linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in the
  15 * file called COPYING.
  16 */
  17#ifndef LINUX_DMAENGINE_H
  18#define LINUX_DMAENGINE_H
  19
  20#include <linux/device.h>
  21#include <linux/err.h>
  22#include <linux/uio.h>
  23#include <linux/bug.h>
  24#include <linux/scatterlist.h>
  25#include <linux/bitmap.h>
  26#include <linux/types.h>
  27#include <asm/page.h>
  28
  29/**
  30 * typedef dma_cookie_t - an opaque DMA cookie
  31 *
  32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  33 */
  34typedef s32 dma_cookie_t;
  35#define DMA_MIN_COOKIE  1
  36
  37static inline int dma_submit_error(dma_cookie_t cookie)
  38{
  39        return cookie < 0 ? cookie : 0;
  40}
  41
  42/**
  43 * enum dma_status - DMA transaction status
  44 * @DMA_COMPLETE: transaction completed
  45 * @DMA_IN_PROGRESS: transaction not yet processed
  46 * @DMA_PAUSED: transaction is paused
  47 * @DMA_ERROR: transaction failed
  48 */
  49enum dma_status {
  50        DMA_COMPLETE,
  51        DMA_IN_PROGRESS,
  52        DMA_PAUSED,
  53        DMA_ERROR,
  54};
  55
  56/**
  57 * enum dma_transaction_type - DMA transaction types/indexes
  58 *
  59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  60 * automatically set as dma devices are registered.
  61 */
  62enum dma_transaction_type {
  63        DMA_MEMCPY,
  64        DMA_XOR,
  65        DMA_PQ,
  66        DMA_XOR_VAL,
  67        DMA_PQ_VAL,
  68        DMA_MEMSET,
  69        DMA_MEMSET_SG,
  70        DMA_INTERRUPT,
  71        DMA_SG,
  72        DMA_PRIVATE,
  73        DMA_ASYNC_TX,
  74        DMA_SLAVE,
  75        DMA_CYCLIC,
  76        DMA_INTERLEAVE,
  77/* last transaction type for creation of the capabilities mask */
  78        DMA_TX_TYPE_END,
  79};
  80
  81/**
  82 * enum dma_transfer_direction - dma transfer mode and direction indicator
  83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  87 */
  88enum dma_transfer_direction {
  89        DMA_MEM_TO_MEM,
  90        DMA_MEM_TO_DEV,
  91        DMA_DEV_TO_MEM,
  92        DMA_DEV_TO_DEV,
  93        DMA_TRANS_NONE,
  94};
  95
  96/**
  97 * Interleaved Transfer Request
  98 * ----------------------------
  99 * A chunk is collection of contiguous bytes to be transfered.
 100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
 101 * ICGs may or maynot change between chunks.
 102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
 103 *  that when repeated an integral number of times, specifies the transfer.
 104 * A transfer template is specification of a Frame, the number of times
 105 *  it is to be repeated and other per-transfer attributes.
 106 *
 107 * Practically, a client driver would have ready a template for each
 108 *  type of transfer it is going to need during its lifetime and
 109 *  set only 'src_start' and 'dst_start' before submitting the requests.
 110 *
 111 *
 112 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 113 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 114 *
 115 *    ==  Chunk size
 116 *    ... ICG
 117 */
 118
 119/**
 120 * struct data_chunk - Element of scatter-gather list that makes a frame.
 121 * @size: Number of bytes to read from source.
 122 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 123 * @icg: Number of bytes to jump after last src/dst address of this
 124 *       chunk and before first src/dst address for next chunk.
 125 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 126 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 127 * @dst_icg: Number of bytes to jump after last dst address of this
 128 *       chunk and before the first dst address for next chunk.
 129 *       Ignored if dst_inc is true and dst_sgl is false.
 130 * @src_icg: Number of bytes to jump after last src address of this
 131 *       chunk and before the first src address for next chunk.
 132 *       Ignored if src_inc is true and src_sgl is false.
 133 */
 134struct data_chunk {
 135        size_t size;
 136        size_t icg;
 137        size_t dst_icg;
 138        size_t src_icg;
 139};
 140
 141/**
 142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 143 *       and attributes.
 144 * @src_start: Bus address of source for the first chunk.
 145 * @dst_start: Bus address of destination for the first chunk.
 146 * @dir: Specifies the type of Source and Destination.
 147 * @src_inc: If the source address increments after reading from it.
 148 * @dst_inc: If the destination address increments after writing to it.
 149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 150 *              Otherwise, source is read contiguously (icg ignored).
 151 *              Ignored if src_inc is false.
 152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 153 *              Otherwise, destination is filled contiguously (icg ignored).
 154 *              Ignored if dst_inc is false.
 155 * @numf: Number of frames in this template.
 156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 158 */
 159struct dma_interleaved_template {
 160        dma_addr_t src_start;
 161        dma_addr_t dst_start;
 162        enum dma_transfer_direction dir;
 163        bool src_inc;
 164        bool dst_inc;
 165        bool src_sgl;
 166        bool dst_sgl;
 167        size_t numf;
 168        size_t frame_size;
 169        struct data_chunk sgl[0];
 170};
 171
 172/**
 173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 174 *  control completion, and communicate status.
 175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 176 *  this transaction
 177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 178 *  acknowledges receipt, i.e. has has a chance to establish any dependency
 179 *  chains
 180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 183 *  sources that were the result of a previous operation, in the case of a PQ
 184 *  operation it continues the calculation with new sources
 185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 186 *  on the result of this operation
 187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
 188 *  cleared or freed
 189 */
 190enum dma_ctrl_flags {
 191        DMA_PREP_INTERRUPT = (1 << 0),
 192        DMA_CTRL_ACK = (1 << 1),
 193        DMA_PREP_PQ_DISABLE_P = (1 << 2),
 194        DMA_PREP_PQ_DISABLE_Q = (1 << 3),
 195        DMA_PREP_CONTINUE = (1 << 4),
 196        DMA_PREP_FENCE = (1 << 5),
 197        DMA_CTRL_REUSE = (1 << 6),
 198};
 199
 200/**
 201 * enum sum_check_bits - bit position of pq_check_flags
 202 */
 203enum sum_check_bits {
 204        SUM_CHECK_P = 0,
 205        SUM_CHECK_Q = 1,
 206};
 207
 208/**
 209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 212 */
 213enum sum_check_flags {
 214        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 215        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 216};
 217
 218
 219/**
 220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 221 * See linux/cpumask.h
 222 */
 223typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 224
 225/**
 226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 227 * @memcpy_count: transaction counter
 228 * @bytes_transferred: byte counter
 229 */
 230
 231struct dma_chan_percpu {
 232        /* stats */
 233        unsigned long memcpy_count;
 234        unsigned long bytes_transferred;
 235};
 236
 237/**
 238 * struct dma_router - DMA router structure
 239 * @dev: pointer to the DMA router device
 240 * @route_free: function to be called when the route can be disconnected
 241 */
 242struct dma_router {
 243        struct device *dev;
 244        void (*route_free)(struct device *dev, void *route_data);
 245};
 246
 247/**
 248 * struct dma_chan - devices supply DMA channels, clients use them
 249 * @device: ptr to the dma device who supplies this channel, always !%NULL
 250 * @cookie: last cookie value returned to client
 251 * @completed_cookie: last completed cookie for this channel
 252 * @chan_id: channel ID for sysfs
 253 * @dev: class device for sysfs
 254 * @device_node: used to add this to the device chan list
 255 * @local: per-cpu pointer to a struct dma_chan_percpu
 256 * @client_count: how many clients are using this channel
 257 * @table_count: number of appearances in the mem-to-mem allocation table
 258 * @router: pointer to the DMA router structure
 259 * @route_data: channel specific data for the router
 260 * @private: private data for certain client-channel associations
 261 */
 262struct dma_chan {
 263        struct dma_device *device;
 264        dma_cookie_t cookie;
 265        dma_cookie_t completed_cookie;
 266
 267        /* sysfs */
 268        int chan_id;
 269        struct dma_chan_dev *dev;
 270
 271        struct list_head device_node;
 272        struct dma_chan_percpu __percpu *local;
 273        int client_count;
 274        int table_count;
 275
 276        /* DMA router */
 277        struct dma_router *router;
 278        void *route_data;
 279
 280        void *private;
 281};
 282
 283/**
 284 * struct dma_chan_dev - relate sysfs device node to backing channel device
 285 * @chan: driver channel device
 286 * @device: sysfs device
 287 * @dev_id: parent dma_device dev_id
 288 * @idr_ref: reference count to gate release of dma_device dev_id
 289 */
 290struct dma_chan_dev {
 291        struct dma_chan *chan;
 292        struct device device;
 293        int dev_id;
 294        atomic_t *idr_ref;
 295};
 296
 297/**
 298 * enum dma_slave_buswidth - defines bus width of the DMA slave
 299 * device, source or target buses
 300 */
 301enum dma_slave_buswidth {
 302        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 303        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 304        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 305        DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
 306        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 307        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 308        DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
 309        DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
 310        DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
 311};
 312
 313/**
 314 * struct dma_slave_config - dma slave channel runtime config
 315 * @direction: whether the data shall go in or out on this slave
 316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
 317 * legal values. DEPRECATED, drivers should use the direction argument
 318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
 319 * the dir field in the dma_interleaved_template structure.
 320 * @src_addr: this is the physical address where DMA slave data
 321 * should be read (RX), if the source is memory this argument is
 322 * ignored.
 323 * @dst_addr: this is the physical address where DMA slave data
 324 * should be written (TX), if the source is memory this argument
 325 * is ignored.
 326 * @src_addr_width: this is the width in bytes of the source (RX)
 327 * register where DMA data shall be read. If the source
 328 * is memory this may be ignored depending on architecture.
 329 * Legal values: 1, 2, 4, 8.
 330 * @dst_addr_width: same as src_addr_width but for destination
 331 * target (TX) mutatis mutandis.
 332 * @src_maxburst: the maximum number of words (note: words, as in
 333 * units of the src_addr_width member, not bytes) that can be sent
 334 * in one burst to the device. Typically something like half the
 335 * FIFO depth on I/O peripherals so you don't overflow it. This
 336 * may or may not be applicable on memory sources.
 337 * @dst_maxburst: same as src_maxburst but for destination target
 338 * mutatis mutandis.
 339 * @src_port_window_size: The length of the register area in words the data need
 340 * to be accessed on the device side. It is only used for devices which is using
 341 * an area instead of a single register to receive the data. Typically the DMA
 342 * loops in this area in order to transfer the data.
 343 * @dst_port_window_size: same as src_port_window_size but for the destination
 344 * port.
 345 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 346 * with 'true' if peripheral should be flow controller. Direction will be
 347 * selected at Runtime.
 348 * @slave_id: Slave requester id. Only valid for slave channels. The dma
 349 * slave peripheral will have unique id as dma requester which need to be
 350 * pass as slave config.
 351 *
 352 * This struct is passed in as configuration data to a DMA engine
 353 * in order to set up a certain channel for DMA transport at runtime.
 354 * The DMA device/engine has to provide support for an additional
 355 * callback in the dma_device structure, device_config and this struct
 356 * will then be passed in as an argument to the function.
 357 *
 358 * The rationale for adding configuration information to this struct is as
 359 * follows: if it is likely that more than one DMA slave controllers in
 360 * the world will support the configuration option, then make it generic.
 361 * If not: if it is fixed so that it be sent in static from the platform
 362 * data, then prefer to do that.
 363 */
 364struct dma_slave_config {
 365        enum dma_transfer_direction direction;
 366        phys_addr_t src_addr;
 367        phys_addr_t dst_addr;
 368        enum dma_slave_buswidth src_addr_width;
 369        enum dma_slave_buswidth dst_addr_width;
 370        u32 src_maxburst;
 371        u32 dst_maxburst;
 372        u32 src_port_window_size;
 373        u32 dst_port_window_size;
 374        bool device_fc;
 375        unsigned int slave_id;
 376};
 377
 378/**
 379 * enum dma_residue_granularity - Granularity of the reported transfer residue
 380 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 381 *  DMA channel is only able to tell whether a descriptor has been completed or
 382 *  not, which means residue reporting is not supported by this channel. The
 383 *  residue field of the dma_tx_state field will always be 0.
 384 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 385 *  completed segment of the transfer (For cyclic transfers this is after each
 386 *  period). This is typically implemented by having the hardware generate an
 387 *  interrupt after each transferred segment and then the drivers updates the
 388 *  outstanding residue by the size of the segment. Another possibility is if
 389 *  the hardware supports scatter-gather and the segment descriptor has a field
 390 *  which gets set after the segment has been completed. The driver then counts
 391 *  the number of segments without the flag set to compute the residue.
 392 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 393 *  burst. This is typically only supported if the hardware has a progress
 394 *  register of some sort (E.g. a register with the current read/write address
 395 *  or a register with the amount of bursts/beats/bytes that have been
 396 *  transferred or still need to be transferred).
 397 */
 398enum dma_residue_granularity {
 399        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 400        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 401        DMA_RESIDUE_GRANULARITY_BURST = 2,
 402};
 403
 404/* struct dma_slave_caps - expose capabilities of a slave channel only
 405 *
 406 * @src_addr_widths: bit mask of src addr widths the channel supports
 407 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
 408 * @directions: bit mask of slave direction the channel supported
 409 *      since the enum dma_transfer_direction is not defined as bits for each
 410 *      type of direction, the dma controller should fill (1 << <TYPE>) and same
 411 *      should be checked by controller as well
 412 * @max_burst: max burst capability per-transfer
 413 * @cmd_pause: true, if pause and thereby resume is supported
 414 * @cmd_terminate: true, if terminate cmd is supported
 415 * @residue_granularity: granularity of the reported transfer residue
 416 * @descriptor_reuse: if a descriptor can be reused by client and
 417 * resubmitted multiple times
 418 */
 419struct dma_slave_caps {
 420        u32 src_addr_widths;
 421        u32 dst_addr_widths;
 422        u32 directions;
 423        u32 max_burst;
 424        bool cmd_pause;
 425        bool cmd_terminate;
 426        enum dma_residue_granularity residue_granularity;
 427        bool descriptor_reuse;
 428};
 429
 430static inline const char *dma_chan_name(struct dma_chan *chan)
 431{
 432        return dev_name(&chan->dev->device);
 433}
 434
 435void dma_chan_cleanup(struct kref *kref);
 436
 437/**
 438 * typedef dma_filter_fn - callback filter for dma_request_channel
 439 * @chan: channel to be reviewed
 440 * @filter_param: opaque parameter passed through dma_request_channel
 441 *
 442 * When this optional parameter is specified in a call to dma_request_channel a
 443 * suitable channel is passed to this routine for further dispositioning before
 444 * being returned.  Where 'suitable' indicates a non-busy channel that
 445 * satisfies the given capability mask.  It returns 'true' to indicate that the
 446 * channel is suitable.
 447 */
 448typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 449
 450typedef void (*dma_async_tx_callback)(void *dma_async_param);
 451
 452enum dmaengine_tx_result {
 453        DMA_TRANS_NOERROR = 0,          /* SUCCESS */
 454        DMA_TRANS_READ_FAILED,          /* Source DMA read failed */
 455        DMA_TRANS_WRITE_FAILED,         /* Destination DMA write failed */
 456        DMA_TRANS_ABORTED,              /* Op never submitted / aborted */
 457};
 458
 459struct dmaengine_result {
 460        enum dmaengine_tx_result result;
 461        u32 residue;
 462};
 463
 464typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
 465                                const struct dmaengine_result *result);
 466
 467struct dmaengine_unmap_data {
 468        u8 map_cnt;
 469        u8 to_cnt;
 470        u8 from_cnt;
 471        u8 bidi_cnt;
 472        struct device *dev;
 473        struct kref kref;
 474        size_t len;
 475        dma_addr_t addr[0];
 476};
 477
 478/**
 479 * struct dma_async_tx_descriptor - async transaction descriptor
 480 * ---dma generic offload fields---
 481 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 482 *      this tx is sitting on a dependency list
 483 * @flags: flags to augment operation preparation, control completion, and
 484 *      communicate status
 485 * @phys: physical address of the descriptor
 486 * @chan: target channel for this operation
 487 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
 488 * descriptor pending. To be pushed on .issue_pending() call
 489 * @callback: routine to call after this operation is complete
 490 * @callback_param: general parameter to pass to the callback routine
 491 * ---async_tx api specific fields---
 492 * @next: at completion submit this descriptor
 493 * @parent: pointer to the next level up in the dependency chain
 494 * @lock: protect the parent and next pointers
 495 */
 496struct dma_async_tx_descriptor {
 497        dma_cookie_t cookie;
 498        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 499        dma_addr_t phys;
 500        struct dma_chan *chan;
 501        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 502        int (*desc_free)(struct dma_async_tx_descriptor *tx);
 503        dma_async_tx_callback callback;
 504        dma_async_tx_callback_result callback_result;
 505        void *callback_param;
 506        struct dmaengine_unmap_data *unmap;
 507#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 508        struct dma_async_tx_descriptor *next;
 509        struct dma_async_tx_descriptor *parent;
 510        spinlock_t lock;
 511#endif
 512};
 513
 514#ifdef CONFIG_DMA_ENGINE
 515static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 516                                 struct dmaengine_unmap_data *unmap)
 517{
 518        kref_get(&unmap->kref);
 519        tx->unmap = unmap;
 520}
 521
 522struct dmaengine_unmap_data *
 523dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 524void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 525#else
 526static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 527                                 struct dmaengine_unmap_data *unmap)
 528{
 529}
 530static inline struct dmaengine_unmap_data *
 531dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 532{
 533        return NULL;
 534}
 535static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 536{
 537}
 538#endif
 539
 540static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 541{
 542        if (tx->unmap) {
 543                dmaengine_unmap_put(tx->unmap);
 544                tx->unmap = NULL;
 545        }
 546}
 547
 548#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 549static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 550{
 551}
 552static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 553{
 554}
 555static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 556{
 557        BUG();
 558}
 559static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 560{
 561}
 562static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 563{
 564}
 565static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 566{
 567        return NULL;
 568}
 569static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 570{
 571        return NULL;
 572}
 573
 574#else
 575static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 576{
 577        spin_lock_bh(&txd->lock);
 578}
 579static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 580{
 581        spin_unlock_bh(&txd->lock);
 582}
 583static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 584{
 585        txd->next = next;
 586        next->parent = txd;
 587}
 588static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 589{
 590        txd->parent = NULL;
 591}
 592static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 593{
 594        txd->next = NULL;
 595}
 596static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 597{
 598        return txd->parent;
 599}
 600static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 601{
 602        return txd->next;
 603}
 604#endif
 605
 606/**
 607 * struct dma_tx_state - filled in to report the status of
 608 * a transfer.
 609 * @last: last completed DMA cookie
 610 * @used: last issued DMA cookie (i.e. the one in progress)
 611 * @residue: the remaining number of bytes left to transmit
 612 *      on the selected transfer for states DMA_IN_PROGRESS and
 613 *      DMA_PAUSED if this is implemented in the driver, else 0
 614 */
 615struct dma_tx_state {
 616        dma_cookie_t last;
 617        dma_cookie_t used;
 618        u32 residue;
 619};
 620
 621/**
 622 * enum dmaengine_alignment - defines alignment of the DMA async tx
 623 * buffers
 624 */
 625enum dmaengine_alignment {
 626        DMAENGINE_ALIGN_1_BYTE = 0,
 627        DMAENGINE_ALIGN_2_BYTES = 1,
 628        DMAENGINE_ALIGN_4_BYTES = 2,
 629        DMAENGINE_ALIGN_8_BYTES = 3,
 630        DMAENGINE_ALIGN_16_BYTES = 4,
 631        DMAENGINE_ALIGN_32_BYTES = 5,
 632        DMAENGINE_ALIGN_64_BYTES = 6,
 633};
 634
 635/**
 636 * struct dma_slave_map - associates slave device and it's slave channel with
 637 * parameter to be used by a filter function
 638 * @devname: name of the device
 639 * @slave: slave channel name
 640 * @param: opaque parameter to pass to struct dma_filter.fn
 641 */
 642struct dma_slave_map {
 643        const char *devname;
 644        const char *slave;
 645        void *param;
 646};
 647
 648/**
 649 * struct dma_filter - information for slave device/channel to filter_fn/param
 650 * mapping
 651 * @fn: filter function callback
 652 * @mapcnt: number of slave device/channel in the map
 653 * @map: array of channel to filter mapping data
 654 */
 655struct dma_filter {
 656        dma_filter_fn fn;
 657        int mapcnt;
 658        const struct dma_slave_map *map;
 659};
 660
 661/**
 662 * struct dma_device - info on the entity supplying DMA services
 663 * @chancnt: how many DMA channels are supported
 664 * @privatecnt: how many DMA channels are requested by dma_request_channel
 665 * @channels: the list of struct dma_chan
 666 * @global_node: list_head for global dma_device_list
 667 * @filter: information for device/slave to filter function/param mapping
 668 * @cap_mask: one or more dma_capability flags
 669 * @max_xor: maximum number of xor sources, 0 if no capability
 670 * @max_pq: maximum number of PQ sources and PQ-continue capability
 671 * @copy_align: alignment shift for memcpy operations
 672 * @xor_align: alignment shift for xor operations
 673 * @pq_align: alignment shift for pq operations
 674 * @fill_align: alignment shift for memset operations
 675 * @dev_id: unique device ID
 676 * @dev: struct device reference for dma mapping api
 677 * @src_addr_widths: bit mask of src addr widths the device supports
 678 * @dst_addr_widths: bit mask of dst addr widths the device supports
 679 * @directions: bit mask of slave direction the device supports since
 680 *      the enum dma_transfer_direction is not defined as bits for
 681 *      each type of direction, the dma controller should fill (1 <<
 682 *      <TYPE>) and same should be checked by controller as well
 683 * @max_burst: max burst capability per-transfer
 684 * @residue_granularity: granularity of the transfer residue reported
 685 *      by tx_status
 686 * @device_alloc_chan_resources: allocate resources and return the
 687 *      number of allocated descriptors
 688 * @device_free_chan_resources: release DMA channel's resources
 689 * @device_prep_dma_memcpy: prepares a memcpy operation
 690 * @device_prep_dma_xor: prepares a xor operation
 691 * @device_prep_dma_xor_val: prepares a xor validation operation
 692 * @device_prep_dma_pq: prepares a pq operation
 693 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 694 * @device_prep_dma_memset: prepares a memset operation
 695 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
 696 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 697 * @device_prep_slave_sg: prepares a slave dma operation
 698 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 699 *      The function takes a buffer of size buf_len. The callback function will
 700 *      be called after period_len bytes have been transferred.
 701 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 702 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
 703 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 704 *      code
 705 * @device_pause: Pauses any transfer happening on a channel. Returns
 706 *      0 or an error code
 707 * @device_resume: Resumes any transfer on a channel previously
 708 *      paused. Returns 0 or an error code
 709 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 710 *      or an error code
 711 * @device_synchronize: Synchronizes the termination of a transfers to the
 712 *  current context.
 713 * @device_tx_status: poll for transaction completion, the optional
 714 *      txstate parameter can be supplied with a pointer to get a
 715 *      struct with auxiliary transfer status information, otherwise the call
 716 *      will just return a simple status code
 717 * @device_issue_pending: push pending transactions to hardware
 718 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
 719 */
 720struct dma_device {
 721
 722        unsigned int chancnt;
 723        unsigned int privatecnt;
 724        struct list_head channels;
 725        struct list_head global_node;
 726        struct dma_filter filter;
 727        dma_cap_mask_t  cap_mask;
 728        unsigned short max_xor;
 729        unsigned short max_pq;
 730        enum dmaengine_alignment copy_align;
 731        enum dmaengine_alignment xor_align;
 732        enum dmaengine_alignment pq_align;
 733        enum dmaengine_alignment fill_align;
 734        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 735
 736        int dev_id;
 737        struct device *dev;
 738
 739        u32 src_addr_widths;
 740        u32 dst_addr_widths;
 741        u32 directions;
 742        u32 max_burst;
 743        bool descriptor_reuse;
 744        enum dma_residue_granularity residue_granularity;
 745
 746        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 747        void (*device_free_chan_resources)(struct dma_chan *chan);
 748
 749        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 750                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 751                size_t len, unsigned long flags);
 752        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 753                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 754                unsigned int src_cnt, size_t len, unsigned long flags);
 755        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 756                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 757                size_t len, enum sum_check_flags *result, unsigned long flags);
 758        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 759                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 760                unsigned int src_cnt, const unsigned char *scf,
 761                size_t len, unsigned long flags);
 762        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 763                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 764                unsigned int src_cnt, const unsigned char *scf, size_t len,
 765                enum sum_check_flags *pqres, unsigned long flags);
 766        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 767                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 768                unsigned long flags);
 769        struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
 770                struct dma_chan *chan, struct scatterlist *sg,
 771                unsigned int nents, int value, unsigned long flags);
 772        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 773                struct dma_chan *chan, unsigned long flags);
 774        struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
 775                struct dma_chan *chan,
 776                struct scatterlist *dst_sg, unsigned int dst_nents,
 777                struct scatterlist *src_sg, unsigned int src_nents,
 778                unsigned long flags);
 779
 780        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 781                struct dma_chan *chan, struct scatterlist *sgl,
 782                unsigned int sg_len, enum dma_transfer_direction direction,
 783                unsigned long flags, void *context);
 784        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 785                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 786                size_t period_len, enum dma_transfer_direction direction,
 787                unsigned long flags);
 788        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 789                struct dma_chan *chan, struct dma_interleaved_template *xt,
 790                unsigned long flags);
 791        struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
 792                struct dma_chan *chan, dma_addr_t dst, u64 data,
 793                unsigned long flags);
 794
 795        int (*device_config)(struct dma_chan *chan,
 796                             struct dma_slave_config *config);
 797        int (*device_pause)(struct dma_chan *chan);
 798        int (*device_resume)(struct dma_chan *chan);
 799        int (*device_terminate_all)(struct dma_chan *chan);
 800        void (*device_synchronize)(struct dma_chan *chan);
 801
 802        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 803                                            dma_cookie_t cookie,
 804                                            struct dma_tx_state *txstate);
 805        void (*device_issue_pending)(struct dma_chan *chan);
 806};
 807
 808static inline int dmaengine_slave_config(struct dma_chan *chan,
 809                                          struct dma_slave_config *config)
 810{
 811        if (chan->device->device_config)
 812                return chan->device->device_config(chan, config);
 813
 814        return -ENOSYS;
 815}
 816
 817static inline bool is_slave_direction(enum dma_transfer_direction direction)
 818{
 819        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 820}
 821
 822static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 823        struct dma_chan *chan, dma_addr_t buf, size_t len,
 824        enum dma_transfer_direction dir, unsigned long flags)
 825{
 826        struct scatterlist sg;
 827        sg_init_table(&sg, 1);
 828        sg_dma_address(&sg) = buf;
 829        sg_dma_len(&sg) = len;
 830
 831        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 832                return NULL;
 833
 834        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 835                                                  dir, flags, NULL);
 836}
 837
 838static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 839        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 840        enum dma_transfer_direction dir, unsigned long flags)
 841{
 842        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 843                return NULL;
 844
 845        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 846                                                  dir, flags, NULL);
 847}
 848
 849#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 850struct rio_dma_ext;
 851static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 852        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 853        enum dma_transfer_direction dir, unsigned long flags,
 854        struct rio_dma_ext *rio_ext)
 855{
 856        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 857                return NULL;
 858
 859        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 860                                                  dir, flags, rio_ext);
 861}
 862#endif
 863
 864static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
 865                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 866                size_t period_len, enum dma_transfer_direction dir,
 867                unsigned long flags)
 868{
 869        if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
 870                return NULL;
 871
 872        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
 873                                                period_len, dir, flags);
 874}
 875
 876static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
 877                struct dma_chan *chan, struct dma_interleaved_template *xt,
 878                unsigned long flags)
 879{
 880        if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
 881                return NULL;
 882
 883        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
 884}
 885
 886static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
 887                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 888                unsigned long flags)
 889{
 890        if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
 891                return NULL;
 892
 893        return chan->device->device_prep_dma_memset(chan, dest, value,
 894                                                    len, flags);
 895}
 896
 897static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
 898                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 899                size_t len, unsigned long flags)
 900{
 901        if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
 902                return NULL;
 903
 904        return chan->device->device_prep_dma_memcpy(chan, dest, src,
 905                                                    len, flags);
 906}
 907
 908static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
 909                struct dma_chan *chan,
 910                struct scatterlist *dst_sg, unsigned int dst_nents,
 911                struct scatterlist *src_sg, unsigned int src_nents,
 912                unsigned long flags)
 913{
 914        if (!chan || !chan->device || !chan->device->device_prep_dma_sg)
 915                return NULL;
 916
 917        return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
 918                        src_sg, src_nents, flags);
 919}
 920
 921/**
 922 * dmaengine_terminate_all() - Terminate all active DMA transfers
 923 * @chan: The channel for which to terminate the transfers
 924 *
 925 * This function is DEPRECATED use either dmaengine_terminate_sync() or
 926 * dmaengine_terminate_async() instead.
 927 */
 928static inline int dmaengine_terminate_all(struct dma_chan *chan)
 929{
 930        if (chan->device->device_terminate_all)
 931                return chan->device->device_terminate_all(chan);
 932
 933        return -ENOSYS;
 934}
 935
 936/**
 937 * dmaengine_terminate_async() - Terminate all active DMA transfers
 938 * @chan: The channel for which to terminate the transfers
 939 *
 940 * Calling this function will terminate all active and pending descriptors
 941 * that have previously been submitted to the channel. It is not guaranteed
 942 * though that the transfer for the active descriptor has stopped when the
 943 * function returns. Furthermore it is possible the complete callback of a
 944 * submitted transfer is still running when this function returns.
 945 *
 946 * dmaengine_synchronize() needs to be called before it is safe to free
 947 * any memory that is accessed by previously submitted descriptors or before
 948 * freeing any resources accessed from within the completion callback of any
 949 * perviously submitted descriptors.
 950 *
 951 * This function can be called from atomic context as well as from within a
 952 * complete callback of a descriptor submitted on the same channel.
 953 *
 954 * If none of the two conditions above apply consider using
 955 * dmaengine_terminate_sync() instead.
 956 */
 957static inline int dmaengine_terminate_async(struct dma_chan *chan)
 958{
 959        if (chan->device->device_terminate_all)
 960                return chan->device->device_terminate_all(chan);
 961
 962        return -EINVAL;
 963}
 964
 965/**
 966 * dmaengine_synchronize() - Synchronize DMA channel termination
 967 * @chan: The channel to synchronize
 968 *
 969 * Synchronizes to the DMA channel termination to the current context. When this
 970 * function returns it is guaranteed that all transfers for previously issued
 971 * descriptors have stopped and and it is safe to free the memory assoicated
 972 * with them. Furthermore it is guaranteed that all complete callback functions
 973 * for a previously submitted descriptor have finished running and it is safe to
 974 * free resources accessed from within the complete callbacks.
 975 *
 976 * The behavior of this function is undefined if dma_async_issue_pending() has
 977 * been called between dmaengine_terminate_async() and this function.
 978 *
 979 * This function must only be called from non-atomic context and must not be
 980 * called from within a complete callback of a descriptor submitted on the same
 981 * channel.
 982 */
 983static inline void dmaengine_synchronize(struct dma_chan *chan)
 984{
 985        might_sleep();
 986
 987        if (chan->device->device_synchronize)
 988                chan->device->device_synchronize(chan);
 989}
 990
 991/**
 992 * dmaengine_terminate_sync() - Terminate all active DMA transfers
 993 * @chan: The channel for which to terminate the transfers
 994 *
 995 * Calling this function will terminate all active and pending transfers
 996 * that have previously been submitted to the channel. It is similar to
 997 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
 998 * stopped and that all complete callbacks have finished running when the
 999 * function returns.
1000 *
1001 * This function must only be called from non-atomic context and must not be
1002 * called from within a complete callback of a descriptor submitted on the same
1003 * channel.
1004 */
1005static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1006{
1007        int ret;
1008
1009        ret = dmaengine_terminate_async(chan);
1010        if (ret)
1011                return ret;
1012
1013        dmaengine_synchronize(chan);
1014
1015        return 0;
1016}
1017
1018static inline int dmaengine_pause(struct dma_chan *chan)
1019{
1020        if (chan->device->device_pause)
1021                return chan->device->device_pause(chan);
1022
1023        return -ENOSYS;
1024}
1025
1026static inline int dmaengine_resume(struct dma_chan *chan)
1027{
1028        if (chan->device->device_resume)
1029                return chan->device->device_resume(chan);
1030
1031        return -ENOSYS;
1032}
1033
1034static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1035        dma_cookie_t cookie, struct dma_tx_state *state)
1036{
1037        return chan->device->device_tx_status(chan, cookie, state);
1038}
1039
1040static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1041{
1042        return desc->tx_submit(desc);
1043}
1044
1045static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1046                                         size_t off1, size_t off2, size_t len)
1047{
1048        size_t mask;
1049
1050        if (!align)
1051                return true;
1052        mask = (1 << align) - 1;
1053        if (mask & (off1 | off2 | len))
1054                return false;
1055        return true;
1056}
1057
1058static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1059                                       size_t off2, size_t len)
1060{
1061        return dmaengine_check_align(dev->copy_align, off1, off2, len);
1062}
1063
1064static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1065                                      size_t off2, size_t len)
1066{
1067        return dmaengine_check_align(dev->xor_align, off1, off2, len);
1068}
1069
1070static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1071                                     size_t off2, size_t len)
1072{
1073        return dmaengine_check_align(dev->pq_align, off1, off2, len);
1074}
1075
1076static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1077                                       size_t off2, size_t len)
1078{
1079        return dmaengine_check_align(dev->fill_align, off1, off2, len);
1080}
1081
1082static inline void
1083dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1084{
1085        dma->max_pq = maxpq;
1086        if (has_pq_continue)
1087                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1088}
1089
1090static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1091{
1092        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1093}
1094
1095static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1096{
1097        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1098
1099        return (flags & mask) == mask;
1100}
1101
1102static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1103{
1104        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1105}
1106
1107static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1108{
1109        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1110}
1111
1112/* dma_maxpq - reduce maxpq in the face of continued operations
1113 * @dma - dma device with PQ capability
1114 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1115 *
1116 * When an engine does not support native continuation we need 3 extra
1117 * source slots to reuse P and Q with the following coefficients:
1118 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1119 * 2/ {01} * Q : use Q to continue Q' calculation
1120 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1121 *
1122 * In the case where P is disabled we only need 1 extra source:
1123 * 1/ {01} * Q : use Q to continue Q' calculation
1124 */
1125static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1126{
1127        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1128                return dma_dev_to_maxpq(dma);
1129        else if (dmaf_p_disabled_continue(flags))
1130                return dma_dev_to_maxpq(dma) - 1;
1131        else if (dmaf_continue(flags))
1132                return dma_dev_to_maxpq(dma) - 3;
1133        BUG();
1134}
1135
1136static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1137                                      size_t dir_icg)
1138{
1139        if (inc) {
1140                if (dir_icg)
1141                        return dir_icg;
1142                else if (sgl)
1143                        return icg;
1144        }
1145
1146        return 0;
1147}
1148
1149static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1150                                           struct data_chunk *chunk)
1151{
1152        return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1153                                 chunk->icg, chunk->dst_icg);
1154}
1155
1156static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1157                                           struct data_chunk *chunk)
1158{
1159        return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1160                                 chunk->icg, chunk->src_icg);
1161}
1162
1163/* --- public DMA engine API --- */
1164
1165#ifdef CONFIG_DMA_ENGINE
1166void dmaengine_get(void);
1167void dmaengine_put(void);
1168#else
1169static inline void dmaengine_get(void)
1170{
1171}
1172static inline void dmaengine_put(void)
1173{
1174}
1175#endif
1176
1177#ifdef CONFIG_ASYNC_TX_DMA
1178#define async_dmaengine_get()   dmaengine_get()
1179#define async_dmaengine_put()   dmaengine_put()
1180#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1181#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1182#else
1183#define async_dma_find_channel(type) dma_find_channel(type)
1184#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1185#else
1186static inline void async_dmaengine_get(void)
1187{
1188}
1189static inline void async_dmaengine_put(void)
1190{
1191}
1192static inline struct dma_chan *
1193async_dma_find_channel(enum dma_transaction_type type)
1194{
1195        return NULL;
1196}
1197#endif /* CONFIG_ASYNC_TX_DMA */
1198void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1199                                  struct dma_chan *chan);
1200
1201static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1202{
1203        tx->flags |= DMA_CTRL_ACK;
1204}
1205
1206static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1207{
1208        tx->flags &= ~DMA_CTRL_ACK;
1209}
1210
1211static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1212{
1213        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1214}
1215
1216#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1217static inline void
1218__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1219{
1220        set_bit(tx_type, dstp->bits);
1221}
1222
1223#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1224static inline void
1225__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1226{
1227        clear_bit(tx_type, dstp->bits);
1228}
1229
1230#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1231static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1232{
1233        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1234}
1235
1236#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1237static inline int
1238__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1239{
1240        return test_bit(tx_type, srcp->bits);
1241}
1242
1243#define for_each_dma_cap_mask(cap, mask) \
1244        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1245
1246/**
1247 * dma_async_issue_pending - flush pending transactions to HW
1248 * @chan: target DMA channel
1249 *
1250 * This allows drivers to push copies to HW in batches,
1251 * reducing MMIO writes where possible.
1252 */
1253static inline void dma_async_issue_pending(struct dma_chan *chan)
1254{
1255        chan->device->device_issue_pending(chan);
1256}
1257
1258/**
1259 * dma_async_is_tx_complete - poll for transaction completion
1260 * @chan: DMA channel
1261 * @cookie: transaction identifier to check status of
1262 * @last: returns last completed cookie, can be NULL
1263 * @used: returns last issued cookie, can be NULL
1264 *
1265 * If @last and @used are passed in, upon return they reflect the driver
1266 * internal state and can be used with dma_async_is_complete() to check
1267 * the status of multiple cookies without re-checking hardware state.
1268 */
1269static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1270        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1271{
1272        struct dma_tx_state state;
1273        enum dma_status status;
1274
1275        status = chan->device->device_tx_status(chan, cookie, &state);
1276        if (last)
1277                *last = state.last;
1278        if (used)
1279                *used = state.used;
1280        return status;
1281}
1282
1283/**
1284 * dma_async_is_complete - test a cookie against chan state
1285 * @cookie: transaction identifier to test status of
1286 * @last_complete: last know completed transaction
1287 * @last_used: last cookie value handed out
1288 *
1289 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1290 * the test logic is separated for lightweight testing of multiple cookies
1291 */
1292static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1293                        dma_cookie_t last_complete, dma_cookie_t last_used)
1294{
1295        if (last_complete <= last_used) {
1296                if ((cookie <= last_complete) || (cookie > last_used))
1297                        return DMA_COMPLETE;
1298        } else {
1299                if ((cookie <= last_complete) && (cookie > last_used))
1300                        return DMA_COMPLETE;
1301        }
1302        return DMA_IN_PROGRESS;
1303}
1304
1305static inline void
1306dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1307{
1308        if (st) {
1309                st->last = last;
1310                st->used = used;
1311                st->residue = residue;
1312        }
1313}
1314
1315#ifdef CONFIG_DMA_ENGINE
1316struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1317enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1318enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1319void dma_issue_pending_all(void);
1320struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1321                                        dma_filter_fn fn, void *fn_param);
1322struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1323
1324struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1325struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1326
1327void dma_release_channel(struct dma_chan *chan);
1328int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1329#else
1330static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1331{
1332        return NULL;
1333}
1334static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1335{
1336        return DMA_COMPLETE;
1337}
1338static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1339{
1340        return DMA_COMPLETE;
1341}
1342static inline void dma_issue_pending_all(void)
1343{
1344}
1345static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1346                                              dma_filter_fn fn, void *fn_param)
1347{
1348        return NULL;
1349}
1350static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1351                                                         const char *name)
1352{
1353        return NULL;
1354}
1355static inline struct dma_chan *dma_request_chan(struct device *dev,
1356                                                const char *name)
1357{
1358        return ERR_PTR(-ENODEV);
1359}
1360static inline struct dma_chan *dma_request_chan_by_mask(
1361                                                const dma_cap_mask_t *mask)
1362{
1363        return ERR_PTR(-ENODEV);
1364}
1365static inline void dma_release_channel(struct dma_chan *chan)
1366{
1367}
1368static inline int dma_get_slave_caps(struct dma_chan *chan,
1369                                     struct dma_slave_caps *caps)
1370{
1371        return -ENXIO;
1372}
1373#endif
1374
1375#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1376
1377static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1378{
1379        struct dma_slave_caps caps;
1380
1381        dma_get_slave_caps(tx->chan, &caps);
1382
1383        if (caps.descriptor_reuse) {
1384                tx->flags |= DMA_CTRL_REUSE;
1385                return 0;
1386        } else {
1387                return -EPERM;
1388        }
1389}
1390
1391static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1392{
1393        tx->flags &= ~DMA_CTRL_REUSE;
1394}
1395
1396static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1397{
1398        return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1399}
1400
1401static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1402{
1403        /* this is supported for reusable desc, so check that */
1404        if (dmaengine_desc_test_reuse(desc))
1405                return desc->desc_free(desc);
1406        else
1407                return -EPERM;
1408}
1409
1410/* --- DMA device --- */
1411
1412int dma_async_device_register(struct dma_device *device);
1413void dma_async_device_unregister(struct dma_device *device);
1414void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1415struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1416struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1417#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1418#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1419        __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1420
1421static inline struct dma_chan
1422*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1423                                  dma_filter_fn fn, void *fn_param,
1424                                  struct device *dev, const char *name)
1425{
1426        struct dma_chan *chan;
1427
1428        chan = dma_request_slave_channel(dev, name);
1429        if (chan)
1430                return chan;
1431
1432        if (!fn || !fn_param)
1433                return NULL;
1434
1435        return __dma_request_channel(mask, fn, fn_param);
1436}
1437#endif /* DMAENGINE_H */
1438