional_entry(page)) {
 489                        misses++;
 490                        if (misses > 4)
 491                                break;
 492                        goto next;
 493                }
 494
 495                page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 496                                                                 ~__GFP_FS));
 497                if (!page)
 498                        break;
 499
 500                if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 501                        put_page(page);
 502                        goto next;
 503                }
 504
 505                end = last_offset + PAGE_SIZE - 1;
 506                /*
 507                 * at this point, we have a locked page in the page cache
 508                 * for these bytes in the file.  But, we have to make
 509                 * sure they map to this compressed extent on disk.
 510                 */
 511                set_page_extent_mapped(page);
 512                lock_extent(tree, last_offset, end);
 513                read_lock(&em_tree->lock);
 514                em = lookup_extent_mapping(em_tree, last_offset,
 515                                           PAGE_SIZE);
 516                read_unlock(&em_tree->lock);
 517
 518                if (!em || last_offset < em->start ||
 519                    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 520                    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 521                        free_extent_map(em);
 522                        unlock_extent(tree, last_offset, end);
 523                        unlock_page(page);
 524                        put_page(page);
 525                        break;
 526                }
 527                free_extent_map(em);
 528
 529                if (page->index == end_index) {
 530                        char *userpage;
 531                        size_t zero_offset = isize & (PAGE_SIZE - 1);
 532
 533                        if (zero_offset) {
 534                                int zeros;
 535                                zeros = PAGE_SIZE - zero_offset;
 536                                userpage = kmap_atomic(page);
 537                                memset(userpage + zero_offset, 0, zeros);
 538                                flush_dcache_page(page);
 539                                kunmap_atomic(userpage);
 540                        }
 541                }
 542
 543                ret = bio_add_page(cb->orig_bio, page,
 544                                   PAGE_SIZE, 0);
 545
 546                if (ret == PAGE_SIZE) {
 547                        nr_pages++;
 548                        put_page(page);
 549                } else {
 550                        unlock_extent(tree, last_offset, end);
 551                        unlock_page(page);
 552                        put_page(page);
 553                        break;
 554                }
 555next:
 556                last_offset += PAGE_SIZE;
 557        }
 558        return 0;
 559}
 560
 561/*
 562 * for a compressed read, the bio we get passed has all the inode pages
 563 * in it.  We don't actually do IO on those pages but allocate new ones
 564 * to hold the compressed pages on disk.
 565 *
 566 * bio->bi_iter.bi_sector points to the compressed extent on disk
 567 * bio->bi_io_vec points to all of the inode pages
 568 *
 569 * After the compressed pages are read, we copy the bytes into the
 570 * bio we were passed and then call the bio end_io calls
 571 */
 572int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 573                                 int mirror_num, unsigned long bio_flags)
 574{
 575        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 576        struct extent_io_tree *tree;
 577        struct extent_map_tree *em_tree;
 578        struct compressed_bio *cb;
 579        unsigned long compressed_len;
 580        unsigned long nr_pages;
 581        unsigned long pg_index;
 582        struct page *page;
 583        struct block_device *bdev;
 584        struct bio *comp_bio;
 585        u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 586        u64 em_len;
 587        u64 em_start;
 588        struct extent_map *em;
 589        int ret = -ENOMEM;
 590        int faili = 0;
 591        u32 *sums;
 592
 593        tree = &BTRFS_I(inode)->io_tree;
 594        em_tree = &BTRFS_I(inode)->extent_tree;
 595
 596        /* we need the actual starting offset of this extent in the file */
 597        read_lock(&em_tree->lock);
 598        em = lookup_extent_mapping(em_tree,
 599                                   page_offset(bio->bi_io_vec->bv_page),
 600                                   PAGE_SIZE);
 601        read_unlock(&em_tree->lock);
 602        if (!em)
 603                return -EIO;
 604
 605        compressed_len = em->block_len;
 606        cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 607        if (!cb)
 608                goto out;
 609
 610        refcount_set(&cb->pending_bios, 0);
 611        cb->errors = 0;
 612        cb->inode = inode;
 613        cb->mirror_num = mirror_num;
 614        sums = &cb->sums;
 615
 616        cb->start = em->orig_start;
 617        em_len = em->len;
 618        em_start = em->start;
 619
 620        free_extent_map(em);
 621        em = NULL;
 622
 623        cb->len = bio->bi_iter.bi_size;
 624        cb->compressed_len = compressed_len;
 625        cb->compress_type = extent_compress_type(bio_flags);
 626        cb->orig_bio = bio;
 627
 628        nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 629        cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 630                                       GFP_NOFS);
 631        if (!cb->compressed_pages)
 632                goto fail1;
 633
 634        bdev = fs_info->fs_devices->latest_bdev;
 635
 636        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 637                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 638                                                              __GFP_HIGHMEM);
 639                if (!cb->compressed_pages[pg_index]) {
 640                        faili = pg_index - 1;
 641                        ret = -ENOMEM;
 642                        goto fail2;
 643                }
 644        }
 645        faili = nr_pages - 1;
 646        cb->nr_pages = nr_pages;
 647
 648        add_ra_bio_pages(inode, em_start + em_len, cb);
 649
 650        /* include any pages we added in add_ra-bio_pages */
 651        cb->len = bio->bi_iter.bi_size;
 652
 653        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 654        if (!comp_bio)
 655                goto fail2;
 656        bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
 657        comp_bio->bi_private = cb;
 658        comp_bio->bi_end_io = end_compressed_bio_read;
 659        refcount_set(&cb->pending_bios, 1);
 660
 661        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 662                page = cb->compressed_pages[pg_index];
 663                page->mapping = inode->i_mapping;
 664                page->index = em_start >> PAGE_SHIFT;
 665
 666                if (comp_bio->bi_iter.bi_size)
 667                        ret = tree->ops->merge_bio_hook(page, 0,
 668                                                        PAGE_SIZE,
 669                                                        comp_bio, 0);
 670                else
 671                        ret = 0;
 672
 673                page->mapping = NULL;
 674                if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 675                    PAGE_SIZE) {
 676                        bio_get(comp_bio);
 677
 678                        ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 679                                                  BTRFS_WQ_ENDIO_DATA);
 680                        BUG_ON(ret); /* -ENOMEM */
 681
 682                        /*
 683                         * inc the count before we submit the bio so
 684                         * we know the end IO handler won't happen before
 685                         * we inc the count.  Otherwise, the cb might get
 686                         * freed before we're done setting it up
 687                         */
 688                        refcount_inc(&cb->pending_bios);
 689
 690                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 691                                ret = btrfs_lookup_bio_sums(inode, comp_bio,
 692                                                            sums);
 693                                BUG_ON(ret); /* -ENOMEM */
 694                        }
 695                        sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 696                                             fs_info->sectorsize);
 697
 698                        ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 699                        if (ret) {
 700                                comp_bio->bi_error = ret;
 701                                bio_endio(comp_bio);
 702                        }
 703
 704                        bio_put(comp_bio);
 705
 706                        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 707                                                        GFP_NOFS);
 708                        BUG_ON(!comp_bio);
 709                        bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
 710                        comp_bio->bi_private = cb;
 711                        comp_bio->bi_end_io = end_compressed_bio_read;
 712
 713                        bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 714                }
 715                cur_disk_byte += PAGE_SIZE;
 716        }
 717        bio_get(comp_bio);
 718
 719        ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 720        BUG_ON(ret); /* -ENOMEM */
 721
 722        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 723                ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
 724                BUG_ON(ret); /* -ENOMEM */
 725        }
 726
 727        ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
 728        if (ret) {
 729                comp_bio->bi_error = ret;
 730                bio_endio(comp_bio);
 731        }
 732
 733        bio_put(comp_bio);
 734        return 0;
 735
 736fail2:
 737        while (faili >= 0) {
 738                __free_page(cb->compressed_pages[faili]);
 739                faili--;
 740        }
 741
 742        kfree(cb->compressed_pages);
 743fail1:
 744        kfree(cb);
 745out:
 746        free_extent_map(em);
 747        return ret;
 748}
 749
 750static struct {
 751        struct list_head idle_ws;
 752        spinlock_t ws_lock;
 753        /* Number of free workspaces */
 754        int free_ws;
 755        /* Total number of allocated workspaces */
 756        atomic_t total_ws;
 757        /* Waiters for a free workspace */
 758        wait_queue_head_t ws_wait;
 759} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
 760
 761static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 762        &btrfs_zlib_compress,
 763        &btrfs_lzo_compress,
 764};
 765
 766void __init btrfs_init_compress(void)
 767{
 768        int i;
 769
 770        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 771                struct list_head *workspace;
 772
 773                INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
 774                spin_lock_init(&btrfs_comp_ws[i].ws_lock);
 775                atomic_set(&btrfs_comp_ws[i].total_ws, 0);
 776                init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
 777
 778                /*
 779                 * Preallocate one workspace for each compression type so
 780                 * we can guarantee forward progress in the worst case
 781                 */
 782                workspace = btrfs_compress_op[i]->alloc_workspace();
 783                if (IS_ERR(workspace)) {
 784                        pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
 785                } else {
 786                        atomic_set(&btrfs_comp_ws[i].total_ws, 1);
 787                        btrfs_comp_ws[i].free_ws = 1;
 788                        list_add(workspace, &btrfs_comp_ws[i].idle_ws);
 789                }
 790        }
 791}
 792
 793/*
 794 * This finds an available workspace or allocates a new one.
 795 * If it's not possible to allocate a new one, waits until there's one.
 796 * Preallocation makes a forward progress guarantees and we do not return
 797 * errors.
 798 */
 799static struct list_head *find_workspace(int type)
 800{
 801        struct list_head *workspace;
 802        int cpus = num_online_cpus();
 803        int idx = type - 1;
 804
 805        struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
 806        spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
 807        atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
 808        wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
 809        int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
 810again:
 811        spin_lock(ws_lock);
 812        if (!list_empty(idle_ws)) {
 813                workspace = idle_ws->next;
 814                list_del(workspace);
 815                (*free_ws)--;
 816                spin_unlock(ws_lock);
 817                return workspace;
 818
 819        }
 820        if (atomic_read(total_ws) > cpus) {
 821                DEFINE_WAIT(wait);
 822
 823                spin_unlock(ws_lock);
 824                prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 825                if (atomic_read(total_ws) > cpus && !*free_ws)
 826                        schedule();
 827                finish_wait(ws_wait, &wait);
 828                goto again;
 829        }
 830        atomic_inc(total_ws);
 831        spin_unlock(ws_lock);
 832
 833        workspace = btrfs_compress_op[idx]->alloc_workspace();
 834        if (IS_ERR(workspace)) {
 835                atomic_dec(total_ws);
 836                wake_up(ws_wait);
 837
 838                /*
 839                 * Do not return the error but go back to waiting. There's a
 840                 * workspace preallocated for each type and the compression
 841                 * time is bounded so we get to a workspace eventually. This
 842                 * makes our caller's life easier.
 843                 *
 844                 * To prevent silent and low-probability deadlocks (when the
 845                 * initial preallocation fails), check if there are any
 846                 * workspaces at all.
 847                 */
 848                if (atomic_read(total_ws) == 0) {
 849                        static DEFINE_RATELIMIT_STATE(_rs,
 850                                        /* once per minute */ 60 * HZ,
 851                                        /* no burst */ 1);
 852
 853                        if (__ratelimit(&_rs)) {
 854                                pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 855                        }
 856                }
 857                goto again;
 858        }
 859        return workspace;
 860}
 861
 862/*
 863 * put a workspace struct back on the list or free it if we have enough
 864 * idle ones sitting around
 865 */
 866static void free_workspace(int type, struct list_head *workspace)
 867{
 868        int idx = type - 1;
 869        struct list_head *idle_ws       = &btrfs_comp_ws[idx].idle_ws;
 870        spinlock_t *ws_lock             = &btrfs_comp_ws[idx].ws_lock;
 871        atomic_t *total_ws              = &btrfs_comp_ws[idx].total_ws;
 872        wait_queue_head_t *ws_wait      = &btrfs_comp_ws[idx].ws_wait;
 873        int *free_ws                    = &btrfs_comp_ws[idx].free_ws;
 874
 875        spin_lock(ws_lock);
 876        if (*free_ws < num_online_cpus()) {
 877                list_add(workspace, idle_ws);
 878                (*free_ws)++;
 879                spin_unlock(ws_lock);
 880                goto wake;
 881        }
 882        spin_unlock(ws_lock);
 883
 884        btrfs_compress_op[idx]->free_workspace(workspace);
 885        atomic_dec(total_ws);
 886wake:
 887        /*
 888         * Make sure counter is updated before we wake up waiters.
 889         */
 890        smp_mb();
 891        if (waitqueue_active(ws_wait))
 892                wake_up(ws_wait);
 893}
 894
 895/*
 896 * cleanup function for module exit
 897 */
 898static void free_workspaces(void)
 899{
 900        struct list_head *workspace;
 901        int i;
 902
 903        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 904                while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
 905                        workspace = btrfs_comp_ws[i].idle_ws.next;
 906                        list_del(workspace);
 907                        btrfs_compress_op[i]->free_workspace(workspace);
 908                        atomic_dec(&btrfs_comp_ws[i].total_ws);
 909                }
 910        }
 911}
 912
 913/*
 914 * Given an address space and start and length, compress the bytes into @pages
 915 * that are allocated on demand.
 916 *
 917 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 918 * and returns number of actually allocated pages
 919 *
 920 * @total_in is used to return the number of bytes actually read.  It
 921 * may be smaller than the input length if we had to exit early because we
 922 * ran out of room in the pages array or because we cross the
 923 * max_out threshold.
 924 *
 925 * @total_out is an in/out parameter, must be set to the input length and will
 926 * be also used to return the total number of compressed bytes
 927 *
 928 * @max_out tells us the max number of bytes that we're allowed to
 929 * stuff into pages
 930 */
 931int btrfs_compress_pages(int type, struct address_space *mapping,
 932                         u64 start, struct page **pages,
 933                         unsigned long *out_pages,
 934                         unsigned long *total_in,
 935                         unsigned long *total_out)
 936{
 937        struct list_head *workspace;
 938        int ret;
 939
 940        workspace = find_workspace(type);
 941
 942        ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 943                                                      start, pages,
 944                                                      out_pages,
 945                                                      total_in, total_out);
 946        free_workspace(type, workspace);
 947        return ret;
 948}
 949
 950/*
 951 * pages_in is an array of pages with compressed data.
 952 *
 953 * disk_start is the starting logical offset of this array in the file
 954 *
 955 * orig_bio contains the pages from the file that we want to decompress into
 956 *
 957 * srclen is the number of bytes in pages_in
 958 *
 959 * The basic idea is that we have a bio that was created by readpages.
 960 * The pages in the bio are for the uncompressed data, and they may not
 961 * be contiguous.  They all correspond to the range of bytes covered by
 962 * the compressed extent.
 963 */
 964static int btrfs_decompress_bio(int type, struct page **pages_in,
 965                                   u64 disk_start, struct bio *orig_bio,
 966                                   size_t srclen)
 967{
 968        struct list_head *workspace;
 969        int ret;
 970
 971        workspace = find_workspace(type);
 972
 973        ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
 974                                                         disk_start, orig_bio,
 975                                                         srclen);
 976        free_workspace(type, workspace);
 977        return ret;
 978}
 979
 980/*
 981 * a less complex decompression routine.  Our compressed data fits in a
 982 * single page, and we want to read a single page out of it.
 983 * start_byte tells us the offset into the compressed data we're interested in
 984 */
 985int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 986                     unsigned long start_byte, size_t srclen, size_t destlen)
 987{
 988        struct list_head *workspace;
 989        int ret;
 990
 991        workspace = find_workspace(type);
 992
 993        ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 994                                                  dest_page, start_byte,
 995                                                  srclen, destlen);
 996
 997        free_workspace(type, workspace);
 998        return ret;
 999}
1000
1001void btrfs_exit_compress(void)
1002{
1003        free_workspaces();
1004}
1005
1006/*
1007 * Copy uncompressed data from working buffer to pages.
1008 *
1009 * buf_start is the byte offset we're of the start of our workspace buffer.
1010 *
1011 * total_out is the last byte of the buffer
1012 */
1013int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1014                              unsigned long total_out, u64 disk_start,
1015                              struct bio *bio)
1016{
1017        unsigned long buf_offset;
1018        unsigned long current_buf_start;
1019        unsigned long start_byte;
1020        unsigned long prev_start_byte;
1021        unsigned long working_bytes = total_out - buf_start;
1022        unsigned long bytes;
1023        char *kaddr;
1024        struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1025
1026        /*
1027         * start byte is the first byte of the page we're currently
1028         * copying into relative to the start of the compressed data.
1029         */
1030        start_byte = page_offset(bvec.bv_page) - disk_start;
1031
1032        /* we haven't yet hit data corresponding to this page */
1033        if (total_out <= start_byte)
1034                return 1;
1035
1036        /*
1037         * the start of the data we care about is offset into
1038         * the middle of our working buffer
1039         */
1040        if (total_out > start_byte && buf_start < start_byte) {
1041                buf_offset = start_byte - buf_start;
1042                working_bytes -= buf_offset;
1043        } else {
1044                buf_offset = 0;
1045        }
1046        current_buf_start = buf_start;
1047
1048        /* copy bytes from the working buffer into the pages */
1049        while (working_bytes > 0) {
1050                bytes = min_t(unsigned long, bvec.bv_len,
1051                                PAGE_SIZE - buf_offset);
1052                bytes = min(bytes, working_bytes);
1053
1054                kaddr = kmap_atomic(bvec.bv_page);
1055                memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1056                kunmap_atomic(kaddr);
1057                flush_dcache_page(bvec.bv_page);
1058
1059                buf_offset += bytes;
1060                working_bytes -= bytes;
1061                current_buf_start += bytes;
1062
1063                /* check if we need to pick another page */
1064                bio_advance(bio, bytes);
1065                if (!bio->bi_iter.bi_size)
1066                        return 0;
1067                bvec = bio_iter_iovec(bio, bio->bi_iter);
1068                prev_start_byte = start_byte;
1069                start_byte = page_offset(bvec.bv_page) - disk_start;
1070
1071                /*
1072                 * We need to make sure we're only adjusting
1073                 * our offset into compression working buffer when
1074                 * we're switching pages.  Otherwise we can incorrectly
1075                 * keep copying when we were actually done.
1076                 */
1077                if (start_byte != prev_start_byte) {
1078                        /*
1079                         * make sure our new page is covered by this
1080                         * working buffer
1081                         */
1082                        if (total_out <= start_byte)
1083                                return 1;
1084
1085                        /*
1086                         * the next page in the biovec might not be adjacent
1087                         * to the last page, but it might still be found
1088                         * inside this working buffer. bump our offset pointer
1089                         */
1090                        if (total_out > start_byte &&
1091                            current_buf_start < start_byte) {
1092                                buf_offset = start_byte - buf_start;
1093                                working_bytes = total_out - start_byte;
1094                                current_buf_start = buf_start + buf_offset;
1095                        }
1096                }
1097        }
1098
1099        return 1;
1100}
1101