linux/fs/super.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
  25#include <linux/blkdev.h>
  26#include <linux/mount.h>
  27#include <linux/security.h>
  28#include <linux/writeback.h>            /* for the emergency remount stuff */
  29#include <linux/idr.h>
  30#include <linux/mutex.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rculist_bl.h>
  33#include <linux/cleancache.h>
  34#include <linux/fsnotify.h>
  35#include <linux/lockdep.h>
  36#include <linux/user_namespace.h>
  37#include "internal.h"
  38
  39
  40static LIST_HEAD(super_blocks);
  41static DEFINE_SPINLOCK(sb_lock);
  42
  43static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  44        "sb_writers",
  45        "sb_pagefaults",
  46        "sb_internal",
  47};
  48
  49/*
  50 * One thing we have to be careful of with a per-sb shrinker is that we don't
  51 * drop the last active reference to the superblock from within the shrinker.
  52 * If that happens we could trigger unregistering the shrinker from within the
  53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  54 * take a passive reference to the superblock to avoid this from occurring.
  55 */
  56static unsigned long super_cache_scan(struct shrinker *shrink,
  57                                      struct shrink_control *sc)
  58{
  59        struct super_block *sb;
  60        long    fs_objects = 0;
  61        long    total_objects;
  62        long    freed = 0;
  63        long    dentries;
  64        long    inodes;
  65
  66        sb = container_of(shrink, struct super_block, s_shrink);
  67
  68        /*
  69         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  70         * to recurse into the FS that called us in clear_inode() and friends..
  71         */
  72        if (!(sc->gfp_mask & __GFP_FS))
  73                return SHRINK_STOP;
  74
  75        if (!trylock_super(sb))
  76                return SHRINK_STOP;
  77
  78        if (sb->s_op->nr_cached_objects)
  79                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  80
  81        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  82        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  83        total_objects = dentries + inodes + fs_objects + 1;
  84        if (!total_objects)
  85                total_objects = 1;
  86
  87        /* proportion the scan between the caches */
  88        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  89        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  90        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  91
  92        /*
  93         * prune the dcache first as the icache is pinned by it, then
  94         * prune the icache, followed by the filesystem specific caches
  95         *
  96         * Ensure that we always scan at least one object - memcg kmem
  97         * accounting uses this to fully empty the caches.
  98         */
  99        sc->nr_to_scan = dentries + 1;
 100        freed = prune_dcache_sb(sb, sc);
 101        sc->nr_to_scan = inodes + 1;
 102        freed += prune_icache_sb(sb, sc);
 103
 104        if (fs_objects) {
 105                sc->nr_to_scan = fs_objects + 1;
 106                freed += sb->s_op->free_cached_objects(sb, sc);
 107        }
 108
 109        up_read(&sb->s_umount);
 110        return freed;
 111}
 112
 113static unsigned long super_cache_count(struct shrinker *shrink,
 114                                       struct shrink_control *sc)
 115{
 116        struct super_block *sb;
 117        long    total_objects = 0;
 118
 119        sb = container_of(shrink, struct super_block, s_shrink);
 120
 121        /*
 122         * Don't call trylock_super as it is a potential
 123         * scalability bottleneck. The counts could get updated
 124         * between super_cache_count and super_cache_scan anyway.
 125         * Call to super_cache_count with shrinker_rwsem held
 126         * ensures the safety of call to list_lru_shrink_count() and
 127         * s_op->nr_cached_objects().
 128         */
 129        if (sb->s_op && sb->s_op->nr_cached_objects)
 130                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 131
 132        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 133        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 134
 135        total_objects = vfs_pressure_ratio(total_objects);
 136        return total_objects;
 137}
 138
 139static void destroy_super_work(struct work_struct *work)
 140{
 141        struct super_block *s = container_of(work, struct super_block,
 142                                                        destroy_work);
 143        int i;
 144
 145        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 146                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 147        kfree(s);
 148}
 149
 150static void destroy_super_rcu(struct rcu_head *head)
 151{
 152        struct super_block *s = container_of(head, struct super_block, rcu);
 153        INIT_WORK(&s->destroy_work, destroy_super_work);
 154        schedule_work(&s->destroy_work);
 155}
 156
 157/**
 158 *      destroy_super   -       frees a superblock
 159 *      @s: superblock to free
 160 *
 161 *      Frees a superblock.
 162 */
 163static void destroy_super(struct super_block *s)
 164{
 165        list_lru_destroy(&s->s_dentry_lru);
 166        list_lru_destroy(&s->s_inode_lru);
 167        security_sb_free(s);
 168        WARN_ON(!list_empty(&s->s_mounts));
 169        put_user_ns(s->s_user_ns);
 170        kfree(s->s_subtype);
 171        kfree(s->s_options);
 172        call_rcu(&s->rcu, destroy_super_rcu);
 173}
 174
 175/**
 176 *      alloc_super     -       create new superblock
 177 *      @type:  filesystem type superblock should belong to
 178 *      @flags: the mount flags
 179 *      @user_ns: User namespace for the super_block
 180 *
 181 *      Allocates and initializes a new &struct super_block.  alloc_super()
 182 *      returns a pointer new superblock or %NULL if allocation had failed.
 183 */
 184static struct super_block *alloc_super(struct file_system_type *type, int flags,
 185                                       struct user_namespace *user_ns)
 186{
 187        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 188        static const struct super_operations default_op;
 189        int i;
 190
 191        if (!s)
 192                return NULL;
 193
 194        INIT_LIST_HEAD(&s->s_mounts);
 195        s->s_user_ns = get_user_ns(user_ns);
 196
 197        if (security_sb_alloc(s))
 198                goto fail;
 199
 200        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 201                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 202                                        sb_writers_name[i],
 203                                        &type->s_writers_key[i]))
 204                        goto fail;
 205        }
 206        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 207        s->s_bdi = &noop_backing_dev_info;
 208        s->s_flags = flags;
 209        if (s->s_user_ns != &init_user_ns)
 210                s->s_iflags |= SB_I_NODEV;
 211        INIT_HLIST_NODE(&s->s_instances);
 212        INIT_HLIST_BL_HEAD(&s->s_anon);
 213        mutex_init(&s->s_sync_lock);
 214        INIT_LIST_HEAD(&s->s_inodes);
 215        spin_lock_init(&s->s_inode_list_lock);
 216        INIT_LIST_HEAD(&s->s_inodes_wb);
 217        spin_lock_init(&s->s_inode_wblist_lock);
 218
 219        if (list_lru_init_memcg(&s->s_dentry_lru))
 220                goto fail;
 221        if (list_lru_init_memcg(&s->s_inode_lru))
 222                goto fail;
 223
 224        init_rwsem(&s->s_umount);
 225        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 226        /*
 227         * sget() can have s_umount recursion.
 228         *
 229         * When it cannot find a suitable sb, it allocates a new
 230         * one (this one), and tries again to find a suitable old
 231         * one.
 232         *
 233         * In case that succeeds, it will acquire the s_umount
 234         * lock of the old one. Since these are clearly distrinct
 235         * locks, and this object isn't exposed yet, there's no
 236         * risk of deadlocks.
 237         *
 238         * Annotate this by putting this lock in a different
 239         * subclass.
 240         */
 241        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 242        s->s_count = 1;
 243        atomic_set(&s->s_active, 1);
 244        mutex_init(&s->s_vfs_rename_mutex);
 245        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 246        mutex_init(&s->s_dquot.dqio_mutex);
 247        s->s_maxbytes = MAX_NON_LFS;
 248        s->s_op = &default_op;
 249        s->s_time_gran = 1000000000;
 250        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 251
 252        s->s_shrink.seeks = DEFAULT_SEEKS;
 253        s->s_shrink.scan_objects = super_cache_scan;
 254        s->s_shrink.count_objects = super_cache_count;
 255        s->s_shrink.batch = 1024;
 256        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 257        return s;
 258
 259fail:
 260        destroy_super(s);
 261        return NULL;
 262}
 263
 264/* Superblock refcounting  */
 265
 266/*
 267 * Drop a superblock's refcount.  The caller must hold sb_lock.
 268 */
 269static void __put_super(struct super_block *sb)
 270{
 271        if (!--sb->s_count) {
 272                list_del_init(&sb->s_list);
 273                destroy_super(sb);
 274        }
 275}
 276
 277/**
 278 *      put_super       -       drop a temporary reference to superblock
 279 *      @sb: superblock in question
 280 *
 281 *      Drops a temporary reference, frees superblock if there's no
 282 *      references left.
 283 */
 284static void put_super(struct super_block *sb)
 285{
 286        spin_lock(&sb_lock);
 287        __put_super(sb);
 288        spin_unlock(&sb_lock);
 289}
 290
 291
 292/**
 293 *      deactivate_locked_super -       drop an active reference to superblock
 294 *      @s: superblock to deactivate
 295 *
 296 *      Drops an active reference to superblock, converting it into a temporary
 297 *      one if there is no other active references left.  In that case we
 298 *      tell fs driver to shut it down and drop the temporary reference we
 299 *      had just acquired.
 300 *
 301 *      Caller holds exclusive lock on superblock; that lock is released.
 302 */
 303void deactivate_locked_super(struct super_block *s)
 304{
 305        struct file_system_type *fs = s->s_type;
 306        if (atomic_dec_and_test(&s->s_active)) {
 307                cleancache_invalidate_fs(s);
 308                unregister_shrinker(&s->s_shrink);
 309                fs->kill_sb(s);
 310
 311                /*
 312                 * Since list_lru_destroy() may sleep, we cannot call it from
 313                 * put_super(), where we hold the sb_lock. Therefore we destroy
 314                 * the lru lists right now.
 315                 */
 316                list_lru_destroy(&s->s_dentry_lru);
 317                list_lru_destroy(&s->s_inode_lru);
 318
 319                put_filesystem(fs);
 320                put_super(s);
 321        } else {
 322                up_write(&s->s_umount);
 323        }
 324}
 325
 326EXPORT_SYMBOL(deactivate_locked_super);
 327
 328/**
 329 *      deactivate_super        -       drop an active reference to superblock
 330 *      @s: superblock to deactivate
 331 *
 332 *      Variant of deactivate_locked_super(), except that superblock is *not*
 333 *      locked by caller.  If we are going to drop the final active reference,
 334 *      lock will be acquired prior to that.
 335 */
 336void deactivate_super(struct super_block *s)
 337{
 338        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 339                down_write(&s->s_umount);
 340                deactivate_locked_super(s);
 341        }
 342}
 343
 344EXPORT_SYMBOL(deactivate_super);
 345
 346/**
 347 *      grab_super - acquire an active reference
 348 *      @s: reference we are trying to make active
 349 *
 350 *      Tries to acquire an active reference.  grab_super() is used when we
 351 *      had just found a superblock in super_blocks or fs_type->fs_supers
 352 *      and want to turn it into a full-blown active reference.  grab_super()
 353 *      is called with sb_lock held and drops it.  Returns 1 in case of
 354 *      success, 0 if we had failed (superblock contents was already dead or
 355 *      dying when grab_super() had been called).  Note that this is only
 356 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 357 *      of their type), so increment of ->s_count is OK here.
 358 */
 359static int grab_super(struct super_block *s) __releases(sb_lock)
 360{
 361        s->s_count++;
 362        spin_unlock(&sb_lock);
 363        down_write(&s->s_umount);
 364        if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
 365                put_super(s);
 366                return 1;
 367        }
 368        up_write(&s->s_umount);
 369        put_super(s);
 370        return 0;
 371}
 372
 373/*
 374 *      trylock_super - try to grab ->s_umount shared
 375 *      @sb: reference we are trying to grab
 376 *
 377 *      Try to prevent fs shutdown.  This is used in places where we
 378 *      cannot take an active reference but we need to ensure that the
 379 *      filesystem is not shut down while we are working on it. It returns
 380 *      false if we cannot acquire s_umount or if we lose the race and
 381 *      filesystem already got into shutdown, and returns true with the s_umount
 382 *      lock held in read mode in case of success. On successful return,
 383 *      the caller must drop the s_umount lock when done.
 384 *
 385 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 386 *      The reason why it's safe is that we are OK with doing trylock instead
 387 *      of down_read().  There's a couple of places that are OK with that, but
 388 *      it's very much not a general-purpose interface.
 389 */
 390bool trylock_super(struct super_block *sb)
 391{
 392        if (down_read_trylock(&sb->s_umount)) {
 393                if (!hlist_unhashed(&sb->s_instances) &&
 394                    sb->s_root && (sb->s_flags & MS_BORN))
 395                        return true;
 396                up_read(&sb->s_umount);
 397        }
 398
 399        return false;
 400}
 401
 402/**
 403 *      generic_shutdown_super  -       common helper for ->kill_sb()
 404 *      @sb: superblock to kill
 405 *
 406 *      generic_shutdown_super() does all fs-independent work on superblock
 407 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 408 *      that need destruction out of superblock, call generic_shutdown_super()
 409 *      and release aforementioned objects.  Note: dentries and inodes _are_
 410 *      taken care of and do not need specific handling.
 411 *
 412 *      Upon calling this function, the filesystem may no longer alter or
 413 *      rearrange the set of dentries belonging to this super_block, nor may it
 414 *      change the attachments of dentries to inodes.
 415 */
 416void generic_shutdown_super(struct super_block *sb)
 417{
 418        const struct super_operations *sop = sb->s_op;
 419
 420        if (sb->s_root) {
 421                shrink_dcache_for_umount(sb);
 422                sync_filesystem(sb);
 423                sb->s_flags &= ~MS_ACTIVE;
 424
 425                fsnotify_unmount_inodes(sb);
 426                cgroup_writeback_umount();
 427
 428                evict_inodes(sb);
 429
 430                if (sb->s_dio_done_wq) {
 431                        destroy_workqueue(sb->s_dio_done_wq);
 432                        sb->s_dio_done_wq = NULL;
 433                }
 434
 435                if (sop->put_super)
 436                        sop->put_super(sb);
 437
 438                if (!list_empty(&sb->s_inodes)) {
 439                        printk("VFS: Busy inodes after unmount of %s. "
 440                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 441                           sb->s_id);
 442                }
 443        }
 444        spin_lock(&sb_lock);
 445        /* should be initialized for __put_super_and_need_restart() */
 446        hlist_del_init(&sb->s_instances);
 447        spin_unlock(&sb_lock);
 448        up_write(&sb->s_umount);
 449        if (sb->s_bdi != &noop_backing_dev_info) {
 450                bdi_put(sb->s_bdi);
 451                sb->s_bdi = &noop_backing_dev_info;
 452        }
 453}
 454
 455EXPORT_SYMBOL(generic_shutdown_super);
 456
 457/**
 458 *      sget_userns -   find or create a superblock
 459 *      @type:  filesystem type superblock should belong to
 460 *      @test:  comparison callback
 461 *      @set:   setup callback
 462 *      @flags: mount flags
 463 *      @user_ns: User namespace for the super_block
 464 *      @data:  argument to each of them
 465 */
 466struct super_block *sget_userns(struct file_system_type *type,
 467                        int (*test)(struct super_block *,void *),
 468                        int (*set)(struct super_block *,void *),
 469                        int flags, struct user_namespace *user_ns,
 470                        void *data)
 471{
 472        struct super_block *s = NULL;
 473        struct super_block *old;
 474        int err;
 475
 476        if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
 477            !(type->fs_flags & FS_USERNS_MOUNT) &&
 478            !capable(CAP_SYS_ADMIN))
 479                return ERR_PTR(-EPERM);
 480retry:
 481        spin_lock(&sb_lock);
 482        if (test) {
 483                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 484                        if (!test(old, data))
 485                                continue;
 486                        if (user_ns != old->s_user_ns) {
 487                                spin_unlock(&sb_lock);
 488                                if (s) {
 489                                        up_write(&s->s_umount);
 490                                        destroy_super(s);
 491                                }
 492                                return ERR_PTR(-EBUSY);
 493                        }
 494                        if (!grab_super(old))
 495                                goto retry;
 496                        if (s) {
 497                                up_write(&s->s_umount);
 498                                destroy_super(s);
 499                                s = NULL;
 500                        }
 501                        return old;
 502                }
 503        }
 504        if (!s) {
 505                spin_unlock(&sb_lock);
 506                s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
 507                if (!s)
 508                        return ERR_PTR(-ENOMEM);
 509                goto retry;
 510        }
 511                
 512        err = set(s, data);
 513        if (err) {
 514                spin_unlock(&sb_lock);
 515                up_write(&s->s_umount);
 516                destroy_super(s);
 517                return ERR_PTR(err);
 518        }
 519        s->s_type = type;
 520        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 521        list_add_tail(&s->s_list, &super_blocks);
 522        hlist_add_head(&s->s_instances, &type->fs_supers);
 523        spin_unlock(&sb_lock);
 524        get_filesystem(type);
 525        register_shrinker(&s->s_shrink);
 526        return s;
 527}
 528
 529EXPORT_SYMBOL(sget_userns);
 530
 531/**
 532 *      sget    -       find or create a superblock
 533 *      @type:    filesystem type superblock should belong to
 534 *      @test:    comparison callback
 535 *      @set:     setup callback
 536 *      @flags:   mount flags
 537 *      @data:    argument to each of them
 538 */
 539struct super_block *sget(struct file_system_type *type,
 540                        int (*test)(struct super_block *,void *),
 541                        int (*set)(struct super_block *,void *),
 542                        int flags,
 543                        void *data)
 544{
 545        struct user_namespace *user_ns = current_user_ns();
 546
 547        /* We don't yet pass the user namespace of the parent
 548         * mount through to here so always use &init_user_ns
 549         * until that changes.
 550         */
 551        if (flags & MS_SUBMOUNT)
 552                user_ns = &init_user_ns;
 553
 554        /* Ensure the requestor has permissions over the target filesystem */
 555        if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
 556                return ERR_PTR(-EPERM);
 557
 558        return sget_userns(type, test, set, flags, user_ns, data);
 559}
 560
 561EXPORT_SYMBOL(sget);
 562
 563void drop_super(struct super_block *sb)
 564{
 565        up_read(&sb->s_umount);
 566        put_super(sb);
 567}
 568
 569EXPORT_SYMBOL(drop_super);
 570
 571void drop_super_exclusive(struct super_block *sb)
 572{
 573        up_write(&sb->s_umount);
 574        put_super(sb);
 575}
 576EXPORT_SYMBOL(drop_super_exclusive);
 577
 578/**
 579 *      iterate_supers - call function for all active superblocks
 580 *      @f: function to call
 581 *      @arg: argument to pass to it
 582 *
 583 *      Scans the superblock list and calls given function, passing it
 584 *      locked superblock and given argument.
 585 */
 586void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 587{
 588        struct super_block *sb, *p = NULL;
 589
 590        spin_lock(&sb_lock);
 591        list_for_each_entry(sb, &super_blocks, s_list) {
 592                if (hlist_unhashed(&sb->s_instances))
 593                        continue;
 594                sb->s_count++;
 595                spin_unlock(&sb_lock);
 596
 597                down_read(&sb->s_umount);
 598                if (sb->s_root && (sb->s_flags & MS_BORN))
 599                        f(sb, arg);
 600                up_read(&sb->s_umount);
 601
 602                spin_lock(&sb_lock);
 603                if (p)
 604                        __put_super(p);
 605                p = sb;
 606        }
 607        if (p)
 608                __put_super(p);
 609        spin_unlock(&sb_lock);
 610}
 611
 612/**
 613 *      iterate_supers_type - call function for superblocks of given type
 614 *      @type: fs type
 615 *      @f: function to call
 616 *      @arg: argument to pass to it
 617 *
 618 *      Scans the superblock list and calls given function, passing it
 619 *      locked superblock and given argument.
 620 */
 621void iterate_supers_type(struct file_system_type *type,
 622        void (*f)(struct super_block *, void *), void *arg)
 623{
 624        struct super_block *sb, *p = NULL;
 625
 626        spin_lock(&sb_lock);
 627        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 628                sb->s_count++;
 629                spin_unlock(&sb_lock);
 630
 631                down_read(&sb->s_umount);
 632                if (sb->s_root && (sb->s_flags & MS_BORN))
 633                        f(sb, arg);
 634                up_read(&sb->s_umount);
 635
 636                spin_lock(&sb_lock);
 637                if (p)
 638                        __put_super(p);
 639                p = sb;
 640        }
 641        if (p)
 642                __put_super(p);
 643        spin_unlock(&sb_lock);
 644}
 645
 646EXPORT_SYMBOL(iterate_supers_type);
 647
 648static struct super_block *__get_super(struct block_device *bdev, bool excl)
 649{
 650        struct super_block *sb;
 651
 652        if (!bdev)
 653                return NULL;
 654
 655        spin_lock(&sb_lock);
 656rescan:
 657        list_for_each_entry(sb, &super_blocks, s_list) {
 658                if (hlist_unhashed(&sb->s_instances))
 659                        continue;
 660                if (sb->s_bdev == bdev) {
 661                        sb->s_count++;
 662                        spin_unlock(&sb_lock);
 663                        if (!excl)
 664                                down_read(&sb->s_umount);
 665                        else
 666                                down_write(&sb->s_umount);
 667                        /* still alive? */
 668                        if (sb->s_root && (sb->s_flags & MS_BORN))
 669                                return sb;
 670                        if (!excl)
 671                                up_read(&sb->s_umount);
 672                        else
 673                                up_write(&sb->s_umount);
 674                        /* nope, got unmounted */
 675                        spin_lock(&sb_lock);
 676                        __put_super(sb);
 677                        goto rescan;
 678                }
 679        }
 680        spin_unlock(&sb_lock);
 681        return NULL;
 682}
 683
 684/**
 685 *      get_super - get the superblock of a device
 686 *      @bdev: device to get the superblock for
 687 *
 688 *      Scans the superblock list and finds the superblock of the file system
 689 *      mounted on the device given. %NULL is returned if no match is found.
 690 */
 691struct super_block *get_super(struct block_device *bdev)
 692{
 693        return __get_super(bdev, false);
 694}
 695EXPORT_SYMBOL(get_super);
 696
 697static struct super_block *__get_super_thawed(struct block_device *bdev,
 698                                              bool excl)
 699{
 700        while (1) {
 701                struct super_block *s = __get_super(bdev, excl);
 702                if (!s || s->s_writers.frozen == SB_UNFROZEN)
 703                        return s;
 704                if (!excl)
 705                        up_read(&s->s_umount);
 706                else
 707                        up_write(&s->s_umount);
 708                wait_event(s->s_writers.wait_unfrozen,
 709                           s->s_writers.frozen == SB_UNFROZEN);
 710                put_super(s);
 711        }
 712}
 713
 714/**
 715 *      get_super_thawed - get thawed superblock of a device
 716 *      @bdev: device to get the superblock for
 717 *
 718 *      Scans the superblock list and finds the superblock of the file system
 719 *      mounted on the device. The superblock is returned once it is thawed
 720 *      (or immediately if it was not frozen). %NULL is returned if no match
 721 *      is found.
 722 */
 723struct super_block *get_super_thawed(struct block_device *bdev)
 724{
 725        return __get_super_thawed(bdev, false);
 726}
 727EXPORT_SYMBOL(get_super_thawed);
 728
 729/**
 730 *      get_super_exclusive_thawed - get thawed superblock of a device
 731 *      @bdev: device to get the superblock for
 732 *
 733 *      Scans the superblock list and finds the superblock of the file system
 734 *      mounted on the device. The superblock is returned once it is thawed
 735 *      (or immediately if it was not frozen) and s_umount semaphore is held
 736 *      in exclusive mode. %NULL is returned if no match is found.
 737 */
 738struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 739{
 740        return __get_super_thawed(bdev, true);
 741}
 742EXPORT_SYMBOL(get_super_exclusive_thawed);
 743
 744/**
 745 * get_active_super - get an active reference to the superblock of a device
 746 * @bdev: device to get the superblock for
 747 *
 748 * Scans the superblock list and finds the superblock of the file system
 749 * mounted on the device given.  Returns the superblock with an active
 750 * reference or %NULL if none was found.
 751 */
 752struct super_block *get_active_super(struct block_device *bdev)
 753{
 754        struct super_block *sb;
 755
 756        if (!bdev)
 757                return NULL;
 758
 759restart:
 760        spin_lock(&sb_lock);
 761        list_for_each_entry(sb, &super_blocks, s_list) {
 762                if (hlist_unhashed(&sb->s_instances))
 763                        continue;
 764                if (sb->s_bdev == bdev) {
 765                        if (!grab_super(sb))
 766                                goto restart;
 767                        up_write(&sb->s_umount);
 768                        return sb;
 769                }
 770        }
 771        spin_unlock(&sb_lock);
 772        return NULL;
 773}
 774 
 775struct super_block *user_get_super(dev_t dev)
 776{
 777        struct super_block *sb;
 778
 779        spin_lock(&sb_lock);
 780rescan:
 781        list_for_each_entry(sb, &super_blocks, s_list) {
 782                if (hlist_unhashed(&sb->s_instances))
 783                        continue;
 784                if (sb->s_dev ==  dev) {
 785                        sb->s_count++;
 786                        spin_unlock(&sb_lock);
 787                        down_read(&sb->s_umount);
 788                        /* still alive? */
 789                        if (sb->s_root && (sb->s_flags & MS_BORN))
 790                                return sb;
 791                        up_read(&sb->s_umount);
 792                        /* nope, got unmounted */
 793                        spin_lock(&sb_lock);
 794                        __put_super(sb);
 795                        goto rescan;
 796                }
 797        }
 798        spin_unlock(&sb_lock);
 799        return NULL;
 800}
 801
 802/**
 803 *      do_remount_sb - asks filesystem to change mount options.
 804 *      @sb:    superblock in question
 805 *      @flags: numeric part of options
 806 *      @data:  the rest of options
 807 *      @force: whether or not to force the change
 808 *
 809 *      Alters the mount options of a mounted file system.
 810 */
 811int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 812{
 813        int retval;
 814        int remount_ro;
 815
 816        if (sb->s_writers.frozen != SB_UNFROZEN)
 817                return -EBUSY;
 818
 819#ifdef CONFIG_BLOCK
 820        if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 821                return -EACCES;
 822#endif
 823
 824        remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 825
 826        if (remount_ro) {
 827                if (!hlist_empty(&sb->s_pins)) {
 828                        up_write(&sb->s_umount);
 829                        group_pin_kill(&sb->s_pins);
 830                        down_write(&sb->s_umount);
 831                        if (!sb->s_root)
 832                                return 0;
 833                        if (sb->s_writers.frozen != SB_UNFROZEN)
 834                                return -EBUSY;
 835                        remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 836                }
 837        }
 838        shrink_dcache_sb(sb);
 839
 840        /* If we are remounting RDONLY and current sb is read/write,
 841           make sure there are no rw files opened */
 842        if (remount_ro) {
 843                if (force) {
 844                        sb->s_readonly_remount = 1;
 845                        smp_wmb();
 846                } else {
 847                        retval = sb_prepare_remount_readonly(sb);
 848                        if (retval)
 849                                return retval;
 850                }
 851        }
 852
 853        if (sb->s_op->remount_fs) {
 854                retval = sb->s_op->remount_fs(sb, &flags, data);
 855                if (retval) {
 856                        if (!force)
 857                                goto cancel_readonly;
 858                        /* If forced remount, go ahead despite any errors */
 859                        WARN(1, "forced remount of a %s fs returned %i\n",
 860                             sb->s_type->name, retval);
 861                }
 862        }
 863        sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 864        /* Needs to be ordered wrt mnt_is_readonly() */
 865        smp_wmb();
 866        sb->s_readonly_remount = 0;
 867
 868        /*
 869         * Some filesystems modify their metadata via some other path than the
 870         * bdev buffer cache (eg. use a private mapping, or directories in
 871         * pagecache, etc). Also file data modifications go via their own
 872         * mappings. So If we try to mount readonly then copy the filesystem
 873         * from bdev, we could get stale data, so invalidate it to give a best
 874         * effort at coherency.
 875         */
 876        if (remount_ro && sb->s_bdev)
 877                invalidate_bdev(sb->s_bdev);
 878        return 0;
 879
 880cancel_readonly:
 881        sb->s_readonly_remount = 0;
 882        return retval;
 883}
 884
 885static void do_emergency_remount(struct work_struct *work)
 886{
 887        struct super_block *sb, *p = NULL;
 888
 889        spin_lock(&sb_lock);
 890        list_for_each_entry(sb, &super_blocks, s_list) {
 891                if (hlist_unhashed(&sb->s_instances))
 892                        continue;
 893                sb->s_count++;
 894                spin_unlock(&sb_lock);
 895                down_write(&sb->s_umount);
 896                if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 897                    !(sb->s_flags & MS_RDONLY)) {
 898                        /*
 899                         * What lock protects sb->s_flags??
 900                         */
 901                        do_remount_sb(sb, MS_RDONLY, NULL, 1);
 902                }
 903                up_write(&sb->s_umount);
 904                spin_lock(&sb_lock);
 905                if (p)
 906                        __put_super(p);
 907                p = sb;
 908        }
 909        if (p)
 910                __put_super(p);
 911        spin_unlock(&sb_lock);
 912        kfree(work);
 913        printk("Emergency Remount complete\n");
 914}
 915
 916void emergency_remount(void)
 917{
 918        struct work_struct *work;
 919
 920        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 921        if (work) {
 922                INIT_WORK(work, do_emergency_remount);
 923                schedule_work(work);
 924        }
 925}
 926
 927/*
 928 * Unnamed block devices are dummy devices used by virtual
 929 * filesystems which don't use real block-devices.  -- jrs
 930 */
 931
 932static DEFINE_IDA(unnamed_dev_ida);
 933static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 934/* Many userspace utilities consider an FSID of 0 invalid.
 935 * Always return at least 1 from get_anon_bdev.
 936 */
 937static int unnamed_dev_start = 1;
 938
 939int get_anon_bdev(dev_t *p)
 940{
 941        int dev;
 942        int error;
 943
 944 retry:
 945        if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 946                return -ENOMEM;
 947        spin_lock(&unnamed_dev_lock);
 948        error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 949        if (!error)
 950                unnamed_dev_start = dev + 1;
 951        spin_unlock(&unnamed_dev_lock);
 952        if (error == -EAGAIN)
 953                /* We raced and lost with another CPU. */
 954                goto retry;
 955        else if (error)
 956                return -EAGAIN;
 957
 958        if (dev >= (1 << MINORBITS)) {
 959                spin_lock(&unnamed_dev_lock);
 960                ida_remove(&unnamed_dev_ida, dev);
 961                if (unnamed_dev_start > dev)
 962                        unnamed_dev_start = dev;
 963                spin_unlock(&unnamed_dev_lock);
 964                return -EMFILE;
 965        }
 966        *p = MKDEV(0, dev & MINORMASK);
 967        return 0;
 968}
 969EXPORT_SYMBOL(get_anon_bdev);
 970
 971void free_anon_bdev(dev_t dev)
 972{
 973        int slot = MINOR(dev);
 974        spin_lock(&unnamed_dev_lock);
 975        ida_remove(&unnamed_dev_ida, slot);
 976        if (slot < unnamed_dev_start)
 977                unnamed_dev_start = slot;
 978        spin_unlock(&unnamed_dev_lock);
 979}
 980EXPORT_SYMBOL(free_anon_bdev);
 981
 982int set_anon_super(struct super_block *s, void *data)
 983{
 984        return get_anon_bdev(&s->s_dev);
 985}
 986
 987EXPORT_SYMBOL(set_anon_super);
 988
 989void kill_anon_super(struct super_block *sb)
 990{
 991        dev_t dev = sb->s_dev;
 992        generic_shutdown_super(sb);
 993        free_anon_bdev(dev);
 994}
 995
 996EXPORT_SYMBOL(kill_anon_super);
 997
 998void kill_litter_super(struct super_block *sb)
 999{
1000        if (sb->s_root)
1001                d_genocide(sb->s_root);
1002        kill_anon_super(sb);
1003}
1004
1005EXPORT_SYMBOL(kill_litter_super);
1006
1007static int ns_test_super(struct super_block *sb, void *data)
1008{
1009        return sb->s_fs_info == data;
1010}
1011
1012static int ns_set_super(struct super_block *sb, void *data)
1013{
1014        sb->s_fs_info = data;
1015        return set_anon_super(sb, NULL);
1016}
1017
1018struct dentry *mount_ns(struct file_system_type *fs_type,
1019        int flags, void *data, void *ns, struct user_namespace *user_ns,
1020        int (*fill_super)(struct super_block *, void *, int))
1021{
1022        struct super_block *sb;
1023
1024        /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1025         * over the namespace.
1026         */
1027        if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1028                return ERR_PTR(-EPERM);
1029
1030        sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1031                         user_ns, ns);
1032        if (IS_ERR(sb))
1033                return ERR_CAST(sb);
1034
1035        if (!sb->s_root) {
1036                int err;
1037                err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1038                if (err) {
1039                        deactivate_locked_super(sb);
1040                        return ERR_PTR(err);
1041                }
1042
1043                sb->s_flags |= MS_ACTIVE;
1044        }
1045
1046        return dget(sb->s_root);
1047}
1048
1049EXPORT_SYMBOL(mount_ns);
1050
1051#ifdef CONFIG_BLOCK
1052static int set_bdev_super(struct super_block *s, void *data)
1053{
1054        s->s_bdev = data;
1055        s->s_dev = s->s_bdev->bd_dev;
1056        s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1057
1058        return 0;
1059}
1060
1061static int test_bdev_super(struct super_block *s, void *data)
1062{
1063        return (void *)s->s_bdev == data;
1064}
1065
1066struct dentry *mount_bdev(struct file_system_type *fs_type,
1067        int flags, const char *dev_name, void *data,
1068        int (*fill_super)(struct super_block *, void *, int))
1069{
1070        struct block_device *bdev;
1071        struct super_block *s;
1072        fmode_t mode = FMODE_READ | FMODE_EXCL;
1073        int error = 0;
1074
1075        if (!(flags & MS_RDONLY))
1076                mode |= FMODE_WRITE;
1077
1078        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1079        if (IS_ERR(bdev))
1080                return ERR_CAST(bdev);
1081
1082        /*
1083         * once the super is inserted into the list by sget, s_umount
1084         * will protect the lockfs code from trying to start a snapshot
1085         * while we are mounting
1086         */
1087        mutex_lock(&bdev->bd_fsfreeze_mutex);
1088        if (bdev->bd_fsfreeze_count > 0) {
1089                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1090                error = -EBUSY;
1091                goto error_bdev;
1092        }
1093        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1094                 bdev);
1095        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1096        if (IS_ERR(s))
1097                goto error_s;
1098
1099        if (s->s_root) {
1100                if ((flags ^ s->s_flags) & MS_RDONLY) {
1101                        deactivate_locked_super(s);
1102                        error = -EBUSY;
1103                        goto error_bdev;
1104                }
1105
1106                /*
1107                 * s_umount nests inside bd_mutex during
1108                 * __invalidate_device().  blkdev_put() acquires
1109                 * bd_mutex and can't be called under s_umount.  Drop
1110                 * s_umount temporarily.  This is safe as we're
1111                 * holding an active reference.
1112                 */
1113                up_write(&s->s_umount);
1114                blkdev_put(bdev, mode);
1115                down_write(&s->s_umount);
1116        } else {
1117                s->s_mode = mode;
1118                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1119                sb_set_blocksize(s, block_size(bdev));
1120                error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1121                if (error) {
1122                        deactivate_locked_super(s);
1123                        goto error;
1124                }
1125
1126                s->s_flags |= MS_ACTIVE;
1127                bdev->bd_super = s;
1128        }
1129
1130        return dget(s->s_root);
1131
1132error_s:
1133        error = PTR_ERR(s);
1134error_bdev:
1135        blkdev_put(bdev, mode);
1136error:
1137        return ERR_PTR(error);
1138}
1139EXPORT_SYMBOL(mount_bdev);
1140
1141void kill_block_super(struct super_block *sb)
1142{
1143        struct block_device *bdev = sb->s_bdev;
1144        fmode_t mode = sb->s_mode;
1145
1146        bdev->bd_super = NULL;
1147        generic_shutdown_super(sb);
1148        sync_blockdev(bdev);
1149        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1150        blkdev_put(bdev, mode | FMODE_EXCL);
1151}
1152
1153EXPORT_SYMBOL(kill_block_super);
1154#endif
1155
1156struct dentry *mount_nodev(struct file_system_type *fs_type,
1157        int flags, void *data,
1158        int (*fill_super)(struct super_block *, void *, int))
1159{
1160        int error;
1161        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1162
1163        if (IS_ERR(s))
1164                return ERR_CAST(s);
1165
1166        error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1167        if (error) {
1168                deactivate_locked_super(s);
1169                return ERR_PTR(error);
1170        }
1171        s->s_flags |= MS_ACTIVE;
1172        return dget(s->s_root);
1173}
1174EXPORT_SYMBOL(mount_nodev);
1175
1176static int compare_single(struct super_block *s, void *p)
1177{
1178        return 1;
1179}
1180
1181struct dentry *mount_single(struct file_system_type *fs_type,
1182        int flags, void *data,
1183        int (*fill_super)(struct super_block *, void *, int))
1184{
1185        struct super_block *s;
1186        int error;
1187
1188        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1189        if (IS_ERR(s))
1190                return ERR_CAST(s);
1191        if (!s->s_root) {
1192                error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1193                if (error) {
1194                        deactivate_locked_super(s);
1195                        return ERR_PTR(error);
1196                }
1197                s->s_flags |= MS_ACTIVE;
1198        } else {
1199                do_remount_sb(s, flags, data, 0);
1200        }
1201        return dget(s->s_root);
1202}
1203EXPORT_SYMBOL(mount_single);
1204
1205struct dentry *
1206mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1207{
1208        struct dentry *root;
1209        struct super_block *sb;
1210        char *secdata = NULL;
1211        int error = -ENOMEM;
1212
1213        if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1214                secdata = alloc_secdata();
1215                if (!secdata)
1216                        goto out;
1217
1218                error = security_sb_copy_data(data, secdata);
1219                if (error)
1220                        goto out_free_secdata;
1221        }
1222
1223        root = type->mount(type, flags, name, data);
1224        if (IS_ERR(root)) {
1225                error = PTR_ERR(root);
1226                goto out_free_secdata;
1227        }
1228        sb = root->d_sb;
1229        BUG_ON(!sb);
1230        WARN_ON(!sb->s_bdi);
1231        sb->s_flags |= MS_BORN;
1232
1233        error = security_sb_kern_mount(sb, flags, secdata);
1234        if (error)
1235                goto out_sb;
1236
1237        /*
1238         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1239         * but s_maxbytes was an unsigned long long for many releases. Throw
1240         * this warning for a little while to try and catch filesystems that
1241         * violate this rule.
1242         */
1243        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1244                "negative value (%lld)\n", type->name, sb->s_maxbytes);
1245
1246        up_write(&sb->s_umount);
1247        free_secdata(secdata);
1248        return root;
1249out_sb:
1250        dput(root);
1251        deactivate_locked_super(sb);
1252out_free_secdata:
1253        free_secdata(secdata);
1254out:
1255        return ERR_PTR(error);
1256}
1257
1258/*
1259 * Setup private BDI for given superblock. It gets automatically cleaned up
1260 * in generic_shutdown_super().
1261 */
1262int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1263{
1264        struct backing_dev_info *bdi;
1265        int err;
1266        va_list args;
1267
1268        bdi = bdi_alloc(GFP_KERNEL);
1269        if (!bdi)
1270                return -ENOMEM;
1271
1272        bdi->name = sb->s_type->name;
1273
1274        va_start(args, fmt);
1275        err = bdi_register_va(bdi, fmt, args);
1276        va_end(args);
1277        if (err) {
1278                bdi_put(bdi);
1279                return err;
1280        }
1281        WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1282        sb->s_bdi = bdi;
1283
1284        return 0;
1285}
1286EXPORT_SYMBOL(super_setup_bdi_name);
1287
1288/*
1289 * Setup private BDI for given superblock. I gets automatically cleaned up
1290 * in generic_shutdown_super().
1291 */
1292int super_setup_bdi(struct super_block *sb)
1293{
1294        static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1295
1296        return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1297                                    atomic_long_inc_return(&bdi_seq));
1298}
1299EXPORT_SYMBOL(super_setup_bdi);
1300
1301/*
1302 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1303 * instead.
1304 */
1305void __sb_end_write(struct super_block *sb, int level)
1306{
1307        percpu_up_read(sb->s_writers.rw_sem + level-1);
1308}
1309EXPORT_SYMBOL(__sb_end_write);
1310
1311/*
1312 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1313 * instead.
1314 */
1315int __sb_start_write(struct super_block *sb, int level, bool wait)
1316{
1317        bool force_trylock = false;
1318        int ret = 1;
1319
1320#ifdef CONFIG_LOCKDEP
1321        /*
1322         * We want lockdep to tell us about possible deadlocks with freezing
1323         * but it's it bit tricky to properly instrument it. Getting a freeze
1324         * protection works as getting a read lock but there are subtle
1325         * problems. XFS for example gets freeze protection on internal level
1326         * twice in some cases, which is OK only because we already hold a
1327         * freeze protection also on higher level. Due to these cases we have
1328         * to use wait == F (trylock mode) which must not fail.
1329         */
1330        if (wait) {
1331                int i;
1332
1333                for (i = 0; i < level - 1; i++)
1334                        if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1335                                force_trylock = true;
1336                                break;
1337                        }
1338        }
1339#endif
1340        if (wait && !force_trylock)
1341                percpu_down_read(sb->s_writers.rw_sem + level-1);
1342        else
1343                ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1344
1345        WARN_ON(force_trylock && !ret);
1346        return ret;
1347}
1348EXPORT_SYMBOL(__sb_start_write);
1349
1350/**
1351 * sb_wait_write - wait until all writers to given file system finish
1352 * @sb: the super for which we wait
1353 * @level: type of writers we wait for (normal vs page fault)
1354 *
1355 * This function waits until there are no writers of given type to given file
1356 * system.
1357 */
1358static void sb_wait_write(struct super_block *sb, int level)
1359{
1360        percpu_down_write(sb->s_writers.rw_sem + level-1);
1361}
1362
1363/*
1364 * We are going to return to userspace and forget about these locks, the
1365 * ownership goes to the caller of thaw_super() which does unlock().
1366 */
1367static void lockdep_sb_freeze_release(struct super_block *sb)
1368{
1369        int level;
1370
1371        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1372                percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1373}
1374
1375/*
1376 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1377 */
1378static void lockdep_sb_freeze_acquire(struct super_block *sb)
1379{
1380        int level;
1381
1382        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1383                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1384}
1385
1386static void sb_freeze_unlock(struct super_block *sb)
1387{
1388        int level;
1389
1390        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1391                percpu_up_write(sb->s_writers.rw_sem + level);
1392}
1393
1394/**
1395 * freeze_super - lock the filesystem and force it into a consistent state
1396 * @sb: the super to lock
1397 *
1398 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1399 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1400 * -EBUSY.
1401 *
1402 * During this function, sb->s_writers.frozen goes through these values:
1403 *
1404 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1405 *
1406 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1407 * writes should be blocked, though page faults are still allowed. We wait for
1408 * all writes to complete and then proceed to the next stage.
1409 *
1410 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1411 * but internal fs threads can still modify the filesystem (although they
1412 * should not dirty new pages or inodes), writeback can run etc. After waiting
1413 * for all running page faults we sync the filesystem which will clean all
1414 * dirty pages and inodes (no new dirty pages or inodes can be created when
1415 * sync is running).
1416 *
1417 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1418 * modification are blocked (e.g. XFS preallocation truncation on inode
1419 * reclaim). This is usually implemented by blocking new transactions for
1420 * filesystems that have them and need this additional guard. After all
1421 * internal writers are finished we call ->freeze_fs() to finish filesystem
1422 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1423 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1424 *
1425 * sb->s_writers.frozen is protected by sb->s_umount.
1426 */
1427int freeze_super(struct super_block *sb)
1428{
1429        int ret;
1430
1431        atomic_inc(&sb->s_active);
1432        down_write(&sb->s_umount);
1433        if (sb->s_writers.frozen != SB_UNFROZEN) {
1434                deactivate_locked_super(sb);
1435                return -EBUSY;
1436        }
1437
1438        if (!(sb->s_flags & MS_BORN)) {
1439                up_write(&sb->s_umount);
1440                return 0;       /* sic - it's "nothing to do" */
1441        }
1442
1443        if (sb->s_flags & MS_RDONLY) {
1444                /* Nothing to do really... */
1445                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1446                up_write(&sb->s_umount);
1447                return 0;
1448        }
1449
1450        sb->s_writers.frozen = SB_FREEZE_WRITE;
1451        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1452        up_write(&sb->s_umount);
1453        sb_wait_write(sb, SB_FREEZE_WRITE);
1454        down_write(&sb->s_umount);
1455
1456        /* Now we go and block page faults... */
1457        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1458        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1459
1460        /* All writers are done so after syncing there won't be dirty data */
1461        sync_filesystem(sb);
1462
1463        /* Now wait for internal filesystem counter */
1464        sb->s_writers.frozen = SB_FREEZE_FS;
1465        sb_wait_write(sb, SB_FREEZE_FS);
1466
1467        if (sb->s_op->freeze_fs) {
1468                ret = sb->s_op->freeze_fs(sb);
1469                if (ret) {
1470                        printk(KERN_ERR
1471                                "VFS:Filesystem freeze failed\n");
1472                        sb->s_writers.frozen = SB_UNFROZEN;
1473                        sb_freeze_unlock(sb);
1474                        wake_up(&sb->s_writers.wait_unfrozen);
1475                        deactivate_locked_super(sb);
1476                        return ret;
1477                }
1478        }
1479        /*
1480         * For debugging purposes so that fs can warn if it sees write activity
1481         * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1482         */
1483        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1484        lockdep_sb_freeze_release(sb);
1485        up_write(&sb->s_umount);
1486        return 0;
1487}
1488EXPORT_SYMBOL(freeze_super);
1489
1490/**
1491 * thaw_super -- unlock filesystem
1492 * @sb: the super to thaw
1493 *
1494 * Unlocks the filesystem and marks it writeable again after freeze_super().
1495 */
1496int thaw_super(struct super_block *sb)
1497{
1498        int error;
1499
1500        down_write(&sb->s_umount);
1501        if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1502                up_write(&sb->s_umount);
1503                return -EINVAL;
1504        }
1505
1506        if (sb->s_flags & MS_RDONLY) {
1507                sb->s_writers.frozen = SB_UNFROZEN;
1508                goto out;
1509        }
1510
1511        lockdep_sb_freeze_acquire(sb);
1512
1513        if (sb->s_op->unfreeze_fs) {
1514                error = sb->s_op->unfreeze_fs(sb);
1515                if (error) {
1516                        printk(KERN_ERR
1517                                "VFS:Filesystem thaw failed\n");
1518                        lockdep_sb_freeze_release(sb);
1519                        up_write(&sb->s_umount);
1520                        return error;
1521                }
1522        }
1523
1524        sb->s_writers.frozen = SB_UNFROZEN;
1525        sb_freeze_unlock(sb);
1526out:
1527        wake_up(&sb->s_writers.wait_unfrozen);
1528        deactivate_locked_super(sb);
1529        return 0;
1530}
1531EXPORT_SYMBOL(thaw_super);
1532