linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61#include <linux/wait.h>
  62#include <linux/cgroup-defs.h>
  63
  64#include <linux/filter.h>
  65#include <linux/rculist_nulls.h>
  66#include <linux/poll.h>
  67
  68#include <linux/atomic.h>
  69#include <net/dst.h>
  70#include <net/checksum.h>
  71#include <net/tcp_states.h>
  72#include <linux/net_tstamp.h>
  73#include <net/smc.h>
  74
  75/*
  76 * This structure really needs to be cleaned up.
  77 * Most of it is for TCP, and not used by any of
  78 * the other protocols.
  79 */
  80
  81/* Define this to get the SOCK_DBG debugging facility. */
  82#define SOCK_DEBUGGING
  83#ifdef SOCK_DEBUGGING
  84#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  85                                        printk(KERN_DEBUG msg); } while (0)
  86#else
  87/* Validate arguments and do nothing */
  88static inline __printf(2, 3)
  89void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  90{
  91}
  92#endif
  93
  94/* This is the per-socket lock.  The spinlock provides a synchronization
  95 * between user contexts and software interrupt processing, whereas the
  96 * mini-semaphore synchronizes multiple users amongst themselves.
  97 */
  98typedef struct {
  99        spinlock_t              slock;
 100        int                     owned;
 101        wait_queue_head_t       wq;
 102        /*
 103         * We express the mutex-alike socket_lock semantics
 104         * to the lock validator by explicitly managing
 105         * the slock as a lock variant (in addition to
 106         * the slock itself):
 107         */
 108#ifdef CONFIG_DEBUG_LOCK_ALLOC
 109        struct lockdep_map dep_map;
 110#endif
 111} socket_lock_t;
 112
 113struct sock;
 114struct proto;
 115struct net;
 116
 117typedef __u32 __bitwise __portpair;
 118typedef __u64 __bitwise __addrpair;
 119
 120/**
 121 *      struct sock_common - minimal network layer representation of sockets
 122 *      @skc_daddr: Foreign IPv4 addr
 123 *      @skc_rcv_saddr: Bound local IPv4 addr
 124 *      @skc_hash: hash value used with various protocol lookup tables
 125 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 126 *      @skc_dport: placeholder for inet_dport/tw_dport
 127 *      @skc_num: placeholder for inet_num/tw_num
 128 *      @skc_family: network address family
 129 *      @skc_state: Connection state
 130 *      @skc_reuse: %SO_REUSEADDR setting
 131 *      @skc_reuseport: %SO_REUSEPORT setting
 132 *      @skc_bound_dev_if: bound device index if != 0
 133 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 134 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 135 *      @skc_prot: protocol handlers inside a network family
 136 *      @skc_net: reference to the network namespace of this socket
 137 *      @skc_node: main hash linkage for various protocol lookup tables
 138 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 139 *      @skc_tx_queue_mapping: tx queue number for this connection
 140 *      @skc_flags: place holder for sk_flags
 141 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 142 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 143 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 144 *      @skc_refcnt: reference count
 145 *
 146 *      This is the minimal network layer representation of sockets, the header
 147 *      for struct sock and struct inet_timewait_sock.
 148 */
 149struct sock_common {
 150        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 151         * address on 64bit arches : cf INET_MATCH()
 152         */
 153        union {
 154                __addrpair      skc_addrpair;
 155                struct {
 156                        __be32  skc_daddr;
 157                        __be32  skc_rcv_saddr;
 158                };
 159        };
 160        union  {
 161                unsigned int    skc_hash;
 162                __u16           skc_u16hashes[2];
 163        };
 164        /* skc_dport && skc_num must be grouped as well */
 165        union {
 166                __portpair      skc_portpair;
 167                struct {
 168                        __be16  skc_dport;
 169                        __u16   skc_num;
 170                };
 171        };
 172
 173        unsigned short          skc_family;
 174        volatile unsigned char  skc_state;
 175        unsigned char           skc_reuse:4;
 176        unsigned char           skc_reuseport:1;
 177        unsigned char           skc_ipv6only:1;
 178        unsigned char           skc_net_refcnt:1;
 179        int                     skc_bound_dev_if;
 180        union {
 181                struct hlist_node       skc_bind_node;
 182                struct hlist_node       skc_portaddr_node;
 183        };
 184        struct proto            *skc_prot;
 185        possible_net_t          skc_net;
 186
 187#if IS_ENABLED(CONFIG_IPV6)
 188        struct in6_addr         skc_v6_daddr;
 189        struct in6_addr         skc_v6_rcv_saddr;
 190#endif
 191
 192        atomic64_t              skc_cookie;
 193
 194        /* following fields are padding to force
 195         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 196         * assuming IPV6 is enabled. We use this padding differently
 197         * for different kind of 'sockets'
 198         */
 199        union {
 200                unsigned long   skc_flags;
 201                struct sock     *skc_listener; /* request_sock */
 202                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 203        };
 204        /*
 205         * fields between dontcopy_begin/dontcopy_end
 206         * are not copied in sock_copy()
 207         */
 208        /* private: */
 209        int                     skc_dontcopy_begin[0];
 210        /* public: */
 211        union {
 212                struct hlist_node       skc_node;
 213                struct hlist_nulls_node skc_nulls_node;
 214        };
 215        int                     skc_tx_queue_mapping;
 216        union {
 217                int             skc_incoming_cpu;
 218                u32             skc_rcv_wnd;
 219                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 220        };
 221
 222        atomic_t                skc_refcnt;
 223        /* private: */
 224        int                     skc_dontcopy_end[0];
 225        union {
 226                u32             skc_rxhash;
 227                u32             skc_window_clamp;
 228                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 229        };
 230        /* public: */
 231};
 232
 233/**
 234  *     struct sock - network layer representation of sockets
 235  *     @__sk_common: shared layout with inet_timewait_sock
 236  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 237  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 238  *     @sk_lock:       synchronizer
 239  *     @sk_kern_sock: True if sock is using kernel lock classes
 240  *     @sk_rcvbuf: size of receive buffer in bytes
 241  *     @sk_wq: sock wait queue and async head
 242  *     @sk_rx_dst: receive input route used by early demux
 243  *     @sk_dst_cache: destination cache
 244  *     @sk_dst_pending_confirm: need to confirm neighbour
 245  *     @sk_policy: flow policy
 246  *     @sk_receive_queue: incoming packets
 247  *     @sk_wmem_alloc: transmit queue bytes committed
 248  *     @sk_write_queue: Packet sending queue
 249  *     @sk_omem_alloc: "o" is "option" or "other"
 250  *     @sk_wmem_queued: persistent queue size
 251  *     @sk_forward_alloc: space allocated forward
 252  *     @sk_napi_id: id of the last napi context to receive data for sk
 253  *     @sk_ll_usec: usecs to busypoll when there is no data
 254  *     @sk_allocation: allocation mode
 255  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 256  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 257  *     @sk_sndbuf: size of send buffer in bytes
 258  *     @sk_padding: unused element for alignment
 259  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 260  *     @sk_no_check_rx: allow zero checksum in RX packets
 261  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 262  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 263  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 264  *     @sk_gso_max_size: Maximum GSO segment size to build
 265  *     @sk_gso_max_segs: Maximum number of GSO segments
 266  *     @sk_lingertime: %SO_LINGER l_linger setting
 267  *     @sk_backlog: always used with the per-socket spinlock held
 268  *     @sk_callback_lock: used with the callbacks in the end of this struct
 269  *     @sk_error_queue: rarely used
 270  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 271  *                       IPV6_ADDRFORM for instance)
 272  *     @sk_err: last error
 273  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 274  *                   persistent failure not just 'timed out'
 275  *     @sk_drops: raw/udp drops counter
 276  *     @sk_ack_backlog: current listen backlog
 277  *     @sk_max_ack_backlog: listen backlog set in listen()
 278  *     @sk_priority: %SO_PRIORITY setting
 279  *     @sk_type: socket type (%SOCK_STREAM, etc)
 280  *     @sk_protocol: which protocol this socket belongs in this network family
 281  *     @sk_peer_pid: &struct pid for this socket's peer
 282  *     @sk_peer_cred: %SO_PEERCRED setting
 283  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 284  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 285  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 286  *     @sk_txhash: computed flow hash for use on transmit
 287  *     @sk_filter: socket filtering instructions
 288  *     @sk_timer: sock cleanup timer
 289  *     @sk_stamp: time stamp of last packet received
 290  *     @sk_tsflags: SO_TIMESTAMPING socket options
 291  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 292  *     @sk_socket: Identd and reporting IO signals
 293  *     @sk_user_data: RPC layer private data
 294  *     @sk_frag: cached page frag
 295  *     @sk_peek_off: current peek_offset value
 296  *     @sk_send_head: front of stuff to transmit
 297  *     @sk_security: used by security modules
 298  *     @sk_mark: generic packet mark
 299  *     @sk_cgrp_data: cgroup data for this cgroup
 300  *     @sk_memcg: this socket's memory cgroup association
 301  *     @sk_write_pending: a write to stream socket waits to start
 302  *     @sk_state_change: callback to indicate change in the state of the sock
 303  *     @sk_data_ready: callback to indicate there is data to be processed
 304  *     @sk_write_space: callback to indicate there is bf sending space available
 305  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 306  *     @sk_backlog_rcv: callback to process the backlog
 307  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 308  *     @sk_reuseport_cb: reuseport group container
 309  *     @sk_rcu: used during RCU grace period
 310  */
 311struct sock {
 312        /*
 313         * Now struct inet_timewait_sock also uses sock_common, so please just
 314         * don't add nothing before this first member (__sk_common) --acme
 315         */
 316        struct sock_common      __sk_common;
 317#define sk_node                 __sk_common.skc_node
 318#define sk_nulls_node           __sk_common.skc_nulls_node
 319#define sk_refcnt               __sk_common.skc_refcnt
 320#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 321
 322#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 323#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 324#define sk_hash                 __sk_common.skc_hash
 325#define sk_portpair             __sk_common.skc_portpair
 326#define sk_num                  __sk_common.skc_num
 327#define sk_dport                __sk_common.skc_dport
 328#define sk_addrpair             __sk_common.skc_addrpair
 329#define sk_daddr                __sk_common.skc_daddr
 330#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 331#define sk_family               __sk_common.skc_family
 332#define sk_state                __sk_common.skc_state
 333#define sk_reuse                __sk_common.skc_reuse
 334#define sk_reuseport            __sk_common.skc_reuseport
 335#define sk_ipv6only             __sk_common.skc_ipv6only
 336#define sk_net_refcnt           __sk_common.skc_net_refcnt
 337#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 338#define sk_bind_node            __sk_common.skc_bind_node
 339#define sk_prot                 __sk_common.skc_prot
 340#define sk_net                  __sk_common.skc_net
 341#define sk_v6_daddr             __sk_common.skc_v6_daddr
 342#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 343#define sk_cookie               __sk_common.skc_cookie
 344#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 345#define sk_flags                __sk_common.skc_flags
 346#define sk_rxhash               __sk_common.skc_rxhash
 347
 348        socket_lock_t           sk_lock;
 349        atomic_t                sk_drops;
 350        int                     sk_rcvlowat;
 351        struct sk_buff_head     sk_error_queue;
 352        struct sk_buff_head     sk_receive_queue;
 353        /*
 354         * The backlog queue is special, it is always used with
 355         * the per-socket spinlock held and requires low latency
 356         * access. Therefore we special case it's implementation.
 357         * Note : rmem_alloc is in this structure to fill a hole
 358         * on 64bit arches, not because its logically part of
 359         * backlog.
 360         */
 361        struct {
 362                atomic_t        rmem_alloc;
 363                int             len;
 364                struct sk_buff  *head;
 365                struct sk_buff  *tail;
 366        } sk_backlog;
 367#define sk_rmem_alloc sk_backlog.rmem_alloc
 368
 369        int                     sk_forward_alloc;
 370#ifdef CONFIG_NET_RX_BUSY_POLL
 371        unsigned int            sk_ll_usec;
 372        /* ===== mostly read cache line ===== */
 373        unsigned int            sk_napi_id;
 374#endif
 375        int                     sk_rcvbuf;
 376
 377        struct sk_filter __rcu  *sk_filter;
 378        union {
 379                struct socket_wq __rcu  *sk_wq;
 380                struct socket_wq        *sk_wq_raw;
 381        };
 382#ifdef CONFIG_XFRM
 383        struct xfrm_policy __rcu *sk_policy[2];
 384#endif
 385        struct dst_entry        *sk_rx_dst;
 386        struct dst_entry __rcu  *sk_dst_cache;
 387        atomic_t                sk_omem_alloc;
 388        int                     sk_sndbuf;
 389
 390        /* ===== cache line for TX ===== */
 391        int                     sk_wmem_queued;
 392        atomic_t                sk_wmem_alloc;
 393        unsigned long           sk_tsq_flags;
 394        struct sk_buff          *sk_send_head;
 395        struct sk_buff_head     sk_write_queue;
 396        __s32                   sk_peek_off;
 397        int                     sk_write_pending;
 398        __u32                   sk_dst_pending_confirm;
 399        /* Note: 32bit hole on 64bit arches */
 400        long                    sk_sndtimeo;
 401        struct timer_list       sk_timer;
 402        __u32                   sk_priority;
 403        __u32                   sk_mark;
 404        u32                     sk_pacing_rate; /* bytes per second */
 405        u32                     sk_max_pacing_rate;
 406        struct page_frag        sk_frag;
 407        netdev_features_t       sk_route_caps;
 408        netdev_features_t       sk_route_nocaps;
 409        int                     sk_gso_type;
 410        unsigned int            sk_gso_max_size;
 411        gfp_t                   sk_allocation;
 412        __u32                   sk_txhash;
 413
 414        /*
 415         * Because of non atomicity rules, all
 416         * changes are protected by socket lock.
 417         */
 418        unsigned int            __sk_flags_offset[0];
 419#ifdef __BIG_ENDIAN_BITFIELD
 420#define SK_FL_PROTO_SHIFT  16
 421#define SK_FL_PROTO_MASK   0x00ff0000
 422
 423#define SK_FL_TYPE_SHIFT   0
 424#define SK_FL_TYPE_MASK    0x0000ffff
 425#else
 426#define SK_FL_PROTO_SHIFT  8
 427#define SK_FL_PROTO_MASK   0x0000ff00
 428
 429#define SK_FL_TYPE_SHIFT   16
 430#define SK_FL_TYPE_MASK    0xffff0000
 431#endif
 432
 433        kmemcheck_bitfield_begin(flags);
 434        unsigned int            sk_padding : 1,
 435                                sk_kern_sock : 1,
 436                                sk_no_check_tx : 1,
 437                                sk_no_check_rx : 1,
 438                                sk_userlocks : 4,
 439                                sk_protocol  : 8,
 440                                sk_type      : 16;
 441#define SK_PROTOCOL_MAX U8_MAX
 442        kmemcheck_bitfield_end(flags);
 443
 444        u16                     sk_gso_max_segs;
 445        unsigned long           sk_lingertime;
 446        struct proto            *sk_prot_creator;
 447        rwlock_t                sk_callback_lock;
 448        int                     sk_err,
 449                                sk_err_soft;
 450        u32                     sk_ack_backlog;
 451        u32                     sk_max_ack_backlog;
 452        kuid_t                  sk_uid;
 453        struct pid              *sk_peer_pid;
 454        const struct cred       *sk_peer_cred;
 455        long                    sk_rcvtimeo;
 456        ktime_t                 sk_stamp;
 457        u16                     sk_tsflags;
 458        u8                      sk_shutdown;
 459        u32                     sk_tskey;
 460        struct socket           *sk_socket;
 461        void                    *sk_user_data;
 462#ifdef CONFIG_SECURITY
 463        void                    *sk_security;
 464#endif
 465        struct sock_cgroup_data sk_cgrp_data;
 466        struct mem_cgroup       *sk_memcg;
 467        void                    (*sk_state_change)(struct sock *sk);
 468        void                    (*sk_data_ready)(struct sock *sk);
 469        void                    (*sk_write_space)(struct sock *sk);
 470        void                    (*sk_error_report)(struct sock *sk);
 471        int                     (*sk_backlog_rcv)(struct sock *sk,
 472                                                  struct sk_buff *skb);
 473        void                    (*sk_destruct)(struct sock *sk);
 474        struct sock_reuseport __rcu     *sk_reuseport_cb;
 475        struct rcu_head         sk_rcu;
 476};
 477
 478#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 479
 480#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 481#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 482
 483/*
 484 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 485 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 486 * on a socket means that the socket will reuse everybody else's port
 487 * without looking at the other's sk_reuse value.
 488 */
 489
 490#define SK_NO_REUSE     0
 491#define SK_CAN_REUSE    1
 492#define SK_FORCE_REUSE  2
 493
 494int sk_set_peek_off(struct sock *sk, int val);
 495
 496static inline int sk_peek_offset(struct sock *sk, int flags)
 497{
 498        if (unlikely(flags & MSG_PEEK)) {
 499                s32 off = READ_ONCE(sk->sk_peek_off);
 500                if (off >= 0)
 501                        return off;
 502        }
 503
 504        return 0;
 505}
 506
 507static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 508{
 509        s32 off = READ_ONCE(sk->sk_peek_off);
 510
 511        if (unlikely(off >= 0)) {
 512                off = max_t(s32, off - val, 0);
 513                WRITE_ONCE(sk->sk_peek_off, off);
 514        }
 515}
 516
 517static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 518{
 519        sk_peek_offset_bwd(sk, -val);
 520}
 521
 522/*
 523 * Hashed lists helper routines
 524 */
 525static inline struct sock *sk_entry(const struct hlist_node *node)
 526{
 527        return hlist_entry(node, struct sock, sk_node);
 528}
 529
 530static inline struct sock *__sk_head(const struct hlist_head *head)
 531{
 532        return hlist_entry(head->first, struct sock, sk_node);
 533}
 534
 535static inline struct sock *sk_head(const struct hlist_head *head)
 536{
 537        return hlist_empty(head) ? NULL : __sk_head(head);
 538}
 539
 540static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 541{
 542        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 543}
 544
 545static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 546{
 547        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 548}
 549
 550static inline struct sock *sk_next(const struct sock *sk)
 551{
 552        return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 553}
 554
 555static inline struct sock *sk_nulls_next(const struct sock *sk)
 556{
 557        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 558                hlist_nulls_entry(sk->sk_nulls_node.next,
 559                                  struct sock, sk_nulls_node) :
 560                NULL;
 561}
 562
 563static inline bool sk_unhashed(const struct sock *sk)
 564{
 565        return hlist_unhashed(&sk->sk_node);
 566}
 567
 568static inline bool sk_hashed(const struct sock *sk)
 569{
 570        return !sk_unhashed(sk);
 571}
 572
 573static inline void sk_node_init(struct hlist_node *node)
 574{
 575        node->pprev = NULL;
 576}
 577
 578static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 579{
 580        node->pprev = NULL;
 581}
 582
 583static inline void __sk_del_node(struct sock *sk)
 584{
 585        __hlist_del(&sk->sk_node);
 586}
 587
 588/* NB: equivalent to hlist_del_init_rcu */
 589static inline bool __sk_del_node_init(struct sock *sk)
 590{
 591        if (sk_hashed(sk)) {
 592                __sk_del_node(sk);
 593                sk_node_init(&sk->sk_node);
 594                return true;
 595        }
 596        return false;
 597}
 598
 599/* Grab socket reference count. This operation is valid only
 600   when sk is ALREADY grabbed f.e. it is found in hash table
 601   or a list and the lookup is made under lock preventing hash table
 602   modifications.
 603 */
 604
 605static __always_inline void sock_hold(struct sock *sk)
 606{
 607        atomic_inc(&sk->sk_refcnt);
 608}
 609
 610/* Ungrab socket in the context, which assumes that socket refcnt
 611   cannot hit zero, f.e. it is true in context of any socketcall.
 612 */
 613static __always_inline void __sock_put(struct sock *sk)
 614{
 615        atomic_dec(&sk->sk_refcnt);
 616}
 617
 618static inline bool sk_del_node_init(struct sock *sk)
 619{
 620        bool rc = __sk_del_node_init(sk);
 621
 622        if (rc) {
 623                /* paranoid for a while -acme */
 624                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 625                __sock_put(sk);
 626        }
 627        return rc;
 628}
 629#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 630
 631static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 632{
 633        if (sk_hashed(sk)) {
 634                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 635                return true;
 636        }
 637        return false;
 638}
 639
 640static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 641{
 642        bool rc = __sk_nulls_del_node_init_rcu(sk);
 643
 644        if (rc) {
 645                /* paranoid for a while -acme */
 646                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 647                __sock_put(sk);
 648        }
 649        return rc;
 650}
 651
 652static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 653{
 654        hlist_add_head(&sk->sk_node, list);
 655}
 656
 657static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 658{
 659        sock_hold(sk);
 660        __sk_add_node(sk, list);
 661}
 662
 663static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 664{
 665        sock_hold(sk);
 666        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 667            sk->sk_family == AF_INET6)
 668                hlist_add_tail_rcu(&sk->sk_node, list);
 669        else
 670                hlist_add_head_rcu(&sk->sk_node, list);
 671}
 672
 673static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 674{
 675        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 676            sk->sk_family == AF_INET6)
 677                hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 678        else
 679                hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 680}
 681
 682static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 683{
 684        sock_hold(sk);
 685        __sk_nulls_add_node_rcu(sk, list);
 686}
 687
 688static inline void __sk_del_bind_node(struct sock *sk)
 689{
 690        __hlist_del(&sk->sk_bind_node);
 691}
 692
 693static inline void sk_add_bind_node(struct sock *sk,
 694                                        struct hlist_head *list)
 695{
 696        hlist_add_head(&sk->sk_bind_node, list);
 697}
 698
 699#define sk_for_each(__sk, list) \
 700        hlist_for_each_entry(__sk, list, sk_node)
 701#define sk_for_each_rcu(__sk, list) \
 702        hlist_for_each_entry_rcu(__sk, list, sk_node)
 703#define sk_nulls_for_each(__sk, node, list) \
 704        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 705#define sk_nulls_for_each_rcu(__sk, node, list) \
 706        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 707#define sk_for_each_from(__sk) \
 708        hlist_for_each_entry_from(__sk, sk_node)
 709#define sk_nulls_for_each_from(__sk, node) \
 710        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 711                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 712#define sk_for_each_safe(__sk, tmp, list) \
 713        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 714#define sk_for_each_bound(__sk, list) \
 715        hlist_for_each_entry(__sk, list, sk_bind_node)
 716
 717/**
 718 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 719 * @tpos:       the type * to use as a loop cursor.
 720 * @pos:        the &struct hlist_node to use as a loop cursor.
 721 * @head:       the head for your list.
 722 * @offset:     offset of hlist_node within the struct.
 723 *
 724 */
 725#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 726        for (pos = rcu_dereference((head)->first);                             \
 727             pos != NULL &&                                                    \
 728                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 729             pos = rcu_dereference(pos->next))
 730
 731static inline struct user_namespace *sk_user_ns(struct sock *sk)
 732{
 733        /* Careful only use this in a context where these parameters
 734         * can not change and must all be valid, such as recvmsg from
 735         * userspace.
 736         */
 737        return sk->sk_socket->file->f_cred->user_ns;
 738}
 739
 740/* Sock flags */
 741enum sock_flags {
 742        SOCK_DEAD,
 743        SOCK_DONE,
 744        SOCK_URGINLINE,
 745        SOCK_KEEPOPEN,
 746        SOCK_LINGER,
 747        SOCK_DESTROY,
 748        SOCK_BROADCAST,
 749        SOCK_TIMESTAMP,
 750        SOCK_ZAPPED,
 751        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 752        SOCK_DBG, /* %SO_DEBUG setting */
 753        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 754        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 755        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 756        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 757        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 758        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 759        SOCK_FASYNC, /* fasync() active */
 760        SOCK_RXQ_OVFL,
 761        SOCK_ZEROCOPY, /* buffers from userspace */
 762        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 763        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 764                     * Will use last 4 bytes of packet sent from
 765                     * user-space instead.
 766                     */
 767        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 768        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 769        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 770};
 771
 772#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 773
 774static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 775{
 776        nsk->sk_flags = osk->sk_flags;
 777}
 778
 779static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 780{
 781        __set_bit(flag, &sk->sk_flags);
 782}
 783
 784static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 785{
 786        __clear_bit(flag, &sk->sk_flags);
 787}
 788
 789static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 790{
 791        return test_bit(flag, &sk->sk_flags);
 792}
 793
 794#ifdef CONFIG_NET
 795extern struct static_key memalloc_socks;
 796static inline int sk_memalloc_socks(void)
 797{
 798        return static_key_false(&memalloc_socks);
 799}
 800#else
 801
 802static inline int sk_memalloc_socks(void)
 803{
 804        return 0;
 805}
 806
 807#endif
 808
 809static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 810{
 811        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 812}
 813
 814static inline void sk_acceptq_removed(struct sock *sk)
 815{
 816        sk->sk_ack_backlog--;
 817}
 818
 819static inline void sk_acceptq_added(struct sock *sk)
 820{
 821        sk->sk_ack_backlog++;
 822}
 823
 824static inline bool sk_acceptq_is_full(const struct sock *sk)
 825{
 826        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 827}
 828
 829/*
 830 * Compute minimal free write space needed to queue new packets.
 831 */
 832static inline int sk_stream_min_wspace(const struct sock *sk)
 833{
 834        return sk->sk_wmem_queued >> 1;
 835}
 836
 837static inline int sk_stream_wspace(const struct sock *sk)
 838{
 839        return sk->sk_sndbuf - sk->sk_wmem_queued;
 840}
 841
 842void sk_stream_write_space(struct sock *sk);
 843
 844/* OOB backlog add */
 845static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 846{
 847        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 848        skb_dst_force_safe(skb);
 849
 850        if (!sk->sk_backlog.tail)
 851                sk->sk_backlog.head = skb;
 852        else
 853                sk->sk_backlog.tail->next = skb;
 854
 855        sk->sk_backlog.tail = skb;
 856        skb->next = NULL;
 857}
 858
 859/*
 860 * Take into account size of receive queue and backlog queue
 861 * Do not take into account this skb truesize,
 862 * to allow even a single big packet to come.
 863 */
 864static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 865{
 866        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 867
 868        return qsize > limit;
 869}
 870
 871/* The per-socket spinlock must be held here. */
 872static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 873                                              unsigned int limit)
 874{
 875        if (sk_rcvqueues_full(sk, limit))
 876                return -ENOBUFS;
 877
 878        /*
 879         * If the skb was allocated from pfmemalloc reserves, only
 880         * allow SOCK_MEMALLOC sockets to use it as this socket is
 881         * helping free memory
 882         */
 883        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 884                return -ENOMEM;
 885
 886        __sk_add_backlog(sk, skb);
 887        sk->sk_backlog.len += skb->truesize;
 888        return 0;
 889}
 890
 891int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 892
 893static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 894{
 895        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 896                return __sk_backlog_rcv(sk, skb);
 897
 898        return sk->sk_backlog_rcv(sk, skb);
 899}
 900
 901static inline void sk_incoming_cpu_update(struct sock *sk)
 902{
 903        sk->sk_incoming_cpu = raw_smp_processor_id();
 904}
 905
 906static inline void sock_rps_record_flow_hash(__u32 hash)
 907{
 908#ifdef CONFIG_RPS
 909        struct rps_sock_flow_table *sock_flow_table;
 910
 911        rcu_read_lock();
 912        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 913        rps_record_sock_flow(sock_flow_table, hash);
 914        rcu_read_unlock();
 915#endif
 916}
 917
 918static inline void sock_rps_record_flow(const struct sock *sk)
 919{
 920#ifdef CONFIG_RPS
 921        if (static_key_false(&rfs_needed)) {
 922                /* Reading sk->sk_rxhash might incur an expensive cache line
 923                 * miss.
 924                 *
 925                 * TCP_ESTABLISHED does cover almost all states where RFS
 926                 * might be useful, and is cheaper [1] than testing :
 927                 *      IPv4: inet_sk(sk)->inet_daddr
 928                 *      IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
 929                 * OR   an additional socket flag
 930                 * [1] : sk_state and sk_prot are in the same cache line.
 931                 */
 932                if (sk->sk_state == TCP_ESTABLISHED)
 933                        sock_rps_record_flow_hash(sk->sk_rxhash);
 934        }
 935#endif
 936}
 937
 938static inline void sock_rps_save_rxhash(struct sock *sk,
 939                                        const struct sk_buff *skb)
 940{
 941#ifdef CONFIG_RPS
 942        if (unlikely(sk->sk_rxhash != skb->hash))
 943                sk->sk_rxhash = skb->hash;
 944#endif
 945}
 946
 947static inline void sock_rps_reset_rxhash(struct sock *sk)
 948{
 949#ifdef CONFIG_RPS
 950        sk->sk_rxhash = 0;
 951#endif
 952}
 953
 954#define sk_wait_event(__sk, __timeo, __condition, __wait)               \
 955        ({      int __rc;                                               \
 956                release_sock(__sk);                                     \
 957                __rc = __condition;                                     \
 958                if (!__rc) {                                            \
 959                        *(__timeo) = wait_woken(__wait,                 \
 960                                                TASK_INTERRUPTIBLE,     \
 961                                                *(__timeo));            \
 962                }                                                       \
 963                sched_annotate_sleep();                                 \
 964                lock_sock(__sk);                                        \
 965                __rc = __condition;                                     \
 966                __rc;                                                   \
 967        })
 968
 969int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 970int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 971void sk_stream_wait_close(struct sock *sk, long timeo_p);
 972int sk_stream_error(struct sock *sk, int flags, int err);
 973void sk_stream_kill_queues(struct sock *sk);
 974void sk_set_memalloc(struct sock *sk);
 975void sk_clear_memalloc(struct sock *sk);
 976
 977void __sk_flush_backlog(struct sock *sk);
 978
 979static inline bool sk_flush_backlog(struct sock *sk)
 980{
 981        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
 982                __sk_flush_backlog(sk);
 983                return true;
 984        }
 985        return false;
 986}
 987
 988int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
 989
 990struct request_sock_ops;
 991struct timewait_sock_ops;
 992struct inet_hashinfo;
 993struct raw_hashinfo;
 994struct smc_hashinfo;
 995struct module;
 996
 997/*
 998 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
 999 * un-modified. Special care is taken when initializing object to zero.
1000 */
1001static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1002{
1003        if (offsetof(struct sock, sk_node.next) != 0)
1004                memset(sk, 0, offsetof(struct sock, sk_node.next));
1005        memset(&sk->sk_node.pprev, 0,
1006               size - offsetof(struct sock, sk_node.pprev));
1007}
1008
1009/* Networking protocol blocks we attach to sockets.
1010 * socket layer -> transport layer interface
1011 */
1012struct proto {
1013        void                    (*close)(struct sock *sk,
1014                                        long timeout);
1015        int                     (*connect)(struct sock *sk,
1016                                        struct sockaddr *uaddr,
1017                                        int addr_len);
1018        int                     (*disconnect)(struct sock *sk, int flags);
1019
1020        struct sock *           (*accept)(struct sock *sk, int flags, int *err,
1021                                          bool kern);
1022
1023        int                     (*ioctl)(struct sock *sk, int cmd,
1024                                         unsigned long arg);
1025        int                     (*init)(struct sock *sk);
1026        void                    (*destroy)(struct sock *sk);
1027        void                    (*shutdown)(struct sock *sk, int how);
1028        int                     (*setsockopt)(struct sock *sk, int level,
1029                                        int optname, char __user *optval,
1030                                        unsigned int optlen);
1031        int                     (*getsockopt)(struct sock *sk, int level,
1032                                        int optname, char __user *optval,
1033                                        int __user *option);
1034        void                    (*keepalive)(struct sock *sk, int valbool);
1035#ifdef CONFIG_COMPAT
1036        int                     (*compat_setsockopt)(struct sock *sk,
1037                                        int level,
1038                                        int optname, char __user *optval,
1039                                        unsigned int optlen);
1040        int                     (*compat_getsockopt)(struct sock *sk,
1041                                        int level,
1042                                        int optname, char __user *optval,
1043                                        int __user *option);
1044        int                     (*compat_ioctl)(struct sock *sk,
1045                                        unsigned int cmd, unsigned long arg);
1046#endif
1047        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1048                                           size_t len);
1049        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1050                                           size_t len, int noblock, int flags,
1051                                           int *addr_len);
1052        int                     (*sendpage)(struct sock *sk, struct page *page,
1053                                        int offset, size_t size, int flags);
1054        int                     (*bind)(struct sock *sk,
1055                                        struct sockaddr *uaddr, int addr_len);
1056
1057        int                     (*backlog_rcv) (struct sock *sk,
1058                                                struct sk_buff *skb);
1059
1060        void            (*release_cb)(struct sock *sk);
1061
1062        /* Keeping track of sk's, looking them up, and port selection methods. */
1063        int                     (*hash)(struct sock *sk);
1064        void                    (*unhash)(struct sock *sk);
1065        void                    (*rehash)(struct sock *sk);
1066        int                     (*get_port)(struct sock *sk, unsigned short snum);
1067
1068        /* Keeping track of sockets in use */
1069#ifdef CONFIG_PROC_FS
1070        unsigned int            inuse_idx;
1071#endif
1072
1073        bool                    (*stream_memory_free)(const struct sock *sk);
1074        /* Memory pressure */
1075        void                    (*enter_memory_pressure)(struct sock *sk);
1076        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1077        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1078        /*
1079         * Pressure flag: try to collapse.
1080         * Technical note: it is used by multiple contexts non atomically.
1081         * All the __sk_mem_schedule() is of this nature: accounting
1082         * is strict, actions are advisory and have some latency.
1083         */
1084        int                     *memory_pressure;
1085        long                    *sysctl_mem;
1086        int                     *sysctl_wmem;
1087        int                     *sysctl_rmem;
1088        int                     max_header;
1089        bool                    no_autobind;
1090
1091        struct kmem_cache       *slab;
1092        unsigned int            obj_size;
1093        int                     slab_flags;
1094
1095        struct percpu_counter   *orphan_count;
1096
1097        struct request_sock_ops *rsk_prot;
1098        struct timewait_sock_ops *twsk_prot;
1099
1100        union {
1101                struct inet_hashinfo    *hashinfo;
1102                struct udp_table        *udp_table;
1103                struct raw_hashinfo     *raw_hash;
1104                struct smc_hashinfo     *smc_hash;
1105        } h;
1106
1107        struct module           *owner;
1108
1109        char                    name[32];
1110
1111        struct list_head        node;
1112#ifdef SOCK_REFCNT_DEBUG
1113        atomic_t                socks;
1114#endif
1115        int                     (*diag_destroy)(struct sock *sk, int err);
1116};
1117
1118int proto_register(struct proto *prot, int alloc_slab);
1119void proto_unregister(struct proto *prot);
1120
1121#ifdef SOCK_REFCNT_DEBUG
1122static inline void sk_refcnt_debug_inc(struct sock *sk)
1123{
1124        atomic_inc(&sk->sk_prot->socks);
1125}
1126
1127static inline void sk_refcnt_debug_dec(struct sock *sk)
1128{
1129        atomic_dec(&sk->sk_prot->socks);
1130        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1131               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1132}
1133
1134static inline void sk_refcnt_debug_release(const struct sock *sk)
1135{
1136        if (atomic_read(&sk->sk_refcnt) != 1)
1137                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1138                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1139}
1140#else /* SOCK_REFCNT_DEBUG */
1141#define sk_refcnt_debug_inc(sk) do { } while (0)
1142#define sk_refcnt_debug_dec(sk) do { } while (0)
1143#define sk_refcnt_debug_release(sk) do { } while (0)
1144#endif /* SOCK_REFCNT_DEBUG */
1145
1146static inline bool sk_stream_memory_free(const struct sock *sk)
1147{
1148        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1149                return false;
1150
1151        return sk->sk_prot->stream_memory_free ?
1152                sk->sk_prot->stream_memory_free(sk) : true;
1153}
1154
1155static inline bool sk_stream_is_writeable(const struct sock *sk)
1156{
1157        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1158               sk_stream_memory_free(sk);
1159}
1160
1161static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1162                                            struct cgroup *ancestor)
1163{
1164#ifdef CONFIG_SOCK_CGROUP_DATA
1165        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1166                                    ancestor);
1167#else
1168        return -ENOTSUPP;
1169#endif
1170}
1171
1172static inline bool sk_has_memory_pressure(const struct sock *sk)
1173{
1174        return sk->sk_prot->memory_pressure != NULL;
1175}
1176
1177static inline bool sk_under_memory_pressure(const struct sock *sk)
1178{
1179        if (!sk->sk_prot->memory_pressure)
1180                return false;
1181
1182        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1183            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1184                return true;
1185
1186        return !!*sk->sk_prot->memory_pressure;
1187}
1188
1189static inline void sk_leave_memory_pressure(struct sock *sk)
1190{
1191        int *memory_pressure = sk->sk_prot->memory_pressure;
1192
1193        if (!memory_pressure)
1194                return;
1195
1196        if (*memory_pressure)
1197                *memory_pressure = 0;
1198}
1199
1200static inline void sk_enter_memory_pressure(struct sock *sk)
1201{
1202        if (!sk->sk_prot->enter_memory_pressure)
1203                return;
1204
1205        sk->sk_prot->enter_memory_pressure(sk);
1206}
1207
1208static inline long
1209sk_memory_allocated(const struct sock *sk)
1210{
1211        return atomic_long_read(sk->sk_prot->memory_allocated);
1212}
1213
1214static inline long
1215sk_memory_allocated_add(struct sock *sk, int amt)
1216{
1217        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1218}
1219
1220static inline void
1221sk_memory_allocated_sub(struct sock *sk, int amt)
1222{
1223        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1224}
1225
1226static inline void sk_sockets_allocated_dec(struct sock *sk)
1227{
1228        percpu_counter_dec(sk->sk_prot->sockets_allocated);
1229}
1230
1231static inline void sk_sockets_allocated_inc(struct sock *sk)
1232{
1233        percpu_counter_inc(sk->sk_prot->sockets_allocated);
1234}
1235
1236static inline int
1237sk_sockets_allocated_read_positive(struct sock *sk)
1238{
1239        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1240}
1241
1242static inline int
1243proto_sockets_allocated_sum_positive(struct proto *prot)
1244{
1245        return percpu_counter_sum_positive(prot->sockets_allocated);
1246}
1247
1248static inline long
1249proto_memory_allocated(struct proto *prot)
1250{
1251        return atomic_long_read(prot->memory_allocated);
1252}
1253
1254static inline bool
1255proto_memory_pressure(struct proto *prot)
1256{
1257        if (!prot->memory_pressure)
1258                return false;
1259        return !!*prot->memory_pressure;
1260}
1261
1262
1263#ifdef CONFIG_PROC_FS
1264/* Called with local bh disabled */
1265void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1266int sock_prot_inuse_get(struct net *net, struct proto *proto);
1267#else
1268static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1269                int inc)
1270{
1271}
1272#endif
1273
1274
1275/* With per-bucket locks this operation is not-atomic, so that
1276 * this version is not worse.
1277 */
1278static inline int __sk_prot_rehash(struct sock *sk)
1279{
1280        sk->sk_prot->unhash(sk);
1281        return sk->sk_prot->hash(sk);
1282}
1283
1284/* About 10 seconds */
1285#define SOCK_DESTROY_TIME (10*HZ)
1286
1287/* Sockets 0-1023 can't be bound to unless you are superuser */
1288#define PROT_SOCK       1024
1289
1290#define SHUTDOWN_MASK   3
1291#define RCV_SHUTDOWN    1
1292#define SEND_SHUTDOWN   2
1293
1294#define SOCK_SNDBUF_LOCK        1
1295#define SOCK_RCVBUF_LOCK        2
1296#define SOCK_BINDADDR_LOCK      4
1297#define SOCK_BINDPORT_LOCK      8
1298
1299struct socket_alloc {
1300        struct socket socket;
1301        struct inode vfs_inode;
1302};
1303
1304static inline struct socket *SOCKET_I(struct inode *inode)
1305{
1306        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1307}
1308
1309static inline struct inode *SOCK_INODE(struct socket *socket)
1310{
1311        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1312}
1313
1314/*
1315 * Functions for memory accounting
1316 */
1317int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1318int __sk_mem_schedule(struct sock *sk, int size, int kind);
1319void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1320void __sk_mem_reclaim(struct sock *sk, int amount);
1321
1322/* We used to have PAGE_SIZE here, but systems with 64KB pages
1323 * do not necessarily have 16x time more memory than 4KB ones.
1324 */
1325#define SK_MEM_QUANTUM 4096
1326#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1327#define SK_MEM_SEND     0
1328#define SK_MEM_RECV     1
1329
1330/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1331static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1332{
1333        long val = sk->sk_prot->sysctl_mem[index];
1334
1335#if PAGE_SIZE > SK_MEM_QUANTUM
1336        val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1337#elif PAGE_SIZE < SK_MEM_QUANTUM
1338        val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1339#endif
1340        return val;
1341}
1342
1343static inline int sk_mem_pages(int amt)
1344{
1345        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1346}
1347
1348static inline bool sk_has_account(struct sock *sk)
1349{
1350        /* return true if protocol supports memory accounting */
1351        return !!sk->sk_prot->memory_allocated;
1352}
1353
1354static inline bool sk_wmem_schedule(struct sock *sk, int size)
1355{
1356        if (!sk_has_account(sk))
1357                return true;
1358        return size <= sk->sk_forward_alloc ||
1359                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1360}
1361
1362static inline bool
1363sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1364{
1365        if (!sk_has_account(sk))
1366                return true;
1367        return size<= sk->sk_forward_alloc ||
1368                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1369                skb_pfmemalloc(skb);
1370}
1371
1372static inline void sk_mem_reclaim(struct sock *sk)
1373{
1374        if (!sk_has_account(sk))
1375                return;
1376        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1377                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1378}
1379
1380static inline void sk_mem_reclaim_partial(struct sock *sk)
1381{
1382        if (!sk_has_account(sk))
1383                return;
1384        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1385                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1386}
1387
1388static inline void sk_mem_charge(struct sock *sk, int size)
1389{
1390        if (!sk_has_account(sk))
1391                return;
1392        sk->sk_forward_alloc -= size;
1393}
1394
1395static inline void sk_mem_uncharge(struct sock *sk, int size)
1396{
1397        if (!sk_has_account(sk))
1398                return;
1399        sk->sk_forward_alloc += size;
1400
1401        /* Avoid a possible overflow.
1402         * TCP send queues can make this happen, if sk_mem_reclaim()
1403         * is not called and more than 2 GBytes are released at once.
1404         *
1405         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1406         * no need to hold that much forward allocation anyway.
1407         */
1408        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1409                __sk_mem_reclaim(sk, 1 << 20);
1410}
1411
1412static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1413{
1414        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1415        sk->sk_wmem_queued -= skb->truesize;
1416        sk_mem_uncharge(sk, skb->truesize);
1417        __kfree_skb(skb);
1418}
1419
1420static inline void sock_release_ownership(struct sock *sk)
1421{
1422        if (sk->sk_lock.owned) {
1423                sk->sk_lock.owned = 0;
1424
1425                /* The sk_lock has mutex_unlock() semantics: */
1426                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1427        }
1428}
1429
1430/*
1431 * Macro so as to not evaluate some arguments when
1432 * lockdep is not enabled.
1433 *
1434 * Mark both the sk_lock and the sk_lock.slock as a
1435 * per-address-family lock class.
1436 */
1437#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1438do {                                                                    \
1439        sk->sk_lock.owned = 0;                                          \
1440        init_waitqueue_head(&sk->sk_lock.wq);                           \
1441        spin_lock_init(&(sk)->sk_lock.slock);                           \
1442        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1443                        sizeof((sk)->sk_lock));                         \
1444        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1445                                (skey), (sname));                               \
1446        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1447} while (0)
1448
1449#ifdef CONFIG_LOCKDEP
1450static inline bool lockdep_sock_is_held(const struct sock *csk)
1451{
1452        struct sock *sk = (struct sock *)csk;
1453
1454        return lockdep_is_held(&sk->sk_lock) ||
1455               lockdep_is_held(&sk->sk_lock.slock);
1456}
1457#endif
1458
1459void lock_sock_nested(struct sock *sk, int subclass);
1460
1461static inline void lock_sock(struct sock *sk)
1462{
1463        lock_sock_nested(sk, 0);
1464}
1465
1466void release_sock(struct sock *sk);
1467
1468/* BH context may only use the following locking interface. */
1469#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1470#define bh_lock_sock_nested(__sk) \
1471                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1472                                SINGLE_DEPTH_NESTING)
1473#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1474
1475bool lock_sock_fast(struct sock *sk);
1476/**
1477 * unlock_sock_fast - complement of lock_sock_fast
1478 * @sk: socket
1479 * @slow: slow mode
1480 *
1481 * fast unlock socket for user context.
1482 * If slow mode is on, we call regular release_sock()
1483 */
1484static inline void unlock_sock_fast(struct sock *sk, bool slow)
1485{
1486        if (slow)
1487                release_sock(sk);
1488        else
1489                spin_unlock_bh(&sk->sk_lock.slock);
1490}
1491
1492/* Used by processes to "lock" a socket state, so that
1493 * interrupts and bottom half handlers won't change it
1494 * from under us. It essentially blocks any incoming
1495 * packets, so that we won't get any new data or any
1496 * packets that change the state of the socket.
1497 *
1498 * While locked, BH processing will add new packets to
1499 * the backlog queue.  This queue is processed by the
1500 * owner of the socket lock right before it is released.
1501 *
1502 * Since ~2.3.5 it is also exclusive sleep lock serializing
1503 * accesses from user process context.
1504 */
1505
1506static inline void sock_owned_by_me(const struct sock *sk)
1507{
1508#ifdef CONFIG_LOCKDEP
1509        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1510#endif
1511}
1512
1513static inline bool sock_owned_by_user(const struct sock *sk)
1514{
1515        sock_owned_by_me(sk);
1516        return sk->sk_lock.owned;
1517}
1518
1519/* no reclassification while locks are held */
1520static inline bool sock_allow_reclassification(const struct sock *csk)
1521{
1522        struct sock *sk = (struct sock *)csk;
1523
1524        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1525}
1526
1527struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1528                      struct proto *prot, int kern);
1529void sk_free(struct sock *sk);
1530void sk_destruct(struct sock *sk);
1531struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1532void sk_free_unlock_clone(struct sock *sk);
1533
1534struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1535                             gfp_t priority);
1536void __sock_wfree(struct sk_buff *skb);
1537void sock_wfree(struct sk_buff *skb);
1538void skb_orphan_partial(struct sk_buff *skb);
1539void sock_rfree(struct sk_buff *skb);
1540void sock_efree(struct sk_buff *skb);
1541#ifdef CONFIG_INET
1542void sock_edemux(struct sk_buff *skb);
1543#else
1544#define sock_edemux sock_efree
1545#endif
1546
1547int sock_setsockopt(struct socket *sock, int level, int op,
1548                    char __user *optval, unsigned int optlen);
1549
1550int sock_getsockopt(struct socket *sock, int level, int op,
1551                    char __user *optval, int __user *optlen);
1552struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1553                                    int noblock, int *errcode);
1554struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1555                                     unsigned long data_len, int noblock,
1556                                     int *errcode, int max_page_order);
1557void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1558void sock_kfree_s(struct sock *sk, void *mem, int size);
1559void sock_kzfree_s(struct sock *sk, void *mem, int size);
1560void sk_send_sigurg(struct sock *sk);
1561
1562struct sockcm_cookie {
1563        u32 mark;
1564        u16 tsflags;
1565};
1566
1567int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1568                     struct sockcm_cookie *sockc);
1569int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1570                   struct sockcm_cookie *sockc);
1571
1572/*
1573 * Functions to fill in entries in struct proto_ops when a protocol
1574 * does not implement a particular function.
1575 */
1576int sock_no_bind(struct socket *, struct sockaddr *, int);
1577int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1578int sock_no_socketpair(struct socket *, struct socket *);
1579int sock_no_accept(struct socket *, struct socket *, int, bool);
1580int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1581unsigned int sock_no_poll(struct file *, struct socket *,
1582                          struct poll_table_struct *);
1583int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1584int sock_no_listen(struct socket *, int);
1585int sock_no_shutdown(struct socket *, int);
1586int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1587int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1588int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1589int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1590int sock_no_mmap(struct file *file, struct socket *sock,
1591                 struct vm_area_struct *vma);
1592ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1593                         size_t size, int flags);
1594
1595/*
1596 * Functions to fill in entries in struct proto_ops when a protocol
1597 * uses the inet style.
1598 */
1599int sock_common_getsockopt(struct socket *sock, int level, int optname,
1600                                  char __user *optval, int __user *optlen);
1601int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1602                        int flags);
1603int sock_common_setsockopt(struct socket *sock, int level, int optname,
1604                                  char __user *optval, unsigned int optlen);
1605int compat_sock_common_getsockopt(struct socket *sock, int level,
1606                int optname, char __user *optval, int __user *optlen);
1607int compat_sock_common_setsockopt(struct socket *sock, int level,
1608                int optname, char __user *optval, unsigned int optlen);
1609
1610void sk_common_release(struct sock *sk);
1611
1612/*
1613 *      Default socket callbacks and setup code
1614 */
1615
1616/* Initialise core socket variables */
1617void sock_init_data(struct socket *sock, struct sock *sk);
1618
1619/*
1620 * Socket reference counting postulates.
1621 *
1622 * * Each user of socket SHOULD hold a reference count.
1623 * * Each access point to socket (an hash table bucket, reference from a list,
1624 *   running timer, skb in flight MUST hold a reference count.
1625 * * When reference count hits 0, it means it will never increase back.
1626 * * When reference count hits 0, it means that no references from
1627 *   outside exist to this socket and current process on current CPU
1628 *   is last user and may/should destroy this socket.
1629 * * sk_free is called from any context: process, BH, IRQ. When
1630 *   it is called, socket has no references from outside -> sk_free
1631 *   may release descendant resources allocated by the socket, but
1632 *   to the time when it is called, socket is NOT referenced by any
1633 *   hash tables, lists etc.
1634 * * Packets, delivered from outside (from network or from another process)
1635 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1636 *   when they sit in queue. Otherwise, packets will leak to hole, when
1637 *   socket is looked up by one cpu and unhasing is made by another CPU.
1638 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1639 *   (leak to backlog). Packet socket does all the processing inside
1640 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1641 *   use separate SMP lock, so that they are prone too.
1642 */
1643
1644/* Ungrab socket and destroy it, if it was the last reference. */
1645static inline void sock_put(struct sock *sk)
1646{
1647        if (atomic_dec_and_test(&sk->sk_refcnt))
1648                sk_free(sk);
1649}
1650/* Generic version of sock_put(), dealing with all sockets
1651 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1652 */
1653void sock_gen_put(struct sock *sk);
1654
1655int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1656                     unsigned int trim_cap, bool refcounted);
1657static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1658                                 const int nested)
1659{
1660        return __sk_receive_skb(sk, skb, nested, 1, true);
1661}
1662
1663static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1664{
1665        sk->sk_tx_queue_mapping = tx_queue;
1666}
1667
1668static inline void sk_tx_queue_clear(struct sock *sk)
1669{
1670        sk->sk_tx_queue_mapping = -1;
1671}
1672
1673static inline int sk_tx_queue_get(const struct sock *sk)
1674{
1675        return sk ? sk->sk_tx_queue_mapping : -1;
1676}
1677
1678static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1679{
1680        sk_tx_queue_clear(sk);
1681        sk->sk_socket = sock;
1682}
1683
1684static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1685{
1686        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1687        return &rcu_dereference_raw(sk->sk_wq)->wait;
1688}
1689/* Detach socket from process context.
1690 * Announce socket dead, detach it from wait queue and inode.
1691 * Note that parent inode held reference count on this struct sock,
1692 * we do not release it in this function, because protocol
1693 * probably wants some additional cleanups or even continuing
1694 * to work with this socket (TCP).
1695 */
1696static inline void sock_orphan(struct sock *sk)
1697{
1698        write_lock_bh(&sk->sk_callback_lock);
1699        sock_set_flag(sk, SOCK_DEAD);
1700        sk_set_socket(sk, NULL);
1701        sk->sk_wq  = NULL;
1702        write_unlock_bh(&sk->sk_callback_lock);
1703}
1704
1705static inline void sock_graft(struct sock *sk, struct socket *parent)
1706{
1707        write_lock_bh(&sk->sk_callback_lock);
1708        sk->sk_wq = parent->wq;
1709        parent->sk = sk;
1710        sk_set_socket(sk, parent);
1711        sk->sk_uid = SOCK_INODE(parent)->i_uid;
1712        security_sock_graft(sk, parent);
1713        write_unlock_bh(&sk->sk_callback_lock);
1714}
1715
1716kuid_t sock_i_uid(struct sock *sk);
1717unsigned long sock_i_ino(struct sock *sk);
1718
1719static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1720{
1721        return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1722}
1723
1724static inline u32 net_tx_rndhash(void)
1725{
1726        u32 v = prandom_u32();
1727
1728        return v ?: 1;
1729}
1730
1731static inline void sk_set_txhash(struct sock *sk)
1732{
1733        sk->sk_txhash = net_tx_rndhash();
1734}
1735
1736static inline void sk_rethink_txhash(struct sock *sk)
1737{
1738        if (sk->sk_txhash)
1739                sk_set_txhash(sk);
1740}
1741
1742static inline struct dst_entry *
1743__sk_dst_get(struct sock *sk)
1744{
1745        return rcu_dereference_check(sk->sk_dst_cache,
1746                                     lockdep_sock_is_held(sk));
1747}
1748
1749static inline struct dst_entry *
1750sk_dst_get(struct sock *sk)
1751{
1752        struct dst_entry *dst;
1753
1754        rcu_read_lock();
1755        dst = rcu_dereference(sk->sk_dst_cache);
1756        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1757                dst = NULL;
1758        rcu_read_unlock();
1759        return dst;
1760}
1761
1762static inline void dst_negative_advice(struct sock *sk)
1763{
1764        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1765
1766        sk_rethink_txhash(sk);
1767
1768        if (dst && dst->ops->negative_advice) {
1769                ndst = dst->ops->negative_advice(dst);
1770
1771                if (ndst != dst) {
1772                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1773                        sk_tx_queue_clear(sk);
1774                        sk->sk_dst_pending_confirm = 0;
1775                }
1776        }
1777}
1778
1779static inline void
1780__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1781{
1782        struct dst_entry *old_dst;
1783
1784        sk_tx_queue_clear(sk);
1785        sk->sk_dst_pending_confirm = 0;
1786        old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1787                                            lockdep_sock_is_held(sk));
1788        rcu_assign_pointer(sk->sk_dst_cache, dst);
1789        dst_release(old_dst);
1790}
1791
1792static inline void
1793sk_dst_set(struct sock *sk, struct dst_entry *dst)
1794{
1795        struct dst_entry *old_dst;
1796
1797        sk_tx_queue_clear(sk);
1798        sk->sk_dst_pending_confirm = 0;
1799        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1800        dst_release(old_dst);
1801}
1802
1803static inline void
1804__sk_dst_reset(struct sock *sk)
1805{
1806        __sk_dst_set(sk, NULL);
1807}
1808
1809static inline void
1810sk_dst_reset(struct sock *sk)
1811{
1812        sk_dst_set(sk, NULL);
1813}
1814
1815struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1816
1817struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1818
1819static inline void sk_dst_confirm(struct sock *sk)
1820{
1821        if (!sk->sk_dst_pending_confirm)
1822                sk->sk_dst_pending_confirm = 1;
1823}
1824
1825static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1826{
1827        if (skb_get_dst_pending_confirm(skb)) {
1828                struct sock *sk = skb->sk;
1829                unsigned long now = jiffies;
1830
1831                /* avoid dirtying neighbour */
1832                if (n->confirmed != now)
1833                        n->confirmed = now;
1834                if (sk && sk->sk_dst_pending_confirm)
1835                        sk->sk_dst_pending_confirm = 0;
1836        }
1837}
1838
1839bool sk_mc_loop(struct sock *sk);
1840
1841static inline bool sk_can_gso(const struct sock *sk)
1842{
1843        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1844}
1845
1846void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1847
1848static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1849{
1850        sk->sk_route_nocaps |= flags;
1851        sk->sk_route_caps &= ~flags;
1852}
1853
1854static inline bool sk_check_csum_caps(struct sock *sk)
1855{
1856        return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1857               (sk->sk_family == PF_INET &&
1858                (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1859               (sk->sk_family == PF_INET6 &&
1860                (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1861}
1862
1863static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1864                                           struct iov_iter *from, char *to,
1865                                           int copy, int offset)
1866{
1867        if (skb->ip_summed == CHECKSUM_NONE) {
1868                __wsum csum = 0;
1869                if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1870                        return -EFAULT;
1871                skb->csum = csum_block_add(skb->csum, csum, offset);
1872        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1873                if (!copy_from_iter_full_nocache(to, copy, from))
1874                        return -EFAULT;
1875        } else if (!copy_from_iter_full(to, copy, from))
1876                return -EFAULT;
1877
1878        return 0;
1879}
1880
1881static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1882                                       struct iov_iter *from, int copy)
1883{
1884        int err, offset = skb->len;
1885
1886        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1887                                       copy, offset);
1888        if (err)
1889                __skb_trim(skb, offset);
1890
1891        return err;
1892}
1893
1894static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1895                                           struct sk_buff *skb,
1896                                           struct page *page,
1897                                           int off, int copy)
1898{
1899        int err;
1900
1901        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1902                                       copy, skb->len);
1903        if (err)
1904                return err;
1905
1906        skb->len             += copy;
1907        skb->data_len        += copy;
1908        skb->truesize        += copy;
1909        sk->sk_wmem_queued   += copy;
1910        sk_mem_charge(sk, copy);
1911        return 0;
1912}
1913
1914/**
1915 * sk_wmem_alloc_get - returns write allocations
1916 * @sk: socket
1917 *
1918 * Returns sk_wmem_alloc minus initial offset of one
1919 */
1920static inline int sk_wmem_alloc_get(const struct sock *sk)
1921{
1922        return atomic_read(&sk->sk_wmem_alloc) - 1;
1923}
1924
1925/**
1926 * sk_rmem_alloc_get - returns read allocations
1927 * @sk: socket
1928 *
1929 * Returns sk_rmem_alloc
1930 */
1931static inline int sk_rmem_alloc_get(const struct sock *sk)
1932{
1933        return atomic_read(&sk->sk_rmem_alloc);
1934}
1935
1936/**
1937 * sk_has_allocations - check if allocations are outstanding
1938 * @sk: socket
1939 *
1940 * Returns true if socket has write or read allocations
1941 */
1942static inline bool sk_has_allocations(const struct sock *sk)
1943{
1944        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1945}
1946
1947/**
1948 * skwq_has_sleeper - check if there are any waiting processes
1949 * @wq: struct socket_wq
1950 *
1951 * Returns true if socket_wq has waiting processes
1952 *
1953 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1954 * barrier call. They were added due to the race found within the tcp code.
1955 *
1956 * Consider following tcp code paths:
1957 *
1958 * CPU1                  CPU2
1959 *
1960 * sys_select            receive packet
1961 *   ...                 ...
1962 *   __add_wait_queue    update tp->rcv_nxt
1963 *   ...                 ...
1964 *   tp->rcv_nxt check   sock_def_readable
1965 *   ...                 {
1966 *   schedule               rcu_read_lock();
1967 *                          wq = rcu_dereference(sk->sk_wq);
1968 *                          if (wq && waitqueue_active(&wq->wait))
1969 *                              wake_up_interruptible(&wq->wait)
1970 *                          ...
1971 *                       }
1972 *
1973 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1974 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1975 * could then endup calling schedule and sleep forever if there are no more
1976 * data on the socket.
1977 *
1978 */
1979static inline bool skwq_has_sleeper(struct socket_wq *wq)
1980{
1981        return wq && wq_has_sleeper(&wq->wait);
1982}
1983
1984/**
1985 * sock_poll_wait - place memory barrier behind the poll_wait call.
1986 * @filp:           file
1987 * @wait_address:   socket wait queue
1988 * @p:              poll_table
1989 *
1990 * See the comments in the wq_has_sleeper function.
1991 */
1992static inline void sock_poll_wait(struct file *filp,
1993                wait_queue_head_t *wait_address, poll_table *p)
1994{
1995        if (!poll_does_not_wait(p) && wait_address) {
1996                poll_wait(filp, wait_address, p);
1997                /* We need to be sure we are in sync with the
1998                 * socket flags modification.
1999                 *
2000                 * This memory barrier is paired in the wq_has_sleeper.
2001                 */
2002                smp_mb();
2003        }
2004}
2005
2006static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2007{
2008        if (sk->sk_txhash) {
2009                skb->l4_hash = 1;
2010                skb->hash = sk->sk_txhash;
2011        }
2012}
2013
2014void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2015
2016/*
2017 *      Queue a received datagram if it will fit. Stream and sequenced
2018 *      protocols can't normally use this as they need to fit buffers in
2019 *      and play with them.
2020 *
2021 *      Inlined as it's very short and called for pretty much every
2022 *      packet ever received.
2023 */
2024static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2025{
2026        skb_orphan(skb);
2027        skb->sk = sk;
2028        skb->destructor = sock_rfree;
2029        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2030        sk_mem_charge(sk, skb->truesize);
2031}
2032
2033void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2034                    unsigned long expires);
2035
2036void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2037
2038int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2039                        unsigned int flags,
2040                        void (*destructor)(struct sock *sk,
2041                                           struct sk_buff *skb));
2042int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2043int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2044
2045int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2046struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2047
2048/*
2049 *      Recover an error report and clear atomically
2050 */
2051
2052static inline int sock_error(struct sock *sk)
2053{
2054        int err;
2055        if (likely(!sk->sk_err))
2056                return 0;
2057        err = xchg(&sk->sk_err, 0);
2058        return -err;
2059}
2060
2061static inline unsigned long sock_wspace(struct sock *sk)
2062{
2063        int amt = 0;
2064
2065        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2066                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2067                if (amt < 0)
2068                        amt = 0;
2069        }
2070        return amt;
2071}
2072
2073/* Note:
2074 *  We use sk->sk_wq_raw, from contexts knowing this
2075 *  pointer is not NULL and cannot disappear/change.
2076 */
2077static inline void sk_set_bit(int nr, struct sock *sk)
2078{
2079        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2080            !sock_flag(sk, SOCK_FASYNC))
2081                return;
2082
2083        set_bit(nr, &sk->sk_wq_raw->flags);
2084}
2085
2086static inline void sk_clear_bit(int nr, struct sock *sk)
2087{
2088        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2089            !sock_flag(sk, SOCK_FASYNC))
2090                return;
2091
2092        clear_bit(nr, &sk->sk_wq_raw->flags);
2093}
2094
2095static inline void sk_wake_async(const struct sock *sk, int how, int band)
2096{
2097        if (sock_flag(sk, SOCK_FASYNC)) {
2098                rcu_read_lock();
2099                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2100                rcu_read_unlock();
2101        }
2102}
2103
2104/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2105 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2106 * Note: for send buffers, TCP works better if we can build two skbs at
2107 * minimum.
2108 */
2109#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2110
2111#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2112#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2113
2114static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2115{
2116        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2117                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2118                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2119        }
2120}
2121
2122struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2123                                    bool force_schedule);
2124
2125/**
2126 * sk_page_frag - return an appropriate page_frag
2127 * @sk: socket
2128 *
2129 * If socket allocation mode allows current thread to sleep, it means its
2130 * safe to use the per task page_frag instead of the per socket one.
2131 */
2132static inline struct page_frag *sk_page_frag(struct sock *sk)
2133{
2134        if (gfpflags_allow_blocking(sk->sk_allocation))
2135                return &current->task_frag;
2136
2137        return &sk->sk_frag;
2138}
2139
2140bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2141
2142/*
2143 *      Default write policy as shown to user space via poll/select/SIGIO
2144 */
2145static inline bool sock_writeable(const struct sock *sk)
2146{
2147        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2148}
2149
2150static inline gfp_t gfp_any(void)
2151{
2152        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2153}
2154
2155static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2156{
2157        return noblock ? 0 : sk->sk_rcvtimeo;
2158}
2159
2160static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2161{
2162        return noblock ? 0 : sk->sk_sndtimeo;
2163}
2164
2165static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2166{
2167        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2168}
2169
2170/* Alas, with timeout socket operations are not restartable.
2171 * Compare this to poll().
2172 */
2173static inline int sock_intr_errno(long timeo)
2174{
2175        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2176}
2177
2178struct sock_skb_cb {
2179        u32 dropcount;
2180};
2181
2182/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2183 * using skb->cb[] would keep using it directly and utilize its
2184 * alignement guarantee.
2185 */
2186#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2187                            sizeof(struct sock_skb_cb)))
2188
2189#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2190                            SOCK_SKB_CB_OFFSET))
2191
2192#define sock_skb_cb_check_size(size) \
2193        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2194
2195static inline void
2196sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2197{
2198        SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2199                                                atomic_read(&sk->sk_drops) : 0;
2200}
2201
2202static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2203{
2204        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2205
2206        atomic_add(segs, &sk->sk_drops);
2207}
2208
2209void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2210                           struct sk_buff *skb);
2211void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2212                             struct sk_buff *skb);
2213
2214static inline void
2215sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2216{
2217        ktime_t kt = skb->tstamp;
2218        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2219
2220        /*
2221         * generate control messages if
2222         * - receive time stamping in software requested
2223         * - software time stamp available and wanted
2224         * - hardware time stamps available and wanted
2225         */
2226        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2227            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2228            (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2229            (hwtstamps->hwtstamp &&
2230             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2231                __sock_recv_timestamp(msg, sk, skb);
2232        else
2233                sk->sk_stamp = kt;
2234
2235        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2236                __sock_recv_wifi_status(msg, sk, skb);
2237}
2238
2239void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2240                              struct sk_buff *skb);
2241
2242#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2243static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2244                                          struct sk_buff *skb)
2245{
2246#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2247                           (1UL << SOCK_RCVTSTAMP))
2248#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2249                           SOF_TIMESTAMPING_RAW_HARDWARE)
2250
2251        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2252                __sock_recv_ts_and_drops(msg, sk, skb);
2253        else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2254                sk->sk_stamp = skb->tstamp;
2255        else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2256                sk->sk_stamp = 0;
2257}
2258
2259void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2260
2261/**
2262 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2263 * @sk:         socket sending this packet
2264 * @tsflags:    timestamping flags to use
2265 * @tx_flags:   completed with instructions for time stamping
2266 *
2267 * Note : callers should take care of initial *tx_flags value (usually 0)
2268 */
2269static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2270                                     __u8 *tx_flags)
2271{
2272        if (unlikely(tsflags))
2273                __sock_tx_timestamp(tsflags, tx_flags);
2274        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2275                *tx_flags |= SKBTX_WIFI_STATUS;
2276}
2277
2278/**
2279 * sk_eat_skb - Release a skb if it is no longer needed
2280 * @sk: socket to eat this skb from
2281 * @skb: socket buffer to eat
2282 *
2283 * This routine must be called with interrupts disabled or with the socket
2284 * locked so that the sk_buff queue operation is ok.
2285*/
2286static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2287{
2288        __skb_unlink(skb, &sk->sk_receive_queue);
2289        __kfree_skb(skb);
2290}
2291
2292static inline
2293struct net *sock_net(const struct sock *sk)
2294{
2295        return read_pnet(&sk->sk_net);
2296}
2297
2298static inline
2299void sock_net_set(struct sock *sk, struct net *net)
2300{
2301        write_pnet(&sk->sk_net, net);
2302}
2303
2304static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2305{
2306        if (skb->sk) {
2307                struct sock *sk = skb->sk;
2308
2309                skb->destructor = NULL;
2310                skb->sk = NULL;
2311                return sk;
2312        }
2313        return NULL;
2314}
2315
2316/* This helper checks if a socket is a full socket,
2317 * ie _not_ a timewait or request socket.
2318 */
2319static inline bool sk_fullsock(const struct sock *sk)
2320{
2321        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2322}
2323
2324/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2325 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2326 */
2327static inline bool sk_listener(const struct sock *sk)
2328{
2329        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2330}
2331
2332/**
2333 * sk_state_load - read sk->sk_state for lockless contexts
2334 * @sk: socket pointer
2335 *
2336 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2337 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2338 */
2339static inline int sk_state_load(const struct sock *sk)
2340{
2341        return smp_load_acquire(&sk->sk_state);
2342}
2343
2344/**
2345 * sk_state_store - update sk->sk_state
2346 * @sk: socket pointer
2347 * @newstate: new state
2348 *
2349 * Paired with sk_state_load(). Should be used in contexts where
2350 * state change might impact lockless readers.
2351 */
2352static inline void sk_state_store(struct sock *sk, int newstate)
2353{
2354        smp_store_release(&sk->sk_state, newstate);
2355}
2356
2357void sock_enable_timestamp(struct sock *sk, int flag);
2358int sock_get_timestamp(struct sock *, struct timeval __user *);
2359int sock_get_timestampns(struct sock *, struct timespec __user *);
2360int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2361                       int type);
2362
2363bool sk_ns_capable(const struct sock *sk,
2364                   struct user_namespace *user_ns, int cap);
2365bool sk_capable(const struct sock *sk, int cap);
2366bool sk_net_capable(const struct sock *sk, int cap);
2367
2368void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2369
2370extern __u32 sysctl_wmem_max;
2371extern __u32 sysctl_rmem_max;
2372
2373extern int sysctl_tstamp_allow_data;
2374extern int sysctl_optmem_max;
2375
2376extern __u32 sysctl_wmem_default;
2377extern __u32 sysctl_rmem_default;
2378
2379#endif  /* _SOCK_H */
2380