linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_da_format.h"
  29#include "xfs_da_btree.h"
  30#include "xfs_inode.h"
  31#include "xfs_dir2.h"
  32#include "xfs_ialloc.h"
  33#include "xfs_alloc.h"
  34#include "xfs_rtalloc.h"
  35#include "xfs_bmap.h"
  36#include "xfs_trans.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_log.h"
  39#include "xfs_error.h"
  40#include "xfs_quota.h"
  41#include "xfs_fsops.h"
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_sysfs.h"
  45#include "xfs_rmap_btree.h"
  46#include "xfs_refcount_btree.h"
  47#include "xfs_reflink.h"
  48#include "xfs_extent_busy.h"
  49
  50
  51static DEFINE_MUTEX(xfs_uuid_table_mutex);
  52static int xfs_uuid_table_size;
  53static uuid_t *xfs_uuid_table;
  54
  55void
  56xfs_uuid_table_free(void)
  57{
  58        if (xfs_uuid_table_size == 0)
  59                return;
  60        kmem_free(xfs_uuid_table);
  61        xfs_uuid_table = NULL;
  62        xfs_uuid_table_size = 0;
  63}
  64
  65/*
  66 * See if the UUID is unique among mounted XFS filesystems.
  67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  68 */
  69STATIC int
  70xfs_uuid_mount(
  71        struct xfs_mount        *mp)
  72{
  73        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  74        int                     hole, i;
  75
  76        /* Publish UUID in struct super_block */
  77        BUILD_BUG_ON(sizeof(mp->m_super->s_uuid) != sizeof(uuid_t));
  78        memcpy(&mp->m_super->s_uuid, uuid, sizeof(uuid_t));
  79
  80        if (mp->m_flags & XFS_MOUNT_NOUUID)
  81                return 0;
  82
  83        if (uuid_is_nil(uuid)) {
  84                xfs_warn(mp, "Filesystem has nil UUID - can't mount");
  85                return -EINVAL;
  86        }
  87
  88        mutex_lock(&xfs_uuid_table_mutex);
  89        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  90                if (uuid_is_nil(&xfs_uuid_table[i])) {
  91                        hole = i;
  92                        continue;
  93                }
  94                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  95                        goto out_duplicate;
  96        }
  97
  98        if (hole < 0) {
  99                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
 100                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 101                        KM_SLEEP);
 102                hole = xfs_uuid_table_size++;
 103        }
 104        xfs_uuid_table[hole] = *uuid;
 105        mutex_unlock(&xfs_uuid_table_mutex);
 106
 107        return 0;
 108
 109 out_duplicate:
 110        mutex_unlock(&xfs_uuid_table_mutex);
 111        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 112        return -EINVAL;
 113}
 114
 115STATIC void
 116xfs_uuid_unmount(
 117        struct xfs_mount        *mp)
 118{
 119        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 120        int                     i;
 121
 122        if (mp->m_flags & XFS_MOUNT_NOUUID)
 123                return;
 124
 125        mutex_lock(&xfs_uuid_table_mutex);
 126        for (i = 0; i < xfs_uuid_table_size; i++) {
 127                if (uuid_is_nil(&xfs_uuid_table[i]))
 128                        continue;
 129                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 130                        continue;
 131                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 132                break;
 133        }
 134        ASSERT(i < xfs_uuid_table_size);
 135        mutex_unlock(&xfs_uuid_table_mutex);
 136}
 137
 138
 139STATIC void
 140__xfs_free_perag(
 141        struct rcu_head *head)
 142{
 143        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 144
 145        ASSERT(atomic_read(&pag->pag_ref) == 0);
 146        kmem_free(pag);
 147}
 148
 149/*
 150 * Free up the per-ag resources associated with the mount structure.
 151 */
 152STATIC void
 153xfs_free_perag(
 154        xfs_mount_t     *mp)
 155{
 156        xfs_agnumber_t  agno;
 157        struct xfs_perag *pag;
 158
 159        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 160                spin_lock(&mp->m_perag_lock);
 161                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 162                spin_unlock(&mp->m_perag_lock);
 163                ASSERT(pag);
 164                ASSERT(atomic_read(&pag->pag_ref) == 0);
 165                xfs_buf_hash_destroy(pag);
 166                call_rcu(&pag->rcu_head, __xfs_free_perag);
 167        }
 168}
 169
 170/*
 171 * Check size of device based on the (data/realtime) block count.
 172 * Note: this check is used by the growfs code as well as mount.
 173 */
 174int
 175xfs_sb_validate_fsb_count(
 176        xfs_sb_t        *sbp,
 177        __uint64_t      nblocks)
 178{
 179        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 180        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 181
 182        /* Limited by ULONG_MAX of page cache index */
 183        if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 184                return -EFBIG;
 185        return 0;
 186}
 187
 188int
 189xfs_initialize_perag(
 190        xfs_mount_t     *mp,
 191        xfs_agnumber_t  agcount,
 192        xfs_agnumber_t  *maxagi)
 193{
 194        xfs_agnumber_t  index;
 195        xfs_agnumber_t  first_initialised = NULLAGNUMBER;
 196        xfs_perag_t     *pag;
 197        int             error = -ENOMEM;
 198
 199        /*
 200         * Walk the current per-ag tree so we don't try to initialise AGs
 201         * that already exist (growfs case). Allocate and insert all the
 202         * AGs we don't find ready for initialisation.
 203         */
 204        for (index = 0; index < agcount; index++) {
 205                pag = xfs_perag_get(mp, index);
 206                if (pag) {
 207                        xfs_perag_put(pag);
 208                        continue;
 209                }
 210
 211                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 212                if (!pag)
 213                        goto out_unwind_new_pags;
 214                pag->pag_agno = index;
 215                pag->pag_mount = mp;
 216                spin_lock_init(&pag->pag_ici_lock);
 217                mutex_init(&pag->pag_ici_reclaim_lock);
 218                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 219                if (xfs_buf_hash_init(pag))
 220                        goto out_free_pag;
 221                init_waitqueue_head(&pag->pagb_wait);
 222
 223                if (radix_tree_preload(GFP_NOFS))
 224                        goto out_hash_destroy;
 225
 226                spin_lock(&mp->m_perag_lock);
 227                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 228                        BUG();
 229                        spin_unlock(&mp->m_perag_lock);
 230                        radix_tree_preload_end();
 231                        error = -EEXIST;
 232                        goto out_hash_destroy;
 233                }
 234                spin_unlock(&mp->m_perag_lock);
 235                radix_tree_preload_end();
 236                /* first new pag is fully initialized */
 237                if (first_initialised == NULLAGNUMBER)
 238                        first_initialised = index;
 239        }
 240
 241        index = xfs_set_inode_alloc(mp, agcount);
 242
 243        if (maxagi)
 244                *maxagi = index;
 245
 246        mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
 247        return 0;
 248
 249out_hash_destroy:
 250        xfs_buf_hash_destroy(pag);
 251out_free_pag:
 252        kmem_free(pag);
 253out_unwind_new_pags:
 254        /* unwind any prior newly initialized pags */
 255        for (index = first_initialised; index < agcount; index++) {
 256                pag = radix_tree_delete(&mp->m_perag_tree, index);
 257                if (!pag)
 258                        break;
 259                xfs_buf_hash_destroy(pag);
 260                kmem_free(pag);
 261        }
 262        return error;
 263}
 264
 265/*
 266 * xfs_readsb
 267 *
 268 * Does the initial read of the superblock.
 269 */
 270int
 271xfs_readsb(
 272        struct xfs_mount *mp,
 273        int             flags)
 274{
 275        unsigned int    sector_size;
 276        struct xfs_buf  *bp;
 277        struct xfs_sb   *sbp = &mp->m_sb;
 278        int             error;
 279        int             loud = !(flags & XFS_MFSI_QUIET);
 280        const struct xfs_buf_ops *buf_ops;
 281
 282        ASSERT(mp->m_sb_bp == NULL);
 283        ASSERT(mp->m_ddev_targp != NULL);
 284
 285        /*
 286         * For the initial read, we must guess at the sector
 287         * size based on the block device.  It's enough to
 288         * get the sb_sectsize out of the superblock and
 289         * then reread with the proper length.
 290         * We don't verify it yet, because it may not be complete.
 291         */
 292        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 293        buf_ops = NULL;
 294
 295        /*
 296         * Allocate a (locked) buffer to hold the superblock. This will be kept
 297         * around at all times to optimize access to the superblock. Therefore,
 298         * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 299         * elevated.
 300         */
 301reread:
 302        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 303                                      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 304                                      buf_ops);
 305        if (error) {
 306                if (loud)
 307                        xfs_warn(mp, "SB validate failed with error %d.", error);
 308                /* bad CRC means corrupted metadata */
 309                if (error == -EFSBADCRC)
 310                        error = -EFSCORRUPTED;
 311                return error;
 312        }
 313
 314        /*
 315         * Initialize the mount structure from the superblock.
 316         */
 317        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 318
 319        /*
 320         * If we haven't validated the superblock, do so now before we try
 321         * to check the sector size and reread the superblock appropriately.
 322         */
 323        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 324                if (loud)
 325                        xfs_warn(mp, "Invalid superblock magic number");
 326                error = -EINVAL;
 327                goto release_buf;
 328        }
 329
 330        /*
 331         * We must be able to do sector-sized and sector-aligned IO.
 332         */
 333        if (sector_size > sbp->sb_sectsize) {
 334                if (loud)
 335                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 336                                sector_size, sbp->sb_sectsize);
 337                error = -ENOSYS;
 338                goto release_buf;
 339        }
 340
 341        if (buf_ops == NULL) {
 342                /*
 343                 * Re-read the superblock so the buffer is correctly sized,
 344                 * and properly verified.
 345                 */
 346                xfs_buf_relse(bp);
 347                sector_size = sbp->sb_sectsize;
 348                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 349                goto reread;
 350        }
 351
 352        xfs_reinit_percpu_counters(mp);
 353
 354        /* no need to be quiet anymore, so reset the buf ops */
 355        bp->b_ops = &xfs_sb_buf_ops;
 356
 357        mp->m_sb_bp = bp;
 358        xfs_buf_unlock(bp);
 359        return 0;
 360
 361release_buf:
 362        xfs_buf_relse(bp);
 363        return error;
 364}
 365
 366/*
 367 * Update alignment values based on mount options and sb values
 368 */
 369STATIC int
 370xfs_update_alignment(xfs_mount_t *mp)
 371{
 372        xfs_sb_t        *sbp = &(mp->m_sb);
 373
 374        if (mp->m_dalign) {
 375                /*
 376                 * If stripe unit and stripe width are not multiples
 377                 * of the fs blocksize turn off alignment.
 378                 */
 379                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 380                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 381                        xfs_warn(mp,
 382                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 383                                sbp->sb_blocksize);
 384                        return -EINVAL;
 385                } else {
 386                        /*
 387                         * Convert the stripe unit and width to FSBs.
 388                         */
 389                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 390                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 391                                xfs_warn(mp,
 392                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 393                                         sbp->sb_agblocks);
 394                                return -EINVAL;
 395                        } else if (mp->m_dalign) {
 396                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 397                        } else {
 398                                xfs_warn(mp,
 399                        "alignment check failed: sunit(%d) less than bsize(%d)",
 400                                         mp->m_dalign, sbp->sb_blocksize);
 401                                return -EINVAL;
 402                        }
 403                }
 404
 405                /*
 406                 * Update superblock with new values
 407                 * and log changes
 408                 */
 409                if (xfs_sb_version_hasdalign(sbp)) {
 410                        if (sbp->sb_unit != mp->m_dalign) {
 411                                sbp->sb_unit = mp->m_dalign;
 412                                mp->m_update_sb = true;
 413                        }
 414                        if (sbp->sb_width != mp->m_swidth) {
 415                                sbp->sb_width = mp->m_swidth;
 416                                mp->m_update_sb = true;
 417                        }
 418                } else {
 419                        xfs_warn(mp,
 420        "cannot change alignment: superblock does not support data alignment");
 421                        return -EINVAL;
 422                }
 423        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 424                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 425                        mp->m_dalign = sbp->sb_unit;
 426                        mp->m_swidth = sbp->sb_width;
 427        }
 428
 429        return 0;
 430}
 431
 432/*
 433 * Set the maximum inode count for this filesystem
 434 */
 435STATIC void
 436xfs_set_maxicount(xfs_mount_t *mp)
 437{
 438        xfs_sb_t        *sbp = &(mp->m_sb);
 439        __uint64_t      icount;
 440
 441        if (sbp->sb_imax_pct) {
 442                /*
 443                 * Make sure the maximum inode count is a multiple
 444                 * of the units we allocate inodes in.
 445                 */
 446                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 447                do_div(icount, 100);
 448                do_div(icount, mp->m_ialloc_blks);
 449                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 450                                   sbp->sb_inopblog;
 451        } else {
 452                mp->m_maxicount = 0;
 453        }
 454}
 455
 456/*
 457 * Set the default minimum read and write sizes unless
 458 * already specified in a mount option.
 459 * We use smaller I/O sizes when the file system
 460 * is being used for NFS service (wsync mount option).
 461 */
 462STATIC void
 463xfs_set_rw_sizes(xfs_mount_t *mp)
 464{
 465        xfs_sb_t        *sbp = &(mp->m_sb);
 466        int             readio_log, writeio_log;
 467
 468        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 469                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 470                        readio_log = XFS_WSYNC_READIO_LOG;
 471                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 472                } else {
 473                        readio_log = XFS_READIO_LOG_LARGE;
 474                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 475                }
 476        } else {
 477                readio_log = mp->m_readio_log;
 478                writeio_log = mp->m_writeio_log;
 479        }
 480
 481        if (sbp->sb_blocklog > readio_log) {
 482                mp->m_readio_log = sbp->sb_blocklog;
 483        } else {
 484                mp->m_readio_log = readio_log;
 485        }
 486        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 487        if (sbp->sb_blocklog > writeio_log) {
 488                mp->m_writeio_log = sbp->sb_blocklog;
 489        } else {
 490                mp->m_writeio_log = writeio_log;
 491        }
 492        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 493}
 494
 495/*
 496 * precalculate the low space thresholds for dynamic speculative preallocation.
 497 */
 498void
 499xfs_set_low_space_thresholds(
 500        struct xfs_mount        *mp)
 501{
 502        int i;
 503
 504        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 505                __uint64_t space = mp->m_sb.sb_dblocks;
 506
 507                do_div(space, 100);
 508                mp->m_low_space[i] = space * (i + 1);
 509        }
 510}
 511
 512
 513/*
 514 * Set whether we're using inode alignment.
 515 */
 516STATIC void
 517xfs_set_inoalignment(xfs_mount_t *mp)
 518{
 519        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 520                mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
 521                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 522        else
 523                mp->m_inoalign_mask = 0;
 524        /*
 525         * If we are using stripe alignment, check whether
 526         * the stripe unit is a multiple of the inode alignment
 527         */
 528        if (mp->m_dalign && mp->m_inoalign_mask &&
 529            !(mp->m_dalign & mp->m_inoalign_mask))
 530                mp->m_sinoalign = mp->m_dalign;
 531        else
 532                mp->m_sinoalign = 0;
 533}
 534
 535/*
 536 * Check that the data (and log if separate) is an ok size.
 537 */
 538STATIC int
 539xfs_check_sizes(
 540        struct xfs_mount *mp)
 541{
 542        struct xfs_buf  *bp;
 543        xfs_daddr_t     d;
 544        int             error;
 545
 546        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 547        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 548                xfs_warn(mp, "filesystem size mismatch detected");
 549                return -EFBIG;
 550        }
 551        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 552                                        d - XFS_FSS_TO_BB(mp, 1),
 553                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 554        if (error) {
 555                xfs_warn(mp, "last sector read failed");
 556                return error;
 557        }
 558        xfs_buf_relse(bp);
 559
 560        if (mp->m_logdev_targp == mp->m_ddev_targp)
 561                return 0;
 562
 563        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 564        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 565                xfs_warn(mp, "log size mismatch detected");
 566                return -EFBIG;
 567        }
 568        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 569                                        d - XFS_FSB_TO_BB(mp, 1),
 570                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 571        if (error) {
 572                xfs_warn(mp, "log device read failed");
 573                return error;
 574        }
 575        xfs_buf_relse(bp);
 576        return 0;
 577}
 578
 579/*
 580 * Clear the quotaflags in memory and in the superblock.
 581 */
 582int
 583xfs_mount_reset_sbqflags(
 584        struct xfs_mount        *mp)
 585{
 586        mp->m_qflags = 0;
 587
 588        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 589        if (mp->m_sb.sb_qflags == 0)
 590                return 0;
 591        spin_lock(&mp->m_sb_lock);
 592        mp->m_sb.sb_qflags = 0;
 593        spin_unlock(&mp->m_sb_lock);
 594
 595        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 596                return 0;
 597
 598        return xfs_sync_sb(mp, false);
 599}
 600
 601__uint64_t
 602xfs_default_resblks(xfs_mount_t *mp)
 603{
 604        __uint64_t resblks;
 605
 606        /*
 607         * We default to 5% or 8192 fsbs of space reserved, whichever is
 608         * smaller.  This is intended to cover concurrent allocation
 609         * transactions when we initially hit enospc. These each require a 4
 610         * block reservation. Hence by default we cover roughly 2000 concurrent
 611         * allocation reservations.
 612         */
 613        resblks = mp->m_sb.sb_dblocks;
 614        do_div(resblks, 20);
 615        resblks = min_t(__uint64_t, resblks, 8192);
 616        return resblks;
 617}
 618
 619/*
 620 * This function does the following on an initial mount of a file system:
 621 *      - reads the superblock from disk and init the mount struct
 622 *      - if we're a 32-bit kernel, do a size check on the superblock
 623 *              so we don't mount terabyte filesystems
 624 *      - init mount struct realtime fields
 625 *      - allocate inode hash table for fs
 626 *      - init directory manager
 627 *      - perform recovery and init the log manager
 628 */
 629int
 630xfs_mountfs(
 631        struct xfs_mount        *mp)
 632{
 633        struct xfs_sb           *sbp = &(mp->m_sb);
 634        struct xfs_inode        *rip;
 635        __uint64_t              resblks;
 636        uint                    quotamount = 0;
 637        uint                    quotaflags = 0;
 638        int                     error = 0;
 639
 640        xfs_sb_mount_common(mp, sbp);
 641
 642        /*
 643         * Check for a mismatched features2 values.  Older kernels read & wrote
 644         * into the wrong sb offset for sb_features2 on some platforms due to
 645         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 646         * which made older superblock reading/writing routines swap it as a
 647         * 64-bit value.
 648         *
 649         * For backwards compatibility, we make both slots equal.
 650         *
 651         * If we detect a mismatched field, we OR the set bits into the existing
 652         * features2 field in case it has already been modified; we don't want
 653         * to lose any features.  We then update the bad location with the ORed
 654         * value so that older kernels will see any features2 flags. The
 655         * superblock writeback code ensures the new sb_features2 is copied to
 656         * sb_bad_features2 before it is logged or written to disk.
 657         */
 658        if (xfs_sb_has_mismatched_features2(sbp)) {
 659                xfs_warn(mp, "correcting sb_features alignment problem");
 660                sbp->sb_features2 |= sbp->sb_bad_features2;
 661                mp->m_update_sb = true;
 662
 663                /*
 664                 * Re-check for ATTR2 in case it was found in bad_features2
 665                 * slot.
 666                 */
 667                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 668                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 669                        mp->m_flags |= XFS_MOUNT_ATTR2;
 670        }
 671
 672        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 673           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 674                xfs_sb_version_removeattr2(&mp->m_sb);
 675                mp->m_update_sb = true;
 676
 677                /* update sb_versionnum for the clearing of the morebits */
 678                if (!sbp->sb_features2)
 679                        mp->m_update_sb = true;
 680        }
 681
 682        /* always use v2 inodes by default now */
 683        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 684                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 685                mp->m_update_sb = true;
 686        }
 687
 688        /*
 689         * Check if sb_agblocks is aligned at stripe boundary
 690         * If sb_agblocks is NOT aligned turn off m_dalign since
 691         * allocator alignment is within an ag, therefore ag has
 692         * to be aligned at stripe boundary.
 693         */
 694        error = xfs_update_alignment(mp);
 695        if (error)
 696                goto out;
 697
 698        xfs_alloc_compute_maxlevels(mp);
 699        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 700        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 701        xfs_ialloc_compute_maxlevels(mp);
 702        xfs_rmapbt_compute_maxlevels(mp);
 703        xfs_refcountbt_compute_maxlevels(mp);
 704
 705        xfs_set_maxicount(mp);
 706
 707        /* enable fail_at_unmount as default */
 708        mp->m_fail_unmount = 1;
 709
 710        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 711        if (error)
 712                goto out;
 713
 714        error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 715                               &mp->m_kobj, "stats");
 716        if (error)
 717                goto out_remove_sysfs;
 718
 719        error = xfs_error_sysfs_init(mp);
 720        if (error)
 721                goto out_del_stats;
 722
 723
 724        error = xfs_uuid_mount(mp);
 725        if (error)
 726                goto out_remove_error_sysfs;
 727
 728        /*
 729         * Set the minimum read and write sizes
 730         */
 731        xfs_set_rw_sizes(mp);
 732
 733        /* set the low space thresholds for dynamic preallocation */
 734        xfs_set_low_space_thresholds(mp);
 735
 736        /*
 737         * Set the inode cluster size.
 738         * This may still be overridden by the file system
 739         * block size if it is larger than the chosen cluster size.
 740         *
 741         * For v5 filesystems, scale the cluster size with the inode size to
 742         * keep a constant ratio of inode per cluster buffer, but only if mkfs
 743         * has set the inode alignment value appropriately for larger cluster
 744         * sizes.
 745         */
 746        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 747        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 748                int     new_size = mp->m_inode_cluster_size;
 749
 750                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 751                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 752                        mp->m_inode_cluster_size = new_size;
 753        }
 754
 755        /*
 756         * If enabled, sparse inode chunk alignment is expected to match the
 757         * cluster size. Full inode chunk alignment must match the chunk size,
 758         * but that is checked on sb read verification...
 759         */
 760        if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 761            mp->m_sb.sb_spino_align !=
 762                        XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
 763                xfs_warn(mp,
 764        "Sparse inode block alignment (%u) must match cluster size (%llu).",
 765                         mp->m_sb.sb_spino_align,
 766                         XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
 767                error = -EINVAL;
 768                goto out_remove_uuid;
 769        }
 770
 771        /*
 772         * Set inode alignment fields
 773         */
 774        xfs_set_inoalignment(mp);
 775
 776        /*
 777         * Check that the data (and log if separate) is an ok size.
 778         */
 779        error = xfs_check_sizes(mp);
 780        if (error)
 781                goto out_remove_uuid;
 782
 783        /*
 784         * Initialize realtime fields in the mount structure
 785         */
 786        error = xfs_rtmount_init(mp);
 787        if (error) {
 788                xfs_warn(mp, "RT mount failed");
 789                goto out_remove_uuid;
 790        }
 791
 792        /*
 793         *  Copies the low order bits of the timestamp and the randomly
 794         *  set "sequence" number out of a UUID.
 795         */
 796        uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 797
 798        mp->m_dmevmask = 0;     /* not persistent; set after each mount */
 799
 800        error = xfs_da_mount(mp);
 801        if (error) {
 802                xfs_warn(mp, "Failed dir/attr init: %d", error);
 803                goto out_remove_uuid;
 804        }
 805
 806        /*
 807         * Initialize the precomputed transaction reservations values.
 808         */
 809        xfs_trans_init(mp);
 810
 811        /*
 812         * Allocate and initialize the per-ag data.
 813         */
 814        spin_lock_init(&mp->m_perag_lock);
 815        INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 816        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 817        if (error) {
 818                xfs_warn(mp, "Failed per-ag init: %d", error);
 819                goto out_free_dir;
 820        }
 821
 822        if (!sbp->sb_logblocks) {
 823                xfs_warn(mp, "no log defined");
 824                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 825                error = -EFSCORRUPTED;
 826                goto out_free_perag;
 827        }
 828
 829        /*
 830         * Log's mount-time initialization. The first part of recovery can place
 831         * some items on the AIL, to be handled when recovery is finished or
 832         * cancelled.
 833         */
 834        error = xfs_log_mount(mp, mp->m_logdev_targp,
 835                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 836                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 837        if (error) {
 838                xfs_warn(mp, "log mount failed");
 839                goto out_fail_wait;
 840        }
 841
 842        /*
 843         * Now the log is mounted, we know if it was an unclean shutdown or
 844         * not. If it was, with the first phase of recovery has completed, we
 845         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 846         * but they are recovered transactionally in the second recovery phase
 847         * later.
 848         *
 849         * Hence we can safely re-initialise incore superblock counters from
 850         * the per-ag data. These may not be correct if the filesystem was not
 851         * cleanly unmounted, so we need to wait for recovery to finish before
 852         * doing this.
 853         *
 854         * If the filesystem was cleanly unmounted, then we can trust the
 855         * values in the superblock to be correct and we don't need to do
 856         * anything here.
 857         *
 858         * If we are currently making the filesystem, the initialisation will
 859         * fail as the perag data is in an undefined state.
 860         */
 861        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 862            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 863             !mp->m_sb.sb_inprogress) {
 864                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 865                if (error)
 866                        goto out_log_dealloc;
 867        }
 868
 869        /*
 870         * Get and sanity-check the root inode.
 871         * Save the pointer to it in the mount structure.
 872         */
 873        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 874        if (error) {
 875                xfs_warn(mp, "failed to read root inode");
 876                goto out_log_dealloc;
 877        }
 878
 879        ASSERT(rip != NULL);
 880
 881        if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
 882                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 883                        (unsigned long long)rip->i_ino);
 884                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 885                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 886                                 mp);
 887                error = -EFSCORRUPTED;
 888                goto out_rele_rip;
 889        }
 890        mp->m_rootip = rip;     /* save it */
 891
 892        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 893
 894        /*
 895         * Initialize realtime inode pointers in the mount structure
 896         */
 897        error = xfs_rtmount_inodes(mp);
 898        if (error) {
 899                /*
 900                 * Free up the root inode.
 901                 */
 902                xfs_warn(mp, "failed to read RT inodes");
 903                goto out_rele_rip;
 904        }
 905
 906        /*
 907         * If this is a read-only mount defer the superblock updates until
 908         * the next remount into writeable mode.  Otherwise we would never
 909         * perform the update e.g. for the root filesystem.
 910         */
 911        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 912                error = xfs_sync_sb(mp, false);
 913                if (error) {
 914                        xfs_warn(mp, "failed to write sb changes");
 915                        goto out_rtunmount;
 916                }
 917        }
 918
 919        /*
 920         * Initialise the XFS quota management subsystem for this mount
 921         */
 922        if (XFS_IS_QUOTA_RUNNING(mp)) {
 923                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 924                if (error)
 925                        goto out_rtunmount;
 926        } else {
 927                ASSERT(!XFS_IS_QUOTA_ON(mp));
 928
 929                /*
 930                 * If a file system had quotas running earlier, but decided to
 931                 * mount without -o uquota/pquota/gquota options, revoke the
 932                 * quotachecked license.
 933                 */
 934                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 935                        xfs_notice(mp, "resetting quota flags");
 936                        error = xfs_mount_reset_sbqflags(mp);
 937                        if (error)
 938                                goto out_rtunmount;
 939                }
 940        }
 941
 942        /*
 943         * During the second phase of log recovery, we need iget and
 944         * iput to behave like they do for an active filesystem.
 945         * xfs_fs_drop_inode needs to be able to prevent the deletion
 946         * of inodes before we're done replaying log items on those
 947         * inodes.
 948         */
 949        mp->m_super->s_flags |= MS_ACTIVE;
 950
 951        /*
 952         * Finish recovering the file system.  This part needed to be delayed
 953         * until after the root and real-time bitmap inodes were consistently
 954         * read in.
 955         */
 956        error = xfs_log_mount_finish(mp);
 957        if (error) {
 958                xfs_warn(mp, "log mount finish failed");
 959                goto out_rtunmount;
 960        }
 961
 962        /*
 963         * Now the log is fully replayed, we can transition to full read-only
 964         * mode for read-only mounts. This will sync all the metadata and clean
 965         * the log so that the recovery we just performed does not have to be
 966         * replayed again on the next mount.
 967         *
 968         * We use the same quiesce mechanism as the rw->ro remount, as they are
 969         * semantically identical operations.
 970         */
 971        if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 972                                                        XFS_MOUNT_RDONLY) {
 973                xfs_quiesce_attr(mp);
 974        }
 975
 976        /*
 977         * Complete the quota initialisation, post-log-replay component.
 978         */
 979        if (quotamount) {
 980                ASSERT(mp->m_qflags == 0);
 981                mp->m_qflags = quotaflags;
 982
 983                xfs_qm_mount_quotas(mp);
 984        }
 985
 986        /*
 987         * Now we are mounted, reserve a small amount of unused space for
 988         * privileged transactions. This is needed so that transaction
 989         * space required for critical operations can dip into this pool
 990         * when at ENOSPC. This is needed for operations like create with
 991         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 992         * are not allowed to use this reserved space.
 993         *
 994         * This may drive us straight to ENOSPC on mount, but that implies
 995         * we were already there on the last unmount. Warn if this occurs.
 996         */
 997        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 998                resblks = xfs_default_resblks(mp);
 999                error = xfs_reserve_blocks(mp, &resblks, NULL);
1000                if (error)
1001                        xfs_warn(mp,
1002        "Unable to allocate reserve blocks. Continuing without reserve pool.");
1003
1004                /* Recover any CoW blocks that never got remapped. */
1005                error = xfs_reflink_recover_cow(mp);
1006                if (error) {
1007                        xfs_err(mp,
1008        "Error %d recovering leftover CoW allocations.", error);
1009                        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1010                        goto out_quota;
1011                }
1012
1013                /* Reserve AG blocks for future btree expansion. */
1014                error = xfs_fs_reserve_ag_blocks(mp);
1015                if (error && error != -ENOSPC)
1016                        goto out_agresv;
1017        }
1018
1019        return 0;
1020
1021 out_agresv:
1022        xfs_fs_unreserve_ag_blocks(mp);
1023 out_quota:
1024        xfs_qm_unmount_quotas(mp);
1025 out_rtunmount:
1026        mp->m_super->s_flags &= ~MS_ACTIVE;
1027        xfs_rtunmount_inodes(mp);
1028 out_rele_rip:
1029        IRELE(rip);
1030        cancel_delayed_work_sync(&mp->m_reclaim_work);
1031        xfs_reclaim_inodes(mp, SYNC_WAIT);
1032 out_log_dealloc:
1033        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1034        xfs_log_mount_cancel(mp);
1035 out_fail_wait:
1036        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1037                xfs_wait_buftarg(mp->m_logdev_targp);
1038        xfs_wait_buftarg(mp->m_ddev_targp);
1039 out_free_perag:
1040        xfs_free_perag(mp);
1041 out_free_dir:
1042        xfs_da_unmount(mp);
1043 out_remove_uuid:
1044        xfs_uuid_unmount(mp);
1045 out_remove_error_sysfs:
1046        xfs_error_sysfs_del(mp);
1047 out_del_stats:
1048        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1049 out_remove_sysfs:
1050        xfs_sysfs_del(&mp->m_kobj);
1051 out:
1052        return error;
1053}
1054
1055/*
1056 * This flushes out the inodes,dquots and the superblock, unmounts the
1057 * log and makes sure that incore structures are freed.
1058 */
1059void
1060xfs_unmountfs(
1061        struct xfs_mount        *mp)
1062{
1063        __uint64_t              resblks;
1064        int                     error;
1065
1066        cancel_delayed_work_sync(&mp->m_eofblocks_work);
1067        cancel_delayed_work_sync(&mp->m_cowblocks_work);
1068
1069        xfs_fs_unreserve_ag_blocks(mp);
1070        xfs_qm_unmount_quotas(mp);
1071        xfs_rtunmount_inodes(mp);
1072        IRELE(mp->m_rootip);
1073
1074        /*
1075         * We can potentially deadlock here if we have an inode cluster
1076         * that has been freed has its buffer still pinned in memory because
1077         * the transaction is still sitting in a iclog. The stale inodes
1078         * on that buffer will have their flush locks held until the
1079         * transaction hits the disk and the callbacks run. the inode
1080         * flush takes the flush lock unconditionally and with nothing to
1081         * push out the iclog we will never get that unlocked. hence we
1082         * need to force the log first.
1083         */
1084        xfs_log_force(mp, XFS_LOG_SYNC);
1085
1086        /*
1087         * Wait for all busy extents to be freed, including completion of
1088         * any discard operation.
1089         */
1090        xfs_extent_busy_wait_all(mp);
1091        flush_workqueue(xfs_discard_wq);
1092
1093        /*
1094         * We now need to tell the world we are unmounting. This will allow
1095         * us to detect that the filesystem is going away and we should error
1096         * out anything that we have been retrying in the background. This will
1097         * prevent neverending retries in AIL pushing from hanging the unmount.
1098         */
1099        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1100
1101        /*
1102         * Flush all pending changes from the AIL.
1103         */
1104        xfs_ail_push_all_sync(mp->m_ail);
1105
1106        /*
1107         * And reclaim all inodes.  At this point there should be no dirty
1108         * inodes and none should be pinned or locked, but use synchronous
1109         * reclaim just to be sure. We can stop background inode reclaim
1110         * here as well if it is still running.
1111         */
1112        cancel_delayed_work_sync(&mp->m_reclaim_work);
1113        xfs_reclaim_inodes(mp, SYNC_WAIT);
1114
1115        xfs_qm_unmount(mp);
1116
1117        /*
1118         * Unreserve any blocks we have so that when we unmount we don't account
1119         * the reserved free space as used. This is really only necessary for
1120         * lazy superblock counting because it trusts the incore superblock
1121         * counters to be absolutely correct on clean unmount.
1122         *
1123         * We don't bother correcting this elsewhere for lazy superblock
1124         * counting because on mount of an unclean filesystem we reconstruct the
1125         * correct counter value and this is irrelevant.
1126         *
1127         * For non-lazy counter filesystems, this doesn't matter at all because
1128         * we only every apply deltas to the superblock and hence the incore
1129         * value does not matter....
1130         */
1131        resblks = 0;
1132        error = xfs_reserve_blocks(mp, &resblks, NULL);
1133        if (error)
1134                xfs_warn(mp, "Unable to free reserved block pool. "
1135                                "Freespace may not be correct on next mount.");
1136
1137        error = xfs_log_sbcount(mp);
1138        if (error)
1139                xfs_warn(mp, "Unable to update superblock counters. "
1140                                "Freespace may not be correct on next mount.");
1141
1142
1143        xfs_log_unmount(mp);
1144        xfs_da_unmount(mp);
1145        xfs_uuid_unmount(mp);
1146
1147#if defined(DEBUG)
1148        xfs_errortag_clearall(mp, 0);
1149#endif
1150        xfs_free_perag(mp);
1151
1152        xfs_error_sysfs_del(mp);
1153        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1154        xfs_sysfs_del(&mp->m_kobj);
1155}
1156
1157/*
1158 * Determine whether modifications can proceed. The caller specifies the minimum
1159 * freeze level for which modifications should not be allowed. This allows
1160 * certain operations to proceed while the freeze sequence is in progress, if
1161 * necessary.
1162 */
1163bool
1164xfs_fs_writable(
1165        struct xfs_mount        *mp,
1166        int                     level)
1167{
1168        ASSERT(level > SB_UNFROZEN);
1169        if ((mp->m_super->s_writers.frozen >= level) ||
1170            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1171                return false;
1172
1173        return true;
1174}
1175
1176/*
1177 * xfs_log_sbcount
1178 *
1179 * Sync the superblock counters to disk.
1180 *
1181 * Note this code can be called during the process of freezing, so we use the
1182 * transaction allocator that does not block when the transaction subsystem is
1183 * in its frozen state.
1184 */
1185int
1186xfs_log_sbcount(xfs_mount_t *mp)
1187{
1188        /* allow this to proceed during the freeze sequence... */
1189        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1190                return 0;
1191
1192        /*
1193         * we don't need to do this if we are updating the superblock
1194         * counters on every modification.
1195         */
1196        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1197                return 0;
1198
1199        return xfs_sync_sb(mp, true);
1200}
1201
1202/*
1203 * Deltas for the inode count are +/-64, hence we use a large batch size
1204 * of 128 so we don't need to take the counter lock on every update.
1205 */
1206#define XFS_ICOUNT_BATCH        128
1207int
1208xfs_mod_icount(
1209        struct xfs_mount        *mp,
1210        int64_t                 delta)
1211{
1212        __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1213        if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1214                ASSERT(0);
1215                percpu_counter_add(&mp->m_icount, -delta);
1216                return -EINVAL;
1217        }
1218        return 0;
1219}
1220
1221int
1222xfs_mod_ifree(
1223        struct xfs_mount        *mp,
1224        int64_t                 delta)
1225{
1226        percpu_counter_add(&mp->m_ifree, delta);
1227        if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1228                ASSERT(0);
1229                percpu_counter_add(&mp->m_ifree, -delta);
1230                return -EINVAL;
1231        }
1232        return 0;
1233}
1234
1235/*
1236 * Deltas for the block count can vary from 1 to very large, but lock contention
1237 * only occurs on frequent small block count updates such as in the delayed
1238 * allocation path for buffered writes (page a time updates). Hence we set
1239 * a large batch count (1024) to minimise global counter updates except when
1240 * we get near to ENOSPC and we have to be very accurate with our updates.
1241 */
1242#define XFS_FDBLOCKS_BATCH      1024
1243int
1244xfs_mod_fdblocks(
1245        struct xfs_mount        *mp,
1246        int64_t                 delta,
1247        bool                    rsvd)
1248{
1249        int64_t                 lcounter;
1250        long long               res_used;
1251        s32                     batch;
1252
1253        if (delta > 0) {
1254                /*
1255                 * If the reserve pool is depleted, put blocks back into it
1256                 * first. Most of the time the pool is full.
1257                 */
1258                if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1259                        percpu_counter_add(&mp->m_fdblocks, delta);
1260                        return 0;
1261                }
1262
1263                spin_lock(&mp->m_sb_lock);
1264                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1265
1266                if (res_used > delta) {
1267                        mp->m_resblks_avail += delta;
1268                } else {
1269                        delta -= res_used;
1270                        mp->m_resblks_avail = mp->m_resblks;
1271                        percpu_counter_add(&mp->m_fdblocks, delta);
1272                }
1273                spin_unlock(&mp->m_sb_lock);
1274                return 0;
1275        }
1276
1277        /*
1278         * Taking blocks away, need to be more accurate the closer we
1279         * are to zero.
1280         *
1281         * If the counter has a value of less than 2 * max batch size,
1282         * then make everything serialise as we are real close to
1283         * ENOSPC.
1284         */
1285        if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1286                                     XFS_FDBLOCKS_BATCH) < 0)
1287                batch = 1;
1288        else
1289                batch = XFS_FDBLOCKS_BATCH;
1290
1291        __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1292        if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1293                                     XFS_FDBLOCKS_BATCH) >= 0) {
1294                /* we had space! */
1295                return 0;
1296        }
1297
1298        /*
1299         * lock up the sb for dipping into reserves before releasing the space
1300         * that took us to ENOSPC.
1301         */
1302        spin_lock(&mp->m_sb_lock);
1303        percpu_counter_add(&mp->m_fdblocks, -delta);
1304        if (!rsvd)
1305                goto fdblocks_enospc;
1306
1307        lcounter = (long long)mp->m_resblks_avail + delta;
1308        if (lcounter >= 0) {
1309                mp->m_resblks_avail = lcounter;
1310                spin_unlock(&mp->m_sb_lock);
1311                return 0;
1312        }
1313        printk_once(KERN_WARNING
1314                "Filesystem \"%s\": reserve blocks depleted! "
1315                "Consider increasing reserve pool size.",
1316                mp->m_fsname);
1317fdblocks_enospc:
1318        spin_unlock(&mp->m_sb_lock);
1319        return -ENOSPC;
1320}
1321
1322int
1323xfs_mod_frextents(
1324        struct xfs_mount        *mp,
1325        int64_t                 delta)
1326{
1327        int64_t                 lcounter;
1328        int                     ret = 0;
1329
1330        spin_lock(&mp->m_sb_lock);
1331        lcounter = mp->m_sb.sb_frextents + delta;
1332        if (lcounter < 0)
1333                ret = -ENOSPC;
1334        else
1335                mp->m_sb.sb_frextents = lcounter;
1336        spin_unlock(&mp->m_sb_lock);
1337        return ret;
1338}
1339
1340/*
1341 * xfs_getsb() is called to obtain the buffer for the superblock.
1342 * The buffer is returned locked and read in from disk.
1343 * The buffer should be released with a call to xfs_brelse().
1344 *
1345 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1346 * the superblock buffer if it can be locked without sleeping.
1347 * If it can't then we'll return NULL.
1348 */
1349struct xfs_buf *
1350xfs_getsb(
1351        struct xfs_mount        *mp,
1352        int                     flags)
1353{
1354        struct xfs_buf          *bp = mp->m_sb_bp;
1355
1356        if (!xfs_buf_trylock(bp)) {
1357                if (flags & XBF_TRYLOCK)
1358                        return NULL;
1359                xfs_buf_lock(bp);
1360        }
1361
1362        xfs_buf_hold(bp);
1363        ASSERT(bp->b_flags & XBF_DONE);
1364        return bp;
1365}
1366
1367/*
1368 * Used to free the superblock along various error paths.
1369 */
1370void
1371xfs_freesb(
1372        struct xfs_mount        *mp)
1373{
1374        struct xfs_buf          *bp = mp->m_sb_bp;
1375
1376        xfs_buf_lock(bp);
1377        mp->m_sb_bp = NULL;
1378        xfs_buf_relse(bp);
1379}
1380
1381/*
1382 * If the underlying (data/log/rt) device is readonly, there are some
1383 * operations that cannot proceed.
1384 */
1385int
1386xfs_dev_is_read_only(
1387        struct xfs_mount        *mp,
1388        char                    *message)
1389{
1390        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1391            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1392            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1393                xfs_notice(mp, "%s required on read-only device.", message);
1394                xfs_notice(mp, "write access unavailable, cannot proceed.");
1395                return -EROFS;
1396        }
1397        return 0;
1398}
1399