linux/kernel/rcu/tree.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *          Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *      Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate_wait.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/sched/debug.h>
  39#include <linux/nmi.h>
  40#include <linux/atomic.h>
  41#include <linux/bitops.h>
  42#include <linux/export.h>
  43#include <linux/completion.h>
  44#include <linux/moduleparam.h>
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <uapi/linux/sched/types.h>
  54#include <linux/prefetch.h>
  55#include <linux/delay.h>
  56#include <linux/stop_machine.h>
  57#include <linux/random.h>
  58#include <linux/trace_events.h>
  59#include <linux/suspend.h>
  60#include <linux/ftrace.h>
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * In order to export the rcu_state name to the tracing tools, it
  74 * needs to be added in the __tracepoint_string section.
  75 * This requires defining a separate variable tp_<sname>_varname
  76 * that points to the string being used, and this will allow
  77 * the tracing userspace tools to be able to decipher the string
  78 * address to the matching string.
  79 */
  80#ifdef CONFIG_TRACING
  81# define DEFINE_RCU_TPS(sname) \
  82static char sname##_varname[] = #sname; \
  83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  84# define RCU_STATE_NAME(sname) sname##_varname
  85#else
  86# define DEFINE_RCU_TPS(sname)
  87# define RCU_STATE_NAME(sname) __stringify(sname)
  88#endif
  89
  90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  91DEFINE_RCU_TPS(sname) \
  92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  93struct rcu_state sname##_state = { \
  94        .level = { &sname##_state.node[0] }, \
  95        .rda = &sname##_data, \
  96        .call = cr, \
  97        .gp_state = RCU_GP_IDLE, \
  98        .gpnum = 0UL - 300UL, \
  99        .completed = 0UL - 300UL, \
 100        .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
 101        .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
 102        .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
 103        .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 104        .name = RCU_STATE_NAME(sname), \
 105        .abbr = sabbr, \
 106        .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 107        .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 108}
 109
 110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 112
 113static struct rcu_state *const rcu_state_p;
 114LIST_HEAD(rcu_struct_flavors);
 115
 116/* Dump rcu_node combining tree at boot to verify correct setup. */
 117static bool dump_tree;
 118module_param(dump_tree, bool, 0444);
 119/* Control rcu_node-tree auto-balancing at boot time. */
 120static bool rcu_fanout_exact;
 121module_param(rcu_fanout_exact, bool, 0444);
 122/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 123static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 124module_param(rcu_fanout_leaf, int, 0444);
 125int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 126/* Number of rcu_nodes at specified level. */
 127int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 129/* panic() on RCU Stall sysctl. */
 130int sysctl_panic_on_rcu_stall __read_mostly;
 131
 132/*
 133 * The rcu_scheduler_active variable is initialized to the value
 134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 135 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 136 * RCU can assume that there is but one task, allowing RCU to (for example)
 137 * optimize synchronize_rcu() to a simple barrier().  When this variable
 138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 139 * to detect real grace periods.  This variable is also used to suppress
 140 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 142 * is fully initialized, including all of its kthreads having been spawned.
 143 */
 144int rcu_scheduler_active __read_mostly;
 145EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 146
 147/*
 148 * The rcu_scheduler_fully_active variable transitions from zero to one
 149 * during the early_initcall() processing, which is after the scheduler
 150 * is capable of creating new tasks.  So RCU processing (for example,
 151 * creating tasks for RCU priority boosting) must be delayed until after
 152 * rcu_scheduler_fully_active transitions from zero to one.  We also
 153 * currently delay invocation of any RCU callbacks until after this point.
 154 *
 155 * It might later prove better for people registering RCU callbacks during
 156 * early boot to take responsibility for these callbacks, but one step at
 157 * a time.
 158 */
 159static int rcu_scheduler_fully_active __read_mostly;
 160
 161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 162static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 163static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 164static void invoke_rcu_core(void);
 165static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 166static void rcu_report_exp_rdp(struct rcu_state *rsp,
 167                               struct rcu_data *rdp, bool wake);
 168static void sync_sched_exp_online_cleanup(int cpu);
 169
 170/* rcuc/rcub kthread realtime priority */
 171#ifdef CONFIG_RCU_KTHREAD_PRIO
 172static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
 173#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
 174static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 175#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
 176module_param(kthread_prio, int, 0644);
 177
 178/* Delay in jiffies for grace-period initialization delays, debug only. */
 179
 180#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
 181static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
 182module_param(gp_preinit_delay, int, 0644);
 183#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 184static const int gp_preinit_delay;
 185#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 186
 187#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
 188static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
 189module_param(gp_init_delay, int, 0644);
 190#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 191static const int gp_init_delay;
 192#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 193
 194#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
 195static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
 196module_param(gp_cleanup_delay, int, 0644);
 197#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 198static const int gp_cleanup_delay;
 199#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 200
 201/*
 202 * Number of grace periods between delays, normalized by the duration of
 203 * the delay.  The longer the delay, the more the grace periods between
 204 * each delay.  The reason for this normalization is that it means that,
 205 * for non-zero delays, the overall slowdown of grace periods is constant
 206 * regardless of the duration of the delay.  This arrangement balances
 207 * the need for long delays to increase some race probabilities with the
 208 * need for fast grace periods to increase other race probabilities.
 209 */
 210#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
 211
 212/*
 213 * Track the rcutorture test sequence number and the update version
 214 * number within a given test.  The rcutorture_testseq is incremented
 215 * on every rcutorture module load and unload, so has an odd value
 216 * when a test is running.  The rcutorture_vernum is set to zero
 217 * when rcutorture starts and is incremented on each rcutorture update.
 218 * These variables enable correlating rcutorture output with the
 219 * RCU tracing information.
 220 */
 221unsigned long rcutorture_testseq;
 222unsigned long rcutorture_vernum;
 223
 224/*
 225 * Compute the mask of online CPUs for the specified rcu_node structure.
 226 * This will not be stable unless the rcu_node structure's ->lock is
 227 * held, but the bit corresponding to the current CPU will be stable
 228 * in most contexts.
 229 */
 230unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 231{
 232        return READ_ONCE(rnp->qsmaskinitnext);
 233}
 234
 235/*
 236 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 237 * permit this function to be invoked without holding the root rcu_node
 238 * structure's ->lock, but of course results can be subject to change.
 239 */
 240static int rcu_gp_in_progress(struct rcu_state *rsp)
 241{
 242        return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 243}
 244
 245/*
 246 * Note a quiescent state.  Because we do not need to know
 247 * how many quiescent states passed, just if there was at least
 248 * one since the start of the grace period, this just sets a flag.
 249 * The caller must have disabled preemption.
 250 */
 251void rcu_sched_qs(void)
 252{
 253        if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 254                return;
 255        trace_rcu_grace_period(TPS("rcu_sched"),
 256                               __this_cpu_read(rcu_sched_data.gpnum),
 257                               TPS("cpuqs"));
 258        __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 259        if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 260                return;
 261        __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 262        rcu_report_exp_rdp(&rcu_sched_state,
 263                           this_cpu_ptr(&rcu_sched_data), true);
 264}
 265
 266void rcu_bh_qs(void)
 267{
 268        if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 269                trace_rcu_grace_period(TPS("rcu_bh"),
 270                                       __this_cpu_read(rcu_bh_data.gpnum),
 271                                       TPS("cpuqs"));
 272                __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 273        }
 274}
 275
 276/*
 277 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 278 * control.  Initially this is for TLB flushing.
 279 */
 280#define RCU_DYNTICK_CTRL_MASK 0x1
 281#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 282#ifndef rcu_eqs_special_exit
 283#define rcu_eqs_special_exit() do { } while (0)
 284#endif
 285
 286static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 287        .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 288        .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 289#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 290        .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 291        .dynticks_idle = ATOMIC_INIT(1),
 292#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 293};
 294
 295/*
 296 * There's a few places, currently just in the tracing infrastructure,
 297 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
 298 * a small location where that will not even work. In those cases
 299 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
 300 * can be called.
 301 */
 302static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
 303
 304bool rcu_irq_enter_disabled(void)
 305{
 306        return this_cpu_read(disable_rcu_irq_enter);
 307}
 308
 309/*
 310 * Record entry into an extended quiescent state.  This is only to be
 311 * called when not already in an extended quiescent state.
 312 */
 313static void rcu_dynticks_eqs_enter(void)
 314{
 315        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 316        int seq;
 317
 318        /*
 319         * CPUs seeing atomic_add_return() must see prior RCU read-side
 320         * critical sections, and we also must force ordering with the
 321         * next idle sojourn.
 322         */
 323        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 324        /* Better be in an extended quiescent state! */
 325        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 326                     (seq & RCU_DYNTICK_CTRL_CTR));
 327        /* Better not have special action (TLB flush) pending! */
 328        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 329                     (seq & RCU_DYNTICK_CTRL_MASK));
 330}
 331
 332/*
 333 * Record exit from an extended quiescent state.  This is only to be
 334 * called from an extended quiescent state.
 335 */
 336static void rcu_dynticks_eqs_exit(void)
 337{
 338        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 339        int seq;
 340
 341        /*
 342         * CPUs seeing atomic_add_return() must see prior idle sojourns,
 343         * and we also must force ordering with the next RCU read-side
 344         * critical section.
 345         */
 346        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 347        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 348                     !(seq & RCU_DYNTICK_CTRL_CTR));
 349        if (seq & RCU_DYNTICK_CTRL_MASK) {
 350                atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
 351                smp_mb__after_atomic(); /* _exit after clearing mask. */
 352                /* Prefer duplicate flushes to losing a flush. */
 353                rcu_eqs_special_exit();
 354        }
 355}
 356
 357/*
 358 * Reset the current CPU's ->dynticks counter to indicate that the
 359 * newly onlined CPU is no longer in an extended quiescent state.
 360 * This will either leave the counter unchanged, or increment it
 361 * to the next non-quiescent value.
 362 *
 363 * The non-atomic test/increment sequence works because the upper bits
 364 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 365 * or when the corresponding CPU is offline.
 366 */
 367static void rcu_dynticks_eqs_online(void)
 368{
 369        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 370
 371        if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 372                return;
 373        atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 374}
 375
 376/*
 377 * Is the current CPU in an extended quiescent state?
 378 *
 379 * No ordering, as we are sampling CPU-local information.
 380 */
 381bool rcu_dynticks_curr_cpu_in_eqs(void)
 382{
 383        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 384
 385        return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 386}
 387
 388/*
 389 * Snapshot the ->dynticks counter with full ordering so as to allow
 390 * stable comparison of this counter with past and future snapshots.
 391 */
 392int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
 393{
 394        int snap = atomic_add_return(0, &rdtp->dynticks);
 395
 396        return snap & ~RCU_DYNTICK_CTRL_MASK;
 397}
 398
 399/*
 400 * Return true if the snapshot returned from rcu_dynticks_snap()
 401 * indicates that RCU is in an extended quiescent state.
 402 */
 403static bool rcu_dynticks_in_eqs(int snap)
 404{
 405        return !(snap & RCU_DYNTICK_CTRL_CTR);
 406}
 407
 408/*
 409 * Return true if the CPU corresponding to the specified rcu_dynticks
 410 * structure has spent some time in an extended quiescent state since
 411 * rcu_dynticks_snap() returned the specified snapshot.
 412 */
 413static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
 414{
 415        return snap != rcu_dynticks_snap(rdtp);
 416}
 417
 418/*
 419 * Do a double-increment of the ->dynticks counter to emulate a
 420 * momentary idle-CPU quiescent state.
 421 */
 422static void rcu_dynticks_momentary_idle(void)
 423{
 424        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 425        int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 426                                        &rdtp->dynticks);
 427
 428        /* It is illegal to call this from idle state. */
 429        WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 430}
 431
 432/*
 433 * Set the special (bottom) bit of the specified CPU so that it
 434 * will take special action (such as flushing its TLB) on the
 435 * next exit from an extended quiescent state.  Returns true if
 436 * the bit was successfully set, or false if the CPU was not in
 437 * an extended quiescent state.
 438 */
 439bool rcu_eqs_special_set(int cpu)
 440{
 441        int old;
 442        int new;
 443        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 444
 445        do {
 446                old = atomic_read(&rdtp->dynticks);
 447                if (old & RCU_DYNTICK_CTRL_CTR)
 448                        return false;
 449                new = old | RCU_DYNTICK_CTRL_MASK;
 450        } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
 451        return true;
 452}
 453
 454/*
 455 * Let the RCU core know that this CPU has gone through the scheduler,
 456 * which is a quiescent state.  This is called when the need for a
 457 * quiescent state is urgent, so we burn an atomic operation and full
 458 * memory barriers to let the RCU core know about it, regardless of what
 459 * this CPU might (or might not) do in the near future.
 460 *
 461 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 462 *
 463 * The caller must have disabled interrupts.
 464 */
 465static void rcu_momentary_dyntick_idle(void)
 466{
 467        raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
 468        rcu_dynticks_momentary_idle();
 469}
 470
 471/*
 472 * Note a context switch.  This is a quiescent state for RCU-sched,
 473 * and requires special handling for preemptible RCU.
 474 * The caller must have disabled interrupts.
 475 */
 476void rcu_note_context_switch(bool preempt)
 477{
 478        barrier(); /* Avoid RCU read-side critical sections leaking down. */
 479        trace_rcu_utilization(TPS("Start context switch"));
 480        rcu_sched_qs();
 481        rcu_preempt_note_context_switch();
 482        /* Load rcu_urgent_qs before other flags. */
 483        if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
 484                goto out;
 485        this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 486        if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
 487                rcu_momentary_dyntick_idle();
 488        this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 489        if (!preempt)
 490                rcu_note_voluntary_context_switch_lite(current);
 491out:
 492        trace_rcu_utilization(TPS("End context switch"));
 493        barrier(); /* Avoid RCU read-side critical sections leaking up. */
 494}
 495EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 496
 497/*
 498 * Register a quiescent state for all RCU flavors.  If there is an
 499 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 500 * dyntick-idle quiescent state visible to other CPUs (but only for those
 501 * RCU flavors in desperate need of a quiescent state, which will normally
 502 * be none of them).  Either way, do a lightweight quiescent state for
 503 * all RCU flavors.
 504 *
 505 * The barrier() calls are redundant in the common case when this is
 506 * called externally, but just in case this is called from within this
 507 * file.
 508 *
 509 */
 510void rcu_all_qs(void)
 511{
 512        unsigned long flags;
 513
 514        if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
 515                return;
 516        preempt_disable();
 517        /* Load rcu_urgent_qs before other flags. */
 518        if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 519                preempt_enable();
 520                return;
 521        }
 522        this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 523        barrier(); /* Avoid RCU read-side critical sections leaking down. */
 524        if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
 525                local_irq_save(flags);
 526                rcu_momentary_dyntick_idle();
 527                local_irq_restore(flags);
 528        }
 529        if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
 530                rcu_sched_qs();
 531        this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 532        barrier(); /* Avoid RCU read-side critical sections leaking up. */
 533        preempt_enable();
 534}
 535EXPORT_SYMBOL_GPL(rcu_all_qs);
 536
 537static long blimit = 10;        /* Maximum callbacks per rcu_do_batch. */
 538static long qhimark = 10000;    /* If this many pending, ignore blimit. */
 539static long qlowmark = 100;     /* Once only this many pending, use blimit. */
 540
 541module_param(blimit, long, 0444);
 542module_param(qhimark, long, 0444);
 543module_param(qlowmark, long, 0444);
 544
 545static ulong jiffies_till_first_fqs = ULONG_MAX;
 546static ulong jiffies_till_next_fqs = ULONG_MAX;
 547static bool rcu_kick_kthreads;
 548
 549module_param(jiffies_till_first_fqs, ulong, 0644);
 550module_param(jiffies_till_next_fqs, ulong, 0644);
 551module_param(rcu_kick_kthreads, bool, 0644);
 552
 553/*
 554 * How long the grace period must be before we start recruiting
 555 * quiescent-state help from rcu_note_context_switch().
 556 */
 557static ulong jiffies_till_sched_qs = HZ / 20;
 558module_param(jiffies_till_sched_qs, ulong, 0644);
 559
 560static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 561                                  struct rcu_data *rdp);
 562static void force_qs_rnp(struct rcu_state *rsp,
 563                         int (*f)(struct rcu_data *rsp, bool *isidle,
 564                                  unsigned long *maxj),
 565                         bool *isidle, unsigned long *maxj);
 566static void force_quiescent_state(struct rcu_state *rsp);
 567static int rcu_pending(void);
 568
 569/*
 570 * Return the number of RCU batches started thus far for debug & stats.
 571 */
 572unsigned long rcu_batches_started(void)
 573{
 574        return rcu_state_p->gpnum;
 575}
 576EXPORT_SYMBOL_GPL(rcu_batches_started);
 577
 578/*
 579 * Return the number of RCU-sched batches started thus far for debug & stats.
 580 */
 581unsigned long rcu_batches_started_sched(void)
 582{
 583        return rcu_sched_state.gpnum;
 584}
 585EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 586
 587/*
 588 * Return the number of RCU BH batches started thus far for debug & stats.
 589 */
 590unsigned long rcu_batches_started_bh(void)
 591{
 592        return rcu_bh_state.gpnum;
 593}
 594EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 595
 596/*
 597 * Return the number of RCU batches completed thus far for debug & stats.
 598 */
 599unsigned long rcu_batches_completed(void)
 600{
 601        return rcu_state_p->completed;
 602}
 603EXPORT_SYMBOL_GPL(rcu_batches_completed);
 604
 605/*
 606 * Return the number of RCU-sched batches completed thus far for debug & stats.
 607 */
 608unsigned long rcu_batches_completed_sched(void)
 609{
 610        return rcu_sched_state.completed;
 611}
 612EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 613
 614/*
 615 * Return the number of RCU BH batches completed thus far for debug & stats.
 616 */
 617unsigned long rcu_batches_completed_bh(void)
 618{
 619        return rcu_bh_state.completed;
 620}
 621EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 622
 623/*
 624 * Return the number of RCU expedited batches completed thus far for
 625 * debug & stats.  Odd numbers mean that a batch is in progress, even
 626 * numbers mean idle.  The value returned will thus be roughly double
 627 * the cumulative batches since boot.
 628 */
 629unsigned long rcu_exp_batches_completed(void)
 630{
 631        return rcu_state_p->expedited_sequence;
 632}
 633EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 634
 635/*
 636 * Return the number of RCU-sched expedited batches completed thus far
 637 * for debug & stats.  Similar to rcu_exp_batches_completed().
 638 */
 639unsigned long rcu_exp_batches_completed_sched(void)
 640{
 641        return rcu_sched_state.expedited_sequence;
 642}
 643EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 644
 645/*
 646 * Force a quiescent state.
 647 */
 648void rcu_force_quiescent_state(void)
 649{
 650        force_quiescent_state(rcu_state_p);
 651}
 652EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 653
 654/*
 655 * Force a quiescent state for RCU BH.
 656 */
 657void rcu_bh_force_quiescent_state(void)
 658{
 659        force_quiescent_state(&rcu_bh_state);
 660}
 661EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 662
 663/*
 664 * Force a quiescent state for RCU-sched.
 665 */
 666void rcu_sched_force_quiescent_state(void)
 667{
 668        force_quiescent_state(&rcu_sched_state);
 669}
 670EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 671
 672/*
 673 * Show the state of the grace-period kthreads.
 674 */
 675void show_rcu_gp_kthreads(void)
 676{
 677        struct rcu_state *rsp;
 678
 679        for_each_rcu_flavor(rsp) {
 680                pr_info("%s: wait state: %d ->state: %#lx\n",
 681                        rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 682                /* sched_show_task(rsp->gp_kthread); */
 683        }
 684}
 685EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 686
 687/*
 688 * Record the number of times rcutorture tests have been initiated and
 689 * terminated.  This information allows the debugfs tracing stats to be
 690 * correlated to the rcutorture messages, even when the rcutorture module
 691 * is being repeatedly loaded and unloaded.  In other words, we cannot
 692 * store this state in rcutorture itself.
 693 */
 694void rcutorture_record_test_transition(void)
 695{
 696        rcutorture_testseq++;
 697        rcutorture_vernum = 0;
 698}
 699EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 700
 701/*
 702 * Send along grace-period-related data for rcutorture diagnostics.
 703 */
 704void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 705                            unsigned long *gpnum, unsigned long *completed)
 706{
 707        struct rcu_state *rsp = NULL;
 708
 709        switch (test_type) {
 710        case RCU_FLAVOR:
 711                rsp = rcu_state_p;
 712                break;
 713        case RCU_BH_FLAVOR:
 714                rsp = &rcu_bh_state;
 715                break;
 716        case RCU_SCHED_FLAVOR:
 717                rsp = &rcu_sched_state;
 718                break;
 719        default:
 720                break;
 721        }
 722        if (rsp == NULL)
 723                return;
 724        *flags = READ_ONCE(rsp->gp_flags);
 725        *gpnum = READ_ONCE(rsp->gpnum);
 726        *completed = READ_ONCE(rsp->completed);
 727}
 728EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 729
 730/*
 731 * Record the number of writer passes through the current rcutorture test.
 732 * This is also used to correlate debugfs tracing stats with the rcutorture
 733 * messages.
 734 */
 735void rcutorture_record_progress(unsigned long vernum)
 736{
 737        rcutorture_vernum++;
 738}
 739EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 740
 741/*
 742 * Return the root node of the specified rcu_state structure.
 743 */
 744static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 745{
 746        return &rsp->node[0];
 747}
 748
 749/*
 750 * Is there any need for future grace periods?
 751 * Interrupts must be disabled.  If the caller does not hold the root
 752 * rnp_node structure's ->lock, the results are advisory only.
 753 */
 754static int rcu_future_needs_gp(struct rcu_state *rsp)
 755{
 756        struct rcu_node *rnp = rcu_get_root(rsp);
 757        int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 758        int *fp = &rnp->need_future_gp[idx];
 759
 760        return READ_ONCE(*fp);
 761}
 762
 763/*
 764 * Does the current CPU require a not-yet-started grace period?
 765 * The caller must have disabled interrupts to prevent races with
 766 * normal callback registry.
 767 */
 768static bool
 769cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 770{
 771        if (rcu_gp_in_progress(rsp))
 772                return false;  /* No, a grace period is already in progress. */
 773        if (rcu_future_needs_gp(rsp))
 774                return true;  /* Yes, a no-CBs CPU needs one. */
 775        if (!rcu_segcblist_is_enabled(&rdp->cblist))
 776                return false;  /* No, this is a no-CBs (or offline) CPU. */
 777        if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 778                return true;  /* Yes, CPU has newly registered callbacks. */
 779        if (rcu_segcblist_future_gp_needed(&rdp->cblist,
 780                                           READ_ONCE(rsp->completed)))
 781                return true;  /* Yes, CBs for future grace period. */
 782        return false; /* No grace period needed. */
 783}
 784
 785/*
 786 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
 787 *
 788 * Enter idle, doing appropriate accounting.  The caller must have
 789 * disabled interrupts.
 790 */
 791static void rcu_eqs_enter_common(bool user)
 792{
 793        struct rcu_state *rsp;
 794        struct rcu_data *rdp;
 795        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 796
 797        trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
 798        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 799            !user && !is_idle_task(current)) {
 800                struct task_struct *idle __maybe_unused =
 801                        idle_task(smp_processor_id());
 802
 803                trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
 804                rcu_ftrace_dump(DUMP_ORIG);
 805                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 806                          current->pid, current->comm,
 807                          idle->pid, idle->comm); /* must be idle task! */
 808        }
 809        for_each_rcu_flavor(rsp) {
 810                rdp = this_cpu_ptr(rsp->rda);
 811                do_nocb_deferred_wakeup(rdp);
 812        }
 813        rcu_prepare_for_idle();
 814        __this_cpu_inc(disable_rcu_irq_enter);
 815        rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
 816        rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
 817        __this_cpu_dec(disable_rcu_irq_enter);
 818        rcu_dynticks_task_enter();
 819
 820        /*
 821         * It is illegal to enter an extended quiescent state while
 822         * in an RCU read-side critical section.
 823         */
 824        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 825                         "Illegal idle entry in RCU read-side critical section.");
 826        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
 827                         "Illegal idle entry in RCU-bh read-side critical section.");
 828        RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
 829                         "Illegal idle entry in RCU-sched read-side critical section.");
 830}
 831
 832/*
 833 * Enter an RCU extended quiescent state, which can be either the
 834 * idle loop or adaptive-tickless usermode execution.
 835 */
 836static void rcu_eqs_enter(bool user)
 837{
 838        struct rcu_dynticks *rdtp;
 839
 840        rdtp = this_cpu_ptr(&rcu_dynticks);
 841        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 842                     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
 843        if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
 844                rcu_eqs_enter_common(user);
 845        else
 846                rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 847}
 848
 849/**
 850 * rcu_idle_enter - inform RCU that current CPU is entering idle
 851 *
 852 * Enter idle mode, in other words, -leave- the mode in which RCU
 853 * read-side critical sections can occur.  (Though RCU read-side
 854 * critical sections can occur in irq handlers in idle, a possibility
 855 * handled by irq_enter() and irq_exit().)
 856 *
 857 * We crowbar the ->dynticks_nesting field to zero to allow for
 858 * the possibility of usermode upcalls having messed up our count
 859 * of interrupt nesting level during the prior busy period.
 860 */
 861void rcu_idle_enter(void)
 862{
 863        unsigned long flags;
 864
 865        local_irq_save(flags);
 866        rcu_eqs_enter(false);
 867        rcu_sysidle_enter(0);
 868        local_irq_restore(flags);
 869}
 870EXPORT_SYMBOL_GPL(rcu_idle_enter);
 871
 872#ifdef CONFIG_NO_HZ_FULL
 873/**
 874 * rcu_user_enter - inform RCU that we are resuming userspace.
 875 *
 876 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 877 * is permitted between this call and rcu_user_exit(). This way the
 878 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 879 * when the CPU runs in userspace.
 880 */
 881void rcu_user_enter(void)
 882{
 883        rcu_eqs_enter(1);
 884}
 885#endif /* CONFIG_NO_HZ_FULL */
 886
 887/**
 888 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 889 *
 890 * Exit from an interrupt handler, which might possibly result in entering
 891 * idle mode, in other words, leaving the mode in which read-side critical
 892 * sections can occur.  The caller must have disabled interrupts.
 893 *
 894 * This code assumes that the idle loop never does anything that might
 895 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 896 * architecture violates this assumption, RCU will give you what you
 897 * deserve, good and hard.  But very infrequently and irreproducibly.
 898 *
 899 * Use things like work queues to work around this limitation.
 900 *
 901 * You have been warned.
 902 */
 903void rcu_irq_exit(void)
 904{
 905        struct rcu_dynticks *rdtp;
 906
 907        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
 908        rdtp = this_cpu_ptr(&rcu_dynticks);
 909        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 910                     rdtp->dynticks_nesting < 1);
 911        if (rdtp->dynticks_nesting <= 1) {
 912                rcu_eqs_enter_common(true);
 913        } else {
 914                trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
 915                rdtp->dynticks_nesting--;
 916        }
 917        rcu_sysidle_enter(1);
 918}
 919
 920/*
 921 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 922 */
 923void rcu_irq_exit_irqson(void)
 924{
 925        unsigned long flags;
 926
 927        local_irq_save(flags);
 928        rcu_irq_exit();
 929        local_irq_restore(flags);
 930}
 931
 932/*
 933 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 934 *
 935 * If the new value of the ->dynticks_nesting counter was previously zero,
 936 * we really have exited idle, and must do the appropriate accounting.
 937 * The caller must have disabled interrupts.
 938 */
 939static void rcu_eqs_exit_common(long long oldval, int user)
 940{
 941        RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
 942
 943        rcu_dynticks_task_exit();
 944        rcu_dynticks_eqs_exit();
 945        rcu_cleanup_after_idle();
 946        trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 947        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 948            !user && !is_idle_task(current)) {
 949                struct task_struct *idle __maybe_unused =
 950                        idle_task(smp_processor_id());
 951
 952                trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 953                                  oldval, rdtp->dynticks_nesting);
 954                rcu_ftrace_dump(DUMP_ORIG);
 955                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 956                          current->pid, current->comm,
 957                          idle->pid, idle->comm); /* must be idle task! */
 958        }
 959}
 960
 961/*
 962 * Exit an RCU extended quiescent state, which can be either the
 963 * idle loop or adaptive-tickless usermode execution.
 964 */
 965static void rcu_eqs_exit(bool user)
 966{
 967        struct rcu_dynticks *rdtp;
 968        long long oldval;
 969
 970        rdtp = this_cpu_ptr(&rcu_dynticks);
 971        oldval = rdtp->dynticks_nesting;
 972        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 973        if (oldval & DYNTICK_TASK_NEST_MASK) {
 974                rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 975        } else {
 976                rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 977                rcu_eqs_exit_common(oldval, user);
 978        }
 979}
 980
 981/**
 982 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 983 *
 984 * Exit idle mode, in other words, -enter- the mode in which RCU
 985 * read-side critical sections can occur.
 986 *
 987 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 988 * allow for the possibility of usermode upcalls messing up our count
 989 * of interrupt nesting level during the busy period that is just
 990 * now starting.
 991 */
 992void rcu_idle_exit(void)
 993{
 994        unsigned long flags;
 995
 996        local_irq_save(flags);
 997        rcu_eqs_exit(false);
 998        rcu_sysidle_exit(0);
 999        local_irq_restore(flags);
1000}
1001EXPORT_SYMBOL_GPL(rcu_idle_exit);
1002
1003#ifdef CONFIG_NO_HZ_FULL
1004/**
1005 * rcu_user_exit - inform RCU that we are exiting userspace.
1006 *
1007 * Exit RCU idle mode while entering the kernel because it can
1008 * run a RCU read side critical section anytime.
1009 */
1010void rcu_user_exit(void)
1011{
1012        rcu_eqs_exit(1);
1013}
1014#endif /* CONFIG_NO_HZ_FULL */
1015
1016/**
1017 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1018 *
1019 * Enter an interrupt handler, which might possibly result in exiting
1020 * idle mode, in other words, entering the mode in which read-side critical
1021 * sections can occur.  The caller must have disabled interrupts.
1022 *
1023 * Note that the Linux kernel is fully capable of entering an interrupt
1024 * handler that it never exits, for example when doing upcalls to
1025 * user mode!  This code assumes that the idle loop never does upcalls to
1026 * user mode.  If your architecture does do upcalls from the idle loop (or
1027 * does anything else that results in unbalanced calls to the irq_enter()
1028 * and irq_exit() functions), RCU will give you what you deserve, good
1029 * and hard.  But very infrequently and irreproducibly.
1030 *
1031 * Use things like work queues to work around this limitation.
1032 *
1033 * You have been warned.
1034 */
1035void rcu_irq_enter(void)
1036{
1037        struct rcu_dynticks *rdtp;
1038        long long oldval;
1039
1040        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1041        rdtp = this_cpu_ptr(&rcu_dynticks);
1042        oldval = rdtp->dynticks_nesting;
1043        rdtp->dynticks_nesting++;
1044        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1045                     rdtp->dynticks_nesting == 0);
1046        if (oldval)
1047                trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1048        else
1049                rcu_eqs_exit_common(oldval, true);
1050        rcu_sysidle_exit(1);
1051}
1052
1053/*
1054 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1055 */
1056void rcu_irq_enter_irqson(void)
1057{
1058        unsigned long flags;
1059
1060        local_irq_save(flags);
1061        rcu_irq_enter();
1062        local_irq_restore(flags);
1063}
1064
1065/**
1066 * rcu_nmi_enter - inform RCU of entry to NMI context
1067 *
1068 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1069 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1070 * that the CPU is active.  This implementation permits nested NMIs, as
1071 * long as the nesting level does not overflow an int.  (You will probably
1072 * run out of stack space first.)
1073 */
1074void rcu_nmi_enter(void)
1075{
1076        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1077        int incby = 2;
1078
1079        /* Complain about underflow. */
1080        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1081
1082        /*
1083         * If idle from RCU viewpoint, atomically increment ->dynticks
1084         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1085         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1086         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1087         * to be in the outermost NMI handler that interrupted an RCU-idle
1088         * period (observation due to Andy Lutomirski).
1089         */
1090        if (rcu_dynticks_curr_cpu_in_eqs()) {
1091                rcu_dynticks_eqs_exit();
1092                incby = 1;
1093        }
1094        rdtp->dynticks_nmi_nesting += incby;
1095        barrier();
1096}
1097
1098/**
1099 * rcu_nmi_exit - inform RCU of exit from NMI context
1100 *
1101 * If we are returning from the outermost NMI handler that interrupted an
1102 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1103 * to let the RCU grace-period handling know that the CPU is back to
1104 * being RCU-idle.
1105 */
1106void rcu_nmi_exit(void)
1107{
1108        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1109
1110        /*
1111         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1112         * (We are exiting an NMI handler, so RCU better be paying attention
1113         * to us!)
1114         */
1115        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1116        WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1117
1118        /*
1119         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1120         * leave it in non-RCU-idle state.
1121         */
1122        if (rdtp->dynticks_nmi_nesting != 1) {
1123                rdtp->dynticks_nmi_nesting -= 2;
1124                return;
1125        }
1126
1127        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1128        rdtp->dynticks_nmi_nesting = 0;
1129        rcu_dynticks_eqs_enter();
1130}
1131
1132/**
1133 * __rcu_is_watching - are RCU read-side critical sections safe?
1134 *
1135 * Return true if RCU is watching the running CPU, which means that
1136 * this CPU can safely enter RCU read-side critical sections.  Unlike
1137 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1138 * least disabled preemption.
1139 */
1140bool notrace __rcu_is_watching(void)
1141{
1142        return !rcu_dynticks_curr_cpu_in_eqs();
1143}
1144
1145/**
1146 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1147 *
1148 * If the current CPU is in its idle loop and is neither in an interrupt
1149 * or NMI handler, return true.
1150 */
1151bool notrace rcu_is_watching(void)
1152{
1153        bool ret;
1154
1155        preempt_disable_notrace();
1156        ret = __rcu_is_watching();
1157        preempt_enable_notrace();
1158        return ret;
1159}
1160EXPORT_SYMBOL_GPL(rcu_is_watching);
1161
1162/*
1163 * If a holdout task is actually running, request an urgent quiescent
1164 * state from its CPU.  This is unsynchronized, so migrations can cause
1165 * the request to go to the wrong CPU.  Which is OK, all that will happen
1166 * is that the CPU's next context switch will be a bit slower and next
1167 * time around this task will generate another request.
1168 */
1169void rcu_request_urgent_qs_task(struct task_struct *t)
1170{
1171        int cpu;
1172
1173        barrier();
1174        cpu = task_cpu(t);
1175        if (!task_curr(t))
1176                return; /* This task is not running on that CPU. */
1177        smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1178}
1179
1180#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1181
1182/*
1183 * Is the current CPU online?  Disable preemption to avoid false positives
1184 * that could otherwise happen due to the current CPU number being sampled,
1185 * this task being preempted, its old CPU being taken offline, resuming
1186 * on some other CPU, then determining that its old CPU is now offline.
1187 * It is OK to use RCU on an offline processor during initial boot, hence
1188 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1189 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1190 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1191 * offline to continue to use RCU for one jiffy after marking itself
1192 * offline in the cpu_online_mask.  This leniency is necessary given the
1193 * non-atomic nature of the online and offline processing, for example,
1194 * the fact that a CPU enters the scheduler after completing the teardown
1195 * of the CPU.
1196 *
1197 * This is also why RCU internally marks CPUs online during in the
1198 * preparation phase and offline after the CPU has been taken down.
1199 *
1200 * Disable checking if in an NMI handler because we cannot safely report
1201 * errors from NMI handlers anyway.
1202 */
1203bool rcu_lockdep_current_cpu_online(void)
1204{
1205        struct rcu_data *rdp;
1206        struct rcu_node *rnp;
1207        bool ret;
1208
1209        if (in_nmi())
1210                return true;
1211        preempt_disable();
1212        rdp = this_cpu_ptr(&rcu_sched_data);
1213        rnp = rdp->mynode;
1214        ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1215              !rcu_scheduler_fully_active;
1216        preempt_enable();
1217        return ret;
1218}
1219EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1220
1221#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1222
1223/**
1224 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1225 *
1226 * If the current CPU is idle or running at a first-level (not nested)
1227 * interrupt from idle, return true.  The caller must have at least
1228 * disabled preemption.
1229 */
1230static int rcu_is_cpu_rrupt_from_idle(void)
1231{
1232        return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1233}
1234
1235/*
1236 * Snapshot the specified CPU's dynticks counter so that we can later
1237 * credit them with an implicit quiescent state.  Return 1 if this CPU
1238 * is in dynticks idle mode, which is an extended quiescent state.
1239 */
1240static int dyntick_save_progress_counter(struct rcu_data *rdp,
1241                                         bool *isidle, unsigned long *maxj)
1242{
1243        rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1244        rcu_sysidle_check_cpu(rdp, isidle, maxj);
1245        if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1246                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1247                if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1248                                 rdp->mynode->gpnum))
1249                        WRITE_ONCE(rdp->gpwrap, true);
1250                return 1;
1251        }
1252        return 0;
1253}
1254
1255/*
1256 * Return true if the specified CPU has passed through a quiescent
1257 * state by virtue of being in or having passed through an dynticks
1258 * idle state since the last call to dyntick_save_progress_counter()
1259 * for this same CPU, or by virtue of having been offline.
1260 */
1261static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1262                                    bool *isidle, unsigned long *maxj)
1263{
1264        unsigned long jtsq;
1265        bool *rnhqp;
1266        bool *ruqp;
1267        unsigned long rjtsc;
1268        struct rcu_node *rnp;
1269
1270        /*
1271         * If the CPU passed through or entered a dynticks idle phase with
1272         * no active irq/NMI handlers, then we can safely pretend that the CPU
1273         * already acknowledged the request to pass through a quiescent
1274         * state.  Either way, that CPU cannot possibly be in an RCU
1275         * read-side critical section that started before the beginning
1276         * of the current RCU grace period.
1277         */
1278        if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1279                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1280                rdp->dynticks_fqs++;
1281                return 1;
1282        }
1283
1284        /* Compute and saturate jiffies_till_sched_qs. */
1285        jtsq = jiffies_till_sched_qs;
1286        rjtsc = rcu_jiffies_till_stall_check();
1287        if (jtsq > rjtsc / 2) {
1288                WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1289                jtsq = rjtsc / 2;
1290        } else if (jtsq < 1) {
1291                WRITE_ONCE(jiffies_till_sched_qs, 1);
1292                jtsq = 1;
1293        }
1294
1295        /*
1296         * Has this CPU encountered a cond_resched_rcu_qs() since the
1297         * beginning of the grace period?  For this to be the case,
1298         * the CPU has to have noticed the current grace period.  This
1299         * might not be the case for nohz_full CPUs looping in the kernel.
1300         */
1301        rnp = rdp->mynode;
1302        ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1303        if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1304            READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1305            READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1306                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1307                return 1;
1308        } else {
1309                /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1310                smp_store_release(ruqp, true);
1311        }
1312
1313        /* Check for the CPU being offline. */
1314        if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1315                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1316                rdp->offline_fqs++;
1317                return 1;
1318        }
1319
1320        /*
1321         * A CPU running for an extended time within the kernel can
1322         * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1323         * even context-switching back and forth between a pair of
1324         * in-kernel CPU-bound tasks cannot advance grace periods.
1325         * So if the grace period is old enough, make the CPU pay attention.
1326         * Note that the unsynchronized assignments to the per-CPU
1327         * rcu_need_heavy_qs variable are safe.  Yes, setting of
1328         * bits can be lost, but they will be set again on the next
1329         * force-quiescent-state pass.  So lost bit sets do not result
1330         * in incorrect behavior, merely in a grace period lasting
1331         * a few jiffies longer than it might otherwise.  Because
1332         * there are at most four threads involved, and because the
1333         * updates are only once every few jiffies, the probability of
1334         * lossage (and thus of slight grace-period extension) is
1335         * quite low.
1336         *
1337         * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1338         * is set too high, we override with half of the RCU CPU stall
1339         * warning delay.
1340         */
1341        rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1342        if (!READ_ONCE(*rnhqp) &&
1343            (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1344             time_after(jiffies, rdp->rsp->jiffies_resched))) {
1345                WRITE_ONCE(*rnhqp, true);
1346                /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1347                smp_store_release(ruqp, true);
1348                rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1349        }
1350
1351        /*
1352         * If more than halfway to RCU CPU stall-warning time, do
1353         * a resched_cpu() to try to loosen things up a bit.
1354         */
1355        if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1356                resched_cpu(rdp->cpu);
1357
1358        return 0;
1359}
1360
1361static void record_gp_stall_check_time(struct rcu_state *rsp)
1362{
1363        unsigned long j = jiffies;
1364        unsigned long j1;
1365
1366        rsp->gp_start = j;
1367        smp_wmb(); /* Record start time before stall time. */
1368        j1 = rcu_jiffies_till_stall_check();
1369        WRITE_ONCE(rsp->jiffies_stall, j + j1);
1370        rsp->jiffies_resched = j + j1 / 2;
1371        rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1372}
1373
1374/*
1375 * Convert a ->gp_state value to a character string.
1376 */
1377static const char *gp_state_getname(short gs)
1378{
1379        if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1380                return "???";
1381        return gp_state_names[gs];
1382}
1383
1384/*
1385 * Complain about starvation of grace-period kthread.
1386 */
1387static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1388{
1389        unsigned long gpa;
1390        unsigned long j;
1391
1392        j = jiffies;
1393        gpa = READ_ONCE(rsp->gp_activity);
1394        if (j - gpa > 2 * HZ) {
1395                pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1396                       rsp->name, j - gpa,
1397                       rsp->gpnum, rsp->completed,
1398                       rsp->gp_flags,
1399                       gp_state_getname(rsp->gp_state), rsp->gp_state,
1400                       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1401                if (rsp->gp_kthread) {
1402                        sched_show_task(rsp->gp_kthread);
1403                        wake_up_process(rsp->gp_kthread);
1404                }
1405        }
1406}
1407
1408/*
1409 * Dump stacks of all tasks running on stalled CPUs.  First try using
1410 * NMIs, but fall back to manual remote stack tracing on architectures
1411 * that don't support NMI-based stack dumps.  The NMI-triggered stack
1412 * traces are more accurate because they are printed by the target CPU.
1413 */
1414static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1415{
1416        int cpu;
1417        unsigned long flags;
1418        struct rcu_node *rnp;
1419
1420        rcu_for_each_leaf_node(rsp, rnp) {
1421                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1422                for_each_leaf_node_possible_cpu(rnp, cpu)
1423                        if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1424                                if (!trigger_single_cpu_backtrace(cpu))
1425                                        dump_cpu_task(cpu);
1426                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1427        }
1428}
1429
1430/*
1431 * If too much time has passed in the current grace period, and if
1432 * so configured, go kick the relevant kthreads.
1433 */
1434static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1435{
1436        unsigned long j;
1437
1438        if (!rcu_kick_kthreads)
1439                return;
1440        j = READ_ONCE(rsp->jiffies_kick_kthreads);
1441        if (time_after(jiffies, j) && rsp->gp_kthread &&
1442            (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1443                WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1444                rcu_ftrace_dump(DUMP_ALL);
1445                wake_up_process(rsp->gp_kthread);
1446                WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1447        }
1448}
1449
1450static inline void panic_on_rcu_stall(void)
1451{
1452        if (sysctl_panic_on_rcu_stall)
1453                panic("RCU Stall\n");
1454}
1455
1456static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1457{
1458        int cpu;
1459        long delta;
1460        unsigned long flags;
1461        unsigned long gpa;
1462        unsigned long j;
1463        int ndetected = 0;
1464        struct rcu_node *rnp = rcu_get_root(rsp);
1465        long totqlen = 0;
1466
1467        /* Kick and suppress, if so configured. */
1468        rcu_stall_kick_kthreads(rsp);
1469        if (rcu_cpu_stall_suppress)
1470                return;
1471
1472        /* Only let one CPU complain about others per time interval. */
1473
1474        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1475        delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1476        if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1477                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1478                return;
1479        }
1480        WRITE_ONCE(rsp->jiffies_stall,
1481                   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1482        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1483
1484        /*
1485         * OK, time to rat on our buddy...
1486         * See Documentation/RCU/stallwarn.txt for info on how to debug
1487         * RCU CPU stall warnings.
1488         */
1489        pr_err("INFO: %s detected stalls on CPUs/tasks:",
1490               rsp->name);
1491        print_cpu_stall_info_begin();
1492        rcu_for_each_leaf_node(rsp, rnp) {
1493                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1494                ndetected += rcu_print_task_stall(rnp);
1495                if (rnp->qsmask != 0) {
1496                        for_each_leaf_node_possible_cpu(rnp, cpu)
1497                                if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1498                                        print_cpu_stall_info(rsp, cpu);
1499                                        ndetected++;
1500                                }
1501                }
1502                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1503        }
1504
1505        print_cpu_stall_info_end();
1506        for_each_possible_cpu(cpu)
1507                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1508                                                            cpu)->cblist);
1509        pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1510               smp_processor_id(), (long)(jiffies - rsp->gp_start),
1511               (long)rsp->gpnum, (long)rsp->completed, totqlen);
1512        if (ndetected) {
1513                rcu_dump_cpu_stacks(rsp);
1514
1515                /* Complain about tasks blocking the grace period. */
1516                rcu_print_detail_task_stall(rsp);
1517        } else {
1518                if (READ_ONCE(rsp->gpnum) != gpnum ||
1519                    READ_ONCE(rsp->completed) == gpnum) {
1520                        pr_err("INFO: Stall ended before state dump start\n");
1521                } else {
1522                        j = jiffies;
1523                        gpa = READ_ONCE(rsp->gp_activity);
1524                        pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1525                               rsp->name, j - gpa, j, gpa,
1526                               jiffies_till_next_fqs,
1527                               rcu_get_root(rsp)->qsmask);
1528                        /* In this case, the current CPU might be at fault. */
1529                        sched_show_task(current);
1530                }
1531        }
1532
1533        rcu_check_gp_kthread_starvation(rsp);
1534
1535        panic_on_rcu_stall();
1536
1537        force_quiescent_state(rsp);  /* Kick them all. */
1538}
1539
1540static void print_cpu_stall(struct rcu_state *rsp)
1541{
1542        int cpu;
1543        unsigned long flags;
1544        struct rcu_node *rnp = rcu_get_root(rsp);
1545        long totqlen = 0;
1546
1547        /* Kick and suppress, if so configured. */
1548        rcu_stall_kick_kthreads(rsp);
1549        if (rcu_cpu_stall_suppress)
1550                return;
1551
1552        /*
1553         * OK, time to rat on ourselves...
1554         * See Documentation/RCU/stallwarn.txt for info on how to debug
1555         * RCU CPU stall warnings.
1556         */
1557        pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1558        print_cpu_stall_info_begin();
1559        print_cpu_stall_info(rsp, smp_processor_id());
1560        print_cpu_stall_info_end();
1561        for_each_possible_cpu(cpu)
1562                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1563                                                            cpu)->cblist);
1564        pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1565                jiffies - rsp->gp_start,
1566                (long)rsp->gpnum, (long)rsp->completed, totqlen);
1567
1568        rcu_check_gp_kthread_starvation(rsp);
1569
1570        rcu_dump_cpu_stacks(rsp);
1571
1572        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1573        if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1574                WRITE_ONCE(rsp->jiffies_stall,
1575                           jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1576        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1577
1578        panic_on_rcu_stall();
1579
1580        /*
1581         * Attempt to revive the RCU machinery by forcing a context switch.
1582         *
1583         * A context switch would normally allow the RCU state machine to make
1584         * progress and it could be we're stuck in kernel space without context
1585         * switches for an entirely unreasonable amount of time.
1586         */
1587        resched_cpu(smp_processor_id());
1588}
1589
1590static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1591{
1592        unsigned long completed;
1593        unsigned long gpnum;
1594        unsigned long gps;
1595        unsigned long j;
1596        unsigned long js;
1597        struct rcu_node *rnp;
1598
1599        if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1600            !rcu_gp_in_progress(rsp))
1601                return;
1602        rcu_stall_kick_kthreads(rsp);
1603        j = jiffies;
1604
1605        /*
1606         * Lots of memory barriers to reject false positives.
1607         *
1608         * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1609         * then rsp->gp_start, and finally rsp->completed.  These values
1610         * are updated in the opposite order with memory barriers (or
1611         * equivalent) during grace-period initialization and cleanup.
1612         * Now, a false positive can occur if we get an new value of
1613         * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1614         * the memory barriers, the only way that this can happen is if one
1615         * grace period ends and another starts between these two fetches.
1616         * Detect this by comparing rsp->completed with the previous fetch
1617         * from rsp->gpnum.
1618         *
1619         * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1620         * and rsp->gp_start suffice to forestall false positives.
1621         */
1622        gpnum = READ_ONCE(rsp->gpnum);
1623        smp_rmb(); /* Pick up ->gpnum first... */
1624        js = READ_ONCE(rsp->jiffies_stall);
1625        smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1626        gps = READ_ONCE(rsp->gp_start);
1627        smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1628        completed = READ_ONCE(rsp->completed);
1629        if (ULONG_CMP_GE(completed, gpnum) ||
1630            ULONG_CMP_LT(j, js) ||
1631            ULONG_CMP_GE(gps, js))
1632                return; /* No stall or GP completed since entering function. */
1633        rnp = rdp->mynode;
1634        if (rcu_gp_in_progress(rsp) &&
1635            (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1636
1637                /* We haven't checked in, so go dump stack. */
1638                print_cpu_stall(rsp);
1639
1640        } else if (rcu_gp_in_progress(rsp) &&
1641                   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1642
1643                /* They had a few time units to dump stack, so complain. */
1644                print_other_cpu_stall(rsp, gpnum);
1645        }
1646}
1647
1648/**
1649 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1650 *
1651 * Set the stall-warning timeout way off into the future, thus preventing
1652 * any RCU CPU stall-warning messages from appearing in the current set of
1653 * RCU grace periods.
1654 *
1655 * The caller must disable hard irqs.
1656 */
1657void rcu_cpu_stall_reset(void)
1658{
1659        struct rcu_state *rsp;
1660
1661        for_each_rcu_flavor(rsp)
1662                WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1663}
1664
1665/*
1666 * Determine the value that ->completed will have at the end of the
1667 * next subsequent grace period.  This is used to tag callbacks so that
1668 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1669 * been dyntick-idle for an extended period with callbacks under the
1670 * influence of RCU_FAST_NO_HZ.
1671 *
1672 * The caller must hold rnp->lock with interrupts disabled.
1673 */
1674static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1675                                       struct rcu_node *rnp)
1676{
1677        /*
1678         * If RCU is idle, we just wait for the next grace period.
1679         * But we can only be sure that RCU is idle if we are looking
1680         * at the root rcu_node structure -- otherwise, a new grace
1681         * period might have started, but just not yet gotten around
1682         * to initializing the current non-root rcu_node structure.
1683         */
1684        if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1685                return rnp->completed + 1;
1686
1687        /*
1688         * Otherwise, wait for a possible partial grace period and
1689         * then the subsequent full grace period.
1690         */
1691        return rnp->completed + 2;
1692}
1693
1694/*
1695 * Trace-event helper function for rcu_start_future_gp() and
1696 * rcu_nocb_wait_gp().
1697 */
1698static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1699                                unsigned long c, const char *s)
1700{
1701        trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1702                                      rnp->completed, c, rnp->level,
1703                                      rnp->grplo, rnp->grphi, s);
1704}
1705
1706/*
1707 * Start some future grace period, as needed to handle newly arrived
1708 * callbacks.  The required future grace periods are recorded in each
1709 * rcu_node structure's ->need_future_gp field.  Returns true if there
1710 * is reason to awaken the grace-period kthread.
1711 *
1712 * The caller must hold the specified rcu_node structure's ->lock.
1713 */
1714static bool __maybe_unused
1715rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1716                    unsigned long *c_out)
1717{
1718        unsigned long c;
1719        bool ret = false;
1720        struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1721
1722        /*
1723         * Pick up grace-period number for new callbacks.  If this
1724         * grace period is already marked as needed, return to the caller.
1725         */
1726        c = rcu_cbs_completed(rdp->rsp, rnp);
1727        trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1728        if (rnp->need_future_gp[c & 0x1]) {
1729                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1730                goto out;
1731        }
1732
1733        /*
1734         * If either this rcu_node structure or the root rcu_node structure
1735         * believe that a grace period is in progress, then we must wait
1736         * for the one following, which is in "c".  Because our request
1737         * will be noticed at the end of the current grace period, we don't
1738         * need to explicitly start one.  We only do the lockless check
1739         * of rnp_root's fields if the current rcu_node structure thinks
1740         * there is no grace period in flight, and because we hold rnp->lock,
1741         * the only possible change is when rnp_root's two fields are
1742         * equal, in which case rnp_root->gpnum might be concurrently
1743         * incremented.  But that is OK, as it will just result in our
1744         * doing some extra useless work.
1745         */
1746        if (rnp->gpnum != rnp->completed ||
1747            READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1748                rnp->need_future_gp[c & 0x1]++;
1749                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1750                goto out;
1751        }
1752
1753        /*
1754         * There might be no grace period in progress.  If we don't already
1755         * hold it, acquire the root rcu_node structure's lock in order to
1756         * start one (if needed).
1757         */
1758        if (rnp != rnp_root)
1759                raw_spin_lock_rcu_node(rnp_root);
1760
1761        /*
1762         * Get a new grace-period number.  If there really is no grace
1763         * period in progress, it will be smaller than the one we obtained
1764         * earlier.  Adjust callbacks as needed.
1765         */
1766        c = rcu_cbs_completed(rdp->rsp, rnp_root);
1767        if (!rcu_is_nocb_cpu(rdp->cpu))
1768                (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1769
1770        /*
1771         * If the needed for the required grace period is already
1772         * recorded, trace and leave.
1773         */
1774        if (rnp_root->need_future_gp[c & 0x1]) {
1775                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1776                goto unlock_out;
1777        }
1778
1779        /* Record the need for the future grace period. */
1780        rnp_root->need_future_gp[c & 0x1]++;
1781
1782        /* If a grace period is not already in progress, start one. */
1783        if (rnp_root->gpnum != rnp_root->completed) {
1784                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1785        } else {
1786                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1787                ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1788        }
1789unlock_out:
1790        if (rnp != rnp_root)
1791                raw_spin_unlock_rcu_node(rnp_root);
1792out:
1793        if (c_out != NULL)
1794                *c_out = c;
1795        return ret;
1796}
1797
1798/*
1799 * Clean up any old requests for the just-ended grace period.  Also return
1800 * whether any additional grace periods have been requested.
1801 */
1802static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1803{
1804        int c = rnp->completed;
1805        int needmore;
1806        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1807
1808        rnp->need_future_gp[c & 0x1] = 0;
1809        needmore = rnp->need_future_gp[(c + 1) & 0x1];
1810        trace_rcu_future_gp(rnp, rdp, c,
1811                            needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1812        return needmore;
1813}
1814
1815/*
1816 * Awaken the grace-period kthread for the specified flavor of RCU.
1817 * Don't do a self-awaken, and don't bother awakening when there is
1818 * nothing for the grace-period kthread to do (as in several CPUs
1819 * raced to awaken, and we lost), and finally don't try to awaken
1820 * a kthread that has not yet been created.
1821 */
1822static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1823{
1824        if (current == rsp->gp_kthread ||
1825            !READ_ONCE(rsp->gp_flags) ||
1826            !rsp->gp_kthread)
1827                return;
1828        swake_up(&rsp->gp_wq);
1829}
1830
1831/*
1832 * If there is room, assign a ->completed number to any callbacks on
1833 * this CPU that have not already been assigned.  Also accelerate any
1834 * callbacks that were previously assigned a ->completed number that has
1835 * since proven to be too conservative, which can happen if callbacks get
1836 * assigned a ->completed number while RCU is idle, but with reference to
1837 * a non-root rcu_node structure.  This function is idempotent, so it does
1838 * not hurt to call it repeatedly.  Returns an flag saying that we should
1839 * awaken the RCU grace-period kthread.
1840 *
1841 * The caller must hold rnp->lock with interrupts disabled.
1842 */
1843static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1844                               struct rcu_data *rdp)
1845{
1846        bool ret = false;
1847
1848        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1849        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1850                return false;
1851
1852        /*
1853         * Callbacks are often registered with incomplete grace-period
1854         * information.  Something about the fact that getting exact
1855         * information requires acquiring a global lock...  RCU therefore
1856         * makes a conservative estimate of the grace period number at which
1857         * a given callback will become ready to invoke.        The following
1858         * code checks this estimate and improves it when possible, thus
1859         * accelerating callback invocation to an earlier grace-period
1860         * number.
1861         */
1862        if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1863                ret = rcu_start_future_gp(rnp, rdp, NULL);
1864
1865        /* Trace depending on how much we were able to accelerate. */
1866        if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1867                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1868        else
1869                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1870        return ret;
1871}
1872
1873/*
1874 * Move any callbacks whose grace period has completed to the
1875 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1876 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1877 * sublist.  This function is idempotent, so it does not hurt to
1878 * invoke it repeatedly.  As long as it is not invoked -too- often...
1879 * Returns true if the RCU grace-period kthread needs to be awakened.
1880 *
1881 * The caller must hold rnp->lock with interrupts disabled.
1882 */
1883static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1884                            struct rcu_data *rdp)
1885{
1886        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1887        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1888                return false;
1889
1890        /*
1891         * Find all callbacks whose ->completed numbers indicate that they
1892         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1893         */
1894        rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1895
1896        /* Classify any remaining callbacks. */
1897        return rcu_accelerate_cbs(rsp, rnp, rdp);
1898}
1899
1900/*
1901 * Update CPU-local rcu_data state to record the beginnings and ends of
1902 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1903 * structure corresponding to the current CPU, and must have irqs disabled.
1904 * Returns true if the grace-period kthread needs to be awakened.
1905 */
1906static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1907                              struct rcu_data *rdp)
1908{
1909        bool ret;
1910        bool need_gp;
1911
1912        /* Handle the ends of any preceding grace periods first. */
1913        if (rdp->completed == rnp->completed &&
1914            !unlikely(READ_ONCE(rdp->gpwrap))) {
1915
1916                /* No grace period end, so just accelerate recent callbacks. */
1917                ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1918
1919        } else {
1920
1921                /* Advance callbacks. */
1922                ret = rcu_advance_cbs(rsp, rnp, rdp);
1923
1924                /* Remember that we saw this grace-period completion. */
1925                rdp->completed = rnp->completed;
1926                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1927        }
1928
1929        if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1930                /*
1931                 * If the current grace period is waiting for this CPU,
1932                 * set up to detect a quiescent state, otherwise don't
1933                 * go looking for one.
1934                 */
1935                rdp->gpnum = rnp->gpnum;
1936                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1937                need_gp = !!(rnp->qsmask & rdp->grpmask);
1938                rdp->cpu_no_qs.b.norm = need_gp;
1939                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1940                rdp->core_needs_qs = need_gp;
1941                zero_cpu_stall_ticks(rdp);
1942                WRITE_ONCE(rdp->gpwrap, false);
1943        }
1944        return ret;
1945}
1946
1947static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1948{
1949        unsigned long flags;
1950        bool needwake;
1951        struct rcu_node *rnp;
1952
1953        local_irq_save(flags);
1954        rnp = rdp->mynode;
1955        if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1956             rdp->completed == READ_ONCE(rnp->completed) &&
1957             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1958            !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1959                local_irq_restore(flags);
1960                return;
1961        }
1962        needwake = __note_gp_changes(rsp, rnp, rdp);
1963        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1964        if (needwake)
1965                rcu_gp_kthread_wake(rsp);
1966}
1967
1968static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1969{
1970        if (delay > 0 &&
1971            !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1972                schedule_timeout_uninterruptible(delay);
1973}
1974
1975/*
1976 * Initialize a new grace period.  Return false if no grace period required.
1977 */
1978static bool rcu_gp_init(struct rcu_state *rsp)
1979{
1980        unsigned long oldmask;
1981        struct rcu_data *rdp;
1982        struct rcu_node *rnp = rcu_get_root(rsp);
1983
1984        WRITE_ONCE(rsp->gp_activity, jiffies);
1985        raw_spin_lock_irq_rcu_node(rnp);
1986        if (!READ_ONCE(rsp->gp_flags)) {
1987                /* Spurious wakeup, tell caller to go back to sleep.  */
1988                raw_spin_unlock_irq_rcu_node(rnp);
1989                return false;
1990        }
1991        WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1992
1993        if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1994                /*
1995                 * Grace period already in progress, don't start another.
1996                 * Not supposed to be able to happen.
1997                 */
1998                raw_spin_unlock_irq_rcu_node(rnp);
1999                return false;
2000        }
2001
2002        /* Advance to a new grace period and initialize state. */
2003        record_gp_stall_check_time(rsp);
2004        /* Record GP times before starting GP, hence smp_store_release(). */
2005        smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2006        trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2007        raw_spin_unlock_irq_rcu_node(rnp);
2008
2009        /*
2010         * Apply per-leaf buffered online and offline operations to the
2011         * rcu_node tree.  Note that this new grace period need not wait
2012         * for subsequent online CPUs, and that quiescent-state forcing
2013         * will handle subsequent offline CPUs.
2014         */
2015        rcu_for_each_leaf_node(rsp, rnp) {
2016                rcu_gp_slow(rsp, gp_preinit_delay);
2017                raw_spin_lock_irq_rcu_node(rnp);
2018                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2019                    !rnp->wait_blkd_tasks) {
2020                        /* Nothing to do on this leaf rcu_node structure. */
2021                        raw_spin_unlock_irq_rcu_node(rnp);
2022                        continue;
2023                }
2024
2025                /* Record old state, apply changes to ->qsmaskinit field. */
2026                oldmask = rnp->qsmaskinit;
2027                rnp->qsmaskinit = rnp->qsmaskinitnext;
2028
2029                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2030                if (!oldmask != !rnp->qsmaskinit) {
2031                        if (!oldmask) /* First online CPU for this rcu_node. */
2032                                rcu_init_new_rnp(rnp);
2033                        else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2034                                rnp->wait_blkd_tasks = true;
2035                        else /* Last offline CPU and can propagate. */
2036                                rcu_cleanup_dead_rnp(rnp);
2037                }
2038
2039                /*
2040                 * If all waited-on tasks from prior grace period are
2041                 * done, and if all this rcu_node structure's CPUs are
2042                 * still offline, propagate up the rcu_node tree and
2043                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2044                 * rcu_node structure's CPUs has since come back online,
2045                 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2046                 * checks for this, so just call it unconditionally).
2047                 */
2048                if (rnp->wait_blkd_tasks &&
2049                    (!rcu_preempt_has_tasks(rnp) ||
2050                     rnp->qsmaskinit)) {
2051                        rnp->wait_blkd_tasks = false;
2052                        rcu_cleanup_dead_rnp(rnp);
2053                }
2054
2055                raw_spin_unlock_irq_rcu_node(rnp);
2056        }
2057
2058        /*
2059         * Set the quiescent-state-needed bits in all the rcu_node
2060         * structures for all currently online CPUs in breadth-first order,
2061         * starting from the root rcu_node structure, relying on the layout
2062         * of the tree within the rsp->node[] array.  Note that other CPUs
2063         * will access only the leaves of the hierarchy, thus seeing that no
2064         * grace period is in progress, at least until the corresponding
2065         * leaf node has been initialized.
2066         *
2067         * The grace period cannot complete until the initialization
2068         * process finishes, because this kthread handles both.
2069         */
2070        rcu_for_each_node_breadth_first(rsp, rnp) {
2071                rcu_gp_slow(rsp, gp_init_delay);
2072                raw_spin_lock_irq_rcu_node(rnp);
2073                rdp = this_cpu_ptr(rsp->rda);
2074                rcu_preempt_check_blocked_tasks(rnp);
2075                rnp->qsmask = rnp->qsmaskinit;
2076                WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2077                if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2078                        WRITE_ONCE(rnp->completed, rsp->completed);
2079                if (rnp == rdp->mynode)
2080                        (void)__note_gp_changes(rsp, rnp, rdp);
2081                rcu_preempt_boost_start_gp(rnp);
2082                trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2083                                            rnp->level, rnp->grplo,
2084                                            rnp->grphi, rnp->qsmask);
2085                raw_spin_unlock_irq_rcu_node(rnp);
2086                cond_resched_rcu_qs();
2087                WRITE_ONCE(rsp->gp_activity, jiffies);
2088        }
2089
2090        return true;
2091}
2092
2093/*
2094 * Helper function for wait_event_interruptible_timeout() wakeup
2095 * at force-quiescent-state time.
2096 */
2097static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2098{
2099        struct rcu_node *rnp = rcu_get_root(rsp);
2100
2101        /* Someone like call_rcu() requested a force-quiescent-state scan. */
2102        *gfp = READ_ONCE(rsp->gp_flags);
2103        if (*gfp & RCU_GP_FLAG_FQS)
2104                return true;
2105
2106        /* The current grace period has completed. */
2107        if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2108                return true;
2109
2110        return false;
2111}
2112
2113/*
2114 * Do one round of quiescent-state forcing.
2115 */
2116static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2117{
2118        bool isidle = false;
2119        unsigned long maxj;
2120        struct rcu_node *rnp = rcu_get_root(rsp);
2121
2122        WRITE_ONCE(rsp->gp_activity, jiffies);
2123        rsp->n_force_qs++;
2124        if (first_time) {
2125                /* Collect dyntick-idle snapshots. */
2126                if (is_sysidle_rcu_state(rsp)) {
2127                        isidle = true;
2128                        maxj = jiffies - ULONG_MAX / 4;
2129                }
2130                force_qs_rnp(rsp, dyntick_save_progress_counter,
2131                             &isidle, &maxj);
2132                rcu_sysidle_report_gp(rsp, isidle, maxj);
2133        } else {
2134                /* Handle dyntick-idle and offline CPUs. */
2135                isidle = true;
2136                force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2137        }
2138        /* Clear flag to prevent immediate re-entry. */
2139        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2140                raw_spin_lock_irq_rcu_node(rnp);
2141                WRITE_ONCE(rsp->gp_flags,
2142                           READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2143                raw_spin_unlock_irq_rcu_node(rnp);
2144        }
2145}
2146
2147/*
2148 * Clean up after the old grace period.
2149 */
2150static void rcu_gp_cleanup(struct rcu_state *rsp)
2151{
2152        unsigned long gp_duration;
2153        bool needgp = false;
2154        int nocb = 0;
2155        struct rcu_data *rdp;
2156        struct rcu_node *rnp = rcu_get_root(rsp);
2157        struct swait_queue_head *sq;
2158
2159        WRITE_ONCE(rsp->gp_activity, jiffies);
2160        raw_spin_lock_irq_rcu_node(rnp);
2161        gp_duration = jiffies - rsp->gp_start;
2162        if (gp_duration > rsp->gp_max)
2163                rsp->gp_max = gp_duration;
2164
2165        /*
2166         * We know the grace period is complete, but to everyone else
2167         * it appears to still be ongoing.  But it is also the case
2168         * that to everyone else it looks like there is nothing that
2169         * they can do to advance the grace period.  It is therefore
2170         * safe for us to drop the lock in order to mark the grace
2171         * period as completed in all of the rcu_node structures.
2172         */
2173        raw_spin_unlock_irq_rcu_node(rnp);
2174
2175        /*
2176         * Propagate new ->completed value to rcu_node structures so
2177         * that other CPUs don't have to wait until the start of the next
2178         * grace period to process their callbacks.  This also avoids
2179         * some nasty RCU grace-period initialization races by forcing
2180         * the end of the current grace period to be completely recorded in
2181         * all of the rcu_node structures before the beginning of the next
2182         * grace period is recorded in any of the rcu_node structures.
2183         */
2184        rcu_for_each_node_breadth_first(rsp, rnp) {
2185                raw_spin_lock_irq_rcu_node(rnp);
2186                WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2187                WARN_ON_ONCE(rnp->qsmask);
2188                WRITE_ONCE(rnp->completed, rsp->gpnum);
2189                rdp = this_cpu_ptr(rsp->rda);
2190                if (rnp == rdp->mynode)
2191                        needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2192                /* smp_mb() provided by prior unlock-lock pair. */
2193                nocb += rcu_future_gp_cleanup(rsp, rnp);
2194                sq = rcu_nocb_gp_get(rnp);
2195                raw_spin_unlock_irq_rcu_node(rnp);
2196                rcu_nocb_gp_cleanup(sq);
2197                cond_resched_rcu_qs();
2198                WRITE_ONCE(rsp->gp_activity, jiffies);
2199                rcu_gp_slow(rsp, gp_cleanup_delay);
2200        }
2201        rnp = rcu_get_root(rsp);
2202        raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2203        rcu_nocb_gp_set(rnp, nocb);
2204
2205        /* Declare grace period done. */
2206        WRITE_ONCE(rsp->completed, rsp->gpnum);
2207        trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2208        rsp->gp_state = RCU_GP_IDLE;
2209        rdp = this_cpu_ptr(rsp->rda);
2210        /* Advance CBs to reduce false positives below. */
2211        needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2212        if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2213                WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2214                trace_rcu_grace_period(rsp->name,
2215                                       READ_ONCE(rsp->gpnum),
2216                                       TPS("newreq"));
2217        }
2218        raw_spin_unlock_irq_rcu_node(rnp);
2219}
2220
2221/*
2222 * Body of kthread that handles grace periods.
2223 */
2224static int __noreturn rcu_gp_kthread(void *arg)
2225{
2226        bool first_gp_fqs;
2227        int gf;
2228        unsigned long j;
2229        int ret;
2230        struct rcu_state *rsp = arg;
2231        struct rcu_node *rnp = rcu_get_root(rsp);
2232
2233        rcu_bind_gp_kthread();
2234        for (;;) {
2235
2236                /* Handle grace-period start. */
2237                for (;;) {
2238                        trace_rcu_grace_period(rsp->name,
2239                                               READ_ONCE(rsp->gpnum),
2240                                               TPS("reqwait"));
2241                        rsp->gp_state = RCU_GP_WAIT_GPS;
2242                        swait_event_interruptible(rsp->gp_wq,
2243                                                 READ_ONCE(rsp->gp_flags) &
2244                                                 RCU_GP_FLAG_INIT);
2245                        rsp->gp_state = RCU_GP_DONE_GPS;
2246                        /* Locking provides needed memory barrier. */
2247                        if (rcu_gp_init(rsp))
2248                                break;
2249                        cond_resched_rcu_qs();
2250                        WRITE_ONCE(rsp->gp_activity, jiffies);
2251                        WARN_ON(signal_pending(current));
2252                        trace_rcu_grace_period(rsp->name,
2253                                               READ_ONCE(rsp->gpnum),
2254                                               TPS("reqwaitsig"));
2255                }
2256
2257                /* Handle quiescent-state forcing. */
2258                first_gp_fqs = true;
2259                j = jiffies_till_first_fqs;
2260                if (j > HZ) {
2261                        j = HZ;
2262                        jiffies_till_first_fqs = HZ;
2263                }
2264                ret = 0;
2265                for (;;) {
2266                        if (!ret) {
2267                                rsp->jiffies_force_qs = jiffies + j;
2268                                WRITE_ONCE(rsp->jiffies_kick_kthreads,
2269                                           jiffies + 3 * j);
2270                        }
2271                        trace_rcu_grace_period(rsp->name,
2272                                               READ_ONCE(rsp->gpnum),
2273                                               TPS("fqswait"));
2274                        rsp->gp_state = RCU_GP_WAIT_FQS;
2275                        ret = swait_event_interruptible_timeout(rsp->gp_wq,
2276                                        rcu_gp_fqs_check_wake(rsp, &gf), j);
2277                        rsp->gp_state = RCU_GP_DOING_FQS;
2278                        /* Locking provides needed memory barriers. */
2279                        /* If grace period done, leave loop. */
2280                        if (!READ_ONCE(rnp->qsmask) &&
2281                            !rcu_preempt_blocked_readers_cgp(rnp))
2282                                break;
2283                        /* If time for quiescent-state forcing, do it. */
2284                        if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2285                            (gf & RCU_GP_FLAG_FQS)) {
2286                                trace_rcu_grace_period(rsp->name,
2287                                                       READ_ONCE(rsp->gpnum),
2288                                                       TPS("fqsstart"));
2289                                rcu_gp_fqs(rsp, first_gp_fqs);
2290                                first_gp_fqs = false;
2291                                trace_rcu_grace_period(rsp->name,
2292                                                       READ_ONCE(rsp->gpnum),
2293                                                       TPS("fqsend"));
2294                                cond_resched_rcu_qs();
2295                                WRITE_ONCE(rsp->gp_activity, jiffies);
2296                                ret = 0; /* Force full wait till next FQS. */
2297                                j = jiffies_till_next_fqs;
2298                                if (j > HZ) {
2299                                        j = HZ;
2300                                        jiffies_till_next_fqs = HZ;
2301                                } else if (j < 1) {
2302                                        j = 1;
2303                                        jiffies_till_next_fqs = 1;
2304                                }
2305                        } else {
2306                                /* Deal with stray signal. */
2307                                cond_resched_rcu_qs();
2308                                WRITE_ONCE(rsp->gp_activity, jiffies);
2309                                WARN_ON(signal_pending(current));
2310                                trace_rcu_grace_period(rsp->name,
2311                                                       READ_ONCE(rsp->gpnum),
2312                                                       TPS("fqswaitsig"));
2313                                ret = 1; /* Keep old FQS timing. */
2314                                j = jiffies;
2315                                if (time_after(jiffies, rsp->jiffies_force_qs))
2316                                        j = 1;
2317                                else
2318                                        j = rsp->jiffies_force_qs - j;
2319                        }
2320                }
2321
2322                /* Handle grace-period end. */
2323                rsp->gp_state = RCU_GP_CLEANUP;
2324                rcu_gp_cleanup(rsp);
2325                rsp->gp_state = RCU_GP_CLEANED;
2326        }
2327}
2328
2329/*
2330 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2331 * in preparation for detecting the next grace period.  The caller must hold
2332 * the root node's ->lock and hard irqs must be disabled.
2333 *
2334 * Note that it is legal for a dying CPU (which is marked as offline) to
2335 * invoke this function.  This can happen when the dying CPU reports its
2336 * quiescent state.
2337 *
2338 * Returns true if the grace-period kthread must be awakened.
2339 */
2340static bool
2341rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2342                      struct rcu_data *rdp)
2343{
2344        if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2345                /*
2346                 * Either we have not yet spawned the grace-period
2347                 * task, this CPU does not need another grace period,
2348                 * or a grace period is already in progress.
2349                 * Either way, don't start a new grace period.
2350                 */
2351                return false;
2352        }
2353        WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2354        trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2355                               TPS("newreq"));
2356
2357        /*
2358         * We can't do wakeups while holding the rnp->lock, as that
2359         * could cause possible deadlocks with the rq->lock. Defer
2360         * the wakeup to our caller.
2361         */
2362        return true;
2363}
2364
2365/*
2366 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2367 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2368 * is invoked indirectly from rcu_advance_cbs(), which would result in
2369 * endless recursion -- or would do so if it wasn't for the self-deadlock
2370 * that is encountered beforehand.
2371 *
2372 * Returns true if the grace-period kthread needs to be awakened.
2373 */
2374static bool rcu_start_gp(struct rcu_state *rsp)
2375{
2376        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2377        struct rcu_node *rnp = rcu_get_root(rsp);
2378        bool ret = false;
2379
2380        /*
2381         * If there is no grace period in progress right now, any
2382         * callbacks we have up to this point will be satisfied by the
2383         * next grace period.  Also, advancing the callbacks reduces the
2384         * probability of false positives from cpu_needs_another_gp()
2385         * resulting in pointless grace periods.  So, advance callbacks
2386         * then start the grace period!
2387         */
2388        ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2389        ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2390        return ret;
2391}
2392
2393/*
2394 * Report a full set of quiescent states to the specified rcu_state data
2395 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2396 * kthread if another grace period is required.  Whether we wake
2397 * the grace-period kthread or it awakens itself for the next round
2398 * of quiescent-state forcing, that kthread will clean up after the
2399 * just-completed grace period.  Note that the caller must hold rnp->lock,
2400 * which is released before return.
2401 */
2402static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2403        __releases(rcu_get_root(rsp)->lock)
2404{
2405        WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2406        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2407        raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2408        rcu_gp_kthread_wake(rsp);
2409}
2410
2411/*
2412 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2413 * Allows quiescent states for a group of CPUs to be reported at one go
2414 * to the specified rcu_node structure, though all the CPUs in the group
2415 * must be represented by the same rcu_node structure (which need not be a
2416 * leaf rcu_node structure, though it often will be).  The gps parameter
2417 * is the grace-period snapshot, which means that the quiescent states
2418 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2419 * must be held upon entry, and it is released before return.
2420 */
2421static void
2422rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2423                  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2424        __releases(rnp->lock)
2425{
2426        unsigned long oldmask = 0;
2427        struct rcu_node *rnp_c;
2428
2429        /* Walk up the rcu_node hierarchy. */
2430        for (;;) {
2431                if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2432
2433                        /*
2434                         * Our bit has already been cleared, or the
2435                         * relevant grace period is already over, so done.
2436                         */
2437                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2438                        return;
2439                }
2440                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2441                rnp->qsmask &= ~mask;
2442                trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2443                                                 mask, rnp->qsmask, rnp->level,
2444                                                 rnp->grplo, rnp->grphi,
2445                                                 !!rnp->gp_tasks);
2446                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2447
2448                        /* Other bits still set at this level, so done. */
2449                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2450                        return;
2451                }
2452                mask = rnp->grpmask;
2453                if (rnp->parent == NULL) {
2454
2455                        /* No more levels.  Exit loop holding root lock. */
2456
2457                        break;
2458                }
2459                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2460                rnp_c = rnp;
2461                rnp = rnp->parent;
2462                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2463                oldmask = rnp_c->qsmask;
2464        }
2465
2466        /*
2467         * Get here if we are the last CPU to pass through a quiescent
2468         * state for this grace period.  Invoke rcu_report_qs_rsp()
2469         * to clean up and start the next grace period if one is needed.
2470         */
2471        rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2472}
2473
2474/*
2475 * Record a quiescent state for all tasks that were previously queued
2476 * on the specified rcu_node structure and that were blocking the current
2477 * RCU grace period.  The caller must hold the specified rnp->lock with
2478 * irqs disabled, and this lock is released upon return, but irqs remain
2479 * disabled.
2480 */
2481static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2482                                      struct rcu_node *rnp, unsigned long flags)
2483        __releases(rnp->lock)
2484{
2485        unsigned long gps;
2486        unsigned long mask;
2487        struct rcu_node *rnp_p;
2488
2489        if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2490            rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2491                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2492                return;  /* Still need more quiescent states! */
2493        }
2494
2495        rnp_p = rnp->parent;
2496        if (rnp_p == NULL) {
2497                /*
2498                 * Only one rcu_node structure in the tree, so don't
2499                 * try to report up to its nonexistent parent!
2500                 */
2501                rcu_report_qs_rsp(rsp, flags);
2502                return;
2503        }
2504
2505        /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2506        gps = rnp->gpnum;
2507        mask = rnp->grpmask;
2508        raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
2509        raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
2510        rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2511}
2512
2513/*
2514 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2515 * structure.  This must be called from the specified CPU.
2516 */
2517static void
2518rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2519{
2520        unsigned long flags;
2521        unsigned long mask;
2522        bool needwake;
2523        struct rcu_node *rnp;
2524
2525        rnp = rdp->mynode;
2526        raw_spin_lock_irqsave_rcu_node(rnp, flags);
2527        if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2528            rnp->completed == rnp->gpnum || rdp->gpwrap) {
2529
2530                /*
2531                 * The grace period in which this quiescent state was
2532                 * recorded has ended, so don't report it upwards.
2533                 * We will instead need a new quiescent state that lies
2534                 * within the current grace period.
2535                 */
2536                rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
2537                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2538                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2539                return;
2540        }
2541        mask = rdp->grpmask;
2542        if ((rnp->qsmask & mask) == 0) {
2543                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2544        } else {
2545                rdp->core_needs_qs = false;
2546
2547                /*
2548                 * This GP can't end until cpu checks in, so all of our
2549                 * callbacks can be processed during the next GP.
2550                 */
2551                needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2552
2553                rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2554                /* ^^^ Released rnp->lock */
2555                if (needwake)
2556                        rcu_gp_kthread_wake(rsp);
2557        }
2558}
2559
2560/*
2561 * Check to see if there is a new grace period of which this CPU
2562 * is not yet aware, and if so, set up local rcu_data state for it.
2563 * Otherwise, see if this CPU has just passed through its first
2564 * quiescent state for this grace period, and record that fact if so.
2565 */
2566static void
2567rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2568{
2569        /* Check for grace-period ends and beginnings. */
2570        note_gp_changes(rsp, rdp);
2571
2572        /*
2573         * Does this CPU still need to do its part for current grace period?
2574         * If no, return and let the other CPUs do their part as well.
2575         */
2576        if (!rdp->core_needs_qs)
2577                return;
2578
2579        /*
2580         * Was there a quiescent state since the beginning of the grace
2581         * period? If no, then exit and wait for the next call.
2582         */
2583        if (rdp->cpu_no_qs.b.norm)
2584                return;
2585
2586        /*
2587         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2588         * judge of that).
2589         */
2590        rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2591}
2592
2593/*
2594 * Send the specified CPU's RCU callbacks to the orphanage.  The
2595 * specified CPU must be offline, and the caller must hold the
2596 * ->orphan_lock.
2597 */
2598static void
2599rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2600                          struct rcu_node *rnp, struct rcu_data *rdp)
2601{
2602        /* No-CBs CPUs do not have orphanable callbacks. */
2603        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2604                return;
2605
2606        /*
2607         * Orphan the callbacks.  First adjust the counts.  This is safe
2608         * because _rcu_barrier() excludes CPU-hotplug operations, so it
2609         * cannot be running now.  Thus no memory barrier is required.
2610         */
2611        rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2612        rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2613
2614        /*
2615         * Next, move those callbacks still needing a grace period to
2616         * the orphanage, where some other CPU will pick them up.
2617         * Some of the callbacks might have gone partway through a grace
2618         * period, but that is too bad.  They get to start over because we
2619         * cannot assume that grace periods are synchronized across CPUs.
2620         */
2621        rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2622
2623        /*
2624         * Then move the ready-to-invoke callbacks to the orphanage,
2625         * where some other CPU will pick them up.  These will not be
2626         * required to pass though another grace period: They are done.
2627         */
2628        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2629
2630        /* Finally, disallow further callbacks on this CPU.  */
2631        rcu_segcblist_disable(&rdp->cblist);
2632}
2633
2634/*
2635 * Adopt the RCU callbacks from the specified rcu_state structure's
2636 * orphanage.  The caller must hold the ->orphan_lock.
2637 */
2638static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2639{
2640        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2641
2642        /* No-CBs CPUs are handled specially. */
2643        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2644            rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2645                return;
2646
2647        /* Do the accounting first. */
2648        rdp->n_cbs_adopted += rsp->orphan_done.len;
2649        if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
2650                rcu_idle_count_callbacks_posted();
2651        rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2652
2653        /*
2654         * We do not need a memory barrier here because the only way we
2655         * can get here if there is an rcu_barrier() in flight is if
2656         * we are the task doing the rcu_barrier().
2657         */
2658
2659        /* First adopt the ready-to-invoke callbacks, then the done ones. */
2660        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2661        WARN_ON_ONCE(rsp->orphan_done.head);
2662        rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2663        WARN_ON_ONCE(rsp->orphan_pend.head);
2664        WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2665                     !rcu_segcblist_n_cbs(&rdp->cblist));
2666}
2667
2668/*
2669 * Trace the fact that this CPU is going offline.
2670 */
2671static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2672{
2673        RCU_TRACE(unsigned long mask;)
2674        RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2675        RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2676
2677        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2678                return;
2679
2680        RCU_TRACE(mask = rdp->grpmask;)
2681        trace_rcu_grace_period(rsp->name,
2682                               rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2683                               TPS("cpuofl"));
2684}
2685
2686/*
2687 * All CPUs for the specified rcu_node structure have gone offline,
2688 * and all tasks that were preempted within an RCU read-side critical
2689 * section while running on one of those CPUs have since exited their RCU
2690 * read-side critical section.  Some other CPU is reporting this fact with
2691 * the specified rcu_node structure's ->lock held and interrupts disabled.
2692 * This function therefore goes up the tree of rcu_node structures,
2693 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2694 * the leaf rcu_node structure's ->qsmaskinit field has already been
2695 * updated
2696 *
2697 * This function does check that the specified rcu_node structure has
2698 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2699 * prematurely.  That said, invoking it after the fact will cost you
2700 * a needless lock acquisition.  So once it has done its work, don't
2701 * invoke it again.
2702 */
2703static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2704{
2705        long mask;
2706        struct rcu_node *rnp = rnp_leaf;
2707
2708        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2709            rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2710                return;
2711        for (;;) {
2712                mask = rnp->grpmask;
2713                rnp = rnp->parent;
2714                if (!rnp)
2715                        break;
2716                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2717                rnp->qsmaskinit &= ~mask;
2718                rnp->qsmask &= ~mask;
2719                if (rnp->qsmaskinit) {
2720                        raw_spin_unlock_rcu_node(rnp);
2721                        /* irqs remain disabled. */
2722                        return;
2723                }
2724                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2725        }
2726}
2727
2728/*
2729 * The CPU has been completely removed, and some other CPU is reporting
2730 * this fact from process context.  Do the remainder of the cleanup,
2731 * including orphaning the outgoing CPU's RCU callbacks, and also
2732 * adopting them.  There can only be one CPU hotplug operation at a time,
2733 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2734 */
2735static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2736{
2737        unsigned long flags;
2738        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2739        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2740
2741        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2742                return;
2743
2744        /* Adjust any no-longer-needed kthreads. */
2745        rcu_boost_kthread_setaffinity(rnp, -1);
2746
2747        /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2748        raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2749        rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2750        rcu_adopt_orphan_cbs(rsp, flags);
2751        raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2752
2753        WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2754                  !rcu_segcblist_empty(&rdp->cblist),
2755                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2756                  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2757                  rcu_segcblist_first_cb(&rdp->cblist));
2758}
2759
2760/*
2761 * Invoke any RCU callbacks that have made it to the end of their grace
2762 * period.  Thottle as specified by rdp->blimit.
2763 */
2764static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2765{
2766        unsigned long flags;
2767        struct rcu_head *rhp;
2768        struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2769        long bl, count;
2770
2771        /* If no callbacks are ready, just return. */
2772        if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2773                trace_rcu_batch_start(rsp->name,
2774                                      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2775                                      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2776                trace_rcu_batch_end(rsp->name, 0,
2777                                    !rcu_segcblist_empty(&rdp->cblist),
2778                                    need_resched(), is_idle_task(current),
2779                                    rcu_is_callbacks_kthread());
2780                return;
2781        }
2782
2783        /*
2784         * Extract the list of ready callbacks, disabling to prevent
2785         * races with call_rcu() from interrupt handlers.  Leave the
2786         * callback counts, as rcu_barrier() needs to be conservative.
2787         */
2788        local_irq_save(flags);
2789        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2790        bl = rdp->blimit;
2791        trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2792                              rcu_segcblist_n_cbs(&rdp->cblist), bl);
2793        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2794        local_irq_restore(flags);
2795
2796        /* Invoke callbacks. */
2797        rhp = rcu_cblist_dequeue(&rcl);
2798        for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2799                debug_rcu_head_unqueue(rhp);
2800                if (__rcu_reclaim(rsp->name, rhp))
2801                        rcu_cblist_dequeued_lazy(&rcl);
2802                /*
2803                 * Stop only if limit reached and CPU has something to do.
2804                 * Note: The rcl structure counts down from zero.
2805                 */
2806                if (-rcl.len >= bl &&
2807                    (need_resched() ||
2808                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2809                        break;
2810        }
2811
2812        local_irq_save(flags);
2813        count = -rcl.len;
2814        trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2815                            is_idle_task(current), rcu_is_callbacks_kthread());
2816
2817        /* Update counts and requeue any remaining callbacks. */
2818        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2819        smp_mb(); /* List handling before counting for rcu_barrier(). */
2820        rdp->n_cbs_invoked += count;
2821        rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2822
2823        /* Reinstate batch limit if we have worked down the excess. */
2824        count = rcu_segcblist_n_cbs(&rdp->cblist);
2825        if (rdp->blimit == LONG_MAX && count <= qlowmark)
2826                rdp->blimit = blimit;
2827
2828        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2829        if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2830                rdp->qlen_last_fqs_check = 0;
2831                rdp->n_force_qs_snap = rsp->n_force_qs;
2832        } else if (count < rdp->qlen_last_fqs_check - qhimark)
2833                rdp->qlen_last_fqs_check = count;
2834        WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2835
2836        local_irq_restore(flags);
2837
2838        /* Re-invoke RCU core processing if there are callbacks remaining. */
2839        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2840                invoke_rcu_core();
2841}
2842
2843/*
2844 * Check to see if this CPU is in a non-context-switch quiescent state
2845 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2846 * Also schedule RCU core processing.
2847 *
2848 * This function must be called from hardirq context.  It is normally
2849 * invoked from the scheduling-clock interrupt.
2850 */
2851void rcu_check_callbacks(int user)
2852{
2853        trace_rcu_utilization(TPS("Start scheduler-tick"));
2854        increment_cpu_stall_ticks();
2855        if (user || rcu_is_cpu_rrupt_from_idle()) {
2856
2857                /*
2858                 * Get here if this CPU took its interrupt from user
2859                 * mode or from the idle loop, and if this is not a
2860                 * nested interrupt.  In this case, the CPU is in
2861                 * a quiescent state, so note it.
2862                 *
2863                 * No memory barrier is required here because both
2864                 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2865                 * variables that other CPUs neither access nor modify,
2866                 * at least not while the corresponding CPU is online.
2867                 */
2868
2869                rcu_sched_qs();
2870                rcu_bh_qs();
2871
2872        } else if (!in_softirq()) {
2873
2874                /*
2875                 * Get here if this CPU did not take its interrupt from
2876                 * softirq, in other words, if it is not interrupting
2877                 * a rcu_bh read-side critical section.  This is an _bh
2878                 * critical section, so note it.
2879                 */
2880
2881                rcu_bh_qs();
2882        }
2883        rcu_preempt_check_callbacks();
2884        if (rcu_pending())
2885                invoke_rcu_core();
2886        if (user)
2887                rcu_note_voluntary_context_switch(current);
2888        trace_rcu_utilization(TPS("End scheduler-tick"));
2889}
2890
2891/*
2892 * Scan the leaf rcu_node structures, processing dyntick state for any that
2893 * have not yet encountered a quiescent state, using the function specified.
2894 * Also initiate boosting for any threads blocked on the root rcu_node.
2895 *
2896 * The caller must have suppressed start of new grace periods.
2897 */
2898static void force_qs_rnp(struct rcu_state *rsp,
2899                         int (*f)(struct rcu_data *rsp, bool *isidle,
2900                                  unsigned long *maxj),
2901                         bool *isidle, unsigned long *maxj)
2902{
2903        int cpu;
2904        unsigned long flags;
2905        unsigned long mask;
2906        struct rcu_node *rnp;
2907
2908        rcu_for_each_leaf_node(rsp, rnp) {
2909                cond_resched_rcu_qs();
2910                mask = 0;
2911                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2912                if (rnp->qsmask == 0) {
2913                        if (rcu_state_p == &rcu_sched_state ||
2914                            rsp != rcu_state_p ||
2915                            rcu_preempt_blocked_readers_cgp(rnp)) {
2916                                /*
2917                                 * No point in scanning bits because they
2918                                 * are all zero.  But we might need to
2919                                 * priority-boost blocked readers.
2920                                 */
2921                                rcu_initiate_boost(rnp, flags);
2922                                /* rcu_initiate_boost() releases rnp->lock */
2923                                continue;
2924                        }
2925                        if (rnp->parent &&
2926                            (rnp->parent->qsmask & rnp->grpmask)) {
2927                                /*
2928                                 * Race between grace-period
2929                                 * initialization and task exiting RCU
2930                                 * read-side critical section: Report.
2931                                 */
2932                                rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2933                                /* rcu_report_unblock_qs_rnp() rlses ->lock */
2934                                continue;
2935                        }
2936                }
2937                for_each_leaf_node_possible_cpu(rnp, cpu) {
2938                        unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2939                        if ((rnp->qsmask & bit) != 0) {
2940                                if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2941                                        mask |= bit;
2942                        }
2943                }
2944                if (mask != 0) {
2945                        /* Idle/offline CPUs, report (releases rnp->lock. */
2946                        rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2947                } else {
2948                        /* Nothing to do here, so just drop the lock. */
2949                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2950                }
2951        }
2952}
2953
2954/*
2955 * Force quiescent states on reluctant CPUs, and also detect which
2956 * CPUs are in dyntick-idle mode.
2957 */
2958static void force_quiescent_state(struct rcu_state *rsp)
2959{
2960        unsigned long flags;
2961        bool ret;
2962        struct rcu_node *rnp;
2963        struct rcu_node *rnp_old = NULL;
2964
2965        /* Funnel through hierarchy to reduce memory contention. */
2966        rnp = __this_cpu_read(rsp->rda->mynode);
2967        for (; rnp != NULL; rnp = rnp->parent) {
2968                ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2969                      !raw_spin_trylock(&rnp->fqslock);
2970                if (rnp_old != NULL)
2971                        raw_spin_unlock(&rnp_old->fqslock);
2972                if (ret) {
2973                        rsp->n_force_qs_lh++;
2974                        return;
2975                }
2976                rnp_old = rnp;
2977        }
2978        /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2979
2980        /* Reached the root of the rcu_node tree, acquire lock. */
2981        raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2982        raw_spin_unlock(&rnp_old->fqslock);
2983        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2984                rsp->n_force_qs_lh++;
2985                raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2986                return;  /* Someone beat us to it. */
2987        }
2988        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2989        raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2990        rcu_gp_kthread_wake(rsp);
2991}
2992
2993/*
2994 * This does the RCU core processing work for the specified rcu_state
2995 * and rcu_data structures.  This may be called only from the CPU to
2996 * whom the rdp belongs.
2997 */
2998static void
2999__rcu_process_callbacks(struct rcu_state *rsp)
3000{
3001        unsigned long flags;
3002        bool needwake;
3003        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3004
3005        WARN_ON_ONCE(!rdp->beenonline);
3006
3007        /* Update RCU state based on any recent quiescent states. */
3008        rcu_check_quiescent_state(rsp, rdp);
3009
3010        /* Does this CPU require a not-yet-started grace period? */
3011        local_irq_save(flags);
3012        if (cpu_needs_another_gp(rsp, rdp)) {
3013                raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3014                needwake = rcu_start_gp(rsp);
3015                raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3016                if (needwake)
3017                        rcu_gp_kthread_wake(rsp);
3018        } else {
3019                local_irq_restore(flags);
3020        }
3021
3022        /* If there are callbacks ready, invoke them. */
3023        if (rcu_segcblist_ready_cbs(&rdp->cblist))
3024                invoke_rcu_callbacks(rsp, rdp);
3025
3026        /* Do any needed deferred wakeups of rcuo kthreads. */
3027        do_nocb_deferred_wakeup(rdp);
3028}
3029
3030/*
3031 * Do RCU core processing for the current CPU.
3032 */
3033static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3034{
3035        struct rcu_state *rsp;
3036
3037        if (cpu_is_offline(smp_processor_id()))
3038                return;
3039        trace_rcu_utilization(TPS("Start RCU core"));
3040        for_each_rcu_flavor(rsp)
3041                __rcu_process_callbacks(rsp);
3042        trace_rcu_utilization(TPS("End RCU core"));
3043}
3044
3045/*
3046 * Schedule RCU callback invocation.  If the specified type of RCU
3047 * does not support RCU priority boosting, just do a direct call,
3048 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3049 * are running on the current CPU with softirqs disabled, the
3050 * rcu_cpu_kthread_task cannot disappear out from under us.
3051 */
3052static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3053{
3054        if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3055                return;
3056        if (likely(!rsp->boost)) {
3057                rcu_do_batch(rsp, rdp);
3058                return;
3059        }
3060        invoke_rcu_callbacks_kthread();
3061}
3062
3063static void invoke_rcu_core(void)
3064{
3065        if (cpu_online(smp_processor_id()))
3066                raise_softirq(RCU_SOFTIRQ);
3067}
3068
3069/*
3070 * Handle any core-RCU processing required by a call_rcu() invocation.
3071 */
3072static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3073                            struct rcu_head *head, unsigned long flags)
3074{
3075        bool needwake;
3076
3077        /*
3078         * If called from an extended quiescent state, invoke the RCU
3079         * core in order to force a re-evaluation of RCU's idleness.
3080         */
3081        if (!rcu_is_watching())
3082                invoke_rcu_core();
3083
3084        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3085        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3086                return;
3087
3088        /*
3089         * Force the grace period if too many callbacks or too long waiting.
3090         * Enforce hysteresis, and don't invoke force_quiescent_state()
3091         * if some other CPU has recently done so.  Also, don't bother
3092         * invoking force_quiescent_state() if the newly enqueued callback
3093         * is the only one waiting for a grace period to complete.
3094         */
3095        if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3096                     rdp->qlen_last_fqs_check + qhimark)) {
3097
3098                /* Are we ignoring a completed grace period? */
3099                note_gp_changes(rsp, rdp);
3100
3101                /* Start a new grace period if one not already started. */
3102                if (!rcu_gp_in_progress(rsp)) {
3103                        struct rcu_node *rnp_root = rcu_get_root(rsp);
3104
3105                        raw_spin_lock_rcu_node(rnp_root);
3106                        needwake = rcu_start_gp(rsp);
3107                        raw_spin_unlock_rcu_node(rnp_root);
3108                        if (needwake)
3109                                rcu_gp_kthread_wake(rsp);
3110                } else {
3111                        /* Give the grace period a kick. */
3112                        rdp->blimit = LONG_MAX;
3113                        if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3114                            rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3115                                force_quiescent_state(rsp);
3116                        rdp->n_force_qs_snap = rsp->n_force_qs;
3117                        rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3118                }
3119        }
3120}
3121
3122/*
3123 * RCU callback function to leak a callback.
3124 */
3125static void rcu_leak_callback(struct rcu_head *rhp)
3126{
3127}
3128
3129/*
3130 * Helper function for call_rcu() and friends.  The cpu argument will
3131 * normally be -1, indicating "currently running CPU".  It may specify
3132 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3133 * is expected to specify a CPU.
3134 */
3135static void
3136__call_rcu(struct rcu_head *head, rcu_callback_t func,
3137           struct rcu_state *rsp, int cpu, bool lazy)
3138{
3139        unsigned long flags;
3140        struct rcu_data *rdp;
3141
3142        /* Misaligned rcu_head! */
3143        WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3144
3145        if (debug_rcu_head_queue(head)) {
3146                /* Probable double call_rcu(), so leak the callback. */
3147                WRITE_ONCE(head->func, rcu_leak_callback);
3148                WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3149                return;
3150        }
3151        head->func = func;
3152        head->next = NULL;
3153        local_irq_save(flags);
3154        rdp = this_cpu_ptr(rsp->rda);
3155
3156        /* Add the callback to our list. */
3157        if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3158                int offline;
3159
3160                if (cpu != -1)
3161                        rdp = per_cpu_ptr(rsp->rda, cpu);
3162                if (likely(rdp->mynode)) {
3163                        /* Post-boot, so this should be for a no-CBs CPU. */
3164                        offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3165                        WARN_ON_ONCE(offline);
3166                        /* Offline CPU, _call_rcu() illegal, leak callback.  */
3167                        local_irq_restore(flags);
3168                        return;
3169                }
3170                /*
3171                 * Very early boot, before rcu_init().  Initialize if needed
3172                 * and then drop through to queue the callback.
3173                 */
3174                BUG_ON(cpu != -1);
3175                WARN_ON_ONCE(!rcu_is_watching());
3176                if (rcu_segcblist_empty(&rdp->cblist))
3177                        rcu_segcblist_init(&rdp->cblist);
3178        }
3179        rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3180        if (!lazy)
3181                rcu_idle_count_callbacks_posted();
3182
3183        if (__is_kfree_rcu_offset((unsigned long)func))
3184                trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3185                                         rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3186                                         rcu_segcblist_n_cbs(&rdp->cblist));
3187        else
3188                trace_rcu_callback(rsp->name, head,
3189                                   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3190                                   rcu_segcblist_n_cbs(&rdp->cblist));
3191
3192        /* Go handle any RCU core processing required. */
3193        __call_rcu_core(rsp, rdp, head, flags);
3194        local_irq_restore(flags);
3195}
3196
3197/*
3198 * Queue an RCU-sched callback for invocation after a grace period.
3199 */
3200void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3201{
3202        __call_rcu(head, func, &rcu_sched_state, -1, 0);
3203}
3204EXPORT_SYMBOL_GPL(call_rcu_sched);
3205
3206/*
3207 * Queue an RCU callback for invocation after a quicker grace period.
3208 */
3209void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3210{
3211        __call_rcu(head, func, &rcu_bh_state, -1, 0);
3212}
3213EXPORT_SYMBOL_GPL(call_rcu_bh);
3214
3215/*
3216 * Queue an RCU callback for lazy invocation after a grace period.
3217 * This will likely be later named something like "call_rcu_lazy()",
3218 * but this change will require some way of tagging the lazy RCU
3219 * callbacks in the list of pending callbacks. Until then, this
3220 * function may only be called from __kfree_rcu().
3221 */
3222void kfree_call_rcu(struct rcu_head *head,
3223                    rcu_callback_t func)
3224{
3225        __call_rcu(head, func, rcu_state_p, -1, 1);
3226}
3227EXPORT_SYMBOL_GPL(kfree_call_rcu);
3228
3229/*
3230 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3231 * any blocking grace-period wait automatically implies a grace period
3232 * if there is only one CPU online at any point time during execution
3233 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3234 * occasionally incorrectly indicate that there are multiple CPUs online
3235 * when there was in fact only one the whole time, as this just adds
3236 * some overhead: RCU still operates correctly.
3237 */
3238static inline int rcu_blocking_is_gp(void)
3239{
3240        int ret;
3241
3242        might_sleep();  /* Check for RCU read-side critical section. */
3243        preempt_disable();
3244        ret = num_online_cpus() <= 1;
3245        preempt_enable();
3246        return ret;
3247}
3248
3249/**
3250 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3251 *
3252 * Control will return to the caller some time after a full rcu-sched
3253 * grace period has elapsed, in other words after all currently executing
3254 * rcu-sched read-side critical sections have completed.   These read-side
3255 * critical sections are delimited by rcu_read_lock_sched() and
3256 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3257 * local_irq_disable(), and so on may be used in place of
3258 * rcu_read_lock_sched().
3259 *
3260 * This means that all preempt_disable code sequences, including NMI and
3261 * non-threaded hardware-interrupt handlers, in progress on entry will
3262 * have completed before this primitive returns.  However, this does not
3263 * guarantee that softirq handlers will have completed, since in some
3264 * kernels, these handlers can run in process context, and can block.
3265 *
3266 * Note that this guarantee implies further memory-ordering guarantees.
3267 * On systems with more than one CPU, when synchronize_sched() returns,
3268 * each CPU is guaranteed to have executed a full memory barrier since the
3269 * end of its last RCU-sched read-side critical section whose beginning
3270 * preceded the call to synchronize_sched().  In addition, each CPU having
3271 * an RCU read-side critical section that extends beyond the return from
3272 * synchronize_sched() is guaranteed to have executed a full memory barrier
3273 * after the beginning of synchronize_sched() and before the beginning of
3274 * that RCU read-side critical section.  Note that these guarantees include
3275 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3276 * that are executing in the kernel.
3277 *
3278 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3279 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3280 * to have executed a full memory barrier during the execution of
3281 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3282 * again only if the system has more than one CPU).
3283 *
3284 * This primitive provides the guarantees made by the (now removed)
3285 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3286 * guarantees that rcu_read_lock() sections will have completed.
3287 * In "classic RCU", these two guarantees happen to be one and
3288 * the same, but can differ in realtime RCU implementations.
3289 */
3290void synchronize_sched(void)
3291{
3292        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3293                         lock_is_held(&rcu_lock_map) ||
3294                         lock_is_held(&rcu_sched_lock_map),
3295                         "Illegal synchronize_sched() in RCU-sched read-side critical section");
3296        if (rcu_blocking_is_gp())
3297                return;
3298        if (rcu_gp_is_expedited())
3299                synchronize_sched_expedited();
3300        else
3301                wait_rcu_gp(call_rcu_sched);
3302}
3303EXPORT_SYMBOL_GPL(synchronize_sched);
3304
3305/**
3306 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3307 *
3308 * Control will return to the caller some time after a full rcu_bh grace
3309 * period has elapsed, in other words after all currently executing rcu_bh
3310 * read-side critical sections have completed.  RCU read-side critical
3311 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3312 * and may be nested.
3313 *
3314 * See the description of synchronize_sched() for more detailed information
3315 * on memory ordering guarantees.
3316 */
3317void synchronize_rcu_bh(void)
3318{
3319        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3320                         lock_is_held(&rcu_lock_map) ||
3321                         lock_is_held(&rcu_sched_lock_map),
3322                         "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3323        if (rcu_blocking_is_gp())
3324                return;
3325        if (rcu_gp_is_expedited())
3326                synchronize_rcu_bh_expedited();
3327        else
3328                wait_rcu_gp(call_rcu_bh);
3329}
3330EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3331
3332/**
3333 * get_state_synchronize_rcu - Snapshot current RCU state
3334 *
3335 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3336 * to determine whether or not a full grace period has elapsed in the
3337 * meantime.
3338 */
3339unsigned long get_state_synchronize_rcu(void)
3340{
3341        /*
3342         * Any prior manipulation of RCU-protected data must happen
3343         * before the load from ->gpnum.
3344         */
3345        smp_mb();  /* ^^^ */
3346
3347        /*
3348         * Make sure this load happens before the purportedly
3349         * time-consuming work between get_state_synchronize_rcu()
3350         * and cond_synchronize_rcu().
3351         */
3352        return smp_load_acquire(&rcu_state_p->gpnum);
3353}
3354EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3355
3356/**
3357 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3358 *
3359 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3360 *
3361 * If a full RCU grace period has elapsed since the earlier call to
3362 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3363 * synchronize_rcu() to wait for a full grace period.
3364 *
3365 * Yes, this function does not take counter wrap into account.  But
3366 * counter wrap is harmless.  If the counter wraps, we have waited for
3367 * more than 2 billion grace periods (and way more on a 64-bit system!),
3368 * so waiting for one additional grace period should be just fine.
3369 */
3370void cond_synchronize_rcu(unsigned long oldstate)
3371{
3372        unsigned long newstate;
3373
3374        /*
3375         * Ensure that this load happens before any RCU-destructive
3376         * actions the caller might carry out after we return.
3377         */
3378        newstate = smp_load_acquire(&rcu_state_p->completed);
3379        if (ULONG_CMP_GE(oldstate, newstate))
3380                synchronize_rcu();
3381}
3382EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3383
3384/**
3385 * get_state_synchronize_sched - Snapshot current RCU-sched state
3386 *
3387 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3388 * to determine whether or not a full grace period has elapsed in the
3389 * meantime.
3390 */
3391unsigned long get_state_synchronize_sched(void)
3392{
3393        /*
3394         * Any prior manipulation of RCU-protected data must happen
3395         * before the load from ->gpnum.
3396         */
3397        smp_mb();  /* ^^^ */
3398
3399        /*
3400         * Make sure this load happens before the purportedly
3401         * time-consuming work between get_state_synchronize_sched()
3402         * and cond_synchronize_sched().
3403         */
3404        return smp_load_acquire(&rcu_sched_state.gpnum);
3405}
3406EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3407
3408/**
3409 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3410 *
3411 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3412 *
3413 * If a full RCU-sched grace period has elapsed since the earlier call to
3414 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3415 * synchronize_sched() to wait for a full grace period.
3416 *
3417 * Yes, this function does not take counter wrap into account.  But
3418 * counter wrap is harmless.  If the counter wraps, we have waited for
3419 * more than 2 billion grace periods (and way more on a 64-bit system!),
3420 * so waiting for one additional grace period should be just fine.
3421 */
3422void cond_synchronize_sched(unsigned long oldstate)
3423{
3424        unsigned long newstate;
3425
3426        /*
3427         * Ensure that this load happens before any RCU-destructive
3428         * actions the caller might carry out after we return.
3429         */
3430        newstate = smp_load_acquire(&rcu_sched_state.completed);
3431        if (ULONG_CMP_GE(oldstate, newstate))
3432                synchronize_sched();
3433}
3434EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3435
3436/*
3437 * Check to see if there is any immediate RCU-related work to be done
3438 * by the current CPU, for the specified type of RCU, returning 1 if so.
3439 * The checks are in order of increasing expense: checks that can be
3440 * carried out against CPU-local state are performed first.  However,
3441 * we must check for CPU stalls first, else we might not get a chance.
3442 */
3443static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3444{
3445        struct rcu_node *rnp = rdp->mynode;
3446
3447        rdp->n_rcu_pending++;
3448
3449        /* Check for CPU stalls, if enabled. */
3450        check_cpu_stall(rsp, rdp);
3451
3452        /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3453        if (rcu_nohz_full_cpu(rsp))
3454                return 0;
3455
3456        /* Is the RCU core waiting for a quiescent state from this CPU? */
3457        if (rcu_scheduler_fully_active &&
3458            rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3459            rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3460                rdp->n_rp_core_needs_qs++;
3461        } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3462                rdp->n_rp_report_qs++;
3463                return 1;
3464        }
3465
3466        /* Does this CPU have callbacks ready to invoke? */
3467        if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3468                rdp->n_rp_cb_ready++;
3469                return 1;
3470        }
3471
3472        /* Has RCU gone idle with this CPU needing another grace period? */
3473        if (cpu_needs_another_gp(rsp, rdp)) {
3474                rdp->n_rp_cpu_needs_gp++;
3475                return 1;
3476        }
3477
3478        /* Has another RCU grace period completed?  */
3479        if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3480                rdp->n_rp_gp_completed++;
3481                return 1;
3482        }
3483
3484        /* Has a new RCU grace period started? */
3485        if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3486            unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3487                rdp->n_rp_gp_started++;
3488                return 1;
3489        }
3490
3491        /* Does this CPU need a deferred NOCB wakeup? */
3492        if (rcu_nocb_need_deferred_wakeup(rdp)) {
3493                rdp->n_rp_nocb_defer_wakeup++;
3494                return 1;
3495        }
3496
3497        /* nothing to do */
3498        rdp->n_rp_need_nothing++;
3499        return 0;
3500}
3501
3502/*
3503 * Check to see if there is any immediate RCU-related work to be done
3504 * by the current CPU, returning 1 if so.  This function is part of the
3505 * RCU implementation; it is -not- an exported member of the RCU API.
3506 */
3507static int rcu_pending(void)
3508{
3509        struct rcu_state *rsp;
3510
3511        for_each_rcu_flavor(rsp)
3512                if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3513                        return 1;
3514        return 0;
3515}
3516
3517/*
3518 * Return true if the specified CPU has any callback.  If all_lazy is
3519 * non-NULL, store an indication of whether all callbacks are lazy.
3520 * (If there are no callbacks, all of them are deemed to be lazy.)
3521 */
3522static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3523{
3524        bool al = true;
3525        bool hc = false;
3526        struct rcu_data *rdp;
3527        struct rcu_state *rsp;
3528
3529        for_each_rcu_flavor(rsp) {
3530                rdp = this_cpu_ptr(rsp->rda);
3531                if (rcu_segcblist_empty(&rdp->cblist))
3532                        continue;
3533                hc = true;
3534                if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3535                        al = false;
3536                        break;
3537                }
3538        }
3539        if (all_lazy)
3540                *all_lazy = al;
3541        return hc;
3542}
3543
3544/*
3545 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3546 * the compiler is expected to optimize this away.
3547 */
3548static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3549                               int cpu, unsigned long done)
3550{
3551        trace_rcu_barrier(rsp->name, s, cpu,
3552                          atomic_read(&rsp->barrier_cpu_count), done);
3553}
3554
3555/*
3556 * RCU callback function for _rcu_barrier().  If we are last, wake
3557 * up the task executing _rcu_barrier().
3558 */
3559static void rcu_barrier_callback(struct rcu_head *rhp)
3560{
3561        struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3562        struct rcu_state *rsp = rdp->rsp;
3563
3564        if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3565                _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3566                complete(&rsp->barrier_completion);
3567        } else {
3568                _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3569        }
3570}
3571
3572/*
3573 * Called with preemption disabled, and from cross-cpu IRQ context.
3574 */
3575static void rcu_barrier_func(void *type)
3576{
3577        struct rcu_state *rsp = type;
3578        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3579
3580        _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3581        atomic_inc(&rsp->barrier_cpu_count);
3582        rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3583}
3584
3585/*
3586 * Orchestrate the specified type of RCU barrier, waiting for all
3587 * RCU callbacks of the specified type to complete.
3588 */
3589static void _rcu_barrier(struct rcu_state *rsp)
3590{
3591        int cpu;
3592        struct rcu_data *rdp;
3593        unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3594
3595        _rcu_barrier_trace(rsp, "Begin", -1, s);
3596
3597        /* Take mutex to serialize concurrent rcu_barrier() requests. */
3598        mutex_lock(&rsp->barrier_mutex);
3599
3600        /* Did someone else do our work for us? */
3601        if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3602                _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3603                smp_mb(); /* caller's subsequent code after above check. */
3604                mutex_unlock(&rsp->barrier_mutex);
3605                return;
3606        }
3607
3608        /* Mark the start of the barrier operation. */
3609        rcu_seq_start(&rsp->barrier_sequence);
3610        _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3611
3612        /*
3613         * Initialize the count to one rather than to zero in order to
3614         * avoid a too-soon return to zero in case of a short grace period
3615         * (or preemption of this task).  Exclude CPU-hotplug operations
3616         * to ensure that no offline CPU has callbacks queued.
3617         */
3618        init_completion(&rsp->barrier_completion);
3619        atomic_set(&rsp->barrier_cpu_count, 1);
3620        get_online_cpus();
3621
3622        /*
3623         * Force each CPU with callbacks to register a new callback.
3624         * When that callback is invoked, we will know that all of the
3625         * corresponding CPU's preceding callbacks have been invoked.
3626         */
3627        for_each_possible_cpu(cpu) {
3628                if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3629                        continue;
3630                rdp = per_cpu_ptr(rsp->rda, cpu);
3631                if (rcu_is_nocb_cpu(cpu)) {
3632                        if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3633                                _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3634                                                   rsp->barrier_sequence);
3635                        } else {
3636                                _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3637                                                   rsp->barrier_sequence);
3638                                smp_mb__before_atomic();
3639                                atomic_inc(&rsp->barrier_cpu_count);
3640                                __call_rcu(&rdp->barrier_head,
3641                                           rcu_barrier_callback, rsp, cpu, 0);
3642                        }
3643                } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3644                        _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3645                                           rsp->barrier_sequence);
3646                        smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3647                } else {
3648                        _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3649                                           rsp->barrier_sequence);
3650                }
3651        }
3652        put_online_cpus();
3653
3654        /*
3655         * Now that we have an rcu_barrier_callback() callback on each
3656         * CPU, and thus each counted, remove the initial count.
3657         */
3658        if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3659                complete(&rsp->barrier_completion);
3660
3661        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3662        wait_for_completion(&rsp->barrier_completion);
3663
3664        /* Mark the end of the barrier operation. */
3665        _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3666        rcu_seq_end(&rsp->barrier_sequence);
3667
3668        /* Other rcu_barrier() invocations can now safely proceed. */
3669        mutex_unlock(&rsp->barrier_mutex);
3670}
3671
3672/**
3673 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3674 */
3675void rcu_barrier_bh(void)
3676{
3677        _rcu_barrier(&rcu_bh_state);
3678}
3679EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3680
3681/**
3682 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3683 */
3684void rcu_barrier_sched(void)
3685{
3686        _rcu_barrier(&rcu_sched_state);
3687}
3688EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3689
3690/*
3691 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3692 * first CPU in a given leaf rcu_node structure coming online.  The caller
3693 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3694 * disabled.
3695 */
3696static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3697{
3698        long mask;
3699        struct rcu_node *rnp = rnp_leaf;
3700
3701        for (;;) {
3702                mask = rnp->grpmask;
3703                rnp = rnp->parent;
3704                if (rnp == NULL)
3705                        return;
3706                raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3707                rnp->qsmaskinit |= mask;
3708                raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3709        }
3710}
3711
3712/*
3713 * Do boot-time initialization of a CPU's per-CPU RCU data.
3714 */
3715static void __init
3716rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3717{
3718        unsigned long flags;
3719        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3720        struct rcu_node *rnp = rcu_get_root(rsp);
3721
3722        /* Set up local state, ensuring consistent view of global state. */
3723        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3724        rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3725        rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3726        WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3727        WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3728        rdp->cpu = cpu;
3729        rdp->rsp = rsp;
3730        rcu_boot_init_nocb_percpu_data(rdp);
3731        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3732}
3733
3734/*
3735 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3736 * offline event can be happening at a given time.  Note also that we
3737 * can accept some slop in the rsp->completed access due to the fact
3738 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3739 */
3740static void
3741rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3742{
3743        unsigned long flags;
3744        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3745        struct rcu_node *rnp = rcu_get_root(rsp);
3746
3747        /* Set up local state, ensuring consistent view of global state. */
3748        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3749        rdp->qlen_last_fqs_check = 0;
3750        rdp->n_force_qs_snap = rsp->n_force_qs;
3751        rdp->blimit = blimit;
3752        if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3753            !init_nocb_callback_list(rdp))
3754                rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3755        rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3756        rcu_sysidle_init_percpu_data(rdp->dynticks);
3757        rcu_dynticks_eqs_online();
3758        raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
3759
3760        /*
3761         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3762         * propagation up the rcu_node tree will happen at the beginning
3763         * of the next grace period.
3764         */
3765        rnp = rdp->mynode;
3766        raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
3767        if (!rdp->beenonline)
3768                WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3769        rdp->beenonline = true;  /* We have now been online. */
3770        rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3771        rdp->completed = rnp->completed;
3772        rdp->cpu_no_qs.b.norm = true;
3773        rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3774        rdp->core_needs_qs = false;
3775        trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3776        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3777}
3778
3779/*
3780 * Invoked early in the CPU-online process, when pretty much all
3781 * services are available.  The incoming CPU is not present.
3782 */
3783int rcutree_prepare_cpu(unsigned int cpu)
3784{
3785        struct rcu_state *rsp;
3786
3787        for_each_rcu_flavor(rsp)
3788                rcu_init_percpu_data(cpu, rsp);
3789
3790        rcu_prepare_kthreads(cpu);
3791        rcu_spawn_all_nocb_kthreads(cpu);
3792
3793        return 0;
3794}
3795
3796/*
3797 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3798 */
3799static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3800{
3801        struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3802
3803        rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3804}
3805
3806/*
3807 * Near the end of the CPU-online process.  Pretty much all services
3808 * enabled, and the CPU is now very much alive.
3809 */
3810int rcutree_online_cpu(unsigned int cpu)
3811{
3812        sync_sched_exp_online_cleanup(cpu);
3813        rcutree_affinity_setting(cpu, -1);
3814        if (IS_ENABLED(CONFIG_TREE_SRCU))
3815                srcu_online_cpu(cpu);
3816        return 0;
3817}
3818
3819/*
3820 * Near the beginning of the process.  The CPU is still very much alive
3821 * with pretty much all services enabled.
3822 */
3823int rcutree_offline_cpu(unsigned int cpu)
3824{
3825        rcutree_affinity_setting(cpu, cpu);
3826        if (IS_ENABLED(CONFIG_TREE_SRCU))
3827                srcu_offline_cpu(cpu);
3828        return 0;
3829}
3830
3831/*
3832 * Near the end of the offline process.  We do only tracing here.
3833 */
3834int rcutree_dying_cpu(unsigned int cpu)
3835{
3836        struct rcu_state *rsp;
3837
3838        for_each_rcu_flavor(rsp)
3839                rcu_cleanup_dying_cpu(rsp);
3840        return 0;
3841}
3842
3843/*
3844 * The outgoing CPU is gone and we are running elsewhere.
3845 */
3846int rcutree_dead_cpu(unsigned int cpu)
3847{
3848        struct rcu_state *rsp;
3849
3850        for_each_rcu_flavor(rsp) {
3851                rcu_cleanup_dead_cpu(cpu, rsp);
3852                do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3853        }
3854        return 0;
3855}
3856
3857/*
3858 * Mark the specified CPU as being online so that subsequent grace periods
3859 * (both expedited and normal) will wait on it.  Note that this means that
3860 * incoming CPUs are not allowed to use RCU read-side critical sections
3861 * until this function is called.  Failing to observe this restriction
3862 * will result in lockdep splats.
3863 *
3864 * Note that this function is special in that it is invoked directly
3865 * from the incoming CPU rather than from the cpuhp_step mechanism.
3866 * This is because this function must be invoked at a precise location.
3867 */
3868void rcu_cpu_starting(unsigned int cpu)
3869{
3870        unsigned long flags;
3871        unsigned long mask;
3872        struct rcu_data *rdp;
3873        struct rcu_node *rnp;
3874        struct rcu_state *rsp;
3875
3876        for_each_rcu_flavor(rsp) {
3877                rdp = per_cpu_ptr(rsp->rda, cpu);
3878                rnp = rdp->mynode;
3879                mask = rdp->grpmask;
3880                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3881                rnp->qsmaskinitnext |= mask;
3882                rnp->expmaskinitnext |= mask;
3883                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3884        }
3885}
3886
3887#ifdef CONFIG_HOTPLUG_CPU
3888/*
3889 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3890 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3891 * bit masks.
3892 */
3893static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3894{
3895        unsigned long flags;
3896        unsigned long mask;
3897        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3898        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3899
3900        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3901        mask = rdp->grpmask;
3902        raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3903        rnp->qsmaskinitnext &= ~mask;
3904        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3905}
3906
3907/*
3908 * The outgoing function has no further need of RCU, so remove it from
3909 * the list of CPUs that RCU must track.
3910 *
3911 * Note that this function is special in that it is invoked directly
3912 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3913 * This is because this function must be invoked at a precise location.
3914 */
3915void rcu_report_dead(unsigned int cpu)
3916{
3917        struct rcu_state *rsp;
3918
3919        /* QS for any half-done expedited RCU-sched GP. */
3920        preempt_disable();
3921        rcu_report_exp_rdp(&rcu_sched_state,
3922                           this_cpu_ptr(rcu_sched_state.rda), true);
3923        preempt_enable();
3924        for_each_rcu_flavor(rsp)
3925                rcu_cleanup_dying_idle_cpu(cpu, rsp);
3926}
3927#endif
3928
3929/*
3930 * On non-huge systems, use expedited RCU grace periods to make suspend
3931 * and hibernation run faster.
3932 */
3933static int rcu_pm_notify(struct notifier_block *self,
3934                         unsigned long action, void *hcpu)
3935{
3936        switch (action) {
3937        case PM_HIBERNATION_PREPARE:
3938        case PM_SUSPEND_PREPARE:
3939                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3940                        rcu_expedite_gp();
3941                break;
3942        case PM_POST_HIBERNATION:
3943        case PM_POST_SUSPEND:
3944                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3945                        rcu_unexpedite_gp();
3946                break;
3947        default:
3948                break;
3949        }
3950        return NOTIFY_OK;
3951}
3952
3953/*
3954 * Spawn the kthreads that handle each RCU flavor's grace periods.
3955 */
3956static int __init rcu_spawn_gp_kthread(void)
3957{
3958        unsigned long flags;
3959        int kthread_prio_in = kthread_prio;
3960        struct rcu_node *rnp;
3961        struct rcu_state *rsp;
3962        struct sched_param sp;
3963        struct task_struct *t;
3964
3965        /* Force priority into range. */
3966        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3967                kthread_prio = 1;
3968        else if (kthread_prio < 0)
3969                kthread_prio = 0;
3970        else if (kthread_prio > 99)
3971                kthread_prio = 99;
3972        if (kthread_prio != kthread_prio_in)
3973                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3974                         kthread_prio, kthread_prio_in);
3975
3976        rcu_scheduler_fully_active = 1;
3977        for_each_rcu_flavor(rsp) {
3978                t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3979                BUG_ON(IS_ERR(t));
3980                rnp = rcu_get_root(rsp);
3981                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3982                rsp->gp_kthread = t;
3983                if (kthread_prio) {
3984                        sp.sched_priority = kthread_prio;
3985                        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3986                }
3987                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3988                wake_up_process(t);
3989        }
3990        rcu_spawn_nocb_kthreads();
3991        rcu_spawn_boost_kthreads();
3992        return 0;
3993}
3994early_initcall(rcu_spawn_gp_kthread);
3995
3996/*
3997 * This function is invoked towards the end of the scheduler's
3998 * initialization process.  Before this is called, the idle task might
3999 * contain synchronous grace-period primitives (during which time, this idle
4000 * task is booting the system, and such primitives are no-ops).  After this
4001 * function is called, any synchronous grace-period primitives are run as
4002 * expedited, with the requesting task driving the grace period forward.
4003 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4004 * runtime RCU functionality.
4005 */
4006void rcu_scheduler_starting(void)
4007{
4008        WARN_ON(num_online_cpus() != 1);
4009        WARN_ON(nr_context_switches() > 0);
4010        rcu_test_sync_prims();
4011        rcu_scheduler_active = RCU_SCHEDULER_INIT;
4012        rcu_test_sync_prims();
4013}
4014
4015/*
4016 * Helper function for rcu_init() that initializes one rcu_state structure.
4017 */
4018static void __init rcu_init_one(struct rcu_state *rsp)
4019{
4020        static const char * const buf[] = RCU_NODE_NAME_INIT;
4021        static const char * const fqs[] = RCU_FQS_NAME_INIT;
4022        static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4023        static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4024
4025        int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
4026        int cpustride = 1;
4027        int i;
4028        int j;
4029        struct rcu_node *rnp;
4030
4031        BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4032
4033        /* Silence gcc 4.8 false positive about array index out of range. */
4034        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4035                panic("rcu_init_one: rcu_num_lvls out of range");
4036
4037        /* Initialize the level-tracking arrays. */
4038
4039        for (i = 1; i < rcu_num_lvls; i++)
4040                rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4041        rcu_init_levelspread(levelspread, num_rcu_lvl);
4042
4043        /* Initialize the elements themselves, starting from the leaves. */
4044
4045        for (i = rcu_num_lvls - 1; i >= 0; i--) {
4046                cpustride *= levelspread[i];
4047                rnp = rsp->level[i];
4048                for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4049                        raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4050                        lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4051                                                   &rcu_node_class[i], buf[i]);
4052                        raw_spin_lock_init(&rnp->fqslock);
4053                        lockdep_set_class_and_name(&rnp->fqslock,
4054                                                   &rcu_fqs_class[i], fqs[i]);
4055                        rnp->gpnum = rsp->gpnum;
4056                        rnp->completed = rsp->completed;
4057                        rnp->qsmask = 0;
4058                        rnp->qsmaskinit = 0;
4059                        rnp->grplo = j * cpustride;
4060                        rnp->grphi = (j + 1) * cpustride - 1;
4061                        if (rnp->grphi >= nr_cpu_ids)
4062                                rnp->grphi = nr_cpu_ids - 1;
4063                        if (i == 0) {
4064                                rnp->grpnum = 0;
4065                                rnp->grpmask = 0;
4066                                rnp->parent = NULL;
4067                        } else {
4068                                rnp->grpnum = j % levelspread[i - 1];
4069                                rnp->grpmask = 1UL << rnp->grpnum;
4070                                rnp->parent = rsp->level[i - 1] +
4071                                              j / levelspread[i - 1];
4072                        }
4073                        rnp->level = i;
4074                        INIT_LIST_HEAD(&rnp->blkd_tasks);
4075                        rcu_init_one_nocb(rnp);
4076                        init_waitqueue_head(&rnp->exp_wq[0]);
4077                        init_waitqueue_head(&rnp->exp_wq[1]);
4078                        init_waitqueue_head(&rnp->exp_wq[2]);
4079                        init_waitqueue_head(&rnp->exp_wq[3]);
4080                        spin_lock_init(&rnp->exp_lock);
4081                }
4082        }
4083
4084        init_swait_queue_head(&rsp->gp_wq);
4085        init_swait_queue_head(&rsp->expedited_wq);
4086        rnp = rsp->level[rcu_num_lvls - 1];
4087        for_each_possible_cpu(i) {
4088                while (i > rnp->grphi)
4089                        rnp++;
4090                per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4091                rcu_boot_init_percpu_data(i, rsp);
4092        }
4093        list_add(&rsp->flavors, &rcu_struct_flavors);
4094}
4095
4096/*
4097 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4098 * replace the definitions in tree.h because those are needed to size
4099 * the ->node array in the rcu_state structure.
4100 */
4101static void __init rcu_init_geometry(void)
4102{
4103        ulong d;
4104        int i;
4105        int rcu_capacity[RCU_NUM_LVLS];
4106
4107        /*
4108         * Initialize any unspecified boot parameters.
4109         * The default values of jiffies_till_first_fqs and
4110         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4111         * value, which is a function of HZ, then adding one for each
4112         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4113         */
4114        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4115        if (jiffies_till_first_fqs == ULONG_MAX)
4116                jiffies_till_first_fqs = d;
4117        if (jiffies_till_next_fqs == ULONG_MAX)
4118                jiffies_till_next_fqs = d;
4119
4120        /* If the compile-time values are accurate, just leave. */
4121        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4122            nr_cpu_ids == NR_CPUS)
4123                return;
4124        pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4125                rcu_fanout_leaf, nr_cpu_ids);
4126
4127        /*
4128         * The boot-time rcu_fanout_leaf parameter must be at least two
4129         * and cannot exceed the number of bits in the rcu_node masks.
4130         * Complain and fall back to the compile-time values if this
4131         * limit is exceeded.
4132         */
4133        if (rcu_fanout_leaf < 2 ||
4134            rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4135                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4136                WARN_ON(1);
4137                return;
4138        }
4139
4140        /*
4141         * Compute number of nodes that can be handled an rcu_node tree
4142         * with the given number of levels.
4143         */
4144        rcu_capacity[0] = rcu_fanout_leaf;
4145        for (i = 1; i < RCU_NUM_LVLS; i++)
4146                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4147
4148        /*
4149         * The tree must be able to accommodate the configured number of CPUs.
4150         * If this limit is exceeded, fall back to the compile-time values.
4151         */
4152        if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4153                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4154                WARN_ON(1);
4155                return;
4156        }
4157
4158        /* Calculate the number of levels in the tree. */
4159        for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4160        }
4161        rcu_num_lvls = i + 1;
4162
4163        /* Calculate the number of rcu_nodes at each level of the tree. */
4164        for (i = 0; i < rcu_num_lvls; i++) {
4165                int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4166                num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4167        }
4168
4169        /* Calculate the total number of rcu_node structures. */
4170        rcu_num_nodes = 0;
4171        for (i = 0; i < rcu_num_lvls; i++)
4172                rcu_num_nodes += num_rcu_lvl[i];
4173}
4174
4175/*
4176 * Dump out the structure of the rcu_node combining tree associated
4177 * with the rcu_state structure referenced by rsp.
4178 */
4179static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4180{
4181        int level = 0;
4182        struct rcu_node *rnp;
4183
4184        pr_info("rcu_node tree layout dump\n");
4185        pr_info(" ");
4186        rcu_for_each_node_breadth_first(rsp, rnp) {
4187                if (rnp->level != level) {
4188                        pr_cont("\n");
4189                        pr_info(" ");
4190                        level = rnp->level;
4191                }
4192                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4193        }
4194        pr_cont("\n");
4195}
4196
4197void __init rcu_init(void)
4198{
4199        int cpu;
4200
4201        rcu_early_boot_tests();
4202
4203        rcu_bootup_announce();
4204        rcu_init_geometry();
4205        rcu_init_one(&rcu_bh_state);
4206        rcu_init_one(&rcu_sched_state);
4207        if (dump_tree)
4208                rcu_dump_rcu_node_tree(&rcu_sched_state);
4209        __rcu_init_preempt();
4210        open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4211
4212        /*
4213         * We don't need protection against CPU-hotplug here because
4214         * this is called early in boot, before either interrupts
4215         * or the scheduler are operational.
4216         */
4217        pm_notifier(rcu_pm_notify, 0);
4218        for_each_online_cpu(cpu) {
4219                rcutree_prepare_cpu(cpu);
4220                rcu_cpu_starting(cpu);
4221                if (IS_ENABLED(CONFIG_TREE_SRCU))
4222                        srcu_online_cpu(cpu);
4223        }
4224}
4225
4226#include "tree_exp.h"
4227#include "tree_plugin.h"
4228