linux/kernel/rcu/update.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *
  23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25 * Papers:
  26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28 *
  29 * For detailed explanation of Read-Copy Update mechanism see -
  30 *              http://lse.sourceforge.net/locking/rcupdate.html
  31 *
  32 */
  33#include <linux/types.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/spinlock.h>
  37#include <linux/smp.h>
  38#include <linux/interrupt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/sched/debug.h>
  41#include <linux/atomic.h>
  42#include <linux/bitops.h>
  43#include <linux/percpu.h>
  44#include <linux/notifier.h>
  45#include <linux/cpu.h>
  46#include <linux/mutex.h>
  47#include <linux/export.h>
  48#include <linux/hardirq.h>
  49#include <linux/delay.h>
  50#include <linux/moduleparam.h>
  51#include <linux/kthread.h>
  52#include <linux/tick.h>
  53#include <linux/rcupdate_wait.h>
  54
  55#define CREATE_TRACE_POINTS
  56
  57#include "rcu.h"
  58
  59#ifdef MODULE_PARAM_PREFIX
  60#undef MODULE_PARAM_PREFIX
  61#endif
  62#define MODULE_PARAM_PREFIX "rcupdate."
  63
  64#ifndef CONFIG_TINY_RCU
  65module_param(rcu_expedited, int, 0);
  66module_param(rcu_normal, int, 0);
  67static int rcu_normal_after_boot;
  68module_param(rcu_normal_after_boot, int, 0);
  69#endif /* #ifndef CONFIG_TINY_RCU */
  70
  71#ifdef CONFIG_DEBUG_LOCK_ALLOC
  72/**
  73 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  74 *
  75 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  76 * RCU-sched read-side critical section.  In absence of
  77 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  78 * critical section unless it can prove otherwise.  Note that disabling
  79 * of preemption (including disabling irqs) counts as an RCU-sched
  80 * read-side critical section.  This is useful for debug checks in functions
  81 * that required that they be called within an RCU-sched read-side
  82 * critical section.
  83 *
  84 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  85 * and while lockdep is disabled.
  86 *
  87 * Note that if the CPU is in the idle loop from an RCU point of
  88 * view (ie: that we are in the section between rcu_idle_enter() and
  89 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  90 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
  91 * that are in such a section, considering these as in extended quiescent
  92 * state, so such a CPU is effectively never in an RCU read-side critical
  93 * section regardless of what RCU primitives it invokes.  This state of
  94 * affairs is required --- we need to keep an RCU-free window in idle
  95 * where the CPU may possibly enter into low power mode. This way we can
  96 * notice an extended quiescent state to other CPUs that started a grace
  97 * period. Otherwise we would delay any grace period as long as we run in
  98 * the idle task.
  99 *
 100 * Similarly, we avoid claiming an SRCU read lock held if the current
 101 * CPU is offline.
 102 */
 103int rcu_read_lock_sched_held(void)
 104{
 105        int lockdep_opinion = 0;
 106
 107        if (!debug_lockdep_rcu_enabled())
 108                return 1;
 109        if (!rcu_is_watching())
 110                return 0;
 111        if (!rcu_lockdep_current_cpu_online())
 112                return 0;
 113        if (debug_locks)
 114                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 115        return lockdep_opinion || !preemptible();
 116}
 117EXPORT_SYMBOL(rcu_read_lock_sched_held);
 118#endif
 119
 120#ifndef CONFIG_TINY_RCU
 121
 122/*
 123 * Should expedited grace-period primitives always fall back to their
 124 * non-expedited counterparts?  Intended for use within RCU.  Note
 125 * that if the user specifies both rcu_expedited and rcu_normal, then
 126 * rcu_normal wins.  (Except during the time period during boot from
 127 * when the first task is spawned until the rcu_set_runtime_mode()
 128 * core_initcall() is invoked, at which point everything is expedited.)
 129 */
 130bool rcu_gp_is_normal(void)
 131{
 132        return READ_ONCE(rcu_normal) &&
 133               rcu_scheduler_active != RCU_SCHEDULER_INIT;
 134}
 135EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 136
 137static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 138
 139/*
 140 * Should normal grace-period primitives be expedited?  Intended for
 141 * use within RCU.  Note that this function takes the rcu_expedited
 142 * sysfs/boot variable and rcu_scheduler_active into account as well
 143 * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 144 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 145 */
 146bool rcu_gp_is_expedited(void)
 147{
 148        return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
 149               rcu_scheduler_active == RCU_SCHEDULER_INIT;
 150}
 151EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 152
 153/**
 154 * rcu_expedite_gp - Expedite future RCU grace periods
 155 *
 156 * After a call to this function, future calls to synchronize_rcu() and
 157 * friends act as the corresponding synchronize_rcu_expedited() function
 158 * had instead been called.
 159 */
 160void rcu_expedite_gp(void)
 161{
 162        atomic_inc(&rcu_expedited_nesting);
 163}
 164EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 165
 166/**
 167 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 168 *
 169 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 170 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 171 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 172 * subsequent calls to synchronize_rcu() and friends will return to
 173 * their normal non-expedited behavior.
 174 */
 175void rcu_unexpedite_gp(void)
 176{
 177        atomic_dec(&rcu_expedited_nesting);
 178}
 179EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 180
 181/*
 182 * Inform RCU of the end of the in-kernel boot sequence.
 183 */
 184void rcu_end_inkernel_boot(void)
 185{
 186        rcu_unexpedite_gp();
 187        if (rcu_normal_after_boot)
 188                WRITE_ONCE(rcu_normal, 1);
 189}
 190
 191#endif /* #ifndef CONFIG_TINY_RCU */
 192
 193/*
 194 * Test each non-SRCU synchronous grace-period wait API.  This is
 195 * useful just after a change in mode for these primitives, and
 196 * during early boot.
 197 */
 198void rcu_test_sync_prims(void)
 199{
 200        if (!IS_ENABLED(CONFIG_PROVE_RCU))
 201                return;
 202        synchronize_rcu();
 203        synchronize_rcu_bh();
 204        synchronize_sched();
 205        synchronize_rcu_expedited();
 206        synchronize_rcu_bh_expedited();
 207        synchronize_sched_expedited();
 208}
 209
 210#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 211
 212/*
 213 * Switch to run-time mode once RCU has fully initialized.
 214 */
 215static int __init rcu_set_runtime_mode(void)
 216{
 217        rcu_test_sync_prims();
 218        rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 219        rcu_test_sync_prims();
 220        return 0;
 221}
 222core_initcall(rcu_set_runtime_mode);
 223
 224#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 225
 226#ifdef CONFIG_PREEMPT_RCU
 227
 228/*
 229 * Preemptible RCU implementation for rcu_read_lock().
 230 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 231 * if we block.
 232 */
 233void __rcu_read_lock(void)
 234{
 235        current->rcu_read_lock_nesting++;
 236        barrier();  /* critical section after entry code. */
 237}
 238EXPORT_SYMBOL_GPL(__rcu_read_lock);
 239
 240/*
 241 * Preemptible RCU implementation for rcu_read_unlock().
 242 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 243 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 244 * invoke rcu_read_unlock_special() to clean up after a context switch
 245 * in an RCU read-side critical section and other special cases.
 246 */
 247void __rcu_read_unlock(void)
 248{
 249        struct task_struct *t = current;
 250
 251        if (t->rcu_read_lock_nesting != 1) {
 252                --t->rcu_read_lock_nesting;
 253        } else {
 254                barrier();  /* critical section before exit code. */
 255                t->rcu_read_lock_nesting = INT_MIN;
 256                barrier();  /* assign before ->rcu_read_unlock_special load */
 257                if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 258                        rcu_read_unlock_special(t);
 259                barrier();  /* ->rcu_read_unlock_special load before assign */
 260                t->rcu_read_lock_nesting = 0;
 261        }
 262#ifdef CONFIG_PROVE_LOCKING
 263        {
 264                int rrln = READ_ONCE(t->rcu_read_lock_nesting);
 265
 266                WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
 267        }
 268#endif /* #ifdef CONFIG_PROVE_LOCKING */
 269}
 270EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 271
 272#endif /* #ifdef CONFIG_PREEMPT_RCU */
 273
 274#ifdef CONFIG_DEBUG_LOCK_ALLOC
 275static struct lock_class_key rcu_lock_key;
 276struct lockdep_map rcu_lock_map =
 277        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 278EXPORT_SYMBOL_GPL(rcu_lock_map);
 279
 280static struct lock_class_key rcu_bh_lock_key;
 281struct lockdep_map rcu_bh_lock_map =
 282        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 283EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 284
 285static struct lock_class_key rcu_sched_lock_key;
 286struct lockdep_map rcu_sched_lock_map =
 287        STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 288EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 289
 290static struct lock_class_key rcu_callback_key;
 291struct lockdep_map rcu_callback_map =
 292        STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 293EXPORT_SYMBOL_GPL(rcu_callback_map);
 294
 295int notrace debug_lockdep_rcu_enabled(void)
 296{
 297        return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 298               current->lockdep_recursion == 0;
 299}
 300EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 301
 302/**
 303 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 304 *
 305 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 306 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 307 * this assumes we are in an RCU read-side critical section unless it can
 308 * prove otherwise.  This is useful for debug checks in functions that
 309 * require that they be called within an RCU read-side critical section.
 310 *
 311 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 312 * and while lockdep is disabled.
 313 *
 314 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 315 * occur in the same context, for example, it is illegal to invoke
 316 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 317 * was invoked from within an irq handler.
 318 *
 319 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 320 * offline from an RCU perspective, so check for those as well.
 321 */
 322int rcu_read_lock_held(void)
 323{
 324        if (!debug_lockdep_rcu_enabled())
 325                return 1;
 326        if (!rcu_is_watching())
 327                return 0;
 328        if (!rcu_lockdep_current_cpu_online())
 329                return 0;
 330        return lock_is_held(&rcu_lock_map);
 331}
 332EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 333
 334/**
 335 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 336 *
 337 * Check for bottom half being disabled, which covers both the
 338 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 339 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 340 * will show the situation.  This is useful for debug checks in functions
 341 * that require that they be called within an RCU read-side critical
 342 * section.
 343 *
 344 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 345 *
 346 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 347 * offline from an RCU perspective, so check for those as well.
 348 */
 349int rcu_read_lock_bh_held(void)
 350{
 351        if (!debug_lockdep_rcu_enabled())
 352                return 1;
 353        if (!rcu_is_watching())
 354                return 0;
 355        if (!rcu_lockdep_current_cpu_online())
 356                return 0;
 357        return in_softirq() || irqs_disabled();
 358}
 359EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 360
 361#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 362
 363/**
 364 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 365 * @head: Pointer to rcu_head member within rcu_synchronize structure
 366 *
 367 * Awaken the corresponding task now that a grace period has elapsed.
 368 */
 369void wakeme_after_rcu(struct rcu_head *head)
 370{
 371        struct rcu_synchronize *rcu;
 372
 373        rcu = container_of(head, struct rcu_synchronize, head);
 374        complete(&rcu->completion);
 375}
 376EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 377
 378void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 379                   struct rcu_synchronize *rs_array)
 380{
 381        int i;
 382
 383        /* Initialize and register callbacks for each flavor specified. */
 384        for (i = 0; i < n; i++) {
 385                if (checktiny &&
 386                    (crcu_array[i] == call_rcu ||
 387                     crcu_array[i] == call_rcu_bh)) {
 388                        might_sleep();
 389                        continue;
 390                }
 391                init_rcu_head_on_stack(&rs_array[i].head);
 392                init_completion(&rs_array[i].completion);
 393                (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 394        }
 395
 396        /* Wait for all callbacks to be invoked. */
 397        for (i = 0; i < n; i++) {
 398                if (checktiny &&
 399                    (crcu_array[i] == call_rcu ||
 400                     crcu_array[i] == call_rcu_bh))
 401                        continue;
 402                wait_for_completion(&rs_array[i].completion);
 403                destroy_rcu_head_on_stack(&rs_array[i].head);
 404        }
 405}
 406EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 407
 408#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 409void init_rcu_head(struct rcu_head *head)
 410{
 411        debug_object_init(head, &rcuhead_debug_descr);
 412}
 413
 414void destroy_rcu_head(struct rcu_head *head)
 415{
 416        debug_object_free(head, &rcuhead_debug_descr);
 417}
 418
 419static bool rcuhead_is_static_object(void *addr)
 420{
 421        return true;
 422}
 423
 424/**
 425 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 426 * @head: pointer to rcu_head structure to be initialized
 427 *
 428 * This function informs debugobjects of a new rcu_head structure that
 429 * has been allocated as an auto variable on the stack.  This function
 430 * is not required for rcu_head structures that are statically defined or
 431 * that are dynamically allocated on the heap.  This function has no
 432 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 433 */
 434void init_rcu_head_on_stack(struct rcu_head *head)
 435{
 436        debug_object_init_on_stack(head, &rcuhead_debug_descr);
 437}
 438EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 439
 440/**
 441 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 442 * @head: pointer to rcu_head structure to be initialized
 443 *
 444 * This function informs debugobjects that an on-stack rcu_head structure
 445 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 446 * function is not required for rcu_head structures that are statically
 447 * defined or that are dynamically allocated on the heap.  Also as with
 448 * init_rcu_head_on_stack(), this function has no effect for
 449 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 450 */
 451void destroy_rcu_head_on_stack(struct rcu_head *head)
 452{
 453        debug_object_free(head, &rcuhead_debug_descr);
 454}
 455EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 456
 457struct debug_obj_descr rcuhead_debug_descr = {
 458        .name = "rcu_head",
 459        .is_static_object = rcuhead_is_static_object,
 460};
 461EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 462#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 463
 464#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 465void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 466                               unsigned long secs,
 467                               unsigned long c_old, unsigned long c)
 468{
 469        trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 470}
 471EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 472#else
 473#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 474        do { } while (0)
 475#endif
 476
 477#ifdef CONFIG_RCU_STALL_COMMON
 478
 479#ifdef CONFIG_PROVE_RCU
 480#define RCU_STALL_DELAY_DELTA          (5 * HZ)
 481#else
 482#define RCU_STALL_DELAY_DELTA          0
 483#endif
 484
 485int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 486static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 487
 488module_param(rcu_cpu_stall_suppress, int, 0644);
 489module_param(rcu_cpu_stall_timeout, int, 0644);
 490
 491int rcu_jiffies_till_stall_check(void)
 492{
 493        int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
 494
 495        /*
 496         * Limit check must be consistent with the Kconfig limits
 497         * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 498         */
 499        if (till_stall_check < 3) {
 500                WRITE_ONCE(rcu_cpu_stall_timeout, 3);
 501                till_stall_check = 3;
 502        } else if (till_stall_check > 300) {
 503                WRITE_ONCE(rcu_cpu_stall_timeout, 300);
 504                till_stall_check = 300;
 505        }
 506        return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 507}
 508
 509void rcu_sysrq_start(void)
 510{
 511        if (!rcu_cpu_stall_suppress)
 512                rcu_cpu_stall_suppress = 2;
 513}
 514
 515void rcu_sysrq_end(void)
 516{
 517        if (rcu_cpu_stall_suppress == 2)
 518                rcu_cpu_stall_suppress = 0;
 519}
 520
 521static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 522{
 523        rcu_cpu_stall_suppress = 1;
 524        return NOTIFY_DONE;
 525}
 526
 527static struct notifier_block rcu_panic_block = {
 528        .notifier_call = rcu_panic,
 529};
 530
 531static int __init check_cpu_stall_init(void)
 532{
 533        atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 534        return 0;
 535}
 536early_initcall(check_cpu_stall_init);
 537
 538#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 539
 540#ifdef CONFIG_TASKS_RCU
 541
 542/*
 543 * Simple variant of RCU whose quiescent states are voluntary context switch,
 544 * user-space execution, and idle.  As such, grace periods can take one good
 545 * long time.  There are no read-side primitives similar to rcu_read_lock()
 546 * and rcu_read_unlock() because this implementation is intended to get
 547 * the system into a safe state for some of the manipulations involved in
 548 * tracing and the like.  Finally, this implementation does not support
 549 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 550 * per-CPU callback lists will be needed.
 551 */
 552
 553/* Global list of callbacks and associated lock. */
 554static struct rcu_head *rcu_tasks_cbs_head;
 555static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 556static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 557static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 558
 559/* Track exiting tasks in order to allow them to be waited for. */
 560DEFINE_SRCU(tasks_rcu_exit_srcu);
 561
 562/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 563static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
 564module_param(rcu_task_stall_timeout, int, 0644);
 565
 566static void rcu_spawn_tasks_kthread(void);
 567static struct task_struct *rcu_tasks_kthread_ptr;
 568
 569/*
 570 * Post an RCU-tasks callback.  First call must be from process context
 571 * after the scheduler if fully operational.
 572 */
 573void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 574{
 575        unsigned long flags;
 576        bool needwake;
 577        bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
 578
 579        rhp->next = NULL;
 580        rhp->func = func;
 581        raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 582        needwake = !rcu_tasks_cbs_head;
 583        *rcu_tasks_cbs_tail = rhp;
 584        rcu_tasks_cbs_tail = &rhp->next;
 585        raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 586        /* We can't create the thread unless interrupts are enabled. */
 587        if ((needwake && havetask) ||
 588            (!havetask && !irqs_disabled_flags(flags))) {
 589                rcu_spawn_tasks_kthread();
 590                wake_up(&rcu_tasks_cbs_wq);
 591        }
 592}
 593EXPORT_SYMBOL_GPL(call_rcu_tasks);
 594
 595/**
 596 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 597 *
 598 * Control will return to the caller some time after a full rcu-tasks
 599 * grace period has elapsed, in other words after all currently
 600 * executing rcu-tasks read-side critical sections have elapsed.  These
 601 * read-side critical sections are delimited by calls to schedule(),
 602 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 603 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 604 *
 605 * This is a very specialized primitive, intended only for a few uses in
 606 * tracing and other situations requiring manipulation of function
 607 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 608 * is not (yet) intended for heavy use from multiple CPUs.
 609 *
 610 * Note that this guarantee implies further memory-ordering guarantees.
 611 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 612 * each CPU is guaranteed to have executed a full memory barrier since the
 613 * end of its last RCU-tasks read-side critical section whose beginning
 614 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 615 * having an RCU-tasks read-side critical section that extends beyond
 616 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 617 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 618 * and before the beginning of that RCU-tasks read-side critical section.
 619 * Note that these guarantees include CPUs that are offline, idle, or
 620 * executing in user mode, as well as CPUs that are executing in the kernel.
 621 *
 622 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 623 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 624 * to have executed a full memory barrier during the execution of
 625 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 626 * (but again only if the system has more than one CPU).
 627 */
 628void synchronize_rcu_tasks(void)
 629{
 630        /* Complain if the scheduler has not started.  */
 631        RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 632                         "synchronize_rcu_tasks called too soon");
 633
 634        /* Wait for the grace period. */
 635        wait_rcu_gp(call_rcu_tasks);
 636}
 637EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 638
 639/**
 640 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 641 *
 642 * Although the current implementation is guaranteed to wait, it is not
 643 * obligated to, for example, if there are no pending callbacks.
 644 */
 645void rcu_barrier_tasks(void)
 646{
 647        /* There is only one callback queue, so this is easy.  ;-) */
 648        synchronize_rcu_tasks();
 649}
 650EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 651
 652/* See if tasks are still holding out, complain if so. */
 653static void check_holdout_task(struct task_struct *t,
 654                               bool needreport, bool *firstreport)
 655{
 656        int cpu;
 657
 658        if (!READ_ONCE(t->rcu_tasks_holdout) ||
 659            t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 660            !READ_ONCE(t->on_rq) ||
 661            (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 662             !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 663                WRITE_ONCE(t->rcu_tasks_holdout, false);
 664                list_del_init(&t->rcu_tasks_holdout_list);
 665                put_task_struct(t);
 666                return;
 667        }
 668        rcu_request_urgent_qs_task(t);
 669        if (!needreport)
 670                return;
 671        if (*firstreport) {
 672                pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 673                *firstreport = false;
 674        }
 675        cpu = task_cpu(t);
 676        pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 677                 t, ".I"[is_idle_task(t)],
 678                 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 679                 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 680                 t->rcu_tasks_idle_cpu, cpu);
 681        sched_show_task(t);
 682}
 683
 684/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 685static int __noreturn rcu_tasks_kthread(void *arg)
 686{
 687        unsigned long flags;
 688        struct task_struct *g, *t;
 689        unsigned long lastreport;
 690        struct rcu_head *list;
 691        struct rcu_head *next;
 692        LIST_HEAD(rcu_tasks_holdouts);
 693
 694        /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 695        housekeeping_affine(current);
 696
 697        /*
 698         * Each pass through the following loop makes one check for
 699         * newly arrived callbacks, and, if there are some, waits for
 700         * one RCU-tasks grace period and then invokes the callbacks.
 701         * This loop is terminated by the system going down.  ;-)
 702         */
 703        for (;;) {
 704
 705                /* Pick up any new callbacks. */
 706                raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 707                list = rcu_tasks_cbs_head;
 708                rcu_tasks_cbs_head = NULL;
 709                rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 710                raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 711
 712                /* If there were none, wait a bit and start over. */
 713                if (!list) {
 714                        wait_event_interruptible(rcu_tasks_cbs_wq,
 715                                                 rcu_tasks_cbs_head);
 716                        if (!rcu_tasks_cbs_head) {
 717                                WARN_ON(signal_pending(current));
 718                                schedule_timeout_interruptible(HZ/10);
 719                        }
 720                        continue;
 721                }
 722
 723                /*
 724                 * Wait for all pre-existing t->on_rq and t->nvcsw
 725                 * transitions to complete.  Invoking synchronize_sched()
 726                 * suffices because all these transitions occur with
 727                 * interrupts disabled.  Without this synchronize_sched(),
 728                 * a read-side critical section that started before the
 729                 * grace period might be incorrectly seen as having started
 730                 * after the grace period.
 731                 *
 732                 * This synchronize_sched() also dispenses with the
 733                 * need for a memory barrier on the first store to
 734                 * ->rcu_tasks_holdout, as it forces the store to happen
 735                 * after the beginning of the grace period.
 736                 */
 737                synchronize_sched();
 738
 739                /*
 740                 * There were callbacks, so we need to wait for an
 741                 * RCU-tasks grace period.  Start off by scanning
 742                 * the task list for tasks that are not already
 743                 * voluntarily blocked.  Mark these tasks and make
 744                 * a list of them in rcu_tasks_holdouts.
 745                 */
 746                rcu_read_lock();
 747                for_each_process_thread(g, t) {
 748                        if (t != current && READ_ONCE(t->on_rq) &&
 749                            !is_idle_task(t)) {
 750                                get_task_struct(t);
 751                                t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 752                                WRITE_ONCE(t->rcu_tasks_holdout, true);
 753                                list_add(&t->rcu_tasks_holdout_list,
 754                                         &rcu_tasks_holdouts);
 755                        }
 756                }
 757                rcu_read_unlock();
 758
 759                /*
 760                 * Wait for tasks that are in the process of exiting.
 761                 * This does only part of the job, ensuring that all
 762                 * tasks that were previously exiting reach the point
 763                 * where they have disabled preemption, allowing the
 764                 * later synchronize_sched() to finish the job.
 765                 */
 766                synchronize_srcu(&tasks_rcu_exit_srcu);
 767
 768                /*
 769                 * Each pass through the following loop scans the list
 770                 * of holdout tasks, removing any that are no longer
 771                 * holdouts.  When the list is empty, we are done.
 772                 */
 773                lastreport = jiffies;
 774                while (!list_empty(&rcu_tasks_holdouts)) {
 775                        bool firstreport;
 776                        bool needreport;
 777                        int rtst;
 778                        struct task_struct *t1;
 779
 780                        schedule_timeout_interruptible(HZ);
 781                        rtst = READ_ONCE(rcu_task_stall_timeout);
 782                        needreport = rtst > 0 &&
 783                                     time_after(jiffies, lastreport + rtst);
 784                        if (needreport)
 785                                lastreport = jiffies;
 786                        firstreport = true;
 787                        WARN_ON(signal_pending(current));
 788                        list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 789                                                rcu_tasks_holdout_list) {
 790                                check_holdout_task(t, needreport, &firstreport);
 791                                cond_resched();
 792                        }
 793                }
 794
 795                /*
 796                 * Because ->on_rq and ->nvcsw are not guaranteed
 797                 * to have a full memory barriers prior to them in the
 798                 * schedule() path, memory reordering on other CPUs could
 799                 * cause their RCU-tasks read-side critical sections to
 800                 * extend past the end of the grace period.  However,
 801                 * because these ->nvcsw updates are carried out with
 802                 * interrupts disabled, we can use synchronize_sched()
 803                 * to force the needed ordering on all such CPUs.
 804                 *
 805                 * This synchronize_sched() also confines all
 806                 * ->rcu_tasks_holdout accesses to be within the grace
 807                 * period, avoiding the need for memory barriers for
 808                 * ->rcu_tasks_holdout accesses.
 809                 *
 810                 * In addition, this synchronize_sched() waits for exiting
 811                 * tasks to complete their final preempt_disable() region
 812                 * of execution, cleaning up after the synchronize_srcu()
 813                 * above.
 814                 */
 815                synchronize_sched();
 816
 817                /* Invoke the callbacks. */
 818                while (list) {
 819                        next = list->next;
 820                        local_bh_disable();
 821                        list->func(list);
 822                        local_bh_enable();
 823                        list = next;
 824                        cond_resched();
 825                }
 826                schedule_timeout_uninterruptible(HZ/10);
 827        }
 828}
 829
 830/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
 831static void rcu_spawn_tasks_kthread(void)
 832{
 833        static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
 834        struct task_struct *t;
 835
 836        if (READ_ONCE(rcu_tasks_kthread_ptr)) {
 837                smp_mb(); /* Ensure caller sees full kthread. */
 838                return;
 839        }
 840        mutex_lock(&rcu_tasks_kthread_mutex);
 841        if (rcu_tasks_kthread_ptr) {
 842                mutex_unlock(&rcu_tasks_kthread_mutex);
 843                return;
 844        }
 845        t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 846        BUG_ON(IS_ERR(t));
 847        smp_mb(); /* Ensure others see full kthread. */
 848        WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 849        mutex_unlock(&rcu_tasks_kthread_mutex);
 850}
 851
 852#endif /* #ifdef CONFIG_TASKS_RCU */
 853
 854#ifdef CONFIG_PROVE_RCU
 855
 856/*
 857 * Early boot self test parameters, one for each flavor
 858 */
 859static bool rcu_self_test;
 860static bool rcu_self_test_bh;
 861static bool rcu_self_test_sched;
 862
 863module_param(rcu_self_test, bool, 0444);
 864module_param(rcu_self_test_bh, bool, 0444);
 865module_param(rcu_self_test_sched, bool, 0444);
 866
 867static int rcu_self_test_counter;
 868
 869static void test_callback(struct rcu_head *r)
 870{
 871        rcu_self_test_counter++;
 872        pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 873}
 874
 875static void early_boot_test_call_rcu(void)
 876{
 877        static struct rcu_head head;
 878
 879        call_rcu(&head, test_callback);
 880}
 881
 882static void early_boot_test_call_rcu_bh(void)
 883{
 884        static struct rcu_head head;
 885
 886        call_rcu_bh(&head, test_callback);
 887}
 888
 889static void early_boot_test_call_rcu_sched(void)
 890{
 891        static struct rcu_head head;
 892
 893        call_rcu_sched(&head, test_callback);
 894}
 895
 896void rcu_early_boot_tests(void)
 897{
 898        pr_info("Running RCU self tests\n");
 899
 900        if (rcu_self_test)
 901                early_boot_test_call_rcu();
 902        if (rcu_self_test_bh)
 903                early_boot_test_call_rcu_bh();
 904        if (rcu_self_test_sched)
 905                early_boot_test_call_rcu_sched();
 906        rcu_test_sync_prims();
 907}
 908
 909static int rcu_verify_early_boot_tests(void)
 910{
 911        int ret = 0;
 912        int early_boot_test_counter = 0;
 913
 914        if (rcu_self_test) {
 915                early_boot_test_counter++;
 916                rcu_barrier();
 917        }
 918        if (rcu_self_test_bh) {
 919                early_boot_test_counter++;
 920                rcu_barrier_bh();
 921        }
 922        if (rcu_self_test_sched) {
 923                early_boot_test_counter++;
 924                rcu_barrier_sched();
 925        }
 926
 927        if (rcu_self_test_counter != early_boot_test_counter) {
 928                WARN_ON(1);
 929                ret = -1;
 930        }
 931
 932        return ret;
 933}
 934late_initcall(rcu_verify_early_boot_tests);
 935#else
 936void rcu_early_boot_tests(void) {}
 937#endif /* CONFIG_PROVE_RCU */
 938