linux/fs/jbd2/journal.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd2/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd2.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/math64.h>
  40#include <linux/hash.h>
  41#include <linux/log2.h>
  42#include <linux/vmalloc.h>
  43#include <linux/backing-dev.h>
  44#include <linux/bitops.h>
  45#include <linux/ratelimit.h>
  46#include <linux/sched/mm.h>
  47
  48#define CREATE_TRACE_POINTS
  49#include <trace/events/jbd2.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/page.h>
  53
  54#ifdef CONFIG_JBD2_DEBUG
  55ushort jbd2_journal_enable_debug __read_mostly;
  56EXPORT_SYMBOL(jbd2_journal_enable_debug);
  57
  58module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
  59MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
  60#endif
  61
  62EXPORT_SYMBOL(jbd2_journal_extend);
  63EXPORT_SYMBOL(jbd2_journal_stop);
  64EXPORT_SYMBOL(jbd2_journal_lock_updates);
  65EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  66EXPORT_SYMBOL(jbd2_journal_get_write_access);
  67EXPORT_SYMBOL(jbd2_journal_get_create_access);
  68EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  69EXPORT_SYMBOL(jbd2_journal_set_triggers);
  70EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  71EXPORT_SYMBOL(jbd2_journal_forget);
  72#if 0
  73EXPORT_SYMBOL(journal_sync_buffer);
  74#endif
  75EXPORT_SYMBOL(jbd2_journal_flush);
  76EXPORT_SYMBOL(jbd2_journal_revoke);
  77
  78EXPORT_SYMBOL(jbd2_journal_init_dev);
  79EXPORT_SYMBOL(jbd2_journal_init_inode);
  80EXPORT_SYMBOL(jbd2_journal_check_used_features);
  81EXPORT_SYMBOL(jbd2_journal_check_available_features);
  82EXPORT_SYMBOL(jbd2_journal_set_features);
  83EXPORT_SYMBOL(jbd2_journal_load);
  84EXPORT_SYMBOL(jbd2_journal_destroy);
  85EXPORT_SYMBOL(jbd2_journal_abort);
  86EXPORT_SYMBOL(jbd2_journal_errno);
  87EXPORT_SYMBOL(jbd2_journal_ack_err);
  88EXPORT_SYMBOL(jbd2_journal_clear_err);
  89EXPORT_SYMBOL(jbd2_log_wait_commit);
  90EXPORT_SYMBOL(jbd2_log_start_commit);
  91EXPORT_SYMBOL(jbd2_journal_start_commit);
  92EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  93EXPORT_SYMBOL(jbd2_journal_wipe);
  94EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  95EXPORT_SYMBOL(jbd2_journal_invalidatepage);
  96EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  97EXPORT_SYMBOL(jbd2_journal_force_commit);
  98EXPORT_SYMBOL(jbd2_journal_inode_add_write);
  99EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
 100EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
 101EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
 102EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
 103EXPORT_SYMBOL(jbd2_inode_cache);
 104
 105static void __journal_abort_soft (journal_t *journal, int errno);
 106static int jbd2_journal_create_slab(size_t slab_size);
 107
 108#ifdef CONFIG_JBD2_DEBUG
 109void __jbd2_debug(int level, const char *file, const char *func,
 110                  unsigned int line, const char *fmt, ...)
 111{
 112        struct va_format vaf;
 113        va_list args;
 114
 115        if (level > jbd2_journal_enable_debug)
 116                return;
 117        va_start(args, fmt);
 118        vaf.fmt = fmt;
 119        vaf.va = &args;
 120        printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
 121        va_end(args);
 122}
 123EXPORT_SYMBOL(__jbd2_debug);
 124#endif
 125
 126/* Checksumming functions */
 127static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
 128{
 129        if (!jbd2_journal_has_csum_v2or3_feature(j))
 130                return 1;
 131
 132        return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
 133}
 134
 135static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
 136{
 137        __u32 csum;
 138        __be32 old_csum;
 139
 140        old_csum = sb->s_checksum;
 141        sb->s_checksum = 0;
 142        csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
 143        sb->s_checksum = old_csum;
 144
 145        return cpu_to_be32(csum);
 146}
 147
 148static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
 149{
 150        if (!jbd2_journal_has_csum_v2or3(j))
 151                return 1;
 152
 153        return sb->s_checksum == jbd2_superblock_csum(j, sb);
 154}
 155
 156static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
 157{
 158        if (!jbd2_journal_has_csum_v2or3(j))
 159                return;
 160
 161        sb->s_checksum = jbd2_superblock_csum(j, sb);
 162}
 163
 164/*
 165 * Helper function used to manage commit timeouts
 166 */
 167
 168static void commit_timeout(unsigned long __data)
 169{
 170        struct task_struct * p = (struct task_struct *) __data;
 171
 172        wake_up_process(p);
 173}
 174
 175/*
 176 * kjournald2: The main thread function used to manage a logging device
 177 * journal.
 178 *
 179 * This kernel thread is responsible for two things:
 180 *
 181 * 1) COMMIT:  Every so often we need to commit the current state of the
 182 *    filesystem to disk.  The journal thread is responsible for writing
 183 *    all of the metadata buffers to disk.
 184 *
 185 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 186 *    of the data in that part of the log has been rewritten elsewhere on
 187 *    the disk.  Flushing these old buffers to reclaim space in the log is
 188 *    known as checkpointing, and this thread is responsible for that job.
 189 */
 190
 191static int kjournald2(void *arg)
 192{
 193        journal_t *journal = arg;
 194        transaction_t *transaction;
 195
 196        /*
 197         * Set up an interval timer which can be used to trigger a commit wakeup
 198         * after the commit interval expires
 199         */
 200        setup_timer(&journal->j_commit_timer, commit_timeout,
 201                        (unsigned long)current);
 202
 203        set_freezable();
 204
 205        /* Record that the journal thread is running */
 206        journal->j_task = current;
 207        wake_up(&journal->j_wait_done_commit);
 208
 209        /*
 210         * Make sure that no allocations from this kernel thread will ever
 211         * recurse to the fs layer because we are responsible for the
 212         * transaction commit and any fs involvement might get stuck waiting for
 213         * the trasn. commit.
 214         */
 215        memalloc_nofs_save();
 216
 217        /*
 218         * And now, wait forever for commit wakeup events.
 219         */
 220        write_lock(&journal->j_state_lock);
 221
 222loop:
 223        if (journal->j_flags & JBD2_UNMOUNT)
 224                goto end_loop;
 225
 226        jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 227                journal->j_commit_sequence, journal->j_commit_request);
 228
 229        if (journal->j_commit_sequence != journal->j_commit_request) {
 230                jbd_debug(1, "OK, requests differ\n");
 231                write_unlock(&journal->j_state_lock);
 232                del_timer_sync(&journal->j_commit_timer);
 233                jbd2_journal_commit_transaction(journal);
 234                write_lock(&journal->j_state_lock);
 235                goto loop;
 236        }
 237
 238        wake_up(&journal->j_wait_done_commit);
 239        if (freezing(current)) {
 240                /*
 241                 * The simpler the better. Flushing journal isn't a
 242                 * good idea, because that depends on threads that may
 243                 * be already stopped.
 244                 */
 245                jbd_debug(1, "Now suspending kjournald2\n");
 246                write_unlock(&journal->j_state_lock);
 247                try_to_freeze();
 248                write_lock(&journal->j_state_lock);
 249        } else {
 250                /*
 251                 * We assume on resume that commits are already there,
 252                 * so we don't sleep
 253                 */
 254                DEFINE_WAIT(wait);
 255                int should_sleep = 1;
 256
 257                prepare_to_wait(&journal->j_wait_commit, &wait,
 258                                TASK_INTERRUPTIBLE);
 259                if (journal->j_commit_sequence != journal->j_commit_request)
 260                        should_sleep = 0;
 261                transaction = journal->j_running_transaction;
 262                if (transaction && time_after_eq(jiffies,
 263                                                transaction->t_expires))
 264                        should_sleep = 0;
 265                if (journal->j_flags & JBD2_UNMOUNT)
 266                        should_sleep = 0;
 267                if (should_sleep) {
 268                        write_unlock(&journal->j_state_lock);
 269                        schedule();
 270                        write_lock(&journal->j_state_lock);
 271                }
 272                finish_wait(&journal->j_wait_commit, &wait);
 273        }
 274
 275        jbd_debug(1, "kjournald2 wakes\n");
 276
 277        /*
 278         * Were we woken up by a commit wakeup event?
 279         */
 280        transaction = journal->j_running_transaction;
 281        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 282                journal->j_commit_request = transaction->t_tid;
 283                jbd_debug(1, "woke because of timeout\n");
 284        }
 285        goto loop;
 286
 287end_loop:
 288        del_timer_sync(&journal->j_commit_timer);
 289        journal->j_task = NULL;
 290        wake_up(&journal->j_wait_done_commit);
 291        jbd_debug(1, "Journal thread exiting.\n");
 292        write_unlock(&journal->j_state_lock);
 293        return 0;
 294}
 295
 296static int jbd2_journal_start_thread(journal_t *journal)
 297{
 298        struct task_struct *t;
 299
 300        t = kthread_run(kjournald2, journal, "jbd2/%s",
 301                        journal->j_devname);
 302        if (IS_ERR(t))
 303                return PTR_ERR(t);
 304
 305        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 306        return 0;
 307}
 308
 309static void journal_kill_thread(journal_t *journal)
 310{
 311        write_lock(&journal->j_state_lock);
 312        journal->j_flags |= JBD2_UNMOUNT;
 313
 314        while (journal->j_task) {
 315                write_unlock(&journal->j_state_lock);
 316                wake_up(&journal->j_wait_commit);
 317                wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 318                write_lock(&journal->j_state_lock);
 319        }
 320        write_unlock(&journal->j_state_lock);
 321}
 322
 323/*
 324 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 325 *
 326 * Writes a metadata buffer to a given disk block.  The actual IO is not
 327 * performed but a new buffer_head is constructed which labels the data
 328 * to be written with the correct destination disk block.
 329 *
 330 * Any magic-number escaping which needs to be done will cause a
 331 * copy-out here.  If the buffer happens to start with the
 332 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 333 * magic number is only written to the log for descripter blocks.  In
 334 * this case, we copy the data and replace the first word with 0, and we
 335 * return a result code which indicates that this buffer needs to be
 336 * marked as an escaped buffer in the corresponding log descriptor
 337 * block.  The missing word can then be restored when the block is read
 338 * during recovery.
 339 *
 340 * If the source buffer has already been modified by a new transaction
 341 * since we took the last commit snapshot, we use the frozen copy of
 342 * that data for IO. If we end up using the existing buffer_head's data
 343 * for the write, then we have to make sure nobody modifies it while the
 344 * IO is in progress. do_get_write_access() handles this.
 345 *
 346 * The function returns a pointer to the buffer_head to be used for IO.
 347 * 
 348 *
 349 * Return value:
 350 *  <0: Error
 351 * >=0: Finished OK
 352 *
 353 * On success:
 354 * Bit 0 set == escape performed on the data
 355 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 356 */
 357
 358int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 359                                  struct journal_head  *jh_in,
 360                                  struct buffer_head **bh_out,
 361                                  sector_t blocknr)
 362{
 363        int need_copy_out = 0;
 364        int done_copy_out = 0;
 365        int do_escape = 0;
 366        char *mapped_data;
 367        struct buffer_head *new_bh;
 368        struct page *new_page;
 369        unsigned int new_offset;
 370        struct buffer_head *bh_in = jh2bh(jh_in);
 371        journal_t *journal = transaction->t_journal;
 372
 373        /*
 374         * The buffer really shouldn't be locked: only the current committing
 375         * transaction is allowed to write it, so nobody else is allowed
 376         * to do any IO.
 377         *
 378         * akpm: except if we're journalling data, and write() output is
 379         * also part of a shared mapping, and another thread has
 380         * decided to launch a writepage() against this buffer.
 381         */
 382        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 383
 384        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 385
 386        /* keep subsequent assertions sane */
 387        atomic_set(&new_bh->b_count, 1);
 388
 389        jbd_lock_bh_state(bh_in);
 390repeat:
 391        /*
 392         * If a new transaction has already done a buffer copy-out, then
 393         * we use that version of the data for the commit.
 394         */
 395        if (jh_in->b_frozen_data) {
 396                done_copy_out = 1;
 397                new_page = virt_to_page(jh_in->b_frozen_data);
 398                new_offset = offset_in_page(jh_in->b_frozen_data);
 399        } else {
 400                new_page = jh2bh(jh_in)->b_page;
 401                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 402        }
 403
 404        mapped_data = kmap_atomic(new_page);
 405        /*
 406         * Fire data frozen trigger if data already wasn't frozen.  Do this
 407         * before checking for escaping, as the trigger may modify the magic
 408         * offset.  If a copy-out happens afterwards, it will have the correct
 409         * data in the buffer.
 410         */
 411        if (!done_copy_out)
 412                jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
 413                                           jh_in->b_triggers);
 414
 415        /*
 416         * Check for escaping
 417         */
 418        if (*((__be32 *)(mapped_data + new_offset)) ==
 419                                cpu_to_be32(JBD2_MAGIC_NUMBER)) {
 420                need_copy_out = 1;
 421                do_escape = 1;
 422        }
 423        kunmap_atomic(mapped_data);
 424
 425        /*
 426         * Do we need to do a data copy?
 427         */
 428        if (need_copy_out && !done_copy_out) {
 429                char *tmp;
 430
 431                jbd_unlock_bh_state(bh_in);
 432                tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
 433                if (!tmp) {
 434                        brelse(new_bh);
 435                        return -ENOMEM;
 436                }
 437                jbd_lock_bh_state(bh_in);
 438                if (jh_in->b_frozen_data) {
 439                        jbd2_free(tmp, bh_in->b_size);
 440                        goto repeat;
 441                }
 442
 443                jh_in->b_frozen_data = tmp;
 444                mapped_data = kmap_atomic(new_page);
 445                memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
 446                kunmap_atomic(mapped_data);
 447
 448                new_page = virt_to_page(tmp);
 449                new_offset = offset_in_page(tmp);
 450                done_copy_out = 1;
 451
 452                /*
 453                 * This isn't strictly necessary, as we're using frozen
 454                 * data for the escaping, but it keeps consistency with
 455                 * b_frozen_data usage.
 456                 */
 457                jh_in->b_frozen_triggers = jh_in->b_triggers;
 458        }
 459
 460        /*
 461         * Did we need to do an escaping?  Now we've done all the
 462         * copying, we can finally do so.
 463         */
 464        if (do_escape) {
 465                mapped_data = kmap_atomic(new_page);
 466                *((unsigned int *)(mapped_data + new_offset)) = 0;
 467                kunmap_atomic(mapped_data);
 468        }
 469
 470        set_bh_page(new_bh, new_page, new_offset);
 471        new_bh->b_size = bh_in->b_size;
 472        new_bh->b_bdev = journal->j_dev;
 473        new_bh->b_blocknr = blocknr;
 474        new_bh->b_private = bh_in;
 475        set_buffer_mapped(new_bh);
 476        set_buffer_dirty(new_bh);
 477
 478        *bh_out = new_bh;
 479
 480        /*
 481         * The to-be-written buffer needs to get moved to the io queue,
 482         * and the original buffer whose contents we are shadowing or
 483         * copying is moved to the transaction's shadow queue.
 484         */
 485        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 486        spin_lock(&journal->j_list_lock);
 487        __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 488        spin_unlock(&journal->j_list_lock);
 489        set_buffer_shadow(bh_in);
 490        jbd_unlock_bh_state(bh_in);
 491
 492        return do_escape | (done_copy_out << 1);
 493}
 494
 495/*
 496 * Allocation code for the journal file.  Manage the space left in the
 497 * journal, so that we can begin checkpointing when appropriate.
 498 */
 499
 500/*
 501 * Called with j_state_lock locked for writing.
 502 * Returns true if a transaction commit was started.
 503 */
 504int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 505{
 506        /* Return if the txn has already requested to be committed */
 507        if (journal->j_commit_request == target)
 508                return 0;
 509
 510        /*
 511         * The only transaction we can possibly wait upon is the
 512         * currently running transaction (if it exists).  Otherwise,
 513         * the target tid must be an old one.
 514         */
 515        if (journal->j_running_transaction &&
 516            journal->j_running_transaction->t_tid == target) {
 517                /*
 518                 * We want a new commit: OK, mark the request and wakeup the
 519                 * commit thread.  We do _not_ do the commit ourselves.
 520                 */
 521
 522                journal->j_commit_request = target;
 523                jbd_debug(1, "JBD2: requesting commit %d/%d\n",
 524                          journal->j_commit_request,
 525                          journal->j_commit_sequence);
 526                journal->j_running_transaction->t_requested = jiffies;
 527                wake_up(&journal->j_wait_commit);
 528                return 1;
 529        } else if (!tid_geq(journal->j_commit_request, target))
 530                /* This should never happen, but if it does, preserve
 531                   the evidence before kjournald goes into a loop and
 532                   increments j_commit_sequence beyond all recognition. */
 533                WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
 534                          journal->j_commit_request,
 535                          journal->j_commit_sequence,
 536                          target, journal->j_running_transaction ? 
 537                          journal->j_running_transaction->t_tid : 0);
 538        return 0;
 539}
 540
 541int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 542{
 543        int ret;
 544
 545        write_lock(&journal->j_state_lock);
 546        ret = __jbd2_log_start_commit(journal, tid);
 547        write_unlock(&journal->j_state_lock);
 548        return ret;
 549}
 550
 551/*
 552 * Force and wait any uncommitted transactions.  We can only force the running
 553 * transaction if we don't have an active handle, otherwise, we will deadlock.
 554 * Returns: <0 in case of error,
 555 *           0 if nothing to commit,
 556 *           1 if transaction was successfully committed.
 557 */
 558static int __jbd2_journal_force_commit(journal_t *journal)
 559{
 560        transaction_t *transaction = NULL;
 561        tid_t tid;
 562        int need_to_start = 0, ret = 0;
 563
 564        read_lock(&journal->j_state_lock);
 565        if (journal->j_running_transaction && !current->journal_info) {
 566                transaction = journal->j_running_transaction;
 567                if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 568                        need_to_start = 1;
 569        } else if (journal->j_committing_transaction)
 570                transaction = journal->j_committing_transaction;
 571
 572        if (!transaction) {
 573                /* Nothing to commit */
 574                read_unlock(&journal->j_state_lock);
 575                return 0;
 576        }
 577        tid = transaction->t_tid;
 578        read_unlock(&journal->j_state_lock);
 579        if (need_to_start)
 580                jbd2_log_start_commit(journal, tid);
 581        ret = jbd2_log_wait_commit(journal, tid);
 582        if (!ret)
 583                ret = 1;
 584
 585        return ret;
 586}
 587
 588/**
 589 * Force and wait upon a commit if the calling process is not within
 590 * transaction.  This is used for forcing out undo-protected data which contains
 591 * bitmaps, when the fs is running out of space.
 592 *
 593 * @journal: journal to force
 594 * Returns true if progress was made.
 595 */
 596int jbd2_journal_force_commit_nested(journal_t *journal)
 597{
 598        int ret;
 599
 600        ret = __jbd2_journal_force_commit(journal);
 601        return ret > 0;
 602}
 603
 604/**
 605 * int journal_force_commit() - force any uncommitted transactions
 606 * @journal: journal to force
 607 *
 608 * Caller want unconditional commit. We can only force the running transaction
 609 * if we don't have an active handle, otherwise, we will deadlock.
 610 */
 611int jbd2_journal_force_commit(journal_t *journal)
 612{
 613        int ret;
 614
 615        J_ASSERT(!current->journal_info);
 616        ret = __jbd2_journal_force_commit(journal);
 617        if (ret > 0)
 618                ret = 0;
 619        return ret;
 620}
 621
 622/*
 623 * Start a commit of the current running transaction (if any).  Returns true
 624 * if a transaction is going to be committed (or is currently already
 625 * committing), and fills its tid in at *ptid
 626 */
 627int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 628{
 629        int ret = 0;
 630
 631        write_lock(&journal->j_state_lock);
 632        if (journal->j_running_transaction) {
 633                tid_t tid = journal->j_running_transaction->t_tid;
 634
 635                __jbd2_log_start_commit(journal, tid);
 636                /* There's a running transaction and we've just made sure
 637                 * it's commit has been scheduled. */
 638                if (ptid)
 639                        *ptid = tid;
 640                ret = 1;
 641        } else if (journal->j_committing_transaction) {
 642                /*
 643                 * If commit has been started, then we have to wait for
 644                 * completion of that transaction.
 645                 */
 646                if (ptid)
 647                        *ptid = journal->j_committing_transaction->t_tid;
 648                ret = 1;
 649        }
 650        write_unlock(&journal->j_state_lock);
 651        return ret;
 652}
 653
 654/*
 655 * Return 1 if a given transaction has not yet sent barrier request
 656 * connected with a transaction commit. If 0 is returned, transaction
 657 * may or may not have sent the barrier. Used to avoid sending barrier
 658 * twice in common cases.
 659 */
 660int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 661{
 662        int ret = 0;
 663        transaction_t *commit_trans;
 664
 665        if (!(journal->j_flags & JBD2_BARRIER))
 666                return 0;
 667        read_lock(&journal->j_state_lock);
 668        /* Transaction already committed? */
 669        if (tid_geq(journal->j_commit_sequence, tid))
 670                goto out;
 671        commit_trans = journal->j_committing_transaction;
 672        if (!commit_trans || commit_trans->t_tid != tid) {
 673                ret = 1;
 674                goto out;
 675        }
 676        /*
 677         * Transaction is being committed and we already proceeded to
 678         * submitting a flush to fs partition?
 679         */
 680        if (journal->j_fs_dev != journal->j_dev) {
 681                if (!commit_trans->t_need_data_flush ||
 682                    commit_trans->t_state >= T_COMMIT_DFLUSH)
 683                        goto out;
 684        } else {
 685                if (commit_trans->t_state >= T_COMMIT_JFLUSH)
 686                        goto out;
 687        }
 688        ret = 1;
 689out:
 690        read_unlock(&journal->j_state_lock);
 691        return ret;
 692}
 693EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
 694
 695/*
 696 * Wait for a specified commit to complete.
 697 * The caller may not hold the journal lock.
 698 */
 699int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 700{
 701        int err = 0;
 702
 703        read_lock(&journal->j_state_lock);
 704#ifdef CONFIG_PROVE_LOCKING
 705        /*
 706         * Some callers make sure transaction is already committing and in that
 707         * case we cannot block on open handles anymore. So don't warn in that
 708         * case.
 709         */
 710        if (tid_gt(tid, journal->j_commit_sequence) &&
 711            (!journal->j_committing_transaction ||
 712             journal->j_committing_transaction->t_tid != tid)) {
 713                read_unlock(&journal->j_state_lock);
 714                jbd2_might_wait_for_commit(journal);
 715                read_lock(&journal->j_state_lock);
 716        }
 717#endif
 718#ifdef CONFIG_JBD2_DEBUG
 719        if (!tid_geq(journal->j_commit_request, tid)) {
 720                printk(KERN_ERR
 721                       "%s: error: j_commit_request=%d, tid=%d\n",
 722                       __func__, journal->j_commit_request, tid);
 723        }
 724#endif
 725        while (tid_gt(tid, journal->j_commit_sequence)) {
 726                jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
 727                                  tid, journal->j_commit_sequence);
 728                read_unlock(&journal->j_state_lock);
 729                wake_up(&journal->j_wait_commit);
 730                wait_event(journal->j_wait_done_commit,
 731                                !tid_gt(tid, journal->j_commit_sequence));
 732                read_lock(&journal->j_state_lock);
 733        }
 734        read_unlock(&journal->j_state_lock);
 735
 736        if (unlikely(is_journal_aborted(journal)))
 737                err = -EIO;
 738        return err;
 739}
 740
 741/*
 742 * When this function returns the transaction corresponding to tid
 743 * will be completed.  If the transaction has currently running, start
 744 * committing that transaction before waiting for it to complete.  If
 745 * the transaction id is stale, it is by definition already completed,
 746 * so just return SUCCESS.
 747 */
 748int jbd2_complete_transaction(journal_t *journal, tid_t tid)
 749{
 750        int     need_to_wait = 1;
 751
 752        read_lock(&journal->j_state_lock);
 753        if (journal->j_running_transaction &&
 754            journal->j_running_transaction->t_tid == tid) {
 755                if (journal->j_commit_request != tid) {
 756                        /* transaction not yet started, so request it */
 757                        read_unlock(&journal->j_state_lock);
 758                        jbd2_log_start_commit(journal, tid);
 759                        goto wait_commit;
 760                }
 761        } else if (!(journal->j_committing_transaction &&
 762                     journal->j_committing_transaction->t_tid == tid))
 763                need_to_wait = 0;
 764        read_unlock(&journal->j_state_lock);
 765        if (!need_to_wait)
 766                return 0;
 767wait_commit:
 768        return jbd2_log_wait_commit(journal, tid);
 769}
 770EXPORT_SYMBOL(jbd2_complete_transaction);
 771
 772/*
 773 * Log buffer allocation routines:
 774 */
 775
 776int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 777{
 778        unsigned long blocknr;
 779
 780        write_lock(&journal->j_state_lock);
 781        J_ASSERT(journal->j_free > 1);
 782
 783        blocknr = journal->j_head;
 784        journal->j_head++;
 785        journal->j_free--;
 786        if (journal->j_head == journal->j_last)
 787                journal->j_head = journal->j_first;
 788        write_unlock(&journal->j_state_lock);
 789        return jbd2_journal_bmap(journal, blocknr, retp);
 790}
 791
 792/*
 793 * Conversion of logical to physical block numbers for the journal
 794 *
 795 * On external journals the journal blocks are identity-mapped, so
 796 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 797 * ready.
 798 */
 799int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 800                 unsigned long long *retp)
 801{
 802        int err = 0;
 803        unsigned long long ret;
 804
 805        if (journal->j_inode) {
 806                ret = bmap(journal->j_inode, blocknr);
 807                if (ret)
 808                        *retp = ret;
 809                else {
 810                        printk(KERN_ALERT "%s: journal block not found "
 811                                        "at offset %lu on %s\n",
 812                               __func__, blocknr, journal->j_devname);
 813                        err = -EIO;
 814                        __journal_abort_soft(journal, err);
 815                }
 816        } else {
 817                *retp = blocknr; /* +journal->j_blk_offset */
 818        }
 819        return err;
 820}
 821
 822/*
 823 * We play buffer_head aliasing tricks to write data/metadata blocks to
 824 * the journal without copying their contents, but for journal
 825 * descriptor blocks we do need to generate bona fide buffers.
 826 *
 827 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 828 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 829 * But we don't bother doing that, so there will be coherency problems with
 830 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 831 */
 832struct buffer_head *
 833jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
 834{
 835        journal_t *journal = transaction->t_journal;
 836        struct buffer_head *bh;
 837        unsigned long long blocknr;
 838        journal_header_t *header;
 839        int err;
 840
 841        err = jbd2_journal_next_log_block(journal, &blocknr);
 842
 843        if (err)
 844                return NULL;
 845
 846        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 847        if (!bh)
 848                return NULL;
 849        lock_buffer(bh);
 850        memset(bh->b_data, 0, journal->j_blocksize);
 851        header = (journal_header_t *)bh->b_data;
 852        header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
 853        header->h_blocktype = cpu_to_be32(type);
 854        header->h_sequence = cpu_to_be32(transaction->t_tid);
 855        set_buffer_uptodate(bh);
 856        unlock_buffer(bh);
 857        BUFFER_TRACE(bh, "return this buffer");
 858        return bh;
 859}
 860
 861void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
 862{
 863        struct jbd2_journal_block_tail *tail;
 864        __u32 csum;
 865
 866        if (!jbd2_journal_has_csum_v2or3(j))
 867                return;
 868
 869        tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
 870                        sizeof(struct jbd2_journal_block_tail));
 871        tail->t_checksum = 0;
 872        csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 873        tail->t_checksum = cpu_to_be32(csum);
 874}
 875
 876/*
 877 * Return tid of the oldest transaction in the journal and block in the journal
 878 * where the transaction starts.
 879 *
 880 * If the journal is now empty, return which will be the next transaction ID
 881 * we will write and where will that transaction start.
 882 *
 883 * The return value is 0 if journal tail cannot be pushed any further, 1 if
 884 * it can.
 885 */
 886int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
 887                              unsigned long *block)
 888{
 889        transaction_t *transaction;
 890        int ret;
 891
 892        read_lock(&journal->j_state_lock);
 893        spin_lock(&journal->j_list_lock);
 894        transaction = journal->j_checkpoint_transactions;
 895        if (transaction) {
 896                *tid = transaction->t_tid;
 897                *block = transaction->t_log_start;
 898        } else if ((transaction = journal->j_committing_transaction) != NULL) {
 899                *tid = transaction->t_tid;
 900                *block = transaction->t_log_start;
 901        } else if ((transaction = journal->j_running_transaction) != NULL) {
 902                *tid = transaction->t_tid;
 903                *block = journal->j_head;
 904        } else {
 905                *tid = journal->j_transaction_sequence;
 906                *block = journal->j_head;
 907        }
 908        ret = tid_gt(*tid, journal->j_tail_sequence);
 909        spin_unlock(&journal->j_list_lock);
 910        read_unlock(&journal->j_state_lock);
 911
 912        return ret;
 913}
 914
 915/*
 916 * Update information in journal structure and in on disk journal superblock
 917 * about log tail. This function does not check whether information passed in
 918 * really pushes log tail further. It's responsibility of the caller to make
 919 * sure provided log tail information is valid (e.g. by holding
 920 * j_checkpoint_mutex all the time between computing log tail and calling this
 921 * function as is the case with jbd2_cleanup_journal_tail()).
 922 *
 923 * Requires j_checkpoint_mutex
 924 */
 925int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 926{
 927        unsigned long freed;
 928        int ret;
 929
 930        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
 931
 932        /*
 933         * We cannot afford for write to remain in drive's caches since as
 934         * soon as we update j_tail, next transaction can start reusing journal
 935         * space and if we lose sb update during power failure we'd replay
 936         * old transaction with possibly newly overwritten data.
 937         */
 938        ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
 939                                              REQ_SYNC | REQ_FUA);
 940        if (ret)
 941                goto out;
 942
 943        write_lock(&journal->j_state_lock);
 944        freed = block - journal->j_tail;
 945        if (block < journal->j_tail)
 946                freed += journal->j_last - journal->j_first;
 947
 948        trace_jbd2_update_log_tail(journal, tid, block, freed);
 949        jbd_debug(1,
 950                  "Cleaning journal tail from %d to %d (offset %lu), "
 951                  "freeing %lu\n",
 952                  journal->j_tail_sequence, tid, block, freed);
 953
 954        journal->j_free += freed;
 955        journal->j_tail_sequence = tid;
 956        journal->j_tail = block;
 957        write_unlock(&journal->j_state_lock);
 958
 959out:
 960        return ret;
 961}
 962
 963/*
 964 * This is a variaon of __jbd2_update_log_tail which checks for validity of
 965 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
 966 * with other threads updating log tail.
 967 */
 968void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 969{
 970        mutex_lock_io(&journal->j_checkpoint_mutex);
 971        if (tid_gt(tid, journal->j_tail_sequence))
 972                __jbd2_update_log_tail(journal, tid, block);
 973        mutex_unlock(&journal->j_checkpoint_mutex);
 974}
 975
 976struct jbd2_stats_proc_session {
 977        journal_t *journal;
 978        struct transaction_stats_s *stats;
 979        int start;
 980        int max;
 981};
 982
 983static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
 984{
 985        return *pos ? NULL : SEQ_START_TOKEN;
 986}
 987
 988static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
 989{
 990        return NULL;
 991}
 992
 993static int jbd2_seq_info_show(struct seq_file *seq, void *v)
 994{
 995        struct jbd2_stats_proc_session *s = seq->private;
 996
 997        if (v != SEQ_START_TOKEN)
 998                return 0;
 999        seq_printf(seq, "%lu transactions (%lu requested), "
1000                   "each up to %u blocks\n",
1001                   s->stats->ts_tid, s->stats->ts_requested,
1002                   s->journal->j_max_transaction_buffers);
1003        if (s->stats->ts_tid == 0)
1004                return 0;
1005        seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1006            jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1007        seq_printf(seq, "  %ums request delay\n",
1008            (s->stats->ts_requested == 0) ? 0 :
1009            jiffies_to_msecs(s->stats->run.rs_request_delay /
1010                             s->stats->ts_requested));
1011        seq_printf(seq, "  %ums running transaction\n",
1012            jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1013        seq_printf(seq, "  %ums transaction was being locked\n",
1014            jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1015        seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1016            jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1017        seq_printf(seq, "  %ums logging transaction\n",
1018            jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1019        seq_printf(seq, "  %lluus average transaction commit time\n",
1020                   div_u64(s->journal->j_average_commit_time, 1000));
1021        seq_printf(seq, "  %lu handles per transaction\n",
1022            s->stats->run.rs_handle_count / s->stats->ts_tid);
1023        seq_printf(seq, "  %lu blocks per transaction\n",
1024            s->stats->run.rs_blocks / s->stats->ts_tid);
1025        seq_printf(seq, "  %lu logged blocks per transaction\n",
1026            s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1027        return 0;
1028}
1029
1030static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1031{
1032}
1033
1034static const struct seq_operations jbd2_seq_info_ops = {
1035        .start  = jbd2_seq_info_start,
1036        .next   = jbd2_seq_info_next,
1037        .stop   = jbd2_seq_info_stop,
1038        .show   = jbd2_seq_info_show,
1039};
1040
1041static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1042{
1043        journal_t *journal = PDE_DATA(inode);
1044        struct jbd2_stats_proc_session *s;
1045        int rc, size;
1046
1047        s = kmalloc(sizeof(*s), GFP_KERNEL);
1048        if (s == NULL)
1049                return -ENOMEM;
1050        size = sizeof(struct transaction_stats_s);
1051        s->stats = kmalloc(size, GFP_KERNEL);
1052        if (s->stats == NULL) {
1053                kfree(s);
1054                return -ENOMEM;
1055        }
1056        spin_lock(&journal->j_history_lock);
1057        memcpy(s->stats, &journal->j_stats, size);
1058        s->journal = journal;
1059        spin_unlock(&journal->j_history_lock);
1060
1061        rc = seq_open(file, &jbd2_seq_info_ops);
1062        if (rc == 0) {
1063                struct seq_file *m = file->private_data;
1064                m->private = s;
1065        } else {
1066                kfree(s->stats);
1067                kfree(s);
1068        }
1069        return rc;
1070
1071}
1072
1073static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1074{
1075        struct seq_file *seq = file->private_data;
1076        struct jbd2_stats_proc_session *s = seq->private;
1077        kfree(s->stats);
1078        kfree(s);
1079        return seq_release(inode, file);
1080}
1081
1082static const struct file_operations jbd2_seq_info_fops = {
1083        .owner          = THIS_MODULE,
1084        .open           = jbd2_seq_info_open,
1085        .read           = seq_read,
1086        .llseek         = seq_lseek,
1087        .release        = jbd2_seq_info_release,
1088};
1089
1090static struct proc_dir_entry *proc_jbd2_stats;
1091
1092static void jbd2_stats_proc_init(journal_t *journal)
1093{
1094        journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1095        if (journal->j_proc_entry) {
1096                proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1097                                 &jbd2_seq_info_fops, journal);
1098        }
1099}
1100
1101static void jbd2_stats_proc_exit(journal_t *journal)
1102{
1103        remove_proc_entry("info", journal->j_proc_entry);
1104        remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1105}
1106
1107/*
1108 * Management for journal control blocks: functions to create and
1109 * destroy journal_t structures, and to initialise and read existing
1110 * journal blocks from disk.  */
1111
1112/* First: create and setup a journal_t object in memory.  We initialise
1113 * very few fields yet: that has to wait until we have created the
1114 * journal structures from from scratch, or loaded them from disk. */
1115
1116static journal_t *journal_init_common(struct block_device *bdev,
1117                        struct block_device *fs_dev,
1118                        unsigned long long start, int len, int blocksize)
1119{
1120        static struct lock_class_key jbd2_trans_commit_key;
1121        journal_t *journal;
1122        int err;
1123        struct buffer_head *bh;
1124        int n;
1125
1126        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1127        if (!journal)
1128                return NULL;
1129
1130        init_waitqueue_head(&journal->j_wait_transaction_locked);
1131        init_waitqueue_head(&journal->j_wait_done_commit);
1132        init_waitqueue_head(&journal->j_wait_commit);
1133        init_waitqueue_head(&journal->j_wait_updates);
1134        init_waitqueue_head(&journal->j_wait_reserved);
1135        mutex_init(&journal->j_barrier);
1136        mutex_init(&journal->j_checkpoint_mutex);
1137        spin_lock_init(&journal->j_revoke_lock);
1138        spin_lock_init(&journal->j_list_lock);
1139        rwlock_init(&journal->j_state_lock);
1140
1141        journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1142        journal->j_min_batch_time = 0;
1143        journal->j_max_batch_time = 15000; /* 15ms */
1144        atomic_set(&journal->j_reserved_credits, 0);
1145
1146        /* The journal is marked for error until we succeed with recovery! */
1147        journal->j_flags = JBD2_ABORT;
1148
1149        /* Set up a default-sized revoke table for the new mount. */
1150        err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1151        if (err)
1152                goto err_cleanup;
1153
1154        spin_lock_init(&journal->j_history_lock);
1155
1156        lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1157                         &jbd2_trans_commit_key, 0);
1158
1159        /* journal descriptor can store up to n blocks -bzzz */
1160        journal->j_blocksize = blocksize;
1161        journal->j_dev = bdev;
1162        journal->j_fs_dev = fs_dev;
1163        journal->j_blk_offset = start;
1164        journal->j_maxlen = len;
1165        n = journal->j_blocksize / sizeof(journal_block_tag_t);
1166        journal->j_wbufsize = n;
1167        journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1168                                        GFP_KERNEL);
1169        if (!journal->j_wbuf)
1170                goto err_cleanup;
1171
1172        bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1173        if (!bh) {
1174                pr_err("%s: Cannot get buffer for journal superblock\n",
1175                        __func__);
1176                goto err_cleanup;
1177        }
1178        journal->j_sb_buffer = bh;
1179        journal->j_superblock = (journal_superblock_t *)bh->b_data;
1180
1181        return journal;
1182
1183err_cleanup:
1184        kfree(journal->j_wbuf);
1185        jbd2_journal_destroy_revoke(journal);
1186        kfree(journal);
1187        return NULL;
1188}
1189
1190/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1191 *
1192 * Create a journal structure assigned some fixed set of disk blocks to
1193 * the journal.  We don't actually touch those disk blocks yet, but we
1194 * need to set up all of the mapping information to tell the journaling
1195 * system where the journal blocks are.
1196 *
1197 */
1198
1199/**
1200 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1201 *  @bdev: Block device on which to create the journal
1202 *  @fs_dev: Device which hold journalled filesystem for this journal.
1203 *  @start: Block nr Start of journal.
1204 *  @len:  Length of the journal in blocks.
1205 *  @blocksize: blocksize of journalling device
1206 *
1207 *  Returns: a newly created journal_t *
1208 *
1209 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1210 *  range of blocks on an arbitrary block device.
1211 *
1212 */
1213journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1214                        struct block_device *fs_dev,
1215                        unsigned long long start, int len, int blocksize)
1216{
1217        journal_t *journal;
1218
1219        journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1220        if (!journal)
1221                return NULL;
1222
1223        bdevname(journal->j_dev, journal->j_devname);
1224        strreplace(journal->j_devname, '/', '!');
1225        jbd2_stats_proc_init(journal);
1226
1227        return journal;
1228}
1229
1230/**
1231 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1232 *  @inode: An inode to create the journal in
1233 *
1234 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1235 * the journal.  The inode must exist already, must support bmap() and
1236 * must have all data blocks preallocated.
1237 */
1238journal_t *jbd2_journal_init_inode(struct inode *inode)
1239{
1240        journal_t *journal;
1241        char *p;
1242        unsigned long long blocknr;
1243
1244        blocknr = bmap(inode, 0);
1245        if (!blocknr) {
1246                pr_err("%s: Cannot locate journal superblock\n",
1247                        __func__);
1248                return NULL;
1249        }
1250
1251        jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1252                  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1253                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1254
1255        journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1256                        blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1257                        inode->i_sb->s_blocksize);
1258        if (!journal)
1259                return NULL;
1260
1261        journal->j_inode = inode;
1262        bdevname(journal->j_dev, journal->j_devname);
1263        p = strreplace(journal->j_devname, '/', '!');
1264        sprintf(p, "-%lu", journal->j_inode->i_ino);
1265        jbd2_stats_proc_init(journal);
1266
1267        return journal;
1268}
1269
1270/*
1271 * If the journal init or create aborts, we need to mark the journal
1272 * superblock as being NULL to prevent the journal destroy from writing
1273 * back a bogus superblock.
1274 */
1275static void journal_fail_superblock (journal_t *journal)
1276{
1277        struct buffer_head *bh = journal->j_sb_buffer;
1278        brelse(bh);
1279        journal->j_sb_buffer = NULL;
1280}
1281
1282/*
1283 * Given a journal_t structure, initialise the various fields for
1284 * startup of a new journaling session.  We use this both when creating
1285 * a journal, and after recovering an old journal to reset it for
1286 * subsequent use.
1287 */
1288
1289static int journal_reset(journal_t *journal)
1290{
1291        journal_superblock_t *sb = journal->j_superblock;
1292        unsigned long long first, last;
1293
1294        first = be32_to_cpu(sb->s_first);
1295        last = be32_to_cpu(sb->s_maxlen);
1296        if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1297                printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1298                       first, last);
1299                journal_fail_superblock(journal);
1300                return -EINVAL;
1301        }
1302
1303        journal->j_first = first;
1304        journal->j_last = last;
1305
1306        journal->j_head = first;
1307        journal->j_tail = first;
1308        journal->j_free = last - first;
1309
1310        journal->j_tail_sequence = journal->j_transaction_sequence;
1311        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1312        journal->j_commit_request = journal->j_commit_sequence;
1313
1314        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1315
1316        /*
1317         * As a special case, if the on-disk copy is already marked as needing
1318         * no recovery (s_start == 0), then we can safely defer the superblock
1319         * update until the next commit by setting JBD2_FLUSHED.  This avoids
1320         * attempting a write to a potential-readonly device.
1321         */
1322        if (sb->s_start == 0) {
1323                jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1324                        "(start %ld, seq %d, errno %d)\n",
1325                        journal->j_tail, journal->j_tail_sequence,
1326                        journal->j_errno);
1327                journal->j_flags |= JBD2_FLUSHED;
1328        } else {
1329                /* Lock here to make assertions happy... */
1330                mutex_lock_io(&journal->j_checkpoint_mutex);
1331                /*
1332                 * Update log tail information. We use REQ_FUA since new
1333                 * transaction will start reusing journal space and so we
1334                 * must make sure information about current log tail is on
1335                 * disk before that.
1336                 */
1337                jbd2_journal_update_sb_log_tail(journal,
1338                                                journal->j_tail_sequence,
1339                                                journal->j_tail,
1340                                                REQ_SYNC | REQ_FUA);
1341                mutex_unlock(&journal->j_checkpoint_mutex);
1342        }
1343        return jbd2_journal_start_thread(journal);
1344}
1345
1346static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347{
1348        struct buffer_head *bh = journal->j_sb_buffer;
1349        journal_superblock_t *sb = journal->j_superblock;
1350        int ret;
1351
1352        trace_jbd2_write_superblock(journal, write_flags);
1353        if (!(journal->j_flags & JBD2_BARRIER))
1354                write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1355        lock_buffer(bh);
1356        if (buffer_write_io_error(bh)) {
1357                /*
1358                 * Oh, dear.  A previous attempt to write the journal
1359                 * superblock failed.  This could happen because the
1360                 * USB device was yanked out.  Or it could happen to
1361                 * be a transient write error and maybe the block will
1362                 * be remapped.  Nothing we can do but to retry the
1363                 * write and hope for the best.
1364                 */
1365                printk(KERN_ERR "JBD2: previous I/O error detected "
1366                       "for journal superblock update for %s.\n",
1367                       journal->j_devname);
1368                clear_buffer_write_io_error(bh);
1369                set_buffer_uptodate(bh);
1370        }
1371        jbd2_superblock_csum_set(journal, sb);
1372        get_bh(bh);
1373        bh->b_end_io = end_buffer_write_sync;
1374        ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1375        wait_on_buffer(bh);
1376        if (buffer_write_io_error(bh)) {
1377                clear_buffer_write_io_error(bh);
1378                set_buffer_uptodate(bh);
1379                ret = -EIO;
1380        }
1381        if (ret) {
1382                printk(KERN_ERR "JBD2: Error %d detected when updating "
1383                       "journal superblock for %s.\n", ret,
1384                       journal->j_devname);
1385                jbd2_journal_abort(journal, ret);
1386        }
1387
1388        return ret;
1389}
1390
1391/**
1392 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1393 * @journal: The journal to update.
1394 * @tail_tid: TID of the new transaction at the tail of the log
1395 * @tail_block: The first block of the transaction at the tail of the log
1396 * @write_op: With which operation should we write the journal sb
1397 *
1398 * Update a journal's superblock information about log tail and write it to
1399 * disk, waiting for the IO to complete.
1400 */
1401int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1402                                     unsigned long tail_block, int write_op)
1403{
1404        journal_superblock_t *sb = journal->j_superblock;
1405        int ret;
1406
1407        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1408        jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1409                  tail_block, tail_tid);
1410
1411        sb->s_sequence = cpu_to_be32(tail_tid);
1412        sb->s_start    = cpu_to_be32(tail_block);
1413
1414        ret = jbd2_write_superblock(journal, write_op);
1415        if (ret)
1416                goto out;
1417
1418        /* Log is no longer empty */
1419        write_lock(&journal->j_state_lock);
1420        WARN_ON(!sb->s_sequence);
1421        journal->j_flags &= ~JBD2_FLUSHED;
1422        write_unlock(&journal->j_state_lock);
1423
1424out:
1425        return ret;
1426}
1427
1428/**
1429 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1430 * @journal: The journal to update.
1431 * @write_op: With which operation should we write the journal sb
1432 *
1433 * Update a journal's dynamic superblock fields to show that journal is empty.
1434 * Write updated superblock to disk waiting for IO to complete.
1435 */
1436static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1437{
1438        journal_superblock_t *sb = journal->j_superblock;
1439
1440        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1441        read_lock(&journal->j_state_lock);
1442        /* Is it already empty? */
1443        if (sb->s_start == 0) {
1444                read_unlock(&journal->j_state_lock);
1445                return;
1446        }
1447        jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1448                  journal->j_tail_sequence);
1449
1450        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1451        sb->s_start    = cpu_to_be32(0);
1452        read_unlock(&journal->j_state_lock);
1453
1454        jbd2_write_superblock(journal, write_op);
1455
1456        /* Log is no longer empty */
1457        write_lock(&journal->j_state_lock);
1458        journal->j_flags |= JBD2_FLUSHED;
1459        write_unlock(&journal->j_state_lock);
1460}
1461
1462
1463/**
1464 * jbd2_journal_update_sb_errno() - Update error in the journal.
1465 * @journal: The journal to update.
1466 *
1467 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1468 * to complete.
1469 */
1470void jbd2_journal_update_sb_errno(journal_t *journal)
1471{
1472        journal_superblock_t *sb = journal->j_superblock;
1473
1474        read_lock(&journal->j_state_lock);
1475        jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1476                  journal->j_errno);
1477        sb->s_errno    = cpu_to_be32(journal->j_errno);
1478        read_unlock(&journal->j_state_lock);
1479
1480        jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1481}
1482EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1483
1484/*
1485 * Read the superblock for a given journal, performing initial
1486 * validation of the format.
1487 */
1488static int journal_get_superblock(journal_t *journal)
1489{
1490        struct buffer_head *bh;
1491        journal_superblock_t *sb;
1492        int err = -EIO;
1493
1494        bh = journal->j_sb_buffer;
1495
1496        J_ASSERT(bh != NULL);
1497        if (!buffer_uptodate(bh)) {
1498                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1499                wait_on_buffer(bh);
1500                if (!buffer_uptodate(bh)) {
1501                        printk(KERN_ERR
1502                                "JBD2: IO error reading journal superblock\n");
1503                        goto out;
1504                }
1505        }
1506
1507        if (buffer_verified(bh))
1508                return 0;
1509
1510        sb = journal->j_superblock;
1511
1512        err = -EINVAL;
1513
1514        if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1515            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1516                printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1517                goto out;
1518        }
1519
1520        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1521        case JBD2_SUPERBLOCK_V1:
1522                journal->j_format_version = 1;
1523                break;
1524        case JBD2_SUPERBLOCK_V2:
1525                journal->j_format_version = 2;
1526                break;
1527        default:
1528                printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1529                goto out;
1530        }
1531
1532        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1533                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1534        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1535                printk(KERN_WARNING "JBD2: journal file too short\n");
1536                goto out;
1537        }
1538
1539        if (be32_to_cpu(sb->s_first) == 0 ||
1540            be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1541                printk(KERN_WARNING
1542                        "JBD2: Invalid start block of journal: %u\n",
1543                        be32_to_cpu(sb->s_first));
1544                goto out;
1545        }
1546
1547        if (jbd2_has_feature_csum2(journal) &&
1548            jbd2_has_feature_csum3(journal)) {
1549                /* Can't have checksum v2 and v3 at the same time! */
1550                printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1551                       "at the same time!\n");
1552                goto out;
1553        }
1554
1555        if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1556            jbd2_has_feature_checksum(journal)) {
1557                /* Can't have checksum v1 and v2 on at the same time! */
1558                printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1559                       "at the same time!\n");
1560                goto out;
1561        }
1562
1563        if (!jbd2_verify_csum_type(journal, sb)) {
1564                printk(KERN_ERR "JBD2: Unknown checksum type\n");
1565                goto out;
1566        }
1567
1568        /* Load the checksum driver */
1569        if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1570                journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1571                if (IS_ERR(journal->j_chksum_driver)) {
1572                        printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1573                        err = PTR_ERR(journal->j_chksum_driver);
1574                        journal->j_chksum_driver = NULL;
1575                        goto out;
1576                }
1577        }
1578
1579        /* Check superblock checksum */
1580        if (!jbd2_superblock_csum_verify(journal, sb)) {
1581                printk(KERN_ERR "JBD2: journal checksum error\n");
1582                err = -EFSBADCRC;
1583                goto out;
1584        }
1585
1586        /* Precompute checksum seed for all metadata */
1587        if (jbd2_journal_has_csum_v2or3(journal))
1588                journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1589                                                   sizeof(sb->s_uuid));
1590
1591        set_buffer_verified(bh);
1592
1593        return 0;
1594
1595out:
1596        journal_fail_superblock(journal);
1597        return err;
1598}
1599
1600/*
1601 * Load the on-disk journal superblock and read the key fields into the
1602 * journal_t.
1603 */
1604
1605static int load_superblock(journal_t *journal)
1606{
1607        int err;
1608        journal_superblock_t *sb;
1609
1610        err = journal_get_superblock(journal);
1611        if (err)
1612                return err;
1613
1614        sb = journal->j_superblock;
1615
1616        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1617        journal->j_tail = be32_to_cpu(sb->s_start);
1618        journal->j_first = be32_to_cpu(sb->s_first);
1619        journal->j_last = be32_to_cpu(sb->s_maxlen);
1620        journal->j_errno = be32_to_cpu(sb->s_errno);
1621
1622        return 0;
1623}
1624
1625
1626/**
1627 * int jbd2_journal_load() - Read journal from disk.
1628 * @journal: Journal to act on.
1629 *
1630 * Given a journal_t structure which tells us which disk blocks contain
1631 * a journal, read the journal from disk to initialise the in-memory
1632 * structures.
1633 */
1634int jbd2_journal_load(journal_t *journal)
1635{
1636        int err;
1637        journal_superblock_t *sb;
1638
1639        err = load_superblock(journal);
1640        if (err)
1641                return err;
1642
1643        sb = journal->j_superblock;
1644        /* If this is a V2 superblock, then we have to check the
1645         * features flags on it. */
1646
1647        if (journal->j_format_version >= 2) {
1648                if ((sb->s_feature_ro_compat &
1649                     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1650                    (sb->s_feature_incompat &
1651                     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1652                        printk(KERN_WARNING
1653                                "JBD2: Unrecognised features on journal\n");
1654                        return -EINVAL;
1655                }
1656        }
1657
1658        /*
1659         * Create a slab for this blocksize
1660         */
1661        err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1662        if (err)
1663                return err;
1664
1665        /* Let the recovery code check whether it needs to recover any
1666         * data from the journal. */
1667        if (jbd2_journal_recover(journal))
1668                goto recovery_error;
1669
1670        if (journal->j_failed_commit) {
1671                printk(KERN_ERR "JBD2: journal transaction %u on %s "
1672                       "is corrupt.\n", journal->j_failed_commit,
1673                       journal->j_devname);
1674                return -EFSCORRUPTED;
1675        }
1676
1677        /* OK, we've finished with the dynamic journal bits:
1678         * reinitialise the dynamic contents of the superblock in memory
1679         * and reset them on disk. */
1680        if (journal_reset(journal))
1681                goto recovery_error;
1682
1683        journal->j_flags &= ~JBD2_ABORT;
1684        journal->j_flags |= JBD2_LOADED;
1685        return 0;
1686
1687recovery_error:
1688        printk(KERN_WARNING "JBD2: recovery failed\n");
1689        return -EIO;
1690}
1691
1692/**
1693 * void jbd2_journal_destroy() - Release a journal_t structure.
1694 * @journal: Journal to act on.
1695 *
1696 * Release a journal_t structure once it is no longer in use by the
1697 * journaled object.
1698 * Return <0 if we couldn't clean up the journal.
1699 */
1700int jbd2_journal_destroy(journal_t *journal)
1701{
1702        int err = 0;
1703
1704        /* Wait for the commit thread to wake up and die. */
1705        journal_kill_thread(journal);
1706
1707        /* Force a final log commit */
1708        if (journal->j_running_transaction)
1709                jbd2_journal_commit_transaction(journal);
1710
1711        /* Force any old transactions to disk */
1712
1713        /* Totally anal locking here... */
1714        spin_lock(&journal->j_list_lock);
1715        while (journal->j_checkpoint_transactions != NULL) {
1716                spin_unlock(&journal->j_list_lock);
1717                mutex_lock_io(&journal->j_checkpoint_mutex);
1718                err = jbd2_log_do_checkpoint(journal);
1719                mutex_unlock(&journal->j_checkpoint_mutex);
1720                /*
1721                 * If checkpointing failed, just free the buffers to avoid
1722                 * looping forever
1723                 */
1724                if (err) {
1725                        jbd2_journal_destroy_checkpoint(journal);
1726                        spin_lock(&journal->j_list_lock);
1727                        break;
1728                }
1729                spin_lock(&journal->j_list_lock);
1730        }
1731
1732        J_ASSERT(journal->j_running_transaction == NULL);
1733        J_ASSERT(journal->j_committing_transaction == NULL);
1734        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1735        spin_unlock(&journal->j_list_lock);
1736
1737        if (journal->j_sb_buffer) {
1738                if (!is_journal_aborted(journal)) {
1739                        mutex_lock_io(&journal->j_checkpoint_mutex);
1740
1741                        write_lock(&journal->j_state_lock);
1742                        journal->j_tail_sequence =
1743                                ++journal->j_transaction_sequence;
1744                        write_unlock(&journal->j_state_lock);
1745
1746                        jbd2_mark_journal_empty(journal,
1747                                        REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1748                        mutex_unlock(&journal->j_checkpoint_mutex);
1749                } else
1750                        err = -EIO;
1751                brelse(journal->j_sb_buffer);
1752        }
1753
1754        if (journal->j_proc_entry)
1755                jbd2_stats_proc_exit(journal);
1756        iput(journal->j_inode);
1757        if (journal->j_revoke)
1758                jbd2_journal_destroy_revoke(journal);
1759        if (journal->j_chksum_driver)
1760                crypto_free_shash(journal->j_chksum_driver);
1761        kfree(journal->j_wbuf);
1762        kfree(journal);
1763
1764        return err;
1765}
1766
1767
1768/**
1769 *int jbd2_journal_check_used_features () - Check if features specified are used.
1770 * @journal: Journal to check.
1771 * @compat: bitmask of compatible features
1772 * @ro: bitmask of features that force read-only mount
1773 * @incompat: bitmask of incompatible features
1774 *
1775 * Check whether the journal uses all of a given set of
1776 * features.  Return true (non-zero) if it does.
1777 **/
1778
1779int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1780                                 unsigned long ro, unsigned long incompat)
1781{
1782        journal_superblock_t *sb;
1783
1784        if (!compat && !ro && !incompat)
1785                return 1;
1786        /* Load journal superblock if it is not loaded yet. */
1787        if (journal->j_format_version == 0 &&
1788            journal_get_superblock(journal) != 0)
1789                return 0;
1790        if (journal->j_format_version == 1)
1791                return 0;
1792
1793        sb = journal->j_superblock;
1794
1795        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1796            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1797            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1798                return 1;
1799
1800        return 0;
1801}
1802
1803/**
1804 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1805 * @journal: Journal to check.
1806 * @compat: bitmask of compatible features
1807 * @ro: bitmask of features that force read-only mount
1808 * @incompat: bitmask of incompatible features
1809 *
1810 * Check whether the journaling code supports the use of
1811 * all of a given set of features on this journal.  Return true
1812 * (non-zero) if it can. */
1813
1814int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1815                                      unsigned long ro, unsigned long incompat)
1816{
1817        if (!compat && !ro && !incompat)
1818                return 1;
1819
1820        /* We can support any known requested features iff the
1821         * superblock is in version 2.  Otherwise we fail to support any
1822         * extended sb features. */
1823
1824        if (journal->j_format_version != 2)
1825                return 0;
1826
1827        if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1828            (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1829            (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1830                return 1;
1831
1832        return 0;
1833}
1834
1835/**
1836 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1837 * @journal: Journal to act on.
1838 * @compat: bitmask of compatible features
1839 * @ro: bitmask of features that force read-only mount
1840 * @incompat: bitmask of incompatible features
1841 *
1842 * Mark a given journal feature as present on the
1843 * superblock.  Returns true if the requested features could be set.
1844 *
1845 */
1846
1847int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1848                          unsigned long ro, unsigned long incompat)
1849{
1850#define INCOMPAT_FEATURE_ON(f) \
1851                ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1852#define COMPAT_FEATURE_ON(f) \
1853                ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1854        journal_superblock_t *sb;
1855
1856        if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1857                return 1;
1858
1859        if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1860                return 0;
1861
1862        /* If enabling v2 checksums, turn on v3 instead */
1863        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1864                incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1865                incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1866        }
1867
1868        /* Asking for checksumming v3 and v1?  Only give them v3. */
1869        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1870            compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1871                compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1872
1873        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1874                  compat, ro, incompat);
1875
1876        sb = journal->j_superblock;
1877
1878        /* If enabling v3 checksums, update superblock */
1879        if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1880                sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1881                sb->s_feature_compat &=
1882                        ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1883
1884                /* Load the checksum driver */
1885                if (journal->j_chksum_driver == NULL) {
1886                        journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1887                                                                      0, 0);
1888                        if (IS_ERR(journal->j_chksum_driver)) {
1889                                printk(KERN_ERR "JBD2: Cannot load crc32c "
1890                                       "driver.\n");
1891                                journal->j_chksum_driver = NULL;
1892                                return 0;
1893                        }
1894
1895                        /* Precompute checksum seed for all metadata */
1896                        journal->j_csum_seed = jbd2_chksum(journal, ~0,
1897                                                           sb->s_uuid,
1898                                                           sizeof(sb->s_uuid));
1899                }
1900        }
1901
1902        /* If enabling v1 checksums, downgrade superblock */
1903        if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1904                sb->s_feature_incompat &=
1905                        ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1906                                     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1907
1908        sb->s_feature_compat    |= cpu_to_be32(compat);
1909        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1910        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1911
1912        return 1;
1913#undef COMPAT_FEATURE_ON
1914#undef INCOMPAT_FEATURE_ON
1915}
1916
1917/*
1918 * jbd2_journal_clear_features () - Clear a given journal feature in the
1919 *                                  superblock
1920 * @journal: Journal to act on.
1921 * @compat: bitmask of compatible features
1922 * @ro: bitmask of features that force read-only mount
1923 * @incompat: bitmask of incompatible features
1924 *
1925 * Clear a given journal feature as present on the
1926 * superblock.
1927 */
1928void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1929                                unsigned long ro, unsigned long incompat)
1930{
1931        journal_superblock_t *sb;
1932
1933        jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1934                  compat, ro, incompat);
1935
1936        sb = journal->j_superblock;
1937
1938        sb->s_feature_compat    &= ~cpu_to_be32(compat);
1939        sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1940        sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1941}
1942EXPORT_SYMBOL(jbd2_journal_clear_features);
1943
1944/**
1945 * int jbd2_journal_flush () - Flush journal
1946 * @journal: Journal to act on.
1947 *
1948 * Flush all data for a given journal to disk and empty the journal.
1949 * Filesystems can use this when remounting readonly to ensure that
1950 * recovery does not need to happen on remount.
1951 */
1952
1953int jbd2_journal_flush(journal_t *journal)
1954{
1955        int err = 0;
1956        transaction_t *transaction = NULL;
1957
1958        write_lock(&journal->j_state_lock);
1959
1960        /* Force everything buffered to the log... */
1961        if (journal->j_running_transaction) {
1962                transaction = journal->j_running_transaction;
1963                __jbd2_log_start_commit(journal, transaction->t_tid);
1964        } else if (journal->j_committing_transaction)
1965                transaction = journal->j_committing_transaction;
1966
1967        /* Wait for the log commit to complete... */
1968        if (transaction) {
1969                tid_t tid = transaction->t_tid;
1970
1971                write_unlock(&journal->j_state_lock);
1972                jbd2_log_wait_commit(journal, tid);
1973        } else {
1974                write_unlock(&journal->j_state_lock);
1975        }
1976
1977        /* ...and flush everything in the log out to disk. */
1978        spin_lock(&journal->j_list_lock);
1979        while (!err && journal->j_checkpoint_transactions != NULL) {
1980                spin_unlock(&journal->j_list_lock);
1981                mutex_lock_io(&journal->j_checkpoint_mutex);
1982                err = jbd2_log_do_checkpoint(journal);
1983                mutex_unlock(&journal->j_checkpoint_mutex);
1984                spin_lock(&journal->j_list_lock);
1985        }
1986        spin_unlock(&journal->j_list_lock);
1987
1988        if (is_journal_aborted(journal))
1989                return -EIO;
1990
1991        mutex_lock_io(&journal->j_checkpoint_mutex);
1992        if (!err) {
1993                err = jbd2_cleanup_journal_tail(journal);
1994                if (err < 0) {
1995                        mutex_unlock(&journal->j_checkpoint_mutex);
1996                        goto out;
1997                }
1998                err = 0;
1999        }
2000
2001        /* Finally, mark the journal as really needing no recovery.
2002         * This sets s_start==0 in the underlying superblock, which is
2003         * the magic code for a fully-recovered superblock.  Any future
2004         * commits of data to the journal will restore the current
2005         * s_start value. */
2006        jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2007        mutex_unlock(&journal->j_checkpoint_mutex);
2008        write_lock(&journal->j_state_lock);
2009        J_ASSERT(!journal->j_running_transaction);
2010        J_ASSERT(!journal->j_committing_transaction);
2011        J_ASSERT(!journal->j_checkpoint_transactions);
2012        J_ASSERT(journal->j_head == journal->j_tail);
2013        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2014        write_unlock(&journal->j_state_lock);
2015out:
2016        return err;
2017}
2018
2019/**
2020 * int jbd2_journal_wipe() - Wipe journal contents
2021 * @journal: Journal to act on.
2022 * @write: flag (see below)
2023 *
2024 * Wipe out all of the contents of a journal, safely.  This will produce
2025 * a warning if the journal contains any valid recovery information.
2026 * Must be called between journal_init_*() and jbd2_journal_load().
2027 *
2028 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2029 * we merely suppress recovery.
2030 */
2031
2032int jbd2_journal_wipe(journal_t *journal, int write)
2033{
2034        int err = 0;
2035
2036        J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2037
2038        err = load_superblock(journal);
2039        if (err)
2040                return err;
2041
2042        if (!journal->j_tail)
2043                goto no_recovery;
2044
2045        printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2046                write ? "Clearing" : "Ignoring");
2047
2048        err = jbd2_journal_skip_recovery(journal);
2049        if (write) {
2050                /* Lock to make assertions happy... */
2051                mutex_lock(&journal->j_checkpoint_mutex);
2052                jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2053                mutex_unlock(&journal->j_checkpoint_mutex);
2054        }
2055
2056 no_recovery:
2057        return err;
2058}
2059
2060/*
2061 * Journal abort has very specific semantics, which we describe
2062 * for journal abort.
2063 *
2064 * Two internal functions, which provide abort to the jbd layer
2065 * itself are here.
2066 */
2067
2068/*
2069 * Quick version for internal journal use (doesn't lock the journal).
2070 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2071 * and don't attempt to make any other journal updates.
2072 */
2073void __jbd2_journal_abort_hard(journal_t *journal)
2074{
2075        transaction_t *transaction;
2076
2077        if (journal->j_flags & JBD2_ABORT)
2078                return;
2079
2080        printk(KERN_ERR "Aborting journal on device %s.\n",
2081               journal->j_devname);
2082
2083        write_lock(&journal->j_state_lock);
2084        journal->j_flags |= JBD2_ABORT;
2085        transaction = journal->j_running_transaction;
2086        if (transaction)
2087                __jbd2_log_start_commit(journal, transaction->t_tid);
2088        write_unlock(&journal->j_state_lock);
2089}
2090
2091/* Soft abort: record the abort error status in the journal superblock,
2092 * but don't do any other IO. */
2093static void __journal_abort_soft (journal_t *journal, int errno)
2094{
2095        if (journal->j_flags & JBD2_ABORT)
2096                return;
2097
2098        if (!journal->j_errno)
2099                journal->j_errno = errno;
2100
2101        __jbd2_journal_abort_hard(journal);
2102
2103        if (errno) {
2104                jbd2_journal_update_sb_errno(journal);
2105                write_lock(&journal->j_state_lock);
2106                journal->j_flags |= JBD2_REC_ERR;
2107                write_unlock(&journal->j_state_lock);
2108        }
2109}
2110
2111/**
2112 * void jbd2_journal_abort () - Shutdown the journal immediately.
2113 * @journal: the journal to shutdown.
2114 * @errno:   an error number to record in the journal indicating
2115 *           the reason for the shutdown.
2116 *
2117 * Perform a complete, immediate shutdown of the ENTIRE
2118 * journal (not of a single transaction).  This operation cannot be
2119 * undone without closing and reopening the journal.
2120 *
2121 * The jbd2_journal_abort function is intended to support higher level error
2122 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2123 * mode.
2124 *
2125 * Journal abort has very specific semantics.  Any existing dirty,
2126 * unjournaled buffers in the main filesystem will still be written to
2127 * disk by bdflush, but the journaling mechanism will be suspended
2128 * immediately and no further transaction commits will be honoured.
2129 *
2130 * Any dirty, journaled buffers will be written back to disk without
2131 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2132 * filesystem, but we _do_ attempt to leave as much data as possible
2133 * behind for fsck to use for cleanup.
2134 *
2135 * Any attempt to get a new transaction handle on a journal which is in
2136 * ABORT state will just result in an -EROFS error return.  A
2137 * jbd2_journal_stop on an existing handle will return -EIO if we have
2138 * entered abort state during the update.
2139 *
2140 * Recursive transactions are not disturbed by journal abort until the
2141 * final jbd2_journal_stop, which will receive the -EIO error.
2142 *
2143 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2144 * which will be recorded (if possible) in the journal superblock.  This
2145 * allows a client to record failure conditions in the middle of a
2146 * transaction without having to complete the transaction to record the
2147 * failure to disk.  ext3_error, for example, now uses this
2148 * functionality.
2149 *
2150 * Errors which originate from within the journaling layer will NOT
2151 * supply an errno; a null errno implies that absolutely no further
2152 * writes are done to the journal (unless there are any already in
2153 * progress).
2154 *
2155 */
2156
2157void jbd2_journal_abort(journal_t *journal, int errno)
2158{
2159        __journal_abort_soft(journal, errno);
2160}
2161
2162/**
2163 * int jbd2_journal_errno () - returns the journal's error state.
2164 * @journal: journal to examine.
2165 *
2166 * This is the errno number set with jbd2_journal_abort(), the last
2167 * time the journal was mounted - if the journal was stopped
2168 * without calling abort this will be 0.
2169 *
2170 * If the journal has been aborted on this mount time -EROFS will
2171 * be returned.
2172 */
2173int jbd2_journal_errno(journal_t *journal)
2174{
2175        int err;
2176
2177        read_lock(&journal->j_state_lock);
2178        if (journal->j_flags & JBD2_ABORT)
2179                err = -EROFS;
2180        else
2181                err = journal->j_errno;
2182        read_unlock(&journal->j_state_lock);
2183        return err;
2184}
2185
2186/**
2187 * int jbd2_journal_clear_err () - clears the journal's error state
2188 * @journal: journal to act on.
2189 *
2190 * An error must be cleared or acked to take a FS out of readonly
2191 * mode.
2192 */
2193int jbd2_journal_clear_err(journal_t *journal)
2194{
2195        int err = 0;
2196
2197        write_lock(&journal->j_state_lock);
2198        if (journal->j_flags & JBD2_ABORT)
2199                err = -EROFS;
2200        else
2201                journal->j_errno = 0;
2202        write_unlock(&journal->j_state_lock);
2203        return err;
2204}
2205
2206/**
2207 * void jbd2_journal_ack_err() - Ack journal err.
2208 * @journal: journal to act on.
2209 *
2210 * An error must be cleared or acked to take a FS out of readonly
2211 * mode.
2212 */
2213void jbd2_journal_ack_err(journal_t *journal)
2214{
2215        write_lock(&journal->j_state_lock);
2216        if (journal->j_errno)
2217                journal->j_flags |= JBD2_ACK_ERR;
2218        write_unlock(&journal->j_state_lock);
2219}
2220
2221int jbd2_journal_blocks_per_page(struct inode *inode)
2222{
2223        return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2224}
2225
2226/*
2227 * helper functions to deal with 32 or 64bit block numbers.
2228 */
2229size_t journal_tag_bytes(journal_t *journal)
2230{
2231        size_t sz;
2232
2233        if (jbd2_has_feature_csum3(journal))
2234                return sizeof(journal_block_tag3_t);
2235
2236        sz = sizeof(journal_block_tag_t);
2237
2238        if (jbd2_has_feature_csum2(journal))
2239                sz += sizeof(__u16);
2240
2241        if (jbd2_has_feature_64bit(journal))
2242                return sz;
2243        else
2244                return sz - sizeof(__u32);
2245}
2246
2247/*
2248 * JBD memory management
2249 *
2250 * These functions are used to allocate block-sized chunks of memory
2251 * used for making copies of buffer_head data.  Very often it will be
2252 * page-sized chunks of data, but sometimes it will be in
2253 * sub-page-size chunks.  (For example, 16k pages on Power systems
2254 * with a 4k block file system.)  For blocks smaller than a page, we
2255 * use a SLAB allocator.  There are slab caches for each block size,
2256 * which are allocated at mount time, if necessary, and we only free
2257 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2258 * this reason we don't need to a mutex to protect access to
2259 * jbd2_slab[] allocating or releasing memory; only in
2260 * jbd2_journal_create_slab().
2261 */
2262#define JBD2_MAX_SLABS 8
2263static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2264
2265static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2266        "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2267        "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2268};
2269
2270
2271static void jbd2_journal_destroy_slabs(void)
2272{
2273        int i;
2274
2275        for (i = 0; i < JBD2_MAX_SLABS; i++) {
2276                if (jbd2_slab[i])
2277                        kmem_cache_destroy(jbd2_slab[i]);
2278                jbd2_slab[i] = NULL;
2279        }
2280}
2281
2282static int jbd2_journal_create_slab(size_t size)
2283{
2284        static DEFINE_MUTEX(jbd2_slab_create_mutex);
2285        int i = order_base_2(size) - 10;
2286        size_t slab_size;
2287
2288        if (size == PAGE_SIZE)
2289                return 0;
2290
2291        if (i >= JBD2_MAX_SLABS)
2292                return -EINVAL;
2293
2294        if (unlikely(i < 0))
2295                i = 0;
2296        mutex_lock(&jbd2_slab_create_mutex);
2297        if (jbd2_slab[i]) {
2298                mutex_unlock(&jbd2_slab_create_mutex);
2299                return 0;       /* Already created */
2300        }
2301
2302        slab_size = 1 << (i+10);
2303        jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2304                                         slab_size, 0, NULL);
2305        mutex_unlock(&jbd2_slab_create_mutex);
2306        if (!jbd2_slab[i]) {
2307                printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2308                return -ENOMEM;
2309        }
2310        return 0;
2311}
2312
2313static struct kmem_cache *get_slab(size_t size)
2314{
2315        int i = order_base_2(size) - 10;
2316
2317        BUG_ON(i >= JBD2_MAX_SLABS);
2318        if (unlikely(i < 0))
2319                i = 0;
2320        BUG_ON(jbd2_slab[i] == NULL);
2321        return jbd2_slab[i];
2322}
2323
2324void *jbd2_alloc(size_t size, gfp_t flags)
2325{
2326        void *ptr;
2327
2328        BUG_ON(size & (size-1)); /* Must be a power of 2 */
2329
2330        if (size < PAGE_SIZE)
2331                ptr = kmem_cache_alloc(get_slab(size), flags);
2332        else
2333                ptr = (void *)__get_free_pages(flags, get_order(size));
2334
2335        /* Check alignment; SLUB has gotten this wrong in the past,
2336         * and this can lead to user data corruption! */
2337        BUG_ON(((unsigned long) ptr) & (size-1));
2338
2339        return ptr;
2340}
2341
2342void jbd2_free(void *ptr, size_t size)
2343{
2344        if (size < PAGE_SIZE)
2345                kmem_cache_free(get_slab(size), ptr);
2346        else
2347                free_pages((unsigned long)ptr, get_order(size));
2348};
2349
2350/*
2351 * Journal_head storage management
2352 */
2353static struct kmem_cache *jbd2_journal_head_cache;
2354#ifdef CONFIG_JBD2_DEBUG
2355static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2356#endif
2357
2358static int jbd2_journal_init_journal_head_cache(void)
2359{
2360        int retval;
2361
2362        J_ASSERT(jbd2_journal_head_cache == NULL);
2363        jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2364                                sizeof(struct journal_head),
2365                                0,              /* offset */
2366                                SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2367                                NULL);          /* ctor */
2368        retval = 0;
2369        if (!jbd2_journal_head_cache) {
2370                retval = -ENOMEM;
2371                printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2372        }
2373        return retval;
2374}
2375
2376static void jbd2_journal_destroy_journal_head_cache(void)
2377{
2378        if (jbd2_journal_head_cache) {
2379                kmem_cache_destroy(jbd2_journal_head_cache);
2380                jbd2_journal_head_cache = NULL;
2381        }
2382}
2383
2384/*
2385 * journal_head splicing and dicing
2386 */
2387static struct journal_head *journal_alloc_journal_head(void)
2388{
2389        struct journal_head *ret;
2390
2391#ifdef CONFIG_JBD2_DEBUG
2392        atomic_inc(&nr_journal_heads);
2393#endif
2394        ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2395        if (!ret) {
2396                jbd_debug(1, "out of memory for journal_head\n");
2397                pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2398                ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2399                                GFP_NOFS | __GFP_NOFAIL);
2400        }
2401        return ret;
2402}
2403
2404static void journal_free_journal_head(struct journal_head *jh)
2405{
2406#ifdef CONFIG_JBD2_DEBUG
2407        atomic_dec(&nr_journal_heads);
2408        memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2409#endif
2410        kmem_cache_free(jbd2_journal_head_cache, jh);
2411}
2412
2413/*
2414 * A journal_head is attached to a buffer_head whenever JBD has an
2415 * interest in the buffer.
2416 *
2417 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2418 * is set.  This bit is tested in core kernel code where we need to take
2419 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2420 * there.
2421 *
2422 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2423 *
2424 * When a buffer has its BH_JBD bit set it is immune from being released by
2425 * core kernel code, mainly via ->b_count.
2426 *
2427 * A journal_head is detached from its buffer_head when the journal_head's
2428 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2429 * transaction (b_cp_transaction) hold their references to b_jcount.
2430 *
2431 * Various places in the kernel want to attach a journal_head to a buffer_head
2432 * _before_ attaching the journal_head to a transaction.  To protect the
2433 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2434 * journal_head's b_jcount refcount by one.  The caller must call
2435 * jbd2_journal_put_journal_head() to undo this.
2436 *
2437 * So the typical usage would be:
2438 *
2439 *      (Attach a journal_head if needed.  Increments b_jcount)
2440 *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2441 *      ...
2442 *      (Get another reference for transaction)
2443 *      jbd2_journal_grab_journal_head(bh);
2444 *      jh->b_transaction = xxx;
2445 *      (Put original reference)
2446 *      jbd2_journal_put_journal_head(jh);
2447 */
2448
2449/*
2450 * Give a buffer_head a journal_head.
2451 *
2452 * May sleep.
2453 */
2454struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2455{
2456        struct journal_head *jh;
2457        struct journal_head *new_jh = NULL;
2458
2459repeat:
2460        if (!buffer_jbd(bh))
2461                new_jh = journal_alloc_journal_head();
2462
2463        jbd_lock_bh_journal_head(bh);
2464        if (buffer_jbd(bh)) {
2465                jh = bh2jh(bh);
2466        } else {
2467                J_ASSERT_BH(bh,
2468                        (atomic_read(&bh->b_count) > 0) ||
2469                        (bh->b_page && bh->b_page->mapping));
2470
2471                if (!new_jh) {
2472                        jbd_unlock_bh_journal_head(bh);
2473                        goto repeat;
2474                }
2475
2476                jh = new_jh;
2477                new_jh = NULL;          /* We consumed it */
2478                set_buffer_jbd(bh);
2479                bh->b_private = jh;
2480                jh->b_bh = bh;
2481                get_bh(bh);
2482                BUFFER_TRACE(bh, "added journal_head");
2483        }
2484        jh->b_jcount++;
2485        jbd_unlock_bh_journal_head(bh);
2486        if (new_jh)
2487                journal_free_journal_head(new_jh);
2488        return bh->b_private;
2489}
2490
2491/*
2492 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2493 * having a journal_head, return NULL
2494 */
2495struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2496{
2497        struct journal_head *jh = NULL;
2498
2499        jbd_lock_bh_journal_head(bh);
2500        if (buffer_jbd(bh)) {
2501                jh = bh2jh(bh);
2502                jh->b_jcount++;
2503        }
2504        jbd_unlock_bh_journal_head(bh);
2505        return jh;
2506}
2507
2508static void __journal_remove_journal_head(struct buffer_head *bh)
2509{
2510        struct journal_head *jh = bh2jh(bh);
2511
2512        J_ASSERT_JH(jh, jh->b_jcount >= 0);
2513        J_ASSERT_JH(jh, jh->b_transaction == NULL);
2514        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2515        J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2516        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2517        J_ASSERT_BH(bh, buffer_jbd(bh));
2518        J_ASSERT_BH(bh, jh2bh(jh) == bh);
2519        BUFFER_TRACE(bh, "remove journal_head");
2520        if (jh->b_frozen_data) {
2521                printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2522                jbd2_free(jh->b_frozen_data, bh->b_size);
2523        }
2524        if (jh->b_committed_data) {
2525                printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2526                jbd2_free(jh->b_committed_data, bh->b_size);
2527        }
2528        bh->b_private = NULL;
2529        jh->b_bh = NULL;        /* debug, really */
2530        clear_buffer_jbd(bh);
2531        journal_free_journal_head(jh);
2532}
2533
2534/*
2535 * Drop a reference on the passed journal_head.  If it fell to zero then
2536 * release the journal_head from the buffer_head.
2537 */
2538void jbd2_journal_put_journal_head(struct journal_head *jh)
2539{
2540        struct buffer_head *bh = jh2bh(jh);
2541
2542        jbd_lock_bh_journal_head(bh);
2543        J_ASSERT_JH(jh, jh->b_jcount > 0);
2544        --jh->b_jcount;
2545        if (!jh->b_jcount) {
2546                __journal_remove_journal_head(bh);
2547                jbd_unlock_bh_journal_head(bh);
2548                __brelse(bh);
2549        } else
2550                jbd_unlock_bh_journal_head(bh);
2551}
2552
2553/*
2554 * Initialize jbd inode head
2555 */
2556void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2557{
2558        jinode->i_transaction = NULL;
2559        jinode->i_next_transaction = NULL;
2560        jinode->i_vfs_inode = inode;
2561        jinode->i_flags = 0;
2562        INIT_LIST_HEAD(&jinode->i_list);
2563}
2564
2565/*
2566 * Function to be called before we start removing inode from memory (i.e.,
2567 * clear_inode() is a fine place to be called from). It removes inode from
2568 * transaction's lists.
2569 */
2570void jbd2_journal_release_jbd_inode(journal_t *journal,
2571                                    struct jbd2_inode *jinode)
2572{
2573        if (!journal)
2574                return;
2575restart:
2576        spin_lock(&journal->j_list_lock);
2577        /* Is commit writing out inode - we have to wait */
2578        if (jinode->i_flags & JI_COMMIT_RUNNING) {
2579                wait_queue_head_t *wq;
2580                DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2581                wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2582                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2583                spin_unlock(&journal->j_list_lock);
2584                schedule();
2585                finish_wait(wq, &wait.wait);
2586                goto restart;
2587        }
2588
2589        if (jinode->i_transaction) {
2590                list_del(&jinode->i_list);
2591                jinode->i_transaction = NULL;
2592        }
2593        spin_unlock(&journal->j_list_lock);
2594}
2595
2596
2597#ifdef CONFIG_PROC_FS
2598
2599#define JBD2_STATS_PROC_NAME "fs/jbd2"
2600
2601static void __init jbd2_create_jbd_stats_proc_entry(void)
2602{
2603        proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2604}
2605
2606static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2607{
2608        if (proc_jbd2_stats)
2609                remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2610}
2611
2612#else
2613
2614#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2615#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2616
2617#endif
2618
2619struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2620
2621static int __init jbd2_journal_init_handle_cache(void)
2622{
2623        jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2624        if (jbd2_handle_cache == NULL) {
2625                printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2626                return -ENOMEM;
2627        }
2628        jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2629        if (jbd2_inode_cache == NULL) {
2630                printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2631                kmem_cache_destroy(jbd2_handle_cache);
2632                return -ENOMEM;
2633        }
2634        return 0;
2635}
2636
2637static void jbd2_journal_destroy_handle_cache(void)
2638{
2639        if (jbd2_handle_cache)
2640                kmem_cache_destroy(jbd2_handle_cache);
2641        if (jbd2_inode_cache)
2642                kmem_cache_destroy(jbd2_inode_cache);
2643
2644}
2645
2646/*
2647 * Module startup and shutdown
2648 */
2649
2650static int __init journal_init_caches(void)
2651{
2652        int ret;
2653
2654        ret = jbd2_journal_init_revoke_caches();
2655        if (ret == 0)
2656                ret = jbd2_journal_init_journal_head_cache();
2657        if (ret == 0)
2658                ret = jbd2_journal_init_handle_cache();
2659        if (ret == 0)
2660                ret = jbd2_journal_init_transaction_cache();
2661        return ret;
2662}
2663
2664static void jbd2_journal_destroy_caches(void)
2665{
2666        jbd2_journal_destroy_revoke_caches();
2667        jbd2_journal_destroy_journal_head_cache();
2668        jbd2_journal_destroy_handle_cache();
2669        jbd2_journal_destroy_transaction_cache();
2670        jbd2_journal_destroy_slabs();
2671}
2672
2673static int __init journal_init(void)
2674{
2675        int ret;
2676
2677        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2678
2679        ret = journal_init_caches();
2680        if (ret == 0) {
2681                jbd2_create_jbd_stats_proc_entry();
2682        } else {
2683                jbd2_journal_destroy_caches();
2684        }
2685        return ret;
2686}
2687
2688static void __exit journal_exit(void)
2689{
2690#ifdef CONFIG_JBD2_DEBUG
2691        int n = atomic_read(&nr_journal_heads);
2692        if (n)
2693                printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2694#endif
2695        jbd2_remove_jbd_stats_proc_entry();
2696        jbd2_journal_destroy_caches();
2697}
2698
2699MODULE_LICENSE("GPL");
2700module_init(journal_init);
2701module_exit(journal_exit);
2702
2703