linux/fs/pnode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/pnode.c
   3 *
   4 * (C) Copyright IBM Corporation 2005.
   5 *      Released under GPL v2.
   6 *      Author : Ram Pai (linuxram@us.ibm.com)
   7 *
   8 */
   9#include <linux/mnt_namespace.h>
  10#include <linux/mount.h>
  11#include <linux/fs.h>
  12#include <linux/nsproxy.h>
  13#include "internal.h"
  14#include "pnode.h"
  15
  16/* return the next shared peer mount of @p */
  17static inline struct mount *next_peer(struct mount *p)
  18{
  19        return list_entry(p->mnt_share.next, struct mount, mnt_share);
  20}
  21
  22static inline struct mount *first_slave(struct mount *p)
  23{
  24        return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
  25}
  26
  27static inline struct mount *next_slave(struct mount *p)
  28{
  29        return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
  30}
  31
  32static struct mount *get_peer_under_root(struct mount *mnt,
  33                                         struct mnt_namespace *ns,
  34                                         const struct path *root)
  35{
  36        struct mount *m = mnt;
  37
  38        do {
  39                /* Check the namespace first for optimization */
  40                if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
  41                        return m;
  42
  43                m = next_peer(m);
  44        } while (m != mnt);
  45
  46        return NULL;
  47}
  48
  49/*
  50 * Get ID of closest dominating peer group having a representative
  51 * under the given root.
  52 *
  53 * Caller must hold namespace_sem
  54 */
  55int get_dominating_id(struct mount *mnt, const struct path *root)
  56{
  57        struct mount *m;
  58
  59        for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
  60                struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
  61                if (d)
  62                        return d->mnt_group_id;
  63        }
  64
  65        return 0;
  66}
  67
  68static int do_make_slave(struct mount *mnt)
  69{
  70        struct mount *master, *slave_mnt;
  71
  72        if (list_empty(&mnt->mnt_share)) {
  73                if (IS_MNT_SHARED(mnt)) {
  74                        mnt_release_group_id(mnt);
  75                        CLEAR_MNT_SHARED(mnt);
  76                }
  77                master = mnt->mnt_master;
  78                if (!master) {
  79                        struct list_head *p = &mnt->mnt_slave_list;
  80                        while (!list_empty(p)) {
  81                                slave_mnt = list_first_entry(p,
  82                                                struct mount, mnt_slave);
  83                                list_del_init(&slave_mnt->mnt_slave);
  84                                slave_mnt->mnt_master = NULL;
  85                        }
  86                        return 0;
  87                }
  88        } else {
  89                struct mount *m;
  90                /*
  91                 * slave 'mnt' to a peer mount that has the
  92                 * same root dentry. If none is available then
  93                 * slave it to anything that is available.
  94                 */
  95                for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
  96                        if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
  97                                master = m;
  98                                break;
  99                        }
 100                }
 101                list_del_init(&mnt->mnt_share);
 102                mnt->mnt_group_id = 0;
 103                CLEAR_MNT_SHARED(mnt);
 104        }
 105        list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
 106                slave_mnt->mnt_master = master;
 107        list_move(&mnt->mnt_slave, &master->mnt_slave_list);
 108        list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
 109        INIT_LIST_HEAD(&mnt->mnt_slave_list);
 110        mnt->mnt_master = master;
 111        return 0;
 112}
 113
 114/*
 115 * vfsmount lock must be held for write
 116 */
 117void change_mnt_propagation(struct mount *mnt, int type)
 118{
 119        if (type == MS_SHARED) {
 120                set_mnt_shared(mnt);
 121                return;
 122        }
 123        do_make_slave(mnt);
 124        if (type != MS_SLAVE) {
 125                list_del_init(&mnt->mnt_slave);
 126                mnt->mnt_master = NULL;
 127                if (type == MS_UNBINDABLE)
 128                        mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
 129                else
 130                        mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
 131        }
 132}
 133
 134/*
 135 * get the next mount in the propagation tree.
 136 * @m: the mount seen last
 137 * @origin: the original mount from where the tree walk initiated
 138 *
 139 * Note that peer groups form contiguous segments of slave lists.
 140 * We rely on that in get_source() to be able to find out if
 141 * vfsmount found while iterating with propagation_next() is
 142 * a peer of one we'd found earlier.
 143 */
 144static struct mount *propagation_next(struct mount *m,
 145                                         struct mount *origin)
 146{
 147        /* are there any slaves of this mount? */
 148        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 149                return first_slave(m);
 150
 151        while (1) {
 152                struct mount *master = m->mnt_master;
 153
 154                if (master == origin->mnt_master) {
 155                        struct mount *next = next_peer(m);
 156                        return (next == origin) ? NULL : next;
 157                } else if (m->mnt_slave.next != &master->mnt_slave_list)
 158                        return next_slave(m);
 159
 160                /* back at master */
 161                m = master;
 162        }
 163}
 164
 165static struct mount *next_group(struct mount *m, struct mount *origin)
 166{
 167        while (1) {
 168                while (1) {
 169                        struct mount *next;
 170                        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 171                                return first_slave(m);
 172                        next = next_peer(m);
 173                        if (m->mnt_group_id == origin->mnt_group_id) {
 174                                if (next == origin)
 175                                        return NULL;
 176                        } else if (m->mnt_slave.next != &next->mnt_slave)
 177                                break;
 178                        m = next;
 179                }
 180                /* m is the last peer */
 181                while (1) {
 182                        struct mount *master = m->mnt_master;
 183                        if (m->mnt_slave.next != &master->mnt_slave_list)
 184                                return next_slave(m);
 185                        m = next_peer(master);
 186                        if (master->mnt_group_id == origin->mnt_group_id)
 187                                break;
 188                        if (master->mnt_slave.next == &m->mnt_slave)
 189                                break;
 190                        m = master;
 191                }
 192                if (m == origin)
 193                        return NULL;
 194        }
 195}
 196
 197/* all accesses are serialized by namespace_sem */
 198static struct user_namespace *user_ns;
 199static struct mount *last_dest, *first_source, *last_source, *dest_master;
 200static struct mountpoint *mp;
 201static struct hlist_head *list;
 202
 203static inline bool peers(struct mount *m1, struct mount *m2)
 204{
 205        return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
 206}
 207
 208static int propagate_one(struct mount *m)
 209{
 210        struct mount *child;
 211        int type;
 212        /* skip ones added by this propagate_mnt() */
 213        if (IS_MNT_NEW(m))
 214                return 0;
 215        /* skip if mountpoint isn't covered by it */
 216        if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
 217                return 0;
 218        if (peers(m, last_dest)) {
 219                type = CL_MAKE_SHARED;
 220        } else {
 221                struct mount *n, *p;
 222                bool done;
 223                for (n = m; ; n = p) {
 224                        p = n->mnt_master;
 225                        if (p == dest_master || IS_MNT_MARKED(p))
 226                                break;
 227                }
 228                do {
 229                        struct mount *parent = last_source->mnt_parent;
 230                        if (last_source == first_source)
 231                                break;
 232                        done = parent->mnt_master == p;
 233                        if (done && peers(n, parent))
 234                                break;
 235                        last_source = last_source->mnt_master;
 236                } while (!done);
 237
 238                type = CL_SLAVE;
 239                /* beginning of peer group among the slaves? */
 240                if (IS_MNT_SHARED(m))
 241                        type |= CL_MAKE_SHARED;
 242        }
 243                
 244        /* Notice when we are propagating across user namespaces */
 245        if (m->mnt_ns->user_ns != user_ns)
 246                type |= CL_UNPRIVILEGED;
 247        child = copy_tree(last_source, last_source->mnt.mnt_root, type);
 248        if (IS_ERR(child))
 249                return PTR_ERR(child);
 250        child->mnt.mnt_flags &= ~MNT_LOCKED;
 251        mnt_set_mountpoint(m, mp, child);
 252        last_dest = m;
 253        last_source = child;
 254        if (m->mnt_master != dest_master) {
 255                read_seqlock_excl(&mount_lock);
 256                SET_MNT_MARK(m->mnt_master);
 257                read_sequnlock_excl(&mount_lock);
 258        }
 259        hlist_add_head(&child->mnt_hash, list);
 260        return count_mounts(m->mnt_ns, child);
 261}
 262
 263/*
 264 * mount 'source_mnt' under the destination 'dest_mnt' at
 265 * dentry 'dest_dentry'. And propagate that mount to
 266 * all the peer and slave mounts of 'dest_mnt'.
 267 * Link all the new mounts into a propagation tree headed at
 268 * source_mnt. Also link all the new mounts using ->mnt_list
 269 * headed at source_mnt's ->mnt_list
 270 *
 271 * @dest_mnt: destination mount.
 272 * @dest_dentry: destination dentry.
 273 * @source_mnt: source mount.
 274 * @tree_list : list of heads of trees to be attached.
 275 */
 276int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
 277                    struct mount *source_mnt, struct hlist_head *tree_list)
 278{
 279        struct mount *m, *n;
 280        int ret = 0;
 281
 282        /*
 283         * we don't want to bother passing tons of arguments to
 284         * propagate_one(); everything is serialized by namespace_sem,
 285         * so globals will do just fine.
 286         */
 287        user_ns = current->nsproxy->mnt_ns->user_ns;
 288        last_dest = dest_mnt;
 289        first_source = source_mnt;
 290        last_source = source_mnt;
 291        mp = dest_mp;
 292        list = tree_list;
 293        dest_master = dest_mnt->mnt_master;
 294
 295        /* all peers of dest_mnt, except dest_mnt itself */
 296        for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
 297                ret = propagate_one(n);
 298                if (ret)
 299                        goto out;
 300        }
 301
 302        /* all slave groups */
 303        for (m = next_group(dest_mnt, dest_mnt); m;
 304                        m = next_group(m, dest_mnt)) {
 305                /* everything in that slave group */
 306                n = m;
 307                do {
 308                        ret = propagate_one(n);
 309                        if (ret)
 310                                goto out;
 311                        n = next_peer(n);
 312                } while (n != m);
 313        }
 314out:
 315        read_seqlock_excl(&mount_lock);
 316        hlist_for_each_entry(n, tree_list, mnt_hash) {
 317                m = n->mnt_parent;
 318                if (m->mnt_master != dest_mnt->mnt_master)
 319                        CLEAR_MNT_MARK(m->mnt_master);
 320        }
 321        read_sequnlock_excl(&mount_lock);
 322        return ret;
 323}
 324
 325static struct mount *find_topper(struct mount *mnt)
 326{
 327        /* If there is exactly one mount covering mnt completely return it. */
 328        struct mount *child;
 329
 330        if (!list_is_singular(&mnt->mnt_mounts))
 331                return NULL;
 332
 333        child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
 334        if (child->mnt_mountpoint != mnt->mnt.mnt_root)
 335                return NULL;
 336
 337        return child;
 338}
 339
 340/*
 341 * return true if the refcount is greater than count
 342 */
 343static inline int do_refcount_check(struct mount *mnt, int count)
 344{
 345        return mnt_get_count(mnt) > count;
 346}
 347
 348/*
 349 * check if the mount 'mnt' can be unmounted successfully.
 350 * @mnt: the mount to be checked for unmount
 351 * NOTE: unmounting 'mnt' would naturally propagate to all
 352 * other mounts its parent propagates to.
 353 * Check if any of these mounts that **do not have submounts**
 354 * have more references than 'refcnt'. If so return busy.
 355 *
 356 * vfsmount lock must be held for write
 357 */
 358int propagate_mount_busy(struct mount *mnt, int refcnt)
 359{
 360        struct mount *m, *child, *topper;
 361        struct mount *parent = mnt->mnt_parent;
 362
 363        if (mnt == parent)
 364                return do_refcount_check(mnt, refcnt);
 365
 366        /*
 367         * quickly check if the current mount can be unmounted.
 368         * If not, we don't have to go checking for all other
 369         * mounts
 370         */
 371        if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
 372                return 1;
 373
 374        for (m = propagation_next(parent, parent); m;
 375                        m = propagation_next(m, parent)) {
 376                int count = 1;
 377                child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
 378                if (!child)
 379                        continue;
 380
 381                /* Is there exactly one mount on the child that covers
 382                 * it completely whose reference should be ignored?
 383                 */
 384                topper = find_topper(child);
 385                if (topper)
 386                        count += 1;
 387                else if (!list_empty(&child->mnt_mounts))
 388                        continue;
 389
 390                if (do_refcount_check(child, count))
 391                        return 1;
 392        }
 393        return 0;
 394}
 395
 396/*
 397 * Clear MNT_LOCKED when it can be shown to be safe.
 398 *
 399 * mount_lock lock must be held for write
 400 */
 401void propagate_mount_unlock(struct mount *mnt)
 402{
 403        struct mount *parent = mnt->mnt_parent;
 404        struct mount *m, *child;
 405
 406        BUG_ON(parent == mnt);
 407
 408        for (m = propagation_next(parent, parent); m;
 409                        m = propagation_next(m, parent)) {
 410                child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
 411                if (child)
 412                        child->mnt.mnt_flags &= ~MNT_LOCKED;
 413        }
 414}
 415
 416/*
 417 * Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
 418 */
 419static void mark_umount_candidates(struct mount *mnt)
 420{
 421        struct mount *parent = mnt->mnt_parent;
 422        struct mount *m;
 423
 424        BUG_ON(parent == mnt);
 425
 426        for (m = propagation_next(parent, parent); m;
 427                        m = propagation_next(m, parent)) {
 428                struct mount *child = __lookup_mnt(&m->mnt,
 429                                                mnt->mnt_mountpoint);
 430                if (!child || (child->mnt.mnt_flags & MNT_UMOUNT))
 431                        continue;
 432                if (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m)) {
 433                        SET_MNT_MARK(child);
 434                }
 435        }
 436}
 437
 438/*
 439 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
 440 * parent propagates to.
 441 */
 442static void __propagate_umount(struct mount *mnt)
 443{
 444        struct mount *parent = mnt->mnt_parent;
 445        struct mount *m;
 446
 447        BUG_ON(parent == mnt);
 448
 449        for (m = propagation_next(parent, parent); m;
 450                        m = propagation_next(m, parent)) {
 451                struct mount *topper;
 452                struct mount *child = __lookup_mnt(&m->mnt,
 453                                                mnt->mnt_mountpoint);
 454                /*
 455                 * umount the child only if the child has no children
 456                 * and the child is marked safe to unmount.
 457                 */
 458                if (!child || !IS_MNT_MARKED(child))
 459                        continue;
 460                CLEAR_MNT_MARK(child);
 461
 462                /* If there is exactly one mount covering all of child
 463                 * replace child with that mount.
 464                 */
 465                topper = find_topper(child);
 466                if (topper)
 467                        mnt_change_mountpoint(child->mnt_parent, child->mnt_mp,
 468                                              topper);
 469
 470                if (list_empty(&child->mnt_mounts)) {
 471                        list_del_init(&child->mnt_child);
 472                        child->mnt.mnt_flags |= MNT_UMOUNT;
 473                        list_move_tail(&child->mnt_list, &mnt->mnt_list);
 474                }
 475        }
 476}
 477
 478/*
 479 * collect all mounts that receive propagation from the mount in @list,
 480 * and return these additional mounts in the same list.
 481 * @list: the list of mounts to be unmounted.
 482 *
 483 * vfsmount lock must be held for write
 484 */
 485int propagate_umount(struct list_head *list)
 486{
 487        struct mount *mnt;
 488
 489        list_for_each_entry_reverse(mnt, list, mnt_list)
 490                mark_umount_candidates(mnt);
 491
 492        list_for_each_entry(mnt, list, mnt_list)
 493                __propagate_umount(mnt);
 494        return 0;
 495}
 496