linux/fs/proc/base.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <linux/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/sched/autogroup.h>
  89#include <linux/sched/mm.h>
  90#include <linux/sched/coredump.h>
  91#include <linux/sched/debug.h>
  92#include <linux/sched/stat.h>
  93#include <linux/flex_array.h>
  94#include <linux/posix-timers.h>
  95#ifdef CONFIG_HARDWALL
  96#include <asm/hardwall.h>
  97#endif
  98#include <trace/events/oom.h>
  99#include "internal.h"
 100#include "fd.h"
 101
 102/* NOTE:
 103 *      Implementing inode permission operations in /proc is almost
 104 *      certainly an error.  Permission checks need to happen during
 105 *      each system call not at open time.  The reason is that most of
 106 *      what we wish to check for permissions in /proc varies at runtime.
 107 *
 108 *      The classic example of a problem is opening file descriptors
 109 *      in /proc for a task before it execs a suid executable.
 110 */
 111
 112static u8 nlink_tid;
 113static u8 nlink_tgid;
 114
 115struct pid_entry {
 116        const char *name;
 117        unsigned int len;
 118        umode_t mode;
 119        const struct inode_operations *iop;
 120        const struct file_operations *fop;
 121        union proc_op op;
 122};
 123
 124#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 125        .name = (NAME),                                 \
 126        .len  = sizeof(NAME) - 1,                       \
 127        .mode = MODE,                                   \
 128        .iop  = IOP,                                    \
 129        .fop  = FOP,                                    \
 130        .op   = OP,                                     \
 131}
 132
 133#define DIR(NAME, MODE, iops, fops)     \
 134        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 135#define LNK(NAME, get_link)                                     \
 136        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 137                &proc_pid_link_inode_operations, NULL,          \
 138                { .proc_get_link = get_link } )
 139#define REG(NAME, MODE, fops)                           \
 140        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 141#define ONE(NAME, MODE, show)                           \
 142        NOD(NAME, (S_IFREG|(MODE)),                     \
 143                NULL, &proc_single_file_operations,     \
 144                { .proc_show = show } )
 145
 146/*
 147 * Count the number of hardlinks for the pid_entry table, excluding the .
 148 * and .. links.
 149 */
 150static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 151        unsigned int n)
 152{
 153        unsigned int i;
 154        unsigned int count;
 155
 156        count = 2;
 157        for (i = 0; i < n; ++i) {
 158                if (S_ISDIR(entries[i].mode))
 159                        ++count;
 160        }
 161
 162        return count;
 163}
 164
 165static int get_task_root(struct task_struct *task, struct path *root)
 166{
 167        int result = -ENOENT;
 168
 169        task_lock(task);
 170        if (task->fs) {
 171                get_fs_root(task->fs, root);
 172                result = 0;
 173        }
 174        task_unlock(task);
 175        return result;
 176}
 177
 178static int proc_cwd_link(struct dentry *dentry, struct path *path)
 179{
 180        struct task_struct *task = get_proc_task(d_inode(dentry));
 181        int result = -ENOENT;
 182
 183        if (task) {
 184                task_lock(task);
 185                if (task->fs) {
 186                        get_fs_pwd(task->fs, path);
 187                        result = 0;
 188                }
 189                task_unlock(task);
 190                put_task_struct(task);
 191        }
 192        return result;
 193}
 194
 195static int proc_root_link(struct dentry *dentry, struct path *path)
 196{
 197        struct task_struct *task = get_proc_task(d_inode(dentry));
 198        int result = -ENOENT;
 199
 200        if (task) {
 201                result = get_task_root(task, path);
 202                put_task_struct(task);
 203        }
 204        return result;
 205}
 206
 207static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 208                                     size_t _count, loff_t *pos)
 209{
 210        struct task_struct *tsk;
 211        struct mm_struct *mm;
 212        char *page;
 213        unsigned long count = _count;
 214        unsigned long arg_start, arg_end, env_start, env_end;
 215        unsigned long len1, len2, len;
 216        unsigned long p;
 217        char c;
 218        ssize_t rv;
 219
 220        BUG_ON(*pos < 0);
 221
 222        tsk = get_proc_task(file_inode(file));
 223        if (!tsk)
 224                return -ESRCH;
 225        mm = get_task_mm(tsk);
 226        put_task_struct(tsk);
 227        if (!mm)
 228                return 0;
 229        /* Check if process spawned far enough to have cmdline. */
 230        if (!mm->env_end) {
 231                rv = 0;
 232                goto out_mmput;
 233        }
 234
 235        page = (char *)__get_free_page(GFP_TEMPORARY);
 236        if (!page) {
 237                rv = -ENOMEM;
 238                goto out_mmput;
 239        }
 240
 241        down_read(&mm->mmap_sem);
 242        arg_start = mm->arg_start;
 243        arg_end = mm->arg_end;
 244        env_start = mm->env_start;
 245        env_end = mm->env_end;
 246        up_read(&mm->mmap_sem);
 247
 248        BUG_ON(arg_start > arg_end);
 249        BUG_ON(env_start > env_end);
 250
 251        len1 = arg_end - arg_start;
 252        len2 = env_end - env_start;
 253
 254        /* Empty ARGV. */
 255        if (len1 == 0) {
 256                rv = 0;
 257                goto out_free_page;
 258        }
 259        /*
 260         * Inherently racy -- command line shares address space
 261         * with code and data.
 262         */
 263        rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 264        if (rv <= 0)
 265                goto out_free_page;
 266
 267        rv = 0;
 268
 269        if (c == '\0') {
 270                /* Command line (set of strings) occupies whole ARGV. */
 271                if (len1 <= *pos)
 272                        goto out_free_page;
 273
 274                p = arg_start + *pos;
 275                len = len1 - *pos;
 276                while (count > 0 && len > 0) {
 277                        unsigned int _count;
 278                        int nr_read;
 279
 280                        _count = min3(count, len, PAGE_SIZE);
 281                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 282                        if (nr_read < 0)
 283                                rv = nr_read;
 284                        if (nr_read <= 0)
 285                                goto out_free_page;
 286
 287                        if (copy_to_user(buf, page, nr_read)) {
 288                                rv = -EFAULT;
 289                                goto out_free_page;
 290                        }
 291
 292                        p       += nr_read;
 293                        len     -= nr_read;
 294                        buf     += nr_read;
 295                        count   -= nr_read;
 296                        rv      += nr_read;
 297                }
 298        } else {
 299                /*
 300                 * Command line (1 string) occupies ARGV and
 301                 * extends into ENVP.
 302                 */
 303                struct {
 304                        unsigned long p;
 305                        unsigned long len;
 306                } cmdline[2] = {
 307                        { .p = arg_start, .len = len1 },
 308                        { .p = env_start, .len = len2 },
 309                };
 310                loff_t pos1 = *pos;
 311                unsigned int i;
 312
 313                i = 0;
 314                while (i < 2 && pos1 >= cmdline[i].len) {
 315                        pos1 -= cmdline[i].len;
 316                        i++;
 317                }
 318                while (i < 2) {
 319                        p = cmdline[i].p + pos1;
 320                        len = cmdline[i].len - pos1;
 321                        while (count > 0 && len > 0) {
 322                                unsigned int _count, l;
 323                                int nr_read;
 324                                bool final;
 325
 326                                _count = min3(count, len, PAGE_SIZE);
 327                                nr_read = access_remote_vm(mm, p, page, _count, 0);
 328                                if (nr_read < 0)
 329                                        rv = nr_read;
 330                                if (nr_read <= 0)
 331                                        goto out_free_page;
 332
 333                                /*
 334                                 * Command line can be shorter than whole ARGV
 335                                 * even if last "marker" byte says it is not.
 336                                 */
 337                                final = false;
 338                                l = strnlen(page, nr_read);
 339                                if (l < nr_read) {
 340                                        nr_read = l;
 341                                        final = true;
 342                                }
 343
 344                                if (copy_to_user(buf, page, nr_read)) {
 345                                        rv = -EFAULT;
 346                                        goto out_free_page;
 347                                }
 348
 349                                p       += nr_read;
 350                                len     -= nr_read;
 351                                buf     += nr_read;
 352                                count   -= nr_read;
 353                                rv      += nr_read;
 354
 355                                if (final)
 356                                        goto out_free_page;
 357                        }
 358
 359                        /* Only first chunk can be read partially. */
 360                        pos1 = 0;
 361                        i++;
 362                }
 363        }
 364
 365out_free_page:
 366        free_page((unsigned long)page);
 367out_mmput:
 368        mmput(mm);
 369        if (rv > 0)
 370                *pos += rv;
 371        return rv;
 372}
 373
 374static const struct file_operations proc_pid_cmdline_ops = {
 375        .read   = proc_pid_cmdline_read,
 376        .llseek = generic_file_llseek,
 377};
 378
 379#ifdef CONFIG_KALLSYMS
 380/*
 381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 382 * Returns the resolved symbol.  If that fails, simply return the address.
 383 */
 384static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 385                          struct pid *pid, struct task_struct *task)
 386{
 387        unsigned long wchan;
 388        char symname[KSYM_NAME_LEN];
 389
 390        wchan = get_wchan(task);
 391
 392        if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 393                        && !lookup_symbol_name(wchan, symname))
 394                seq_printf(m, "%s", symname);
 395        else
 396                seq_putc(m, '0');
 397
 398        return 0;
 399}
 400#endif /* CONFIG_KALLSYMS */
 401
 402static int lock_trace(struct task_struct *task)
 403{
 404        int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 405        if (err)
 406                return err;
 407        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 408                mutex_unlock(&task->signal->cred_guard_mutex);
 409                return -EPERM;
 410        }
 411        return 0;
 412}
 413
 414static void unlock_trace(struct task_struct *task)
 415{
 416        mutex_unlock(&task->signal->cred_guard_mutex);
 417}
 418
 419#ifdef CONFIG_STACKTRACE
 420
 421#define MAX_STACK_TRACE_DEPTH   64
 422
 423static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 424                          struct pid *pid, struct task_struct *task)
 425{
 426        struct stack_trace trace;
 427        unsigned long *entries;
 428        int err;
 429        int i;
 430
 431        entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 432        if (!entries)
 433                return -ENOMEM;
 434
 435        trace.nr_entries        = 0;
 436        trace.max_entries       = MAX_STACK_TRACE_DEPTH;
 437        trace.entries           = entries;
 438        trace.skip              = 0;
 439
 440        err = lock_trace(task);
 441        if (!err) {
 442                save_stack_trace_tsk(task, &trace);
 443
 444                for (i = 0; i < trace.nr_entries; i++) {
 445                        seq_printf(m, "[<%pK>] %pB\n",
 446                                   (void *)entries[i], (void *)entries[i]);
 447                }
 448                unlock_trace(task);
 449        }
 450        kfree(entries);
 451
 452        return err;
 453}
 454#endif
 455
 456#ifdef CONFIG_SCHED_INFO
 457/*
 458 * Provides /proc/PID/schedstat
 459 */
 460static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 461                              struct pid *pid, struct task_struct *task)
 462{
 463        if (unlikely(!sched_info_on()))
 464                seq_printf(m, "0 0 0\n");
 465        else
 466                seq_printf(m, "%llu %llu %lu\n",
 467                   (unsigned long long)task->se.sum_exec_runtime,
 468                   (unsigned long long)task->sched_info.run_delay,
 469                   task->sched_info.pcount);
 470
 471        return 0;
 472}
 473#endif
 474
 475#ifdef CONFIG_LATENCYTOP
 476static int lstats_show_proc(struct seq_file *m, void *v)
 477{
 478        int i;
 479        struct inode *inode = m->private;
 480        struct task_struct *task = get_proc_task(inode);
 481
 482        if (!task)
 483                return -ESRCH;
 484        seq_puts(m, "Latency Top version : v0.1\n");
 485        for (i = 0; i < 32; i++) {
 486                struct latency_record *lr = &task->latency_record[i];
 487                if (lr->backtrace[0]) {
 488                        int q;
 489                        seq_printf(m, "%i %li %li",
 490                                   lr->count, lr->time, lr->max);
 491                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 492                                unsigned long bt = lr->backtrace[q];
 493                                if (!bt)
 494                                        break;
 495                                if (bt == ULONG_MAX)
 496                                        break;
 497                                seq_printf(m, " %ps", (void *)bt);
 498                        }
 499                        seq_putc(m, '\n');
 500                }
 501
 502        }
 503        put_task_struct(task);
 504        return 0;
 505}
 506
 507static int lstats_open(struct inode *inode, struct file *file)
 508{
 509        return single_open(file, lstats_show_proc, inode);
 510}
 511
 512static ssize_t lstats_write(struct file *file, const char __user *buf,
 513                            size_t count, loff_t *offs)
 514{
 515        struct task_struct *task = get_proc_task(file_inode(file));
 516
 517        if (!task)
 518                return -ESRCH;
 519        clear_all_latency_tracing(task);
 520        put_task_struct(task);
 521
 522        return count;
 523}
 524
 525static const struct file_operations proc_lstats_operations = {
 526        .open           = lstats_open,
 527        .read           = seq_read,
 528        .write          = lstats_write,
 529        .llseek         = seq_lseek,
 530        .release        = single_release,
 531};
 532
 533#endif
 534
 535static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 536                          struct pid *pid, struct task_struct *task)
 537{
 538        unsigned long totalpages = totalram_pages + total_swap_pages;
 539        unsigned long points = 0;
 540
 541        points = oom_badness(task, NULL, NULL, totalpages) *
 542                                        1000 / totalpages;
 543        seq_printf(m, "%lu\n", points);
 544
 545        return 0;
 546}
 547
 548struct limit_names {
 549        const char *name;
 550        const char *unit;
 551};
 552
 553static const struct limit_names lnames[RLIM_NLIMITS] = {
 554        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 555        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 556        [RLIMIT_DATA] = {"Max data size", "bytes"},
 557        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 558        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 559        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 560        [RLIMIT_NPROC] = {"Max processes", "processes"},
 561        [RLIMIT_NOFILE] = {"Max open files", "files"},
 562        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 563        [RLIMIT_AS] = {"Max address space", "bytes"},
 564        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 565        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 566        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 567        [RLIMIT_NICE] = {"Max nice priority", NULL},
 568        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 569        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 570};
 571
 572/* Display limits for a process */
 573static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 574                           struct pid *pid, struct task_struct *task)
 575{
 576        unsigned int i;
 577        unsigned long flags;
 578
 579        struct rlimit rlim[RLIM_NLIMITS];
 580
 581        if (!lock_task_sighand(task, &flags))
 582                return 0;
 583        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 584        unlock_task_sighand(task, &flags);
 585
 586        /*
 587         * print the file header
 588         */
 589       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 590                  "Limit", "Soft Limit", "Hard Limit", "Units");
 591
 592        for (i = 0; i < RLIM_NLIMITS; i++) {
 593                if (rlim[i].rlim_cur == RLIM_INFINITY)
 594                        seq_printf(m, "%-25s %-20s ",
 595                                   lnames[i].name, "unlimited");
 596                else
 597                        seq_printf(m, "%-25s %-20lu ",
 598                                   lnames[i].name, rlim[i].rlim_cur);
 599
 600                if (rlim[i].rlim_max == RLIM_INFINITY)
 601                        seq_printf(m, "%-20s ", "unlimited");
 602                else
 603                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 604
 605                if (lnames[i].unit)
 606                        seq_printf(m, "%-10s\n", lnames[i].unit);
 607                else
 608                        seq_putc(m, '\n');
 609        }
 610
 611        return 0;
 612}
 613
 614#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 615static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 616                            struct pid *pid, struct task_struct *task)
 617{
 618        long nr;
 619        unsigned long args[6], sp, pc;
 620        int res;
 621
 622        res = lock_trace(task);
 623        if (res)
 624                return res;
 625
 626        if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 627                seq_puts(m, "running\n");
 628        else if (nr < 0)
 629                seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 630        else
 631                seq_printf(m,
 632                       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 633                       nr,
 634                       args[0], args[1], args[2], args[3], args[4], args[5],
 635                       sp, pc);
 636        unlock_trace(task);
 637
 638        return 0;
 639}
 640#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 641
 642/************************************************************************/
 643/*                       Here the fs part begins                        */
 644/************************************************************************/
 645
 646/* permission checks */
 647static int proc_fd_access_allowed(struct inode *inode)
 648{
 649        struct task_struct *task;
 650        int allowed = 0;
 651        /* Allow access to a task's file descriptors if it is us or we
 652         * may use ptrace attach to the process and find out that
 653         * information.
 654         */
 655        task = get_proc_task(inode);
 656        if (task) {
 657                allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 658                put_task_struct(task);
 659        }
 660        return allowed;
 661}
 662
 663int proc_setattr(struct dentry *dentry, struct iattr *attr)
 664{
 665        int error;
 666        struct inode *inode = d_inode(dentry);
 667
 668        if (attr->ia_valid & ATTR_MODE)
 669                return -EPERM;
 670
 671        error = setattr_prepare(dentry, attr);
 672        if (error)
 673                return error;
 674
 675        setattr_copy(inode, attr);
 676        mark_inode_dirty(inode);
 677        return 0;
 678}
 679
 680/*
 681 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 682 * or euid/egid (for hide_pid_min=2)?
 683 */
 684static bool has_pid_permissions(struct pid_namespace *pid,
 685                                 struct task_struct *task,
 686                                 int hide_pid_min)
 687{
 688        if (pid->hide_pid < hide_pid_min)
 689                return true;
 690        if (in_group_p(pid->pid_gid))
 691                return true;
 692        return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 693}
 694
 695
 696static int proc_pid_permission(struct inode *inode, int mask)
 697{
 698        struct pid_namespace *pid = inode->i_sb->s_fs_info;
 699        struct task_struct *task;
 700        bool has_perms;
 701
 702        task = get_proc_task(inode);
 703        if (!task)
 704                return -ESRCH;
 705        has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
 706        put_task_struct(task);
 707
 708        if (!has_perms) {
 709                if (pid->hide_pid == HIDEPID_INVISIBLE) {
 710                        /*
 711                         * Let's make getdents(), stat(), and open()
 712                         * consistent with each other.  If a process
 713                         * may not stat() a file, it shouldn't be seen
 714                         * in procfs at all.
 715                         */
 716                        return -ENOENT;
 717                }
 718
 719                return -EPERM;
 720        }
 721        return generic_permission(inode, mask);
 722}
 723
 724
 725
 726static const struct inode_operations proc_def_inode_operations = {
 727        .setattr        = proc_setattr,
 728};
 729
 730static int proc_single_show(struct seq_file *m, void *v)
 731{
 732        struct inode *inode = m->private;
 733        struct pid_namespace *ns;
 734        struct pid *pid;
 735        struct task_struct *task;
 736        int ret;
 737
 738        ns = inode->i_sb->s_fs_info;
 739        pid = proc_pid(inode);
 740        task = get_pid_task(pid, PIDTYPE_PID);
 741        if (!task)
 742                return -ESRCH;
 743
 744        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 745
 746        put_task_struct(task);
 747        return ret;
 748}
 749
 750static int proc_single_open(struct inode *inode, struct file *filp)
 751{
 752        return single_open(filp, proc_single_show, inode);
 753}
 754
 755static const struct file_operations proc_single_file_operations = {
 756        .open           = proc_single_open,
 757        .read           = seq_read,
 758        .llseek         = seq_lseek,
 759        .release        = single_release,
 760};
 761
 762
 763struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 764{
 765        struct task_struct *task = get_proc_task(inode);
 766        struct mm_struct *mm = ERR_PTR(-ESRCH);
 767
 768        if (task) {
 769                mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 770                put_task_struct(task);
 771
 772                if (!IS_ERR_OR_NULL(mm)) {
 773                        /* ensure this mm_struct can't be freed */
 774                        mmgrab(mm);
 775                        /* but do not pin its memory */
 776                        mmput(mm);
 777                }
 778        }
 779
 780        return mm;
 781}
 782
 783static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 784{
 785        struct mm_struct *mm = proc_mem_open(inode, mode);
 786
 787        if (IS_ERR(mm))
 788                return PTR_ERR(mm);
 789
 790        file->private_data = mm;
 791        return 0;
 792}
 793
 794static int mem_open(struct inode *inode, struct file *file)
 795{
 796        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 797
 798        /* OK to pass negative loff_t, we can catch out-of-range */
 799        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 800
 801        return ret;
 802}
 803
 804static ssize_t mem_rw(struct file *file, char __user *buf,
 805                        size_t count, loff_t *ppos, int write)
 806{
 807        struct mm_struct *mm = file->private_data;
 808        unsigned long addr = *ppos;
 809        ssize_t copied;
 810        char *page;
 811        unsigned int flags;
 812
 813        if (!mm)
 814                return 0;
 815
 816        page = (char *)__get_free_page(GFP_TEMPORARY);
 817        if (!page)
 818                return -ENOMEM;
 819
 820        copied = 0;
 821        if (!mmget_not_zero(mm))
 822                goto free;
 823
 824        flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 825
 826        while (count > 0) {
 827                int this_len = min_t(int, count, PAGE_SIZE);
 828
 829                if (write && copy_from_user(page, buf, this_len)) {
 830                        copied = -EFAULT;
 831                        break;
 832                }
 833
 834                this_len = access_remote_vm(mm, addr, page, this_len, flags);
 835                if (!this_len) {
 836                        if (!copied)
 837                                copied = -EIO;
 838                        break;
 839                }
 840
 841                if (!write && copy_to_user(buf, page, this_len)) {
 842                        copied = -EFAULT;
 843                        break;
 844                }
 845
 846                buf += this_len;
 847                addr += this_len;
 848                copied += this_len;
 849                count -= this_len;
 850        }
 851        *ppos = addr;
 852
 853        mmput(mm);
 854free:
 855        free_page((unsigned long) page);
 856        return copied;
 857}
 858
 859static ssize_t mem_read(struct file *file, char __user *buf,
 860                        size_t count, loff_t *ppos)
 861{
 862        return mem_rw(file, buf, count, ppos, 0);
 863}
 864
 865static ssize_t mem_write(struct file *file, const char __user *buf,
 866                         size_t count, loff_t *ppos)
 867{
 868        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 869}
 870
 871loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 872{
 873        switch (orig) {
 874        case 0:
 875                file->f_pos = offset;
 876                break;
 877        case 1:
 878                file->f_pos += offset;
 879                break;
 880        default:
 881                return -EINVAL;
 882        }
 883        force_successful_syscall_return();
 884        return file->f_pos;
 885}
 886
 887static int mem_release(struct inode *inode, struct file *file)
 888{
 889        struct mm_struct *mm = file->private_data;
 890        if (mm)
 891                mmdrop(mm);
 892        return 0;
 893}
 894
 895static const struct file_operations proc_mem_operations = {
 896        .llseek         = mem_lseek,
 897        .read           = mem_read,
 898        .write          = mem_write,
 899        .open           = mem_open,
 900        .release        = mem_release,
 901};
 902
 903static int environ_open(struct inode *inode, struct file *file)
 904{
 905        return __mem_open(inode, file, PTRACE_MODE_READ);
 906}
 907
 908static ssize_t environ_read(struct file *file, char __user *buf,
 909                        size_t count, loff_t *ppos)
 910{
 911        char *page;
 912        unsigned long src = *ppos;
 913        int ret = 0;
 914        struct mm_struct *mm = file->private_data;
 915        unsigned long env_start, env_end;
 916
 917        /* Ensure the process spawned far enough to have an environment. */
 918        if (!mm || !mm->env_end)
 919                return 0;
 920
 921        page = (char *)__get_free_page(GFP_TEMPORARY);
 922        if (!page)
 923                return -ENOMEM;
 924
 925        ret = 0;
 926        if (!mmget_not_zero(mm))
 927                goto free;
 928
 929        down_read(&mm->mmap_sem);
 930        env_start = mm->env_start;
 931        env_end = mm->env_end;
 932        up_read(&mm->mmap_sem);
 933
 934        while (count > 0) {
 935                size_t this_len, max_len;
 936                int retval;
 937
 938                if (src >= (env_end - env_start))
 939                        break;
 940
 941                this_len = env_end - (env_start + src);
 942
 943                max_len = min_t(size_t, PAGE_SIZE, count);
 944                this_len = min(max_len, this_len);
 945
 946                retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 947
 948                if (retval <= 0) {
 949                        ret = retval;
 950                        break;
 951                }
 952
 953                if (copy_to_user(buf, page, retval)) {
 954                        ret = -EFAULT;
 955                        break;
 956                }
 957
 958                ret += retval;
 959                src += retval;
 960                buf += retval;
 961                count -= retval;
 962        }
 963        *ppos = src;
 964        mmput(mm);
 965
 966free:
 967        free_page((unsigned long) page);
 968        return ret;
 969}
 970
 971static const struct file_operations proc_environ_operations = {
 972        .open           = environ_open,
 973        .read           = environ_read,
 974        .llseek         = generic_file_llseek,
 975        .release        = mem_release,
 976};
 977
 978static int auxv_open(struct inode *inode, struct file *file)
 979{
 980        return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
 981}
 982
 983static ssize_t auxv_read(struct file *file, char __user *buf,
 984                        size_t count, loff_t *ppos)
 985{
 986        struct mm_struct *mm = file->private_data;
 987        unsigned int nwords = 0;
 988
 989        if (!mm)
 990                return 0;
 991        do {
 992                nwords += 2;
 993        } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 994        return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
 995                                       nwords * sizeof(mm->saved_auxv[0]));
 996}
 997
 998static const struct file_operations proc_auxv_operations = {
 999        .open           = auxv_open,
1000        .read           = auxv_read,
1001        .llseek         = generic_file_llseek,
1002        .release        = mem_release,
1003};
1004
1005static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1006                            loff_t *ppos)
1007{
1008        struct task_struct *task = get_proc_task(file_inode(file));
1009        char buffer[PROC_NUMBUF];
1010        int oom_adj = OOM_ADJUST_MIN;
1011        size_t len;
1012
1013        if (!task)
1014                return -ESRCH;
1015        if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1016                oom_adj = OOM_ADJUST_MAX;
1017        else
1018                oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1019                          OOM_SCORE_ADJ_MAX;
1020        put_task_struct(task);
1021        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1022        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1023}
1024
1025static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1026{
1027        static DEFINE_MUTEX(oom_adj_mutex);
1028        struct mm_struct *mm = NULL;
1029        struct task_struct *task;
1030        int err = 0;
1031
1032        task = get_proc_task(file_inode(file));
1033        if (!task)
1034                return -ESRCH;
1035
1036        mutex_lock(&oom_adj_mutex);
1037        if (legacy) {
1038                if (oom_adj < task->signal->oom_score_adj &&
1039                                !capable(CAP_SYS_RESOURCE)) {
1040                        err = -EACCES;
1041                        goto err_unlock;
1042                }
1043                /*
1044                 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1045                 * /proc/pid/oom_score_adj instead.
1046                 */
1047                pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1048                          current->comm, task_pid_nr(current), task_pid_nr(task),
1049                          task_pid_nr(task));
1050        } else {
1051                if ((short)oom_adj < task->signal->oom_score_adj_min &&
1052                                !capable(CAP_SYS_RESOURCE)) {
1053                        err = -EACCES;
1054                        goto err_unlock;
1055                }
1056        }
1057
1058        /*
1059         * Make sure we will check other processes sharing the mm if this is
1060         * not vfrok which wants its own oom_score_adj.
1061         * pin the mm so it doesn't go away and get reused after task_unlock
1062         */
1063        if (!task->vfork_done) {
1064                struct task_struct *p = find_lock_task_mm(task);
1065
1066                if (p) {
1067                        if (atomic_read(&p->mm->mm_users) > 1) {
1068                                mm = p->mm;
1069                                mmgrab(mm);
1070                        }
1071                        task_unlock(p);
1072                }
1073        }
1074
1075        task->signal->oom_score_adj = oom_adj;
1076        if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1077                task->signal->oom_score_adj_min = (short)oom_adj;
1078        trace_oom_score_adj_update(task);
1079
1080        if (mm) {
1081                struct task_struct *p;
1082
1083                rcu_read_lock();
1084                for_each_process(p) {
1085                        if (same_thread_group(task, p))
1086                                continue;
1087
1088                        /* do not touch kernel threads or the global init */
1089                        if (p->flags & PF_KTHREAD || is_global_init(p))
1090                                continue;
1091
1092                        task_lock(p);
1093                        if (!p->vfork_done && process_shares_mm(p, mm)) {
1094                                pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1095                                                task_pid_nr(p), p->comm,
1096                                                p->signal->oom_score_adj, oom_adj,
1097                                                task_pid_nr(task), task->comm);
1098                                p->signal->oom_score_adj = oom_adj;
1099                                if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1100                                        p->signal->oom_score_adj_min = (short)oom_adj;
1101                        }
1102                        task_unlock(p);
1103                }
1104                rcu_read_unlock();
1105                mmdrop(mm);
1106        }
1107err_unlock:
1108        mutex_unlock(&oom_adj_mutex);
1109        put_task_struct(task);
1110        return err;
1111}
1112
1113/*
1114 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1115 * kernels.  The effective policy is defined by oom_score_adj, which has a
1116 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1117 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1118 * Processes that become oom disabled via oom_adj will still be oom disabled
1119 * with this implementation.
1120 *
1121 * oom_adj cannot be removed since existing userspace binaries use it.
1122 */
1123static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1124                             size_t count, loff_t *ppos)
1125{
1126        char buffer[PROC_NUMBUF];
1127        int oom_adj;
1128        int err;
1129
1130        memset(buffer, 0, sizeof(buffer));
1131        if (count > sizeof(buffer) - 1)
1132                count = sizeof(buffer) - 1;
1133        if (copy_from_user(buffer, buf, count)) {
1134                err = -EFAULT;
1135                goto out;
1136        }
1137
1138        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1139        if (err)
1140                goto out;
1141        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1142             oom_adj != OOM_DISABLE) {
1143                err = -EINVAL;
1144                goto out;
1145        }
1146
1147        /*
1148         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1149         * value is always attainable.
1150         */
1151        if (oom_adj == OOM_ADJUST_MAX)
1152                oom_adj = OOM_SCORE_ADJ_MAX;
1153        else
1154                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1155
1156        err = __set_oom_adj(file, oom_adj, true);
1157out:
1158        return err < 0 ? err : count;
1159}
1160
1161static const struct file_operations proc_oom_adj_operations = {
1162        .read           = oom_adj_read,
1163        .write          = oom_adj_write,
1164        .llseek         = generic_file_llseek,
1165};
1166
1167static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1168                                        size_t count, loff_t *ppos)
1169{
1170        struct task_struct *task = get_proc_task(file_inode(file));
1171        char buffer[PROC_NUMBUF];
1172        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1173        size_t len;
1174
1175        if (!task)
1176                return -ESRCH;
1177        oom_score_adj = task->signal->oom_score_adj;
1178        put_task_struct(task);
1179        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1180        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1181}
1182
1183static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1184                                        size_t count, loff_t *ppos)
1185{
1186        char buffer[PROC_NUMBUF];
1187        int oom_score_adj;
1188        int err;
1189
1190        memset(buffer, 0, sizeof(buffer));
1191        if (count > sizeof(buffer) - 1)
1192                count = sizeof(buffer) - 1;
1193        if (copy_from_user(buffer, buf, count)) {
1194                err = -EFAULT;
1195                goto out;
1196        }
1197
1198        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1199        if (err)
1200                goto out;
1201        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1202                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1203                err = -EINVAL;
1204                goto out;
1205        }
1206
1207        err = __set_oom_adj(file, oom_score_adj, false);
1208out:
1209        return err < 0 ? err : count;
1210}
1211
1212static const struct file_operations proc_oom_score_adj_operations = {
1213        .read           = oom_score_adj_read,
1214        .write          = oom_score_adj_write,
1215        .llseek         = default_llseek,
1216};
1217
1218#ifdef CONFIG_AUDITSYSCALL
1219#define TMPBUFLEN 11
1220static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1221                                  size_t count, loff_t *ppos)
1222{
1223        struct inode * inode = file_inode(file);
1224        struct task_struct *task = get_proc_task(inode);
1225        ssize_t length;
1226        char tmpbuf[TMPBUFLEN];
1227
1228        if (!task)
1229                return -ESRCH;
1230        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1231                           from_kuid(file->f_cred->user_ns,
1232                                     audit_get_loginuid(task)));
1233        put_task_struct(task);
1234        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1235}
1236
1237static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1238                                   size_t count, loff_t *ppos)
1239{
1240        struct inode * inode = file_inode(file);
1241        uid_t loginuid;
1242        kuid_t kloginuid;
1243        int rv;
1244
1245        rcu_read_lock();
1246        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1247                rcu_read_unlock();
1248                return -EPERM;
1249        }
1250        rcu_read_unlock();
1251
1252        if (*ppos != 0) {
1253                /* No partial writes. */
1254                return -EINVAL;
1255        }
1256
1257        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1258        if (rv < 0)
1259                return rv;
1260
1261        /* is userspace tring to explicitly UNSET the loginuid? */
1262        if (loginuid == AUDIT_UID_UNSET) {
1263                kloginuid = INVALID_UID;
1264        } else {
1265                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1266                if (!uid_valid(kloginuid))
1267                        return -EINVAL;
1268        }
1269
1270        rv = audit_set_loginuid(kloginuid);
1271        if (rv < 0)
1272                return rv;
1273        return count;
1274}
1275
1276static const struct file_operations proc_loginuid_operations = {
1277        .read           = proc_loginuid_read,
1278        .write          = proc_loginuid_write,
1279        .llseek         = generic_file_llseek,
1280};
1281
1282static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1283                                  size_t count, loff_t *ppos)
1284{
1285        struct inode * inode = file_inode(file);
1286        struct task_struct *task = get_proc_task(inode);
1287        ssize_t length;
1288        char tmpbuf[TMPBUFLEN];
1289
1290        if (!task)
1291                return -ESRCH;
1292        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1293                                audit_get_sessionid(task));
1294        put_task_struct(task);
1295        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1296}
1297
1298static const struct file_operations proc_sessionid_operations = {
1299        .read           = proc_sessionid_read,
1300        .llseek         = generic_file_llseek,
1301};
1302#endif
1303
1304#ifdef CONFIG_FAULT_INJECTION
1305static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1306                                      size_t count, loff_t *ppos)
1307{
1308        struct task_struct *task = get_proc_task(file_inode(file));
1309        char buffer[PROC_NUMBUF];
1310        size_t len;
1311        int make_it_fail;
1312
1313        if (!task)
1314                return -ESRCH;
1315        make_it_fail = task->make_it_fail;
1316        put_task_struct(task);
1317
1318        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1319
1320        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1321}
1322
1323static ssize_t proc_fault_inject_write(struct file * file,
1324                        const char __user * buf, size_t count, loff_t *ppos)
1325{
1326        struct task_struct *task;
1327        char buffer[PROC_NUMBUF];
1328        int make_it_fail;
1329        int rv;
1330
1331        if (!capable(CAP_SYS_RESOURCE))
1332                return -EPERM;
1333        memset(buffer, 0, sizeof(buffer));
1334        if (count > sizeof(buffer) - 1)
1335                count = sizeof(buffer) - 1;
1336        if (copy_from_user(buffer, buf, count))
1337                return -EFAULT;
1338        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1339        if (rv < 0)
1340                return rv;
1341        if (make_it_fail < 0 || make_it_fail > 1)
1342                return -EINVAL;
1343
1344        task = get_proc_task(file_inode(file));
1345        if (!task)
1346                return -ESRCH;
1347        task->make_it_fail = make_it_fail;
1348        put_task_struct(task);
1349
1350        return count;
1351}
1352
1353static const struct file_operations proc_fault_inject_operations = {
1354        .read           = proc_fault_inject_read,
1355        .write          = proc_fault_inject_write,
1356        .llseek         = generic_file_llseek,
1357};
1358#endif
1359
1360
1361#ifdef CONFIG_SCHED_DEBUG
1362/*
1363 * Print out various scheduling related per-task fields:
1364 */
1365static int sched_show(struct seq_file *m, void *v)
1366{
1367        struct inode *inode = m->private;
1368        struct task_struct *p;
1369
1370        p = get_proc_task(inode);
1371        if (!p)
1372                return -ESRCH;
1373        proc_sched_show_task(p, m);
1374
1375        put_task_struct(p);
1376
1377        return 0;
1378}
1379
1380static ssize_t
1381sched_write(struct file *file, const char __user *buf,
1382            size_t count, loff_t *offset)
1383{
1384        struct inode *inode = file_inode(file);
1385        struct task_struct *p;
1386
1387        p = get_proc_task(inode);
1388        if (!p)
1389                return -ESRCH;
1390        proc_sched_set_task(p);
1391
1392        put_task_struct(p);
1393
1394        return count;
1395}
1396
1397static int sched_open(struct inode *inode, struct file *filp)
1398{
1399        return single_open(filp, sched_show, inode);
1400}
1401
1402static const struct file_operations proc_pid_sched_operations = {
1403        .open           = sched_open,
1404        .read           = seq_read,
1405        .write          = sched_write,
1406        .llseek         = seq_lseek,
1407        .release        = single_release,
1408};
1409
1410#endif
1411
1412#ifdef CONFIG_SCHED_AUTOGROUP
1413/*
1414 * Print out autogroup related information:
1415 */
1416static int sched_autogroup_show(struct seq_file *m, void *v)
1417{
1418        struct inode *inode = m->private;
1419        struct task_struct *p;
1420
1421        p = get_proc_task(inode);
1422        if (!p)
1423                return -ESRCH;
1424        proc_sched_autogroup_show_task(p, m);
1425
1426        put_task_struct(p);
1427
1428        return 0;
1429}
1430
1431static ssize_t
1432sched_autogroup_write(struct file *file, const char __user *buf,
1433            size_t count, loff_t *offset)
1434{
1435        struct inode *inode = file_inode(file);
1436        struct task_struct *p;
1437        char buffer[PROC_NUMBUF];
1438        int nice;
1439        int err;
1440
1441        memset(buffer, 0, sizeof(buffer));
1442        if (count > sizeof(buffer) - 1)
1443                count = sizeof(buffer) - 1;
1444        if (copy_from_user(buffer, buf, count))
1445                return -EFAULT;
1446
1447        err = kstrtoint(strstrip(buffer), 0, &nice);
1448        if (err < 0)
1449                return err;
1450
1451        p = get_proc_task(inode);
1452        if (!p)
1453                return -ESRCH;
1454
1455        err = proc_sched_autogroup_set_nice(p, nice);
1456        if (err)
1457                count = err;
1458
1459        put_task_struct(p);
1460
1461        return count;
1462}
1463
1464static int sched_autogroup_open(struct inode *inode, struct file *filp)
1465{
1466        int ret;
1467
1468        ret = single_open(filp, sched_autogroup_show, NULL);
1469        if (!ret) {
1470                struct seq_file *m = filp->private_data;
1471
1472                m->private = inode;
1473        }
1474        return ret;
1475}
1476
1477static const struct file_operations proc_pid_sched_autogroup_operations = {
1478        .open           = sched_autogroup_open,
1479        .read           = seq_read,
1480        .write          = sched_autogroup_write,
1481        .llseek         = seq_lseek,
1482        .release        = single_release,
1483};
1484
1485#endif /* CONFIG_SCHED_AUTOGROUP */
1486
1487static ssize_t comm_write(struct file *file, const char __user *buf,
1488                                size_t count, loff_t *offset)
1489{
1490        struct inode *inode = file_inode(file);
1491        struct task_struct *p;
1492        char buffer[TASK_COMM_LEN];
1493        const size_t maxlen = sizeof(buffer) - 1;
1494
1495        memset(buffer, 0, sizeof(buffer));
1496        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1497                return -EFAULT;
1498
1499        p = get_proc_task(inode);
1500        if (!p)
1501                return -ESRCH;
1502
1503        if (same_thread_group(current, p))
1504                set_task_comm(p, buffer);
1505        else
1506                count = -EINVAL;
1507
1508        put_task_struct(p);
1509
1510        return count;
1511}
1512
1513static int comm_show(struct seq_file *m, void *v)
1514{
1515        struct inode *inode = m->private;
1516        struct task_struct *p;
1517
1518        p = get_proc_task(inode);
1519        if (!p)
1520                return -ESRCH;
1521
1522        task_lock(p);
1523        seq_printf(m, "%s\n", p->comm);
1524        task_unlock(p);
1525
1526        put_task_struct(p);
1527
1528        return 0;
1529}
1530
1531static int comm_open(struct inode *inode, struct file *filp)
1532{
1533        return single_open(filp, comm_show, inode);
1534}
1535
1536static const struct file_operations proc_pid_set_comm_operations = {
1537        .open           = comm_open,
1538        .read           = seq_read,
1539        .write          = comm_write,
1540        .llseek         = seq_lseek,
1541        .release        = single_release,
1542};
1543
1544static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1545{
1546        struct task_struct *task;
1547        struct file *exe_file;
1548
1549        task = get_proc_task(d_inode(dentry));
1550        if (!task)
1551                return -ENOENT;
1552        exe_file = get_task_exe_file(task);
1553        put_task_struct(task);
1554        if (exe_file) {
1555                *exe_path = exe_file->f_path;
1556                path_get(&exe_file->f_path);
1557                fput(exe_file);
1558                return 0;
1559        } else
1560                return -ENOENT;
1561}
1562
1563static const char *proc_pid_get_link(struct dentry *dentry,
1564                                     struct inode *inode,
1565                                     struct delayed_call *done)
1566{
1567        struct path path;
1568        int error = -EACCES;
1569
1570        if (!dentry)
1571                return ERR_PTR(-ECHILD);
1572
1573        /* Are we allowed to snoop on the tasks file descriptors? */
1574        if (!proc_fd_access_allowed(inode))
1575                goto out;
1576
1577        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1578        if (error)
1579                goto out;
1580
1581        nd_jump_link(&path);
1582        return NULL;
1583out:
1584        return ERR_PTR(error);
1585}
1586
1587static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1588{
1589        char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1590        char *pathname;
1591        int len;
1592
1593        if (!tmp)
1594                return -ENOMEM;
1595
1596        pathname = d_path(path, tmp, PAGE_SIZE);
1597        len = PTR_ERR(pathname);
1598        if (IS_ERR(pathname))
1599                goto out;
1600        len = tmp + PAGE_SIZE - 1 - pathname;
1601
1602        if (len > buflen)
1603                len = buflen;
1604        if (copy_to_user(buffer, pathname, len))
1605                len = -EFAULT;
1606 out:
1607        free_page((unsigned long)tmp);
1608        return len;
1609}
1610
1611static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1612{
1613        int error = -EACCES;
1614        struct inode *inode = d_inode(dentry);
1615        struct path path;
1616
1617        /* Are we allowed to snoop on the tasks file descriptors? */
1618        if (!proc_fd_access_allowed(inode))
1619                goto out;
1620
1621        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1622        if (error)
1623                goto out;
1624
1625        error = do_proc_readlink(&path, buffer, buflen);
1626        path_put(&path);
1627out:
1628        return error;
1629}
1630
1631const struct inode_operations proc_pid_link_inode_operations = {
1632        .readlink       = proc_pid_readlink,
1633        .get_link       = proc_pid_get_link,
1634        .setattr        = proc_setattr,
1635};
1636
1637
1638/* building an inode */
1639
1640void task_dump_owner(struct task_struct *task, mode_t mode,
1641                     kuid_t *ruid, kgid_t *rgid)
1642{
1643        /* Depending on the state of dumpable compute who should own a
1644         * proc file for a task.
1645         */
1646        const struct cred *cred;
1647        kuid_t uid;
1648        kgid_t gid;
1649
1650        /* Default to the tasks effective ownership */
1651        rcu_read_lock();
1652        cred = __task_cred(task);
1653        uid = cred->euid;
1654        gid = cred->egid;
1655        rcu_read_unlock();
1656
1657        /*
1658         * Before the /proc/pid/status file was created the only way to read
1659         * the effective uid of a /process was to stat /proc/pid.  Reading
1660         * /proc/pid/status is slow enough that procps and other packages
1661         * kept stating /proc/pid.  To keep the rules in /proc simple I have
1662         * made this apply to all per process world readable and executable
1663         * directories.
1664         */
1665        if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1666                struct mm_struct *mm;
1667                task_lock(task);
1668                mm = task->mm;
1669                /* Make non-dumpable tasks owned by some root */
1670                if (mm) {
1671                        if (get_dumpable(mm) != SUID_DUMP_USER) {
1672                                struct user_namespace *user_ns = mm->user_ns;
1673
1674                                uid = make_kuid(user_ns, 0);
1675                                if (!uid_valid(uid))
1676                                        uid = GLOBAL_ROOT_UID;
1677
1678                                gid = make_kgid(user_ns, 0);
1679                                if (!gid_valid(gid))
1680                                        gid = GLOBAL_ROOT_GID;
1681                        }
1682                } else {
1683                        uid = GLOBAL_ROOT_UID;
1684                        gid = GLOBAL_ROOT_GID;
1685                }
1686                task_unlock(task);
1687        }
1688        *ruid = uid;
1689        *rgid = gid;
1690}
1691
1692struct inode *proc_pid_make_inode(struct super_block * sb,
1693                                  struct task_struct *task, umode_t mode)
1694{
1695        struct inode * inode;
1696        struct proc_inode *ei;
1697
1698        /* We need a new inode */
1699
1700        inode = new_inode(sb);
1701        if (!inode)
1702                goto out;
1703
1704        /* Common stuff */
1705        ei = PROC_I(inode);
1706        inode->i_mode = mode;
1707        inode->i_ino = get_next_ino();
1708        inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1709        inode->i_op = &proc_def_inode_operations;
1710
1711        /*
1712         * grab the reference to task.
1713         */
1714        ei->pid = get_task_pid(task, PIDTYPE_PID);
1715        if (!ei->pid)
1716                goto out_unlock;
1717
1718        task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1719        security_task_to_inode(task, inode);
1720
1721out:
1722        return inode;
1723
1724out_unlock:
1725        iput(inode);
1726        return NULL;
1727}
1728
1729int pid_getattr(const struct path *path, struct kstat *stat,
1730                u32 request_mask, unsigned int query_flags)
1731{
1732        struct inode *inode = d_inode(path->dentry);
1733        struct task_struct *task;
1734        struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1735
1736        generic_fillattr(inode, stat);
1737
1738        rcu_read_lock();
1739        stat->uid = GLOBAL_ROOT_UID;
1740        stat->gid = GLOBAL_ROOT_GID;
1741        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1742        if (task) {
1743                if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1744                        rcu_read_unlock();
1745                        /*
1746                         * This doesn't prevent learning whether PID exists,
1747                         * it only makes getattr() consistent with readdir().
1748                         */
1749                        return -ENOENT;
1750                }
1751                task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1752        }
1753        rcu_read_unlock();
1754        return 0;
1755}
1756
1757/* dentry stuff */
1758
1759/*
1760 *      Exceptional case: normally we are not allowed to unhash a busy
1761 * directory. In this case, however, we can do it - no aliasing problems
1762 * due to the way we treat inodes.
1763 *
1764 * Rewrite the inode's ownerships here because the owning task may have
1765 * performed a setuid(), etc.
1766 *
1767 */
1768int pid_revalidate(struct dentry *dentry, unsigned int flags)
1769{
1770        struct inode *inode;
1771        struct task_struct *task;
1772
1773        if (flags & LOOKUP_RCU)
1774                return -ECHILD;
1775
1776        inode = d_inode(dentry);
1777        task = get_proc_task(inode);
1778
1779        if (task) {
1780                task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1781
1782                inode->i_mode &= ~(S_ISUID | S_ISGID);
1783                security_task_to_inode(task, inode);
1784                put_task_struct(task);
1785                return 1;
1786        }
1787        return 0;
1788}
1789
1790static inline bool proc_inode_is_dead(struct inode *inode)
1791{
1792        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1793}
1794
1795int pid_delete_dentry(const struct dentry *dentry)
1796{
1797        /* Is the task we represent dead?
1798         * If so, then don't put the dentry on the lru list,
1799         * kill it immediately.
1800         */
1801        return proc_inode_is_dead(d_inode(dentry));
1802}
1803
1804const struct dentry_operations pid_dentry_operations =
1805{
1806        .d_revalidate   = pid_revalidate,
1807        .d_delete       = pid_delete_dentry,
1808};
1809
1810/* Lookups */
1811
1812/*
1813 * Fill a directory entry.
1814 *
1815 * If possible create the dcache entry and derive our inode number and
1816 * file type from dcache entry.
1817 *
1818 * Since all of the proc inode numbers are dynamically generated, the inode
1819 * numbers do not exist until the inode is cache.  This means creating the
1820 * the dcache entry in readdir is necessary to keep the inode numbers
1821 * reported by readdir in sync with the inode numbers reported
1822 * by stat.
1823 */
1824bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1825        const char *name, int len,
1826        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1827{
1828        struct dentry *child, *dir = file->f_path.dentry;
1829        struct qstr qname = QSTR_INIT(name, len);
1830        struct inode *inode;
1831        unsigned type;
1832        ino_t ino;
1833
1834        child = d_hash_and_lookup(dir, &qname);
1835        if (!child) {
1836                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1837                child = d_alloc_parallel(dir, &qname, &wq);
1838                if (IS_ERR(child))
1839                        goto end_instantiate;
1840                if (d_in_lookup(child)) {
1841                        int err = instantiate(d_inode(dir), child, task, ptr);
1842                        d_lookup_done(child);
1843                        if (err < 0) {
1844                                dput(child);
1845                                goto end_instantiate;
1846                        }
1847                }
1848        }
1849        inode = d_inode(child);
1850        ino = inode->i_ino;
1851        type = inode->i_mode >> 12;
1852        dput(child);
1853        return dir_emit(ctx, name, len, ino, type);
1854
1855end_instantiate:
1856        return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1857}
1858
1859/*
1860 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1861 * which represent vma start and end addresses.
1862 */
1863static int dname_to_vma_addr(struct dentry *dentry,
1864                             unsigned long *start, unsigned long *end)
1865{
1866        if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1867                return -EINVAL;
1868
1869        return 0;
1870}
1871
1872static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1873{
1874        unsigned long vm_start, vm_end;
1875        bool exact_vma_exists = false;
1876        struct mm_struct *mm = NULL;
1877        struct task_struct *task;
1878        struct inode *inode;
1879        int status = 0;
1880
1881        if (flags & LOOKUP_RCU)
1882                return -ECHILD;
1883
1884        inode = d_inode(dentry);
1885        task = get_proc_task(inode);
1886        if (!task)
1887                goto out_notask;
1888
1889        mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1890        if (IS_ERR_OR_NULL(mm))
1891                goto out;
1892
1893        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1894                down_read(&mm->mmap_sem);
1895                exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1896                up_read(&mm->mmap_sem);
1897        }
1898
1899        mmput(mm);
1900
1901        if (exact_vma_exists) {
1902                task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1903
1904                security_task_to_inode(task, inode);
1905                status = 1;
1906        }
1907
1908out:
1909        put_task_struct(task);
1910
1911out_notask:
1912        return status;
1913}
1914
1915static const struct dentry_operations tid_map_files_dentry_operations = {
1916        .d_revalidate   = map_files_d_revalidate,
1917        .d_delete       = pid_delete_dentry,
1918};
1919
1920static int map_files_get_link(struct dentry *dentry, struct path *path)
1921{
1922        unsigned long vm_start, vm_end;
1923        struct vm_area_struct *vma;
1924        struct task_struct *task;
1925        struct mm_struct *mm;
1926        int rc;
1927
1928        rc = -ENOENT;
1929        task = get_proc_task(d_inode(dentry));
1930        if (!task)
1931                goto out;
1932
1933        mm = get_task_mm(task);
1934        put_task_struct(task);
1935        if (!mm)
1936                goto out;
1937
1938        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1939        if (rc)
1940                goto out_mmput;
1941
1942        rc = -ENOENT;
1943        down_read(&mm->mmap_sem);
1944        vma = find_exact_vma(mm, vm_start, vm_end);
1945        if (vma && vma->vm_file) {
1946                *path = vma->vm_file->f_path;
1947                path_get(path);
1948                rc = 0;
1949        }
1950        up_read(&mm->mmap_sem);
1951
1952out_mmput:
1953        mmput(mm);
1954out:
1955        return rc;
1956}
1957
1958struct map_files_info {
1959        fmode_t         mode;
1960        unsigned int    len;
1961        unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1962};
1963
1964/*
1965 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1966 * symlinks may be used to bypass permissions on ancestor directories in the
1967 * path to the file in question.
1968 */
1969static const char *
1970proc_map_files_get_link(struct dentry *dentry,
1971                        struct inode *inode,
1972                        struct delayed_call *done)
1973{
1974        if (!capable(CAP_SYS_ADMIN))
1975                return ERR_PTR(-EPERM);
1976
1977        return proc_pid_get_link(dentry, inode, done);
1978}
1979
1980/*
1981 * Identical to proc_pid_link_inode_operations except for get_link()
1982 */
1983static const struct inode_operations proc_map_files_link_inode_operations = {
1984        .readlink       = proc_pid_readlink,
1985        .get_link       = proc_map_files_get_link,
1986        .setattr        = proc_setattr,
1987};
1988
1989static int
1990proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1991                           struct task_struct *task, const void *ptr)
1992{
1993        fmode_t mode = (fmode_t)(unsigned long)ptr;
1994        struct proc_inode *ei;
1995        struct inode *inode;
1996
1997        inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
1998                                    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
1999                                    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2000        if (!inode)
2001                return -ENOENT;
2002
2003        ei = PROC_I(inode);
2004        ei->op.proc_get_link = map_files_get_link;
2005
2006        inode->i_op = &proc_map_files_link_inode_operations;
2007        inode->i_size = 64;
2008
2009        d_set_d_op(dentry, &tid_map_files_dentry_operations);
2010        d_add(dentry, inode);
2011
2012        return 0;
2013}
2014
2015static struct dentry *proc_map_files_lookup(struct inode *dir,
2016                struct dentry *dentry, unsigned int flags)
2017{
2018        unsigned long vm_start, vm_end;
2019        struct vm_area_struct *vma;
2020        struct task_struct *task;
2021        int result;
2022        struct mm_struct *mm;
2023
2024        result = -ENOENT;
2025        task = get_proc_task(dir);
2026        if (!task)
2027                goto out;
2028
2029        result = -EACCES;
2030        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2031                goto out_put_task;
2032
2033        result = -ENOENT;
2034        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2035                goto out_put_task;
2036
2037        mm = get_task_mm(task);
2038        if (!mm)
2039                goto out_put_task;
2040
2041        down_read(&mm->mmap_sem);
2042        vma = find_exact_vma(mm, vm_start, vm_end);
2043        if (!vma)
2044                goto out_no_vma;
2045
2046        if (vma->vm_file)
2047                result = proc_map_files_instantiate(dir, dentry, task,
2048                                (void *)(unsigned long)vma->vm_file->f_mode);
2049
2050out_no_vma:
2051        up_read(&mm->mmap_sem);
2052        mmput(mm);
2053out_put_task:
2054        put_task_struct(task);
2055out:
2056        return ERR_PTR(result);
2057}
2058
2059static const struct inode_operations proc_map_files_inode_operations = {
2060        .lookup         = proc_map_files_lookup,
2061        .permission     = proc_fd_permission,
2062        .setattr        = proc_setattr,
2063};
2064
2065static int
2066proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2067{
2068        struct vm_area_struct *vma;
2069        struct task_struct *task;
2070        struct mm_struct *mm;
2071        unsigned long nr_files, pos, i;
2072        struct flex_array *fa = NULL;
2073        struct map_files_info info;
2074        struct map_files_info *p;
2075        int ret;
2076
2077        ret = -ENOENT;
2078        task = get_proc_task(file_inode(file));
2079        if (!task)
2080                goto out;
2081
2082        ret = -EACCES;
2083        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2084                goto out_put_task;
2085
2086        ret = 0;
2087        if (!dir_emit_dots(file, ctx))
2088                goto out_put_task;
2089
2090        mm = get_task_mm(task);
2091        if (!mm)
2092                goto out_put_task;
2093        down_read(&mm->mmap_sem);
2094
2095        nr_files = 0;
2096
2097        /*
2098         * We need two passes here:
2099         *
2100         *  1) Collect vmas of mapped files with mmap_sem taken
2101         *  2) Release mmap_sem and instantiate entries
2102         *
2103         * otherwise we get lockdep complained, since filldir()
2104         * routine might require mmap_sem taken in might_fault().
2105         */
2106
2107        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2108                if (vma->vm_file && ++pos > ctx->pos)
2109                        nr_files++;
2110        }
2111
2112        if (nr_files) {
2113                fa = flex_array_alloc(sizeof(info), nr_files,
2114                                        GFP_KERNEL);
2115                if (!fa || flex_array_prealloc(fa, 0, nr_files,
2116                                                GFP_KERNEL)) {
2117                        ret = -ENOMEM;
2118                        if (fa)
2119                                flex_array_free(fa);
2120                        up_read(&mm->mmap_sem);
2121                        mmput(mm);
2122                        goto out_put_task;
2123                }
2124                for (i = 0, vma = mm->mmap, pos = 2; vma;
2125                                vma = vma->vm_next) {
2126                        if (!vma->vm_file)
2127                                continue;
2128                        if (++pos <= ctx->pos)
2129                                continue;
2130
2131                        info.mode = vma->vm_file->f_mode;
2132                        info.len = snprintf(info.name,
2133                                        sizeof(info.name), "%lx-%lx",
2134                                        vma->vm_start, vma->vm_end);
2135                        if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2136                                BUG();
2137                }
2138        }
2139        up_read(&mm->mmap_sem);
2140
2141        for (i = 0; i < nr_files; i++) {
2142                p = flex_array_get(fa, i);
2143                if (!proc_fill_cache(file, ctx,
2144                                      p->name, p->len,
2145                                      proc_map_files_instantiate,
2146                                      task,
2147                                      (void *)(unsigned long)p->mode))
2148                        break;
2149                ctx->pos++;
2150        }
2151        if (fa)
2152                flex_array_free(fa);
2153        mmput(mm);
2154
2155out_put_task:
2156        put_task_struct(task);
2157out:
2158        return ret;
2159}
2160
2161static const struct file_operations proc_map_files_operations = {
2162        .read           = generic_read_dir,
2163        .iterate_shared = proc_map_files_readdir,
2164        .llseek         = generic_file_llseek,
2165};
2166
2167#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2168struct timers_private {
2169        struct pid *pid;
2170        struct task_struct *task;
2171        struct sighand_struct *sighand;
2172        struct pid_namespace *ns;
2173        unsigned long flags;
2174};
2175
2176static void *timers_start(struct seq_file *m, loff_t *pos)
2177{
2178        struct timers_private *tp = m->private;
2179
2180        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2181        if (!tp->task)
2182                return ERR_PTR(-ESRCH);
2183
2184        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2185        if (!tp->sighand)
2186                return ERR_PTR(-ESRCH);
2187
2188        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2189}
2190
2191static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2192{
2193        struct timers_private *tp = m->private;
2194        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2195}
2196
2197static void timers_stop(struct seq_file *m, void *v)
2198{
2199        struct timers_private *tp = m->private;
2200
2201        if (tp->sighand) {
2202                unlock_task_sighand(tp->task, &tp->flags);
2203                tp->sighand = NULL;
2204        }
2205
2206        if (tp->task) {
2207                put_task_struct(tp->task);
2208                tp->task = NULL;
2209        }
2210}
2211
2212static int show_timer(struct seq_file *m, void *v)
2213{
2214        struct k_itimer *timer;
2215        struct timers_private *tp = m->private;
2216        int notify;
2217        static const char * const nstr[] = {
2218                [SIGEV_SIGNAL] = "signal",
2219                [SIGEV_NONE] = "none",
2220                [SIGEV_THREAD] = "thread",
2221        };
2222
2223        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2224        notify = timer->it_sigev_notify;
2225
2226        seq_printf(m, "ID: %d\n", timer->it_id);
2227        seq_printf(m, "signal: %d/%p\n",
2228                   timer->sigq->info.si_signo,
2229                   timer->sigq->info.si_value.sival_ptr);
2230        seq_printf(m, "notify: %s/%s.%d\n",
2231                   nstr[notify & ~SIGEV_THREAD_ID],
2232                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2233                   pid_nr_ns(timer->it_pid, tp->ns));
2234        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2235
2236        return 0;
2237}
2238
2239static const struct seq_operations proc_timers_seq_ops = {
2240        .start  = timers_start,
2241        .next   = timers_next,
2242        .stop   = timers_stop,
2243        .show   = show_timer,
2244};
2245
2246static int proc_timers_open(struct inode *inode, struct file *file)
2247{
2248        struct timers_private *tp;
2249
2250        tp = __seq_open_private(file, &proc_timers_seq_ops,
2251                        sizeof(struct timers_private));
2252        if (!tp)
2253                return -ENOMEM;
2254
2255        tp->pid = proc_pid(inode);
2256        tp->ns = inode->i_sb->s_fs_info;
2257        return 0;
2258}
2259
2260static const struct file_operations proc_timers_operations = {
2261        .open           = proc_timers_open,
2262        .read           = seq_read,
2263        .llseek         = seq_lseek,
2264        .release        = seq_release_private,
2265};
2266#endif
2267
2268static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2269                                        size_t count, loff_t *offset)
2270{
2271        struct inode *inode = file_inode(file);
2272        struct task_struct *p;
2273        u64 slack_ns;
2274        int err;
2275
2276        err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2277        if (err < 0)
2278                return err;
2279
2280        p = get_proc_task(inode);
2281        if (!p)
2282                return -ESRCH;
2283
2284        if (p != current) {
2285                if (!capable(CAP_SYS_NICE)) {
2286                        count = -EPERM;
2287                        goto out;
2288                }
2289
2290                err = security_task_setscheduler(p);
2291                if (err) {
2292                        count = err;
2293                        goto out;
2294                }
2295        }
2296
2297        task_lock(p);
2298        if (slack_ns == 0)
2299                p->timer_slack_ns = p->default_timer_slack_ns;
2300        else
2301                p->timer_slack_ns = slack_ns;
2302        task_unlock(p);
2303
2304out:
2305        put_task_struct(p);
2306
2307        return count;
2308}
2309
2310static int timerslack_ns_show(struct seq_file *m, void *v)
2311{
2312        struct inode *inode = m->private;
2313        struct task_struct *p;
2314        int err = 0;
2315
2316        p = get_proc_task(inode);
2317        if (!p)
2318                return -ESRCH;
2319
2320        if (p != current) {
2321
2322                if (!capable(CAP_SYS_NICE)) {
2323                        err = -EPERM;
2324                        goto out;
2325                }
2326                err = security_task_getscheduler(p);
2327                if (err)
2328                        goto out;
2329        }
2330
2331        task_lock(p);
2332        seq_printf(m, "%llu\n", p->timer_slack_ns);
2333        task_unlock(p);
2334
2335out:
2336        put_task_struct(p);
2337
2338        return err;
2339}
2340
2341static int timerslack_ns_open(struct inode *inode, struct file *filp)
2342{
2343        return single_open(filp, timerslack_ns_show, inode);
2344}
2345
2346static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2347        .open           = timerslack_ns_open,
2348        .read           = seq_read,
2349        .write          = timerslack_ns_write,
2350        .llseek         = seq_lseek,
2351        .release        = single_release,
2352};
2353
2354static int proc_pident_instantiate(struct inode *dir,
2355        struct dentry *dentry, struct task_struct *task, const void *ptr)
2356{
2357        const struct pid_entry *p = ptr;
2358        struct inode *inode;
2359        struct proc_inode *ei;
2360
2361        inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2362        if (!inode)
2363                goto out;
2364
2365        ei = PROC_I(inode);
2366        if (S_ISDIR(inode->i_mode))
2367                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2368        if (p->iop)
2369                inode->i_op = p->iop;
2370        if (p->fop)
2371                inode->i_fop = p->fop;
2372        ei->op = p->op;
2373        d_set_d_op(dentry, &pid_dentry_operations);
2374        d_add(dentry, inode);
2375        /* Close the race of the process dying before we return the dentry */
2376        if (pid_revalidate(dentry, 0))
2377                return 0;
2378out:
2379        return -ENOENT;
2380}
2381
2382static struct dentry *proc_pident_lookup(struct inode *dir, 
2383                                         struct dentry *dentry,
2384                                         const struct pid_entry *ents,
2385                                         unsigned int nents)
2386{
2387        int error;
2388        struct task_struct *task = get_proc_task(dir);
2389        const struct pid_entry *p, *last;
2390
2391        error = -ENOENT;
2392
2393        if (!task)
2394                goto out_no_task;
2395
2396        /*
2397         * Yes, it does not scale. And it should not. Don't add
2398         * new entries into /proc/<tgid>/ without very good reasons.
2399         */
2400        last = &ents[nents];
2401        for (p = ents; p < last; p++) {
2402                if (p->len != dentry->d_name.len)
2403                        continue;
2404                if (!memcmp(dentry->d_name.name, p->name, p->len))
2405                        break;
2406        }
2407        if (p >= last)
2408                goto out;
2409
2410        error = proc_pident_instantiate(dir, dentry, task, p);
2411out:
2412        put_task_struct(task);
2413out_no_task:
2414        return ERR_PTR(error);
2415}
2416
2417static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2418                const struct pid_entry *ents, unsigned int nents)
2419{
2420        struct task_struct *task = get_proc_task(file_inode(file));
2421        const struct pid_entry *p;
2422
2423        if (!task)
2424                return -ENOENT;
2425
2426        if (!dir_emit_dots(file, ctx))
2427                goto out;
2428
2429        if (ctx->pos >= nents + 2)
2430                goto out;
2431
2432        for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2433                if (!proc_fill_cache(file, ctx, p->name, p->len,
2434                                proc_pident_instantiate, task, p))
2435                        break;
2436                ctx->pos++;
2437        }
2438out:
2439        put_task_struct(task);
2440        return 0;
2441}
2442
2443#ifdef CONFIG_SECURITY
2444static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2445                                  size_t count, loff_t *ppos)
2446{
2447        struct inode * inode = file_inode(file);
2448        char *p = NULL;
2449        ssize_t length;
2450        struct task_struct *task = get_proc_task(inode);
2451
2452        if (!task)
2453                return -ESRCH;
2454
2455        length = security_getprocattr(task,
2456                                      (char*)file->f_path.dentry->d_name.name,
2457                                      &p);
2458        put_task_struct(task);
2459        if (length > 0)
2460                length = simple_read_from_buffer(buf, count, ppos, p, length);
2461        kfree(p);
2462        return length;
2463}
2464
2465static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2466                                   size_t count, loff_t *ppos)
2467{
2468        struct inode * inode = file_inode(file);
2469        void *page;
2470        ssize_t length;
2471        struct task_struct *task = get_proc_task(inode);
2472
2473        length = -ESRCH;
2474        if (!task)
2475                goto out_no_task;
2476
2477        /* A task may only write its own attributes. */
2478        length = -EACCES;
2479        if (current != task)
2480                goto out;
2481
2482        if (count > PAGE_SIZE)
2483                count = PAGE_SIZE;
2484
2485        /* No partial writes. */
2486        length = -EINVAL;
2487        if (*ppos != 0)
2488                goto out;
2489
2490        page = memdup_user(buf, count);
2491        if (IS_ERR(page)) {
2492                length = PTR_ERR(page);
2493                goto out;
2494        }
2495
2496        /* Guard against adverse ptrace interaction */
2497        length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2498        if (length < 0)
2499                goto out_free;
2500
2501        length = security_setprocattr(file->f_path.dentry->d_name.name,
2502                                      page, count);
2503        mutex_unlock(&current->signal->cred_guard_mutex);
2504out_free:
2505        kfree(page);
2506out:
2507        put_task_struct(task);
2508out_no_task:
2509        return length;
2510}
2511
2512static const struct file_operations proc_pid_attr_operations = {
2513        .read           = proc_pid_attr_read,
2514        .write          = proc_pid_attr_write,
2515        .llseek         = generic_file_llseek,
2516};
2517
2518static const struct pid_entry attr_dir_stuff[] = {
2519        REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2520        REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2521        REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2522        REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2523        REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2524        REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2525};
2526
2527static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2528{
2529        return proc_pident_readdir(file, ctx, 
2530                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2531}
2532
2533static const struct file_operations proc_attr_dir_operations = {
2534        .read           = generic_read_dir,
2535        .iterate_shared = proc_attr_dir_readdir,
2536        .llseek         = generic_file_llseek,
2537};
2538
2539static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2540                                struct dentry *dentry, unsigned int flags)
2541{
2542        return proc_pident_lookup(dir, dentry,
2543                                  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2544}
2545
2546static const struct inode_operations proc_attr_dir_inode_operations = {
2547        .lookup         = proc_attr_dir_lookup,
2548        .getattr        = pid_getattr,
2549        .setattr        = proc_setattr,
2550};
2551
2552#endif
2553
2554#ifdef CONFIG_ELF_CORE
2555static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2556                                         size_t count, loff_t *ppos)
2557{
2558        struct task_struct *task = get_proc_task(file_inode(file));
2559        struct mm_struct *mm;
2560        char buffer[PROC_NUMBUF];
2561        size_t len;
2562        int ret;
2563
2564        if (!task)
2565                return -ESRCH;
2566
2567        ret = 0;
2568        mm = get_task_mm(task);
2569        if (mm) {
2570                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2571                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2572                                MMF_DUMP_FILTER_SHIFT));
2573                mmput(mm);
2574                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2575        }
2576
2577        put_task_struct(task);
2578
2579        return ret;
2580}
2581
2582static ssize_t proc_coredump_filter_write(struct file *file,
2583                                          const char __user *buf,
2584                                          size_t count,
2585                                          loff_t *ppos)
2586{
2587        struct task_struct *task;
2588        struct mm_struct *mm;
2589        unsigned int val;
2590        int ret;
2591        int i;
2592        unsigned long mask;
2593
2594        ret = kstrtouint_from_user(buf, count, 0, &val);
2595        if (ret < 0)
2596                return ret;
2597
2598        ret = -ESRCH;
2599        task = get_proc_task(file_inode(file));
2600        if (!task)
2601                goto out_no_task;
2602
2603        mm = get_task_mm(task);
2604        if (!mm)
2605                goto out_no_mm;
2606        ret = 0;
2607
2608        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2609                if (val & mask)
2610                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2611                else
2612                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2613        }
2614
2615        mmput(mm);
2616 out_no_mm:
2617        put_task_struct(task);
2618 out_no_task:
2619        if (ret < 0)
2620                return ret;
2621        return count;
2622}
2623
2624static const struct file_operations proc_coredump_filter_operations = {
2625        .read           = proc_coredump_filter_read,
2626        .write          = proc_coredump_filter_write,
2627        .llseek         = generic_file_llseek,
2628};
2629#endif
2630
2631#ifdef CONFIG_TASK_IO_ACCOUNTING
2632static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2633{
2634        struct task_io_accounting acct = task->ioac;
2635        unsigned long flags;
2636        int result;
2637
2638        result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2639        if (result)
2640                return result;
2641
2642        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2643                result = -EACCES;
2644                goto out_unlock;
2645        }
2646
2647        if (whole && lock_task_sighand(task, &flags)) {
2648                struct task_struct *t = task;
2649
2650                task_io_accounting_add(&acct, &task->signal->ioac);
2651                while_each_thread(task, t)
2652                        task_io_accounting_add(&acct, &t->ioac);
2653
2654                unlock_task_sighand(task, &flags);
2655        }
2656        seq_printf(m,
2657                   "rchar: %llu\n"
2658                   "wchar: %llu\n"
2659                   "syscr: %llu\n"
2660                   "syscw: %llu\n"
2661                   "read_bytes: %llu\n"
2662                   "write_bytes: %llu\n"
2663                   "cancelled_write_bytes: %llu\n",
2664                   (unsigned long long)acct.rchar,
2665                   (unsigned long long)acct.wchar,
2666                   (unsigned long long)acct.syscr,
2667                   (unsigned long long)acct.syscw,
2668                   (unsigned long long)acct.read_bytes,
2669                   (unsigned long long)acct.write_bytes,
2670                   (unsigned long long)acct.cancelled_write_bytes);
2671        result = 0;
2672
2673out_unlock:
2674        mutex_unlock(&task->signal->cred_guard_mutex);
2675        return result;
2676}
2677
2678static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2679                                  struct pid *pid, struct task_struct *task)
2680{
2681        return do_io_accounting(task, m, 0);
2682}
2683
2684static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2685                                   struct pid *pid, struct task_struct *task)
2686{
2687        return do_io_accounting(task, m, 1);
2688}
2689#endif /* CONFIG_TASK_IO_ACCOUNTING */
2690
2691#ifdef CONFIG_USER_NS
2692static int proc_id_map_open(struct inode *inode, struct file *file,
2693        const struct seq_operations *seq_ops)
2694{
2695        struct user_namespace *ns = NULL;
2696        struct task_struct *task;
2697        struct seq_file *seq;
2698        int ret = -EINVAL;
2699
2700        task = get_proc_task(inode);
2701        if (task) {
2702                rcu_read_lock();
2703                ns = get_user_ns(task_cred_xxx(task, user_ns));
2704                rcu_read_unlock();
2705                put_task_struct(task);
2706        }
2707        if (!ns)
2708                goto err;
2709
2710        ret = seq_open(file, seq_ops);
2711        if (ret)
2712                goto err_put_ns;
2713
2714        seq = file->private_data;
2715        seq->private = ns;
2716
2717        return 0;
2718err_put_ns:
2719        put_user_ns(ns);
2720err:
2721        return ret;
2722}
2723
2724static int proc_id_map_release(struct inode *inode, struct file *file)
2725{
2726        struct seq_file *seq = file->private_data;
2727        struct user_namespace *ns = seq->private;
2728        put_user_ns(ns);
2729        return seq_release(inode, file);
2730}
2731
2732static int proc_uid_map_open(struct inode *inode, struct file *file)
2733{
2734        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2735}
2736
2737static int proc_gid_map_open(struct inode *inode, struct file *file)
2738{
2739        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2740}
2741
2742static int proc_projid_map_open(struct inode *inode, struct file *file)
2743{
2744        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2745}
2746
2747static const struct file_operations proc_uid_map_operations = {
2748        .open           = proc_uid_map_open,
2749        .write          = proc_uid_map_write,
2750        .read           = seq_read,
2751        .llseek         = seq_lseek,
2752        .release        = proc_id_map_release,
2753};
2754
2755static const struct file_operations proc_gid_map_operations = {
2756        .open           = proc_gid_map_open,
2757        .write          = proc_gid_map_write,
2758        .read           = seq_read,
2759        .llseek         = seq_lseek,
2760        .release        = proc_id_map_release,
2761};
2762
2763static const struct file_operations proc_projid_map_operations = {
2764        .open           = proc_projid_map_open,
2765        .write          = proc_projid_map_write,
2766        .read           = seq_read,
2767        .llseek         = seq_lseek,
2768        .release        = proc_id_map_release,
2769};
2770
2771static int proc_setgroups_open(struct inode *inode, struct file *file)
2772{
2773        struct user_namespace *ns = NULL;
2774        struct task_struct *task;
2775        int ret;
2776
2777        ret = -ESRCH;
2778        task = get_proc_task(inode);
2779        if (task) {
2780                rcu_read_lock();
2781                ns = get_user_ns(task_cred_xxx(task, user_ns));
2782                rcu_read_unlock();
2783                put_task_struct(task);
2784        }
2785        if (!ns)
2786                goto err;
2787
2788        if (file->f_mode & FMODE_WRITE) {
2789                ret = -EACCES;
2790                if (!ns_capable(ns, CAP_SYS_ADMIN))
2791                        goto err_put_ns;
2792        }
2793
2794        ret = single_open(file, &proc_setgroups_show, ns);
2795        if (ret)
2796                goto err_put_ns;
2797
2798        return 0;
2799err_put_ns:
2800        put_user_ns(ns);
2801err:
2802        return ret;
2803}
2804
2805static int proc_setgroups_release(struct inode *inode, struct file *file)
2806{
2807        struct seq_file *seq = file->private_data;
2808        struct user_namespace *ns = seq->private;
2809        int ret = single_release(inode, file);
2810        put_user_ns(ns);
2811        return ret;
2812}
2813
2814static const struct file_operations proc_setgroups_operations = {
2815        .open           = proc_setgroups_open,
2816        .write          = proc_setgroups_write,
2817        .read           = seq_read,
2818        .llseek         = seq_lseek,
2819        .release        = proc_setgroups_release,
2820};
2821#endif /* CONFIG_USER_NS */
2822
2823static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2824                                struct pid *pid, struct task_struct *task)
2825{
2826        int err = lock_trace(task);
2827        if (!err) {
2828                seq_printf(m, "%08x\n", task->personality);
2829                unlock_trace(task);
2830        }
2831        return err;
2832}
2833
2834#ifdef CONFIG_LIVEPATCH
2835static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2836                                struct pid *pid, struct task_struct *task)
2837{
2838        seq_printf(m, "%d\n", task->patch_state);
2839        return 0;
2840}
2841#endif /* CONFIG_LIVEPATCH */
2842
2843/*
2844 * Thread groups
2845 */
2846static const struct file_operations proc_task_operations;
2847static const struct inode_operations proc_task_inode_operations;
2848
2849static const struct pid_entry tgid_base_stuff[] = {
2850        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2851        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2852        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2853        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2854        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2855#ifdef CONFIG_NET
2856        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2857#endif
2858        REG("environ",    S_IRUSR, proc_environ_operations),
2859        REG("auxv",       S_IRUSR, proc_auxv_operations),
2860        ONE("status",     S_IRUGO, proc_pid_status),
2861        ONE("personality", S_IRUSR, proc_pid_personality),
2862        ONE("limits",     S_IRUGO, proc_pid_limits),
2863#ifdef CONFIG_SCHED_DEBUG
2864        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2865#endif
2866#ifdef CONFIG_SCHED_AUTOGROUP
2867        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2868#endif
2869        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2870#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2871        ONE("syscall",    S_IRUSR, proc_pid_syscall),
2872#endif
2873        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2874        ONE("stat",       S_IRUGO, proc_tgid_stat),
2875        ONE("statm",      S_IRUGO, proc_pid_statm),
2876        REG("maps",       S_IRUGO, proc_pid_maps_operations),
2877#ifdef CONFIG_NUMA
2878        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2879#endif
2880        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2881        LNK("cwd",        proc_cwd_link),
2882        LNK("root",       proc_root_link),
2883        LNK("exe",        proc_exe_link),
2884        REG("mounts",     S_IRUGO, proc_mounts_operations),
2885        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2886        REG("mountstats", S_IRUSR, proc_mountstats_operations),
2887#ifdef CONFIG_PROC_PAGE_MONITOR
2888        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2889        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2890        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2891#endif
2892#ifdef CONFIG_SECURITY
2893        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2894#endif
2895#ifdef CONFIG_KALLSYMS
2896        ONE("wchan",      S_IRUGO, proc_pid_wchan),
2897#endif
2898#ifdef CONFIG_STACKTRACE
2899        ONE("stack",      S_IRUSR, proc_pid_stack),
2900#endif
2901#ifdef CONFIG_SCHED_INFO
2902        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2903#endif
2904#ifdef CONFIG_LATENCYTOP
2905        REG("latency",  S_IRUGO, proc_lstats_operations),
2906#endif
2907#ifdef CONFIG_PROC_PID_CPUSET
2908        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2909#endif
2910#ifdef CONFIG_CGROUPS
2911        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2912#endif
2913        ONE("oom_score",  S_IRUGO, proc_oom_score),
2914        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2915        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2916#ifdef CONFIG_AUDITSYSCALL
2917        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2918        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2919#endif
2920#ifdef CONFIG_FAULT_INJECTION
2921        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2922#endif
2923#ifdef CONFIG_ELF_CORE
2924        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2925#endif
2926#ifdef CONFIG_TASK_IO_ACCOUNTING
2927        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
2928#endif
2929#ifdef CONFIG_HARDWALL
2930        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2931#endif
2932#ifdef CONFIG_USER_NS
2933        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2934        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2935        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2936        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2937#endif
2938#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2939        REG("timers",     S_IRUGO, proc_timers_operations),
2940#endif
2941        REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2942#ifdef CONFIG_LIVEPATCH
2943        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
2944#endif
2945};
2946
2947static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2948{
2949        return proc_pident_readdir(file, ctx,
2950                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2951}
2952
2953static const struct file_operations proc_tgid_base_operations = {
2954        .read           = generic_read_dir,
2955        .iterate_shared = proc_tgid_base_readdir,
2956        .llseek         = generic_file_llseek,
2957};
2958
2959static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2960{
2961        return proc_pident_lookup(dir, dentry,
2962                                  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2963}
2964
2965static const struct inode_operations proc_tgid_base_inode_operations = {
2966        .lookup         = proc_tgid_base_lookup,
2967        .getattr        = pid_getattr,
2968        .setattr        = proc_setattr,
2969        .permission     = proc_pid_permission,
2970};
2971
2972static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2973{
2974        struct dentry *dentry, *leader, *dir;
2975        char buf[PROC_NUMBUF];
2976        struct qstr name;
2977
2978        name.name = buf;
2979        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2980        /* no ->d_hash() rejects on procfs */
2981        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2982        if (dentry) {
2983                d_invalidate(dentry);
2984                dput(dentry);
2985        }
2986
2987        if (pid == tgid)
2988                return;
2989
2990        name.name = buf;
2991        name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2992        leader = d_hash_and_lookup(mnt->mnt_root, &name);
2993        if (!leader)
2994                goto out;
2995
2996        name.name = "task";
2997        name.len = strlen(name.name);
2998        dir = d_hash_and_lookup(leader, &name);
2999        if (!dir)
3000                goto out_put_leader;
3001
3002        name.name = buf;
3003        name.len = snprintf(buf, sizeof(buf), "%d", pid);
3004        dentry = d_hash_and_lookup(dir, &name);
3005        if (dentry) {
3006                d_invalidate(dentry);
3007                dput(dentry);
3008        }
3009
3010        dput(dir);
3011out_put_leader:
3012        dput(leader);
3013out:
3014        return;
3015}
3016
3017/**
3018 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3019 * @task: task that should be flushed.
3020 *
3021 * When flushing dentries from proc, one needs to flush them from global
3022 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3023 * in. This call is supposed to do all of this job.
3024 *
3025 * Looks in the dcache for
3026 * /proc/@pid
3027 * /proc/@tgid/task/@pid
3028 * if either directory is present flushes it and all of it'ts children
3029 * from the dcache.
3030 *
3031 * It is safe and reasonable to cache /proc entries for a task until
3032 * that task exits.  After that they just clog up the dcache with
3033 * useless entries, possibly causing useful dcache entries to be
3034 * flushed instead.  This routine is proved to flush those useless
3035 * dcache entries at process exit time.
3036 *
3037 * NOTE: This routine is just an optimization so it does not guarantee
3038 *       that no dcache entries will exist at process exit time it
3039 *       just makes it very unlikely that any will persist.
3040 */
3041
3042void proc_flush_task(struct task_struct *task)
3043{
3044        int i;
3045        struct pid *pid, *tgid;
3046        struct upid *upid;
3047
3048        pid = task_pid(task);
3049        tgid = task_tgid(task);
3050
3051        for (i = 0; i <= pid->level; i++) {
3052                upid = &pid->numbers[i];
3053                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3054                                        tgid->numbers[i].nr);
3055        }
3056}
3057
3058static int proc_pid_instantiate(struct inode *dir,
3059                                   struct dentry * dentry,
3060                                   struct task_struct *task, const void *ptr)
3061{
3062        struct inode *inode;
3063
3064        inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3065        if (!inode)
3066                goto out;
3067
3068        inode->i_op = &proc_tgid_base_inode_operations;
3069        inode->i_fop = &proc_tgid_base_operations;
3070        inode->i_flags|=S_IMMUTABLE;
3071
3072        set_nlink(inode, nlink_tgid);
3073
3074        d_set_d_op(dentry, &pid_dentry_operations);
3075
3076        d_add(dentry, inode);
3077        /* Close the race of the process dying before we return the dentry */
3078        if (pid_revalidate(dentry, 0))
3079                return 0;
3080out:
3081        return -ENOENT;
3082}
3083
3084struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3085{
3086        int result = -ENOENT;
3087        struct task_struct *task;
3088        unsigned tgid;
3089        struct pid_namespace *ns;
3090
3091        tgid = name_to_int(&dentry->d_name);
3092        if (tgid == ~0U)
3093                goto out;
3094
3095        ns = dentry->d_sb->s_fs_info;
3096        rcu_read_lock();
3097        task = find_task_by_pid_ns(tgid, ns);
3098        if (task)
3099                get_task_struct(task);
3100        rcu_read_unlock();
3101        if (!task)
3102                goto out;
3103
3104        result = proc_pid_instantiate(dir, dentry, task, NULL);
3105        put_task_struct(task);
3106out:
3107        return ERR_PTR(result);
3108}
3109
3110/*
3111 * Find the first task with tgid >= tgid
3112 *
3113 */
3114struct tgid_iter {
3115        unsigned int tgid;
3116        struct task_struct *task;
3117};
3118static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3119{
3120        struct pid *pid;
3121
3122        if (iter.task)
3123                put_task_struct(iter.task);
3124        rcu_read_lock();
3125retry:
3126        iter.task = NULL;
3127        pid = find_ge_pid(iter.tgid, ns);
3128        if (pid) {
3129                iter.tgid = pid_nr_ns(pid, ns);
3130                iter.task = pid_task(pid, PIDTYPE_PID);
3131                /* What we to know is if the pid we have find is the
3132                 * pid of a thread_group_leader.  Testing for task
3133                 * being a thread_group_leader is the obvious thing
3134                 * todo but there is a window when it fails, due to
3135                 * the pid transfer logic in de_thread.
3136                 *
3137                 * So we perform the straight forward test of seeing
3138                 * if the pid we have found is the pid of a thread
3139                 * group leader, and don't worry if the task we have
3140                 * found doesn't happen to be a thread group leader.
3141                 * As we don't care in the case of readdir.
3142                 */
3143                if (!iter.task || !has_group_leader_pid(iter.task)) {
3144                        iter.tgid += 1;
3145                        goto retry;
3146                }
3147                get_task_struct(iter.task);
3148        }
3149        rcu_read_unlock();
3150        return iter;
3151}
3152
3153#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3154
3155/* for the /proc/ directory itself, after non-process stuff has been done */
3156int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3157{
3158        struct tgid_iter iter;
3159        struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3160        loff_t pos = ctx->pos;
3161
3162        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3163                return 0;
3164
3165        if (pos == TGID_OFFSET - 2) {
3166                struct inode *inode = d_inode(ns->proc_self);
3167                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3168                        return 0;
3169                ctx->pos = pos = pos + 1;
3170        }
3171        if (pos == TGID_OFFSET - 1) {
3172                struct inode *inode = d_inode(ns->proc_thread_self);
3173                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3174                        return 0;
3175                ctx->pos = pos = pos + 1;
3176        }
3177        iter.tgid = pos - TGID_OFFSET;
3178        iter.task = NULL;
3179        for (iter = next_tgid(ns, iter);
3180             iter.task;
3181             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3182                char name[PROC_NUMBUF];
3183                int len;
3184
3185                cond_resched();
3186                if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3187                        continue;
3188
3189                len = snprintf(name, sizeof(name), "%d", iter.tgid);
3190                ctx->pos = iter.tgid + TGID_OFFSET;
3191                if (!proc_fill_cache(file, ctx, name, len,
3192                                     proc_pid_instantiate, iter.task, NULL)) {
3193                        put_task_struct(iter.task);
3194                        return 0;
3195                }
3196        }
3197        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3198        return 0;
3199}
3200
3201/*
3202 * proc_tid_comm_permission is a special permission function exclusively
3203 * used for the node /proc/<pid>/task/<tid>/comm.
3204 * It bypasses generic permission checks in the case where a task of the same
3205 * task group attempts to access the node.
3206 * The rationale behind this is that glibc and bionic access this node for
3207 * cross thread naming (pthread_set/getname_np(!self)). However, if
3208 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3209 * which locks out the cross thread naming implementation.
3210 * This function makes sure that the node is always accessible for members of
3211 * same thread group.
3212 */
3213static int proc_tid_comm_permission(struct inode *inode, int mask)
3214{
3215        bool is_same_tgroup;
3216        struct task_struct *task;
3217
3218        task = get_proc_task(inode);
3219        if (!task)
3220                return -ESRCH;
3221        is_same_tgroup = same_thread_group(current, task);
3222        put_task_struct(task);
3223
3224        if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3225                /* This file (/proc/<pid>/task/<tid>/comm) can always be
3226                 * read or written by the members of the corresponding
3227                 * thread group.
3228                 */
3229                return 0;
3230        }
3231
3232        return generic_permission(inode, mask);
3233}
3234
3235static const struct inode_operations proc_tid_comm_inode_operations = {
3236                .permission = proc_tid_comm_permission,
3237};
3238
3239/*
3240 * Tasks
3241 */
3242static const struct pid_entry tid_base_stuff[] = {
3243        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3244        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3245        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3246#ifdef CONFIG_NET
3247        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3248#endif
3249        REG("environ",   S_IRUSR, proc_environ_operations),
3250        REG("auxv",      S_IRUSR, proc_auxv_operations),
3251        ONE("status",    S_IRUGO, proc_pid_status),
3252        ONE("personality", S_IRUSR, proc_pid_personality),
3253        ONE("limits",    S_IRUGO, proc_pid_limits),
3254#ifdef CONFIG_SCHED_DEBUG
3255        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3256#endif
3257        NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3258                         &proc_tid_comm_inode_operations,
3259                         &proc_pid_set_comm_operations, {}),
3260#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3261        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3262#endif
3263        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3264        ONE("stat",      S_IRUGO, proc_tid_stat),
3265        ONE("statm",     S_IRUGO, proc_pid_statm),
3266        REG("maps",      S_IRUGO, proc_tid_maps_operations),
3267#ifdef CONFIG_PROC_CHILDREN
3268        REG("children",  S_IRUGO, proc_tid_children_operations),
3269#endif
3270#ifdef CONFIG_NUMA
3271        REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3272#endif
3273        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3274        LNK("cwd",       proc_cwd_link),
3275        LNK("root",      proc_root_link),
3276        LNK("exe",       proc_exe_link),
3277        REG("mounts",    S_IRUGO, proc_mounts_operations),
3278        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3279#ifdef CONFIG_PROC_PAGE_MONITOR
3280        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3281        REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3282        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3283#endif
3284#ifdef CONFIG_SECURITY
3285        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3286#endif
3287#ifdef CONFIG_KALLSYMS
3288        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3289#endif
3290#ifdef CONFIG_STACKTRACE
3291        ONE("stack",      S_IRUSR, proc_pid_stack),
3292#endif
3293#ifdef CONFIG_SCHED_INFO
3294        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3295#endif
3296#ifdef CONFIG_LATENCYTOP
3297        REG("latency",  S_IRUGO, proc_lstats_operations),
3298#endif
3299#ifdef CONFIG_PROC_PID_CPUSET
3300        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3301#endif
3302#ifdef CONFIG_CGROUPS
3303        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3304#endif
3305        ONE("oom_score", S_IRUGO, proc_oom_score),
3306        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3307        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3308#ifdef CONFIG_AUDITSYSCALL
3309        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3310        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3311#endif
3312#ifdef CONFIG_FAULT_INJECTION
3313        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3314#endif
3315#ifdef CONFIG_TASK_IO_ACCOUNTING
3316        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3317#endif
3318#ifdef CONFIG_HARDWALL
3319        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3320#endif
3321#ifdef CONFIG_USER_NS
3322        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3323        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3324        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3325        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3326#endif
3327#ifdef CONFIG_LIVEPATCH
3328        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3329#endif
3330};
3331
3332static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3333{
3334        return proc_pident_readdir(file, ctx,
3335                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3336}
3337
3338static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3339{
3340        return proc_pident_lookup(dir, dentry,
3341                                  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3342}
3343
3344static const struct file_operations proc_tid_base_operations = {
3345        .read           = generic_read_dir,
3346        .iterate_shared = proc_tid_base_readdir,
3347        .llseek         = generic_file_llseek,
3348};
3349
3350static const struct inode_operations proc_tid_base_inode_operations = {
3351        .lookup         = proc_tid_base_lookup,
3352        .getattr        = pid_getattr,
3353        .setattr        = proc_setattr,
3354};
3355
3356static int proc_task_instantiate(struct inode *dir,
3357        struct dentry *dentry, struct task_struct *task, const void *ptr)
3358{
3359        struct inode *inode;
3360        inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3361
3362        if (!inode)
3363                goto out;
3364        inode->i_op = &proc_tid_base_inode_operations;
3365        inode->i_fop = &proc_tid_base_operations;
3366        inode->i_flags|=S_IMMUTABLE;
3367
3368        set_nlink(inode, nlink_tid);
3369
3370        d_set_d_op(dentry, &pid_dentry_operations);
3371
3372        d_add(dentry, inode);
3373        /* Close the race of the process dying before we return the dentry */
3374        if (pid_revalidate(dentry, 0))
3375                return 0;
3376out:
3377        return -ENOENT;
3378}
3379
3380static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3381{
3382        int result = -ENOENT;
3383        struct task_struct *task;
3384        struct task_struct *leader = get_proc_task(dir);
3385        unsigned tid;
3386        struct pid_namespace *ns;
3387
3388        if (!leader)
3389                goto out_no_task;
3390
3391        tid = name_to_int(&dentry->d_name);
3392        if (tid == ~0U)
3393                goto out;
3394
3395        ns = dentry->d_sb->s_fs_info;
3396        rcu_read_lock();
3397        task = find_task_by_pid_ns(tid, ns);
3398        if (task)
3399                get_task_struct(task);
3400        rcu_read_unlock();
3401        if (!task)
3402                goto out;
3403        if (!same_thread_group(leader, task))
3404                goto out_drop_task;
3405
3406        result = proc_task_instantiate(dir, dentry, task, NULL);
3407out_drop_task:
3408        put_task_struct(task);
3409out:
3410        put_task_struct(leader);
3411out_no_task:
3412        return ERR_PTR(result);
3413}
3414
3415/*
3416 * Find the first tid of a thread group to return to user space.
3417 *
3418 * Usually this is just the thread group leader, but if the users
3419 * buffer was too small or there was a seek into the middle of the
3420 * directory we have more work todo.
3421 *
3422 * In the case of a short read we start with find_task_by_pid.
3423 *
3424 * In the case of a seek we start with the leader and walk nr
3425 * threads past it.
3426 */
3427static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3428                                        struct pid_namespace *ns)
3429{
3430        struct task_struct *pos, *task;
3431        unsigned long nr = f_pos;
3432
3433        if (nr != f_pos)        /* 32bit overflow? */
3434                return NULL;
3435
3436        rcu_read_lock();
3437        task = pid_task(pid, PIDTYPE_PID);
3438        if (!task)
3439                goto fail;
3440
3441        /* Attempt to start with the tid of a thread */
3442        if (tid && nr) {
3443                pos = find_task_by_pid_ns(tid, ns);
3444                if (pos && same_thread_group(pos, task))
3445                        goto found;
3446        }
3447
3448        /* If nr exceeds the number of threads there is nothing todo */
3449        if (nr >= get_nr_threads(task))
3450                goto fail;
3451
3452        /* If we haven't found our starting place yet start
3453         * with the leader and walk nr threads forward.
3454         */
3455        pos = task = task->group_leader;
3456        do {
3457                if (!nr--)
3458                        goto found;
3459        } while_each_thread(task, pos);
3460fail:
3461        pos = NULL;
3462        goto out;
3463found:
3464        get_task_struct(pos);
3465out:
3466        rcu_read_unlock();
3467        return pos;
3468}
3469
3470/*
3471 * Find the next thread in the thread list.
3472 * Return NULL if there is an error or no next thread.
3473 *
3474 * The reference to the input task_struct is released.
3475 */
3476static struct task_struct *next_tid(struct task_struct *start)
3477{
3478        struct task_struct *pos = NULL;
3479        rcu_read_lock();
3480        if (pid_alive(start)) {
3481                pos = next_thread(start);
3482                if (thread_group_leader(pos))
3483                        pos = NULL;
3484                else
3485                        get_task_struct(pos);
3486        }
3487        rcu_read_unlock();
3488        put_task_struct(start);
3489        return pos;
3490}
3491
3492/* for the /proc/TGID/task/ directories */
3493static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3494{
3495        struct inode *inode = file_inode(file);
3496        struct task_struct *task;
3497        struct pid_namespace *ns;
3498        int tid;
3499
3500        if (proc_inode_is_dead(inode))
3501                return -ENOENT;
3502
3503        if (!dir_emit_dots(file, ctx))
3504                return 0;
3505
3506        /* f_version caches the tgid value that the last readdir call couldn't
3507         * return. lseek aka telldir automagically resets f_version to 0.
3508         */
3509        ns = inode->i_sb->s_fs_info;
3510        tid = (int)file->f_version;
3511        file->f_version = 0;
3512        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3513             task;
3514             task = next_tid(task), ctx->pos++) {
3515                char name[PROC_NUMBUF];
3516                int len;
3517                tid = task_pid_nr_ns(task, ns);
3518                len = snprintf(name, sizeof(name), "%d", tid);
3519                if (!proc_fill_cache(file, ctx, name, len,
3520                                proc_task_instantiate, task, NULL)) {
3521                        /* returning this tgid failed, save it as the first
3522                         * pid for the next readir call */
3523                        file->f_version = (u64)tid;
3524                        put_task_struct(task);
3525                        break;
3526                }
3527        }
3528
3529        return 0;
3530}
3531
3532static int proc_task_getattr(const struct path *path, struct kstat *stat,
3533                             u32 request_mask, unsigned int query_flags)
3534{
3535        struct inode *inode = d_inode(path->dentry);
3536        struct task_struct *p = get_proc_task(inode);
3537        generic_fillattr(inode, stat);
3538
3539        if (p) {
3540                stat->nlink += get_nr_threads(p);
3541                put_task_struct(p);
3542        }
3543
3544        return 0;
3545}
3546
3547static const struct inode_operations proc_task_inode_operations = {
3548        .lookup         = proc_task_lookup,
3549        .getattr        = proc_task_getattr,
3550        .setattr        = proc_setattr,
3551        .permission     = proc_pid_permission,
3552};
3553
3554static const struct file_operations proc_task_operations = {
3555        .read           = generic_read_dir,
3556        .iterate_shared = proc_task_readdir,
3557        .llseek         = generic_file_llseek,
3558};
3559
3560void __init set_proc_pid_nlink(void)
3561{
3562        nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3563        nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3564}
3565