linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <linux/page-flags-layout.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coalesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38enum migratetype {
  39        MIGRATE_UNMOVABLE,
  40        MIGRATE_MOVABLE,
  41        MIGRATE_RECLAIMABLE,
  42        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  43        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  44#ifdef CONFIG_CMA
  45        /*
  46         * MIGRATE_CMA migration type is designed to mimic the way
  47         * ZONE_MOVABLE works.  Only movable pages can be allocated
  48         * from MIGRATE_CMA pageblocks and page allocator never
  49         * implicitly change migration type of MIGRATE_CMA pageblock.
  50         *
  51         * The way to use it is to change migratetype of a range of
  52         * pageblocks to MIGRATE_CMA which can be done by
  53         * __free_pageblock_cma() function.  What is important though
  54         * is that a range of pageblocks must be aligned to
  55         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  56         * a single pageblock.
  57         */
  58        MIGRATE_CMA,
  59#endif
  60#ifdef CONFIG_MEMORY_ISOLATION
  61        MIGRATE_ISOLATE,        /* can't allocate from here */
  62#endif
  63        MIGRATE_TYPES
  64};
  65
  66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  67extern char * const migratetype_names[MIGRATE_TYPES];
  68
  69#ifdef CONFIG_CMA
  70#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  71#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  72#else
  73#  define is_migrate_cma(migratetype) false
  74#  define is_migrate_cma_page(_page) false
  75#endif
  76
  77static inline bool is_migrate_movable(int mt)
  78{
  79        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  80}
  81
  82#define for_each_migratetype_order(order, type) \
  83        for (order = 0; order < MAX_ORDER; order++) \
  84                for (type = 0; type < MIGRATE_TYPES; type++)
  85
  86extern int page_group_by_mobility_disabled;
  87
  88#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  89#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  90
  91#define get_pageblock_migratetype(page)                                 \
  92        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  93                        PB_migrate_end, MIGRATETYPE_MASK)
  94
  95struct free_area {
  96        struct list_head        free_list[MIGRATE_TYPES];
  97        unsigned long           nr_free;
  98};
  99
 100struct pglist_data;
 101
 102/*
 103 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 104 * So add a wild amount of padding here to ensure that they fall into separate
 105 * cachelines.  There are very few zone structures in the machine, so space
 106 * consumption is not a concern here.
 107 */
 108#if defined(CONFIG_SMP)
 109struct zone_padding {
 110        char x[0];
 111} ____cacheline_internodealigned_in_smp;
 112#define ZONE_PADDING(name)      struct zone_padding name;
 113#else
 114#define ZONE_PADDING(name)
 115#endif
 116
 117enum zone_stat_item {
 118        /* First 128 byte cacheline (assuming 64 bit words) */
 119        NR_FREE_PAGES,
 120        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 121        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 122        NR_ZONE_ACTIVE_ANON,
 123        NR_ZONE_INACTIVE_FILE,
 124        NR_ZONE_ACTIVE_FILE,
 125        NR_ZONE_UNEVICTABLE,
 126        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 127        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 128        NR_SLAB_RECLAIMABLE,
 129        NR_SLAB_UNRECLAIMABLE,
 130        NR_PAGETABLE,           /* used for pagetables */
 131        NR_KERNEL_STACK_KB,     /* measured in KiB */
 132        /* Second 128 byte cacheline */
 133        NR_BOUNCE,
 134#if IS_ENABLED(CONFIG_ZSMALLOC)
 135        NR_ZSPAGES,             /* allocated in zsmalloc */
 136#endif
 137#ifdef CONFIG_NUMA
 138        NUMA_HIT,               /* allocated in intended node */
 139        NUMA_MISS,              /* allocated in non intended node */
 140        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 141        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 142        NUMA_LOCAL,             /* allocation from local node */
 143        NUMA_OTHER,             /* allocation from other node */
 144#endif
 145        NR_FREE_CMA_PAGES,
 146        NR_VM_ZONE_STAT_ITEMS };
 147
 148enum node_stat_item {
 149        NR_LRU_BASE,
 150        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 151        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 152        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 153        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 154        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 155        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 156        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 157        WORKINGSET_REFAULT,
 158        WORKINGSET_ACTIVATE,
 159        WORKINGSET_NODERECLAIM,
 160        NR_ANON_MAPPED, /* Mapped anonymous pages */
 161        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 162                           only modified from process context */
 163        NR_FILE_PAGES,
 164        NR_FILE_DIRTY,
 165        NR_WRITEBACK,
 166        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 167        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 168        NR_SHMEM_THPS,
 169        NR_SHMEM_PMDMAPPED,
 170        NR_ANON_THPS,
 171        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 172        NR_VMSCAN_WRITE,
 173        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 174        NR_DIRTIED,             /* page dirtyings since bootup */
 175        NR_WRITTEN,             /* page writings since bootup */
 176        NR_VM_NODE_STAT_ITEMS
 177};
 178
 179/*
 180 * We do arithmetic on the LRU lists in various places in the code,
 181 * so it is important to keep the active lists LRU_ACTIVE higher in
 182 * the array than the corresponding inactive lists, and to keep
 183 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 184 *
 185 * This has to be kept in sync with the statistics in zone_stat_item
 186 * above and the descriptions in vmstat_text in mm/vmstat.c
 187 */
 188#define LRU_BASE 0
 189#define LRU_ACTIVE 1
 190#define LRU_FILE 2
 191
 192enum lru_list {
 193        LRU_INACTIVE_ANON = LRU_BASE,
 194        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 195        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 196        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 197        LRU_UNEVICTABLE,
 198        NR_LRU_LISTS
 199};
 200
 201#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 202
 203#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 204
 205static inline int is_file_lru(enum lru_list lru)
 206{
 207        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 208}
 209
 210static inline int is_active_lru(enum lru_list lru)
 211{
 212        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 213}
 214
 215struct zone_reclaim_stat {
 216        /*
 217         * The pageout code in vmscan.c keeps track of how many of the
 218         * mem/swap backed and file backed pages are referenced.
 219         * The higher the rotated/scanned ratio, the more valuable
 220         * that cache is.
 221         *
 222         * The anon LRU stats live in [0], file LRU stats in [1]
 223         */
 224        unsigned long           recent_rotated[2];
 225        unsigned long           recent_scanned[2];
 226};
 227
 228struct lruvec {
 229        struct list_head                lists[NR_LRU_LISTS];
 230        struct zone_reclaim_stat        reclaim_stat;
 231        /* Evictions & activations on the inactive file list */
 232        atomic_long_t                   inactive_age;
 233        /* Refaults at the time of last reclaim cycle */
 234        unsigned long                   refaults;
 235#ifdef CONFIG_MEMCG
 236        struct pglist_data *pgdat;
 237#endif
 238};
 239
 240/* Mask used at gathering information at once (see memcontrol.c) */
 241#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 242#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 243#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 244
 245/* Isolate unmapped file */
 246#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 247/* Isolate for asynchronous migration */
 248#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 249/* Isolate unevictable pages */
 250#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 251
 252/* LRU Isolation modes. */
 253typedef unsigned __bitwise isolate_mode_t;
 254
 255enum zone_watermarks {
 256        WMARK_MIN,
 257        WMARK_LOW,
 258        WMARK_HIGH,
 259        NR_WMARK
 260};
 261
 262#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 263#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 264#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 265
 266struct per_cpu_pages {
 267        int count;              /* number of pages in the list */
 268        int high;               /* high watermark, emptying needed */
 269        int batch;              /* chunk size for buddy add/remove */
 270
 271        /* Lists of pages, one per migrate type stored on the pcp-lists */
 272        struct list_head lists[MIGRATE_PCPTYPES];
 273};
 274
 275struct per_cpu_pageset {
 276        struct per_cpu_pages pcp;
 277#ifdef CONFIG_NUMA
 278        s8 expire;
 279#endif
 280#ifdef CONFIG_SMP
 281        s8 stat_threshold;
 282        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 283#endif
 284};
 285
 286struct per_cpu_nodestat {
 287        s8 stat_threshold;
 288        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 289};
 290
 291#endif /* !__GENERATING_BOUNDS.H */
 292
 293enum zone_type {
 294#ifdef CONFIG_ZONE_DMA
 295        /*
 296         * ZONE_DMA is used when there are devices that are not able
 297         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 298         * carve out the portion of memory that is needed for these devices.
 299         * The range is arch specific.
 300         *
 301         * Some examples
 302         *
 303         * Architecture         Limit
 304         * ---------------------------
 305         * parisc, ia64, sparc  <4G
 306         * s390                 <2G
 307         * arm                  Various
 308         * alpha                Unlimited or 0-16MB.
 309         *
 310         * i386, x86_64 and multiple other arches
 311         *                      <16M.
 312         */
 313        ZONE_DMA,
 314#endif
 315#ifdef CONFIG_ZONE_DMA32
 316        /*
 317         * x86_64 needs two ZONE_DMAs because it supports devices that are
 318         * only able to do DMA to the lower 16M but also 32 bit devices that
 319         * can only do DMA areas below 4G.
 320         */
 321        ZONE_DMA32,
 322#endif
 323        /*
 324         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 325         * performed on pages in ZONE_NORMAL if the DMA devices support
 326         * transfers to all addressable memory.
 327         */
 328        ZONE_NORMAL,
 329#ifdef CONFIG_HIGHMEM
 330        /*
 331         * A memory area that is only addressable by the kernel through
 332         * mapping portions into its own address space. This is for example
 333         * used by i386 to allow the kernel to address the memory beyond
 334         * 900MB. The kernel will set up special mappings (page
 335         * table entries on i386) for each page that the kernel needs to
 336         * access.
 337         */
 338        ZONE_HIGHMEM,
 339#endif
 340        ZONE_MOVABLE,
 341#ifdef CONFIG_ZONE_DEVICE
 342        ZONE_DEVICE,
 343#endif
 344        __MAX_NR_ZONES
 345
 346};
 347
 348#ifndef __GENERATING_BOUNDS_H
 349
 350struct zone {
 351        /* Read-mostly fields */
 352
 353        /* zone watermarks, access with *_wmark_pages(zone) macros */
 354        unsigned long watermark[NR_WMARK];
 355
 356        unsigned long nr_reserved_highatomic;
 357
 358        /*
 359         * We don't know if the memory that we're going to allocate will be
 360         * freeable or/and it will be released eventually, so to avoid totally
 361         * wasting several GB of ram we must reserve some of the lower zone
 362         * memory (otherwise we risk to run OOM on the lower zones despite
 363         * there being tons of freeable ram on the higher zones).  This array is
 364         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 365         * changes.
 366         */
 367        long lowmem_reserve[MAX_NR_ZONES];
 368
 369#ifdef CONFIG_NUMA
 370        int node;
 371#endif
 372        struct pglist_data      *zone_pgdat;
 373        struct per_cpu_pageset __percpu *pageset;
 374
 375#ifndef CONFIG_SPARSEMEM
 376        /*
 377         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 378         * In SPARSEMEM, this map is stored in struct mem_section
 379         */
 380        unsigned long           *pageblock_flags;
 381#endif /* CONFIG_SPARSEMEM */
 382
 383        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 384        unsigned long           zone_start_pfn;
 385
 386        /*
 387         * spanned_pages is the total pages spanned by the zone, including
 388         * holes, which is calculated as:
 389         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 390         *
 391         * present_pages is physical pages existing within the zone, which
 392         * is calculated as:
 393         *      present_pages = spanned_pages - absent_pages(pages in holes);
 394         *
 395         * managed_pages is present pages managed by the buddy system, which
 396         * is calculated as (reserved_pages includes pages allocated by the
 397         * bootmem allocator):
 398         *      managed_pages = present_pages - reserved_pages;
 399         *
 400         * So present_pages may be used by memory hotplug or memory power
 401         * management logic to figure out unmanaged pages by checking
 402         * (present_pages - managed_pages). And managed_pages should be used
 403         * by page allocator and vm scanner to calculate all kinds of watermarks
 404         * and thresholds.
 405         *
 406         * Locking rules:
 407         *
 408         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 409         * It is a seqlock because it has to be read outside of zone->lock,
 410         * and it is done in the main allocator path.  But, it is written
 411         * quite infrequently.
 412         *
 413         * The span_seq lock is declared along with zone->lock because it is
 414         * frequently read in proximity to zone->lock.  It's good to
 415         * give them a chance of being in the same cacheline.
 416         *
 417         * Write access to present_pages at runtime should be protected by
 418         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 419         * present_pages should get_online_mems() to get a stable value.
 420         *
 421         * Read access to managed_pages should be safe because it's unsigned
 422         * long. Write access to zone->managed_pages and totalram_pages are
 423         * protected by managed_page_count_lock at runtime. Idealy only
 424         * adjust_managed_page_count() should be used instead of directly
 425         * touching zone->managed_pages and totalram_pages.
 426         */
 427        unsigned long           managed_pages;
 428        unsigned long           spanned_pages;
 429        unsigned long           present_pages;
 430
 431        const char              *name;
 432
 433#ifdef CONFIG_MEMORY_ISOLATION
 434        /*
 435         * Number of isolated pageblock. It is used to solve incorrect
 436         * freepage counting problem due to racy retrieving migratetype
 437         * of pageblock. Protected by zone->lock.
 438         */
 439        unsigned long           nr_isolate_pageblock;
 440#endif
 441
 442#ifdef CONFIG_MEMORY_HOTPLUG
 443        /* see spanned/present_pages for more description */
 444        seqlock_t               span_seqlock;
 445#endif
 446
 447        int initialized;
 448
 449        /* Write-intensive fields used from the page allocator */
 450        ZONE_PADDING(_pad1_)
 451
 452        /* free areas of different sizes */
 453        struct free_area        free_area[MAX_ORDER];
 454
 455        /* zone flags, see below */
 456        unsigned long           flags;
 457
 458        /* Primarily protects free_area */
 459        spinlock_t              lock;
 460
 461        /* Write-intensive fields used by compaction and vmstats. */
 462        ZONE_PADDING(_pad2_)
 463
 464        /*
 465         * When free pages are below this point, additional steps are taken
 466         * when reading the number of free pages to avoid per-cpu counter
 467         * drift allowing watermarks to be breached
 468         */
 469        unsigned long percpu_drift_mark;
 470
 471#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 472        /* pfn where compaction free scanner should start */
 473        unsigned long           compact_cached_free_pfn;
 474        /* pfn where async and sync compaction migration scanner should start */
 475        unsigned long           compact_cached_migrate_pfn[2];
 476#endif
 477
 478#ifdef CONFIG_COMPACTION
 479        /*
 480         * On compaction failure, 1<<compact_defer_shift compactions
 481         * are skipped before trying again. The number attempted since
 482         * last failure is tracked with compact_considered.
 483         */
 484        unsigned int            compact_considered;
 485        unsigned int            compact_defer_shift;
 486        int                     compact_order_failed;
 487#endif
 488
 489#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 490        /* Set to true when the PG_migrate_skip bits should be cleared */
 491        bool                    compact_blockskip_flush;
 492#endif
 493
 494        bool                    contiguous;
 495
 496        ZONE_PADDING(_pad3_)
 497        /* Zone statistics */
 498        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 499} ____cacheline_internodealigned_in_smp;
 500
 501enum pgdat_flags {
 502        PGDAT_CONGESTED,                /* pgdat has many dirty pages backed by
 503                                         * a congested BDI
 504                                         */
 505        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 506                                         * many dirty file pages at the tail
 507                                         * of the LRU.
 508                                         */
 509        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 510                                         * many pages under writeback
 511                                         */
 512        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 513};
 514
 515static inline unsigned long zone_end_pfn(const struct zone *zone)
 516{
 517        return zone->zone_start_pfn + zone->spanned_pages;
 518}
 519
 520static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 521{
 522        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 523}
 524
 525static inline bool zone_is_initialized(struct zone *zone)
 526{
 527        return zone->initialized;
 528}
 529
 530static inline bool zone_is_empty(struct zone *zone)
 531{
 532        return zone->spanned_pages == 0;
 533}
 534
 535/*
 536 * The "priority" of VM scanning is how much of the queues we will scan in one
 537 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 538 * queues ("queue_length >> 12") during an aging round.
 539 */
 540#define DEF_PRIORITY 12
 541
 542/* Maximum number of zones on a zonelist */
 543#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 544
 545enum {
 546        ZONELIST_FALLBACK,      /* zonelist with fallback */
 547#ifdef CONFIG_NUMA
 548        /*
 549         * The NUMA zonelists are doubled because we need zonelists that
 550         * restrict the allocations to a single node for __GFP_THISNODE.
 551         */
 552        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 553#endif
 554        MAX_ZONELISTS
 555};
 556
 557/*
 558 * This struct contains information about a zone in a zonelist. It is stored
 559 * here to avoid dereferences into large structures and lookups of tables
 560 */
 561struct zoneref {
 562        struct zone *zone;      /* Pointer to actual zone */
 563        int zone_idx;           /* zone_idx(zoneref->zone) */
 564};
 565
 566/*
 567 * One allocation request operates on a zonelist. A zonelist
 568 * is a list of zones, the first one is the 'goal' of the
 569 * allocation, the other zones are fallback zones, in decreasing
 570 * priority.
 571 *
 572 * To speed the reading of the zonelist, the zonerefs contain the zone index
 573 * of the entry being read. Helper functions to access information given
 574 * a struct zoneref are
 575 *
 576 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 577 * zonelist_zone_idx()  - Return the index of the zone for an entry
 578 * zonelist_node_idx()  - Return the index of the node for an entry
 579 */
 580struct zonelist {
 581        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 582};
 583
 584#ifndef CONFIG_DISCONTIGMEM
 585/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 586extern struct page *mem_map;
 587#endif
 588
 589/*
 590 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 591 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 592 * zone denotes.
 593 *
 594 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 595 * it's memory layout.
 596 *
 597 * Memory statistics and page replacement data structures are maintained on a
 598 * per-zone basis.
 599 */
 600struct bootmem_data;
 601typedef struct pglist_data {
 602        struct zone node_zones[MAX_NR_ZONES];
 603        struct zonelist node_zonelists[MAX_ZONELISTS];
 604        int nr_zones;
 605#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 606        struct page *node_mem_map;
 607#ifdef CONFIG_PAGE_EXTENSION
 608        struct page_ext *node_page_ext;
 609#endif
 610#endif
 611#ifndef CONFIG_NO_BOOTMEM
 612        struct bootmem_data *bdata;
 613#endif
 614#ifdef CONFIG_MEMORY_HOTPLUG
 615        /*
 616         * Must be held any time you expect node_start_pfn, node_present_pages
 617         * or node_spanned_pages stay constant.  Holding this will also
 618         * guarantee that any pfn_valid() stays that way.
 619         *
 620         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 621         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
 622         *
 623         * Nests above zone->lock and zone->span_seqlock
 624         */
 625        spinlock_t node_size_lock;
 626#endif
 627        unsigned long node_start_pfn;
 628        unsigned long node_present_pages; /* total number of physical pages */
 629        unsigned long node_spanned_pages; /* total size of physical page
 630                                             range, including holes */
 631        int node_id;
 632        wait_queue_head_t kswapd_wait;
 633        wait_queue_head_t pfmemalloc_wait;
 634        struct task_struct *kswapd;     /* Protected by
 635                                           mem_hotplug_begin/end() */
 636        int kswapd_order;
 637        enum zone_type kswapd_classzone_idx;
 638
 639        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 640
 641#ifdef CONFIG_COMPACTION
 642        int kcompactd_max_order;
 643        enum zone_type kcompactd_classzone_idx;
 644        wait_queue_head_t kcompactd_wait;
 645        struct task_struct *kcompactd;
 646#endif
 647#ifdef CONFIG_NUMA_BALANCING
 648        /* Lock serializing the migrate rate limiting window */
 649        spinlock_t numabalancing_migrate_lock;
 650
 651        /* Rate limiting time interval */
 652        unsigned long numabalancing_migrate_next_window;
 653
 654        /* Number of pages migrated during the rate limiting time interval */
 655        unsigned long numabalancing_migrate_nr_pages;
 656#endif
 657        /*
 658         * This is a per-node reserve of pages that are not available
 659         * to userspace allocations.
 660         */
 661        unsigned long           totalreserve_pages;
 662
 663#ifdef CONFIG_NUMA
 664        /*
 665         * zone reclaim becomes active if more unmapped pages exist.
 666         */
 667        unsigned long           min_unmapped_pages;
 668        unsigned long           min_slab_pages;
 669#endif /* CONFIG_NUMA */
 670
 671        /* Write-intensive fields used by page reclaim */
 672        ZONE_PADDING(_pad1_)
 673        spinlock_t              lru_lock;
 674
 675#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 676        /*
 677         * If memory initialisation on large machines is deferred then this
 678         * is the first PFN that needs to be initialised.
 679         */
 680        unsigned long first_deferred_pfn;
 681        unsigned long static_init_size;
 682#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 683
 684#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 685        spinlock_t split_queue_lock;
 686        struct list_head split_queue;
 687        unsigned long split_queue_len;
 688#endif
 689
 690        /* Fields commonly accessed by the page reclaim scanner */
 691        struct lruvec           lruvec;
 692
 693        /*
 694         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 695         * this node's LRU.  Maintained by the pageout code.
 696         */
 697        unsigned int inactive_ratio;
 698
 699        unsigned long           flags;
 700
 701        ZONE_PADDING(_pad2_)
 702
 703        /* Per-node vmstats */
 704        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 705        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 706} pg_data_t;
 707
 708#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 709#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 710#ifdef CONFIG_FLAT_NODE_MEM_MAP
 711#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 712#else
 713#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 714#endif
 715#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 716
 717#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 718#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 719static inline spinlock_t *zone_lru_lock(struct zone *zone)
 720{
 721        return &zone->zone_pgdat->lru_lock;
 722}
 723
 724static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
 725{
 726        return &pgdat->lruvec;
 727}
 728
 729static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 730{
 731        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 732}
 733
 734static inline bool pgdat_is_empty(pg_data_t *pgdat)
 735{
 736        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 737}
 738
 739static inline int zone_id(const struct zone *zone)
 740{
 741        struct pglist_data *pgdat = zone->zone_pgdat;
 742
 743        return zone - pgdat->node_zones;
 744}
 745
 746#ifdef CONFIG_ZONE_DEVICE
 747static inline bool is_dev_zone(const struct zone *zone)
 748{
 749        return zone_id(zone) == ZONE_DEVICE;
 750}
 751#else
 752static inline bool is_dev_zone(const struct zone *zone)
 753{
 754        return false;
 755}
 756#endif
 757
 758#include <linux/memory_hotplug.h>
 759
 760extern struct mutex zonelists_mutex;
 761void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
 762void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 763bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 764                         int classzone_idx, unsigned int alloc_flags,
 765                         long free_pages);
 766bool zone_watermark_ok(struct zone *z, unsigned int order,
 767                unsigned long mark, int classzone_idx,
 768                unsigned int alloc_flags);
 769bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 770                unsigned long mark, int classzone_idx);
 771enum memmap_context {
 772        MEMMAP_EARLY,
 773        MEMMAP_HOTPLUG,
 774};
 775extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 776                                     unsigned long size);
 777
 778extern void lruvec_init(struct lruvec *lruvec);
 779
 780static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 781{
 782#ifdef CONFIG_MEMCG
 783        return lruvec->pgdat;
 784#else
 785        return container_of(lruvec, struct pglist_data, lruvec);
 786#endif
 787}
 788
 789extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 790
 791#ifdef CONFIG_HAVE_MEMORY_PRESENT
 792void memory_present(int nid, unsigned long start, unsigned long end);
 793#else
 794static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 795#endif
 796
 797#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 798int local_memory_node(int node_id);
 799#else
 800static inline int local_memory_node(int node_id) { return node_id; };
 801#endif
 802
 803#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 804unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 805#endif
 806
 807/*
 808 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 809 */
 810#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 811
 812/*
 813 * Returns true if a zone has pages managed by the buddy allocator.
 814 * All the reclaim decisions have to use this function rather than
 815 * populated_zone(). If the whole zone is reserved then we can easily
 816 * end up with populated_zone() && !managed_zone().
 817 */
 818static inline bool managed_zone(struct zone *zone)
 819{
 820        return zone->managed_pages;
 821}
 822
 823/* Returns true if a zone has memory */
 824static inline bool populated_zone(struct zone *zone)
 825{
 826        return zone->present_pages;
 827}
 828
 829extern int movable_zone;
 830
 831#ifdef CONFIG_HIGHMEM
 832static inline int zone_movable_is_highmem(void)
 833{
 834#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 835        return movable_zone == ZONE_HIGHMEM;
 836#else
 837        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 838#endif
 839}
 840#endif
 841
 842static inline int is_highmem_idx(enum zone_type idx)
 843{
 844#ifdef CONFIG_HIGHMEM
 845        return (idx == ZONE_HIGHMEM ||
 846                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 847#else
 848        return 0;
 849#endif
 850}
 851
 852/**
 853 * is_highmem - helper function to quickly check if a struct zone is a 
 854 *              highmem zone or not.  This is an attempt to keep references
 855 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 856 * @zone - pointer to struct zone variable
 857 */
 858static inline int is_highmem(struct zone *zone)
 859{
 860#ifdef CONFIG_HIGHMEM
 861        return is_highmem_idx(zone_idx(zone));
 862#else
 863        return 0;
 864#endif
 865}
 866
 867/* These two functions are used to setup the per zone pages min values */
 868struct ctl_table;
 869int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 870                                        void __user *, size_t *, loff_t *);
 871int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 872                                        void __user *, size_t *, loff_t *);
 873extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 874int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 875                                        void __user *, size_t *, loff_t *);
 876int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 877                                        void __user *, size_t *, loff_t *);
 878int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 879                        void __user *, size_t *, loff_t *);
 880int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 881                        void __user *, size_t *, loff_t *);
 882
 883extern int numa_zonelist_order_handler(struct ctl_table *, int,
 884                        void __user *, size_t *, loff_t *);
 885extern char numa_zonelist_order[];
 886#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 887
 888#ifndef CONFIG_NEED_MULTIPLE_NODES
 889
 890extern struct pglist_data contig_page_data;
 891#define NODE_DATA(nid)          (&contig_page_data)
 892#define NODE_MEM_MAP(nid)       mem_map
 893
 894#else /* CONFIG_NEED_MULTIPLE_NODES */
 895
 896#include <asm/mmzone.h>
 897
 898#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 899
 900extern struct pglist_data *first_online_pgdat(void);
 901extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 902extern struct zone *next_zone(struct zone *zone);
 903
 904/**
 905 * for_each_online_pgdat - helper macro to iterate over all online nodes
 906 * @pgdat - pointer to a pg_data_t variable
 907 */
 908#define for_each_online_pgdat(pgdat)                    \
 909        for (pgdat = first_online_pgdat();              \
 910             pgdat;                                     \
 911             pgdat = next_online_pgdat(pgdat))
 912/**
 913 * for_each_zone - helper macro to iterate over all memory zones
 914 * @zone - pointer to struct zone variable
 915 *
 916 * The user only needs to declare the zone variable, for_each_zone
 917 * fills it in.
 918 */
 919#define for_each_zone(zone)                             \
 920        for (zone = (first_online_pgdat())->node_zones; \
 921             zone;                                      \
 922             zone = next_zone(zone))
 923
 924#define for_each_populated_zone(zone)                   \
 925        for (zone = (first_online_pgdat())->node_zones; \
 926             zone;                                      \
 927             zone = next_zone(zone))                    \
 928                if (!populated_zone(zone))              \
 929                        ; /* do nothing */              \
 930                else
 931
 932static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 933{
 934        return zoneref->zone;
 935}
 936
 937static inline int zonelist_zone_idx(struct zoneref *zoneref)
 938{
 939        return zoneref->zone_idx;
 940}
 941
 942static inline int zonelist_node_idx(struct zoneref *zoneref)
 943{
 944#ifdef CONFIG_NUMA
 945        /* zone_to_nid not available in this context */
 946        return zoneref->zone->node;
 947#else
 948        return 0;
 949#endif /* CONFIG_NUMA */
 950}
 951
 952struct zoneref *__next_zones_zonelist(struct zoneref *z,
 953                                        enum zone_type highest_zoneidx,
 954                                        nodemask_t *nodes);
 955
 956/**
 957 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 958 * @z - The cursor used as a starting point for the search
 959 * @highest_zoneidx - The zone index of the highest zone to return
 960 * @nodes - An optional nodemask to filter the zonelist with
 961 *
 962 * This function returns the next zone at or below a given zone index that is
 963 * within the allowed nodemask using a cursor as the starting point for the
 964 * search. The zoneref returned is a cursor that represents the current zone
 965 * being examined. It should be advanced by one before calling
 966 * next_zones_zonelist again.
 967 */
 968static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
 969                                        enum zone_type highest_zoneidx,
 970                                        nodemask_t *nodes)
 971{
 972        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
 973                return z;
 974        return __next_zones_zonelist(z, highest_zoneidx, nodes);
 975}
 976
 977/**
 978 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 979 * @zonelist - The zonelist to search for a suitable zone
 980 * @highest_zoneidx - The zone index of the highest zone to return
 981 * @nodes - An optional nodemask to filter the zonelist with
 982 * @return - Zoneref pointer for the first suitable zone found (see below)
 983 *
 984 * This function returns the first zone at or below a given zone index that is
 985 * within the allowed nodemask. The zoneref returned is a cursor that can be
 986 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 987 * one before calling.
 988 *
 989 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
 990 * never NULL). This may happen either genuinely, or due to concurrent nodemask
 991 * update due to cpuset modification.
 992 */
 993static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
 994                                        enum zone_type highest_zoneidx,
 995                                        nodemask_t *nodes)
 996{
 997        return next_zones_zonelist(zonelist->_zonerefs,
 998                                                        highest_zoneidx, nodes);
 999}
1000
1001/**
1002 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1003 * @zone - The current zone in the iterator
1004 * @z - The current pointer within zonelist->zones being iterated
1005 * @zlist - The zonelist being iterated
1006 * @highidx - The zone index of the highest zone to return
1007 * @nodemask - Nodemask allowed by the allocator
1008 *
1009 * This iterator iterates though all zones at or below a given zone index and
1010 * within a given nodemask
1011 */
1012#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1013        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1014                zone;                                                   \
1015                z = next_zones_zonelist(++z, highidx, nodemask),        \
1016                        zone = zonelist_zone(z))
1017
1018#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1019        for (zone = z->zone;    \
1020                zone;                                                   \
1021                z = next_zones_zonelist(++z, highidx, nodemask),        \
1022                        zone = zonelist_zone(z))
1023
1024
1025/**
1026 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1027 * @zone - The current zone in the iterator
1028 * @z - The current pointer within zonelist->zones being iterated
1029 * @zlist - The zonelist being iterated
1030 * @highidx - The zone index of the highest zone to return
1031 *
1032 * This iterator iterates though all zones at or below a given zone index.
1033 */
1034#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1035        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1036
1037#ifdef CONFIG_SPARSEMEM
1038#include <asm/sparsemem.h>
1039#endif
1040
1041#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1042        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1043static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1044{
1045        return 0;
1046}
1047#endif
1048
1049#ifdef CONFIG_FLATMEM
1050#define pfn_to_nid(pfn)         (0)
1051#endif
1052
1053#ifdef CONFIG_SPARSEMEM
1054
1055/*
1056 * SECTION_SHIFT                #bits space required to store a section #
1057 *
1058 * PA_SECTION_SHIFT             physical address to/from section number
1059 * PFN_SECTION_SHIFT            pfn to/from section number
1060 */
1061#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1062#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1063
1064#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1065
1066#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1067#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1068
1069#define SECTION_BLOCKFLAGS_BITS \
1070        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1071
1072#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1073#error Allocator MAX_ORDER exceeds SECTION_SIZE
1074#endif
1075
1076#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1077#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1078
1079#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1080#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1081
1082struct page;
1083struct page_ext;
1084struct mem_section {
1085        /*
1086         * This is, logically, a pointer to an array of struct
1087         * pages.  However, it is stored with some other magic.
1088         * (see sparse.c::sparse_init_one_section())
1089         *
1090         * Additionally during early boot we encode node id of
1091         * the location of the section here to guide allocation.
1092         * (see sparse.c::memory_present())
1093         *
1094         * Making it a UL at least makes someone do a cast
1095         * before using it wrong.
1096         */
1097        unsigned long section_mem_map;
1098
1099        /* See declaration of similar field in struct zone */
1100        unsigned long *pageblock_flags;
1101#ifdef CONFIG_PAGE_EXTENSION
1102        /*
1103         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1104         * section. (see page_ext.h about this.)
1105         */
1106        struct page_ext *page_ext;
1107        unsigned long pad;
1108#endif
1109        /*
1110         * WARNING: mem_section must be a power-of-2 in size for the
1111         * calculation and use of SECTION_ROOT_MASK to make sense.
1112         */
1113};
1114
1115#ifdef CONFIG_SPARSEMEM_EXTREME
1116#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1117#else
1118#define SECTIONS_PER_ROOT       1
1119#endif
1120
1121#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1122#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1123#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1124
1125#ifdef CONFIG_SPARSEMEM_EXTREME
1126extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1127#else
1128extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1129#endif
1130
1131static inline struct mem_section *__nr_to_section(unsigned long nr)
1132{
1133        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1134                return NULL;
1135        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1136}
1137extern int __section_nr(struct mem_section* ms);
1138extern unsigned long usemap_size(void);
1139
1140/*
1141 * We use the lower bits of the mem_map pointer to store
1142 * a little bit of information.  There should be at least
1143 * 3 bits here due to 32-bit alignment.
1144 */
1145#define SECTION_MARKED_PRESENT  (1UL<<0)
1146#define SECTION_HAS_MEM_MAP     (1UL<<1)
1147#define SECTION_MAP_LAST_BIT    (1UL<<2)
1148#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1149#define SECTION_NID_SHIFT       2
1150
1151static inline struct page *__section_mem_map_addr(struct mem_section *section)
1152{
1153        unsigned long map = section->section_mem_map;
1154        map &= SECTION_MAP_MASK;
1155        return (struct page *)map;
1156}
1157
1158static inline int present_section(struct mem_section *section)
1159{
1160        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1161}
1162
1163static inline int present_section_nr(unsigned long nr)
1164{
1165        return present_section(__nr_to_section(nr));
1166}
1167
1168static inline int valid_section(struct mem_section *section)
1169{
1170        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1171}
1172
1173static inline int valid_section_nr(unsigned long nr)
1174{
1175        return valid_section(__nr_to_section(nr));
1176}
1177
1178static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1179{
1180        return __nr_to_section(pfn_to_section_nr(pfn));
1181}
1182
1183#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1184static inline int pfn_valid(unsigned long pfn)
1185{
1186        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1187                return 0;
1188        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1189}
1190#endif
1191
1192static inline int pfn_present(unsigned long pfn)
1193{
1194        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1195                return 0;
1196        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1197}
1198
1199/*
1200 * These are _only_ used during initialisation, therefore they
1201 * can use __initdata ...  They could have names to indicate
1202 * this restriction.
1203 */
1204#ifdef CONFIG_NUMA
1205#define pfn_to_nid(pfn)                                                 \
1206({                                                                      \
1207        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1208        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1209})
1210#else
1211#define pfn_to_nid(pfn)         (0)
1212#endif
1213
1214#define early_pfn_valid(pfn)    pfn_valid(pfn)
1215void sparse_init(void);
1216#else
1217#define sparse_init()   do {} while (0)
1218#define sparse_index_init(_sec, _nid)  do {} while (0)
1219#endif /* CONFIG_SPARSEMEM */
1220
1221/*
1222 * During memory init memblocks map pfns to nids. The search is expensive and
1223 * this caches recent lookups. The implementation of __early_pfn_to_nid
1224 * may treat start/end as pfns or sections.
1225 */
1226struct mminit_pfnnid_cache {
1227        unsigned long last_start;
1228        unsigned long last_end;
1229        int last_nid;
1230};
1231
1232#ifndef early_pfn_valid
1233#define early_pfn_valid(pfn)    (1)
1234#endif
1235
1236void memory_present(int nid, unsigned long start, unsigned long end);
1237unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1238
1239/*
1240 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1241 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1242 * pfn_valid_within() should be used in this case; we optimise this away
1243 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1244 */
1245#ifdef CONFIG_HOLES_IN_ZONE
1246#define pfn_valid_within(pfn) pfn_valid(pfn)
1247#else
1248#define pfn_valid_within(pfn) (1)
1249#endif
1250
1251#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1252/*
1253 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1254 * associated with it or not. In FLATMEM, it is expected that holes always
1255 * have valid memmap as long as there is valid PFNs either side of the hole.
1256 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1257 * entire section.
1258 *
1259 * However, an ARM, and maybe other embedded architectures in the future
1260 * free memmap backing holes to save memory on the assumption the memmap is
1261 * never used. The page_zone linkages are then broken even though pfn_valid()
1262 * returns true. A walker of the full memmap must then do this additional
1263 * check to ensure the memmap they are looking at is sane by making sure
1264 * the zone and PFN linkages are still valid. This is expensive, but walkers
1265 * of the full memmap are extremely rare.
1266 */
1267bool memmap_valid_within(unsigned long pfn,
1268                                        struct page *page, struct zone *zone);
1269#else
1270static inline bool memmap_valid_within(unsigned long pfn,
1271                                        struct page *page, struct zone *zone)
1272{
1273        return true;
1274}
1275#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1276
1277#endif /* !__GENERATING_BOUNDS.H */
1278#endif /* !__ASSEMBLY__ */
1279#endif /* _LINUX_MMZONE_H */
1280