linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
  34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  35#include <linux/hugetlb.h>
  36#include <linux/memcontrol.h>
  37#include <linux/cleancache.h>
  38#include <linux/rmap.h>
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem              (truncate_pagecache)
  67 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock             (exclusive_swap_page, others)
  69 *        ->mapping->tree_lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  77 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page               (access_process_vm)
  81 *
  82 *  ->i_mutex                   (generic_perform_write)
  83 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock                   (fs/fs-writeback.c)
  87 *    ->mapping->tree_lock      (__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock           (vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock               (try_to_unmap_one)
  97 *    ->private_lock            (try_to_unmap_one)
  98 *    ->tree_lock               (try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
 101 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 102 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 108 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115                                  struct page *page, void **shadowp)
 116{
 117        struct radix_tree_node *node;
 118        void **slot;
 119        int error;
 120
 121        error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 122                                    &node, &slot);
 123        if (error)
 124                return error;
 125        if (*slot) {
 126                void *p;
 127
 128                p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 129                if (!radix_tree_exceptional_entry(p))
 130                        return -EEXIST;
 131
 132                mapping->nrexceptional--;
 133                if (!dax_mapping(mapping)) {
 134                        if (shadowp)
 135                                *shadowp = p;
 136                } else {
 137                        /* DAX can replace empty locked entry with a hole */
 138                        WARN_ON_ONCE(p !=
 139                                dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
 140                        /* Wakeup waiters for exceptional entry lock */
 141                        dax_wake_mapping_entry_waiter(mapping, page->index, p,
 142                                                      true);
 143                }
 144        }
 145        __radix_tree_replace(&mapping->page_tree, node, slot, page,
 146                             workingset_update_node, mapping);
 147        mapping->nrpages++;
 148        return 0;
 149}
 150
 151static void page_cache_tree_delete(struct address_space *mapping,
 152                                   struct page *page, void *shadow)
 153{
 154        int i, nr;
 155
 156        /* hugetlb pages are represented by one entry in the radix tree */
 157        nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 158
 159        VM_BUG_ON_PAGE(!PageLocked(page), page);
 160        VM_BUG_ON_PAGE(PageTail(page), page);
 161        VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 162
 163        for (i = 0; i < nr; i++) {
 164                struct radix_tree_node *node;
 165                void **slot;
 166
 167                __radix_tree_lookup(&mapping->page_tree, page->index + i,
 168                                    &node, &slot);
 169
 170                VM_BUG_ON_PAGE(!node && nr != 1, page);
 171
 172                radix_tree_clear_tags(&mapping->page_tree, node, slot);
 173                __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
 174                                     workingset_update_node, mapping);
 175        }
 176
 177        if (shadow) {
 178                mapping->nrexceptional += nr;
 179                /*
 180                 * Make sure the nrexceptional update is committed before
 181                 * the nrpages update so that final truncate racing
 182                 * with reclaim does not see both counters 0 at the
 183                 * same time and miss a shadow entry.
 184                 */
 185                smp_wmb();
 186        }
 187        mapping->nrpages -= nr;
 188}
 189
 190/*
 191 * Delete a page from the page cache and free it. Caller has to make
 192 * sure the page is locked and that nobody else uses it - or that usage
 193 * is safe.  The caller must hold the mapping's tree_lock.
 194 */
 195void __delete_from_page_cache(struct page *page, void *shadow)
 196{
 197        struct address_space *mapping = page->mapping;
 198        int nr = hpage_nr_pages(page);
 199
 200        trace_mm_filemap_delete_from_page_cache(page);
 201        /*
 202         * if we're uptodate, flush out into the cleancache, otherwise
 203         * invalidate any existing cleancache entries.  We can't leave
 204         * stale data around in the cleancache once our page is gone
 205         */
 206        if (PageUptodate(page) && PageMappedToDisk(page))
 207                cleancache_put_page(page);
 208        else
 209                cleancache_invalidate_page(mapping, page);
 210
 211        VM_BUG_ON_PAGE(PageTail(page), page);
 212        VM_BUG_ON_PAGE(page_mapped(page), page);
 213        if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 214                int mapcount;
 215
 216                pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 217                         current->comm, page_to_pfn(page));
 218                dump_page(page, "still mapped when deleted");
 219                dump_stack();
 220                add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 221
 222                mapcount = page_mapcount(page);
 223                if (mapping_exiting(mapping) &&
 224                    page_count(page) >= mapcount + 2) {
 225                        /*
 226                         * All vmas have already been torn down, so it's
 227                         * a good bet that actually the page is unmapped,
 228                         * and we'd prefer not to leak it: if we're wrong,
 229                         * some other bad page check should catch it later.
 230                         */
 231                        page_mapcount_reset(page);
 232                        page_ref_sub(page, mapcount);
 233                }
 234        }
 235
 236        page_cache_tree_delete(mapping, page, shadow);
 237
 238        page->mapping = NULL;
 239        /* Leave page->index set: truncation lookup relies upon it */
 240
 241        /* hugetlb pages do not participate in page cache accounting. */
 242        if (!PageHuge(page))
 243                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 244        if (PageSwapBacked(page)) {
 245                __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 246                if (PageTransHuge(page))
 247                        __dec_node_page_state(page, NR_SHMEM_THPS);
 248        } else {
 249                VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
 250        }
 251
 252        /*
 253         * At this point page must be either written or cleaned by truncate.
 254         * Dirty page here signals a bug and loss of unwritten data.
 255         *
 256         * This fixes dirty accounting after removing the page entirely but
 257         * leaves PageDirty set: it has no effect for truncated page and
 258         * anyway will be cleared before returning page into buddy allocator.
 259         */
 260        if (WARN_ON_ONCE(PageDirty(page)))
 261                account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 262}
 263
 264/**
 265 * delete_from_page_cache - delete page from page cache
 266 * @page: the page which the kernel is trying to remove from page cache
 267 *
 268 * This must be called only on pages that have been verified to be in the page
 269 * cache and locked.  It will never put the page into the free list, the caller
 270 * has a reference on the page.
 271 */
 272void delete_from_page_cache(struct page *page)
 273{
 274        struct address_space *mapping = page_mapping(page);
 275        unsigned long flags;
 276        void (*freepage)(struct page *);
 277
 278        BUG_ON(!PageLocked(page));
 279
 280        freepage = mapping->a_ops->freepage;
 281
 282        spin_lock_irqsave(&mapping->tree_lock, flags);
 283        __delete_from_page_cache(page, NULL);
 284        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 285
 286        if (freepage)
 287                freepage(page);
 288
 289        if (PageTransHuge(page) && !PageHuge(page)) {
 290                page_ref_sub(page, HPAGE_PMD_NR);
 291                VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 292        } else {
 293                put_page(page);
 294        }
 295}
 296EXPORT_SYMBOL(delete_from_page_cache);
 297
 298int filemap_check_errors(struct address_space *mapping)
 299{
 300        int ret = 0;
 301        /* Check for outstanding write errors */
 302        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 303            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 304                ret = -ENOSPC;
 305        if (test_bit(AS_EIO, &mapping->flags) &&
 306            test_and_clear_bit(AS_EIO, &mapping->flags))
 307                ret = -EIO;
 308        return ret;
 309}
 310EXPORT_SYMBOL(filemap_check_errors);
 311
 312/**
 313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 314 * @mapping:    address space structure to write
 315 * @start:      offset in bytes where the range starts
 316 * @end:        offset in bytes where the range ends (inclusive)
 317 * @sync_mode:  enable synchronous operation
 318 *
 319 * Start writeback against all of a mapping's dirty pages that lie
 320 * within the byte offsets <start, end> inclusive.
 321 *
 322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 323 * opposed to a regular memory cleansing writeback.  The difference between
 324 * these two operations is that if a dirty page/buffer is encountered, it must
 325 * be waited upon, and not just skipped over.
 326 */
 327int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 328                                loff_t end, int sync_mode)
 329{
 330        int ret;
 331        struct writeback_control wbc = {
 332                .sync_mode = sync_mode,
 333                .nr_to_write = LONG_MAX,
 334                .range_start = start,
 335                .range_end = end,
 336        };
 337
 338        if (!mapping_cap_writeback_dirty(mapping))
 339                return 0;
 340
 341        wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 342        ret = do_writepages(mapping, &wbc);
 343        wbc_detach_inode(&wbc);
 344        return ret;
 345}
 346
 347static inline int __filemap_fdatawrite(struct address_space *mapping,
 348        int sync_mode)
 349{
 350        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 351}
 352
 353int filemap_fdatawrite(struct address_space *mapping)
 354{
 355        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 356}
 357EXPORT_SYMBOL(filemap_fdatawrite);
 358
 359int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 360                                loff_t end)
 361{
 362        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 363}
 364EXPORT_SYMBOL(filemap_fdatawrite_range);
 365
 366/**
 367 * filemap_flush - mostly a non-blocking flush
 368 * @mapping:    target address_space
 369 *
 370 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 371 * purposes - I/O may not be started against all dirty pages.
 372 */
 373int filemap_flush(struct address_space *mapping)
 374{
 375        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 376}
 377EXPORT_SYMBOL(filemap_flush);
 378
 379static int __filemap_fdatawait_range(struct address_space *mapping,
 380                                     loff_t start_byte, loff_t end_byte)
 381{
 382        pgoff_t index = start_byte >> PAGE_SHIFT;
 383        pgoff_t end = end_byte >> PAGE_SHIFT;
 384        struct pagevec pvec;
 385        int nr_pages;
 386        int ret = 0;
 387
 388        if (end_byte < start_byte)
 389                goto out;
 390
 391        pagevec_init(&pvec, 0);
 392        while ((index <= end) &&
 393                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 394                        PAGECACHE_TAG_WRITEBACK,
 395                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 396                unsigned i;
 397
 398                for (i = 0; i < nr_pages; i++) {
 399                        struct page *page = pvec.pages[i];
 400
 401                        /* until radix tree lookup accepts end_index */
 402                        if (page->index > end)
 403                                continue;
 404
 405                        wait_on_page_writeback(page);
 406                        if (TestClearPageError(page))
 407                                ret = -EIO;
 408                }
 409                pagevec_release(&pvec);
 410                cond_resched();
 411        }
 412out:
 413        return ret;
 414}
 415
 416/**
 417 * filemap_fdatawait_range - wait for writeback to complete
 418 * @mapping:            address space structure to wait for
 419 * @start_byte:         offset in bytes where the range starts
 420 * @end_byte:           offset in bytes where the range ends (inclusive)
 421 *
 422 * Walk the list of under-writeback pages of the given address space
 423 * in the given range and wait for all of them.  Check error status of
 424 * the address space and return it.
 425 *
 426 * Since the error status of the address space is cleared by this function,
 427 * callers are responsible for checking the return value and handling and/or
 428 * reporting the error.
 429 */
 430int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 431                            loff_t end_byte)
 432{
 433        int ret, ret2;
 434
 435        ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 436        ret2 = filemap_check_errors(mapping);
 437        if (!ret)
 438                ret = ret2;
 439
 440        return ret;
 441}
 442EXPORT_SYMBOL(filemap_fdatawait_range);
 443
 444/**
 445 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 446 * @mapping: address space structure to wait for
 447 *
 448 * Walk the list of under-writeback pages of the given address space
 449 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 450 * does not clear error status of the address space.
 451 *
 452 * Use this function if callers don't handle errors themselves.  Expected
 453 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 454 * fsfreeze(8)
 455 */
 456void filemap_fdatawait_keep_errors(struct address_space *mapping)
 457{
 458        loff_t i_size = i_size_read(mapping->host);
 459
 460        if (i_size == 0)
 461                return;
 462
 463        __filemap_fdatawait_range(mapping, 0, i_size - 1);
 464}
 465
 466/**
 467 * filemap_fdatawait - wait for all under-writeback pages to complete
 468 * @mapping: address space structure to wait for
 469 *
 470 * Walk the list of under-writeback pages of the given address space
 471 * and wait for all of them.  Check error status of the address space
 472 * and return it.
 473 *
 474 * Since the error status of the address space is cleared by this function,
 475 * callers are responsible for checking the return value and handling and/or
 476 * reporting the error.
 477 */
 478int filemap_fdatawait(struct address_space *mapping)
 479{
 480        loff_t i_size = i_size_read(mapping->host);
 481
 482        if (i_size == 0)
 483                return 0;
 484
 485        return filemap_fdatawait_range(mapping, 0, i_size - 1);
 486}
 487EXPORT_SYMBOL(filemap_fdatawait);
 488
 489int filemap_write_and_wait(struct address_space *mapping)
 490{
 491        int err = 0;
 492
 493        if ((!dax_mapping(mapping) && mapping->nrpages) ||
 494            (dax_mapping(mapping) && mapping->nrexceptional)) {
 495                err = filemap_fdatawrite(mapping);
 496                /*
 497                 * Even if the above returned error, the pages may be
 498                 * written partially (e.g. -ENOSPC), so we wait for it.
 499                 * But the -EIO is special case, it may indicate the worst
 500                 * thing (e.g. bug) happened, so we avoid waiting for it.
 501                 */
 502                if (err != -EIO) {
 503                        int err2 = filemap_fdatawait(mapping);
 504                        if (!err)
 505                                err = err2;
 506                }
 507        } else {
 508                err = filemap_check_errors(mapping);
 509        }
 510        return err;
 511}
 512EXPORT_SYMBOL(filemap_write_and_wait);
 513
 514/**
 515 * filemap_write_and_wait_range - write out & wait on a file range
 516 * @mapping:    the address_space for the pages
 517 * @lstart:     offset in bytes where the range starts
 518 * @lend:       offset in bytes where the range ends (inclusive)
 519 *
 520 * Write out and wait upon file offsets lstart->lend, inclusive.
 521 *
 522 * Note that @lend is inclusive (describes the last byte to be written) so
 523 * that this function can be used to write to the very end-of-file (end = -1).
 524 */
 525int filemap_write_and_wait_range(struct address_space *mapping,
 526                                 loff_t lstart, loff_t lend)
 527{
 528        int err = 0;
 529
 530        if ((!dax_mapping(mapping) && mapping->nrpages) ||
 531            (dax_mapping(mapping) && mapping->nrexceptional)) {
 532                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 533                                                 WB_SYNC_ALL);
 534                /* See comment of filemap_write_and_wait() */
 535                if (err != -EIO) {
 536                        int err2 = filemap_fdatawait_range(mapping,
 537                                                lstart, lend);
 538                        if (!err)
 539                                err = err2;
 540                }
 541        } else {
 542                err = filemap_check_errors(mapping);
 543        }
 544        return err;
 545}
 546EXPORT_SYMBOL(filemap_write_and_wait_range);
 547
 548/**
 549 * replace_page_cache_page - replace a pagecache page with a new one
 550 * @old:        page to be replaced
 551 * @new:        page to replace with
 552 * @gfp_mask:   allocation mode
 553 *
 554 * This function replaces a page in the pagecache with a new one.  On
 555 * success it acquires the pagecache reference for the new page and
 556 * drops it for the old page.  Both the old and new pages must be
 557 * locked.  This function does not add the new page to the LRU, the
 558 * caller must do that.
 559 *
 560 * The remove + add is atomic.  The only way this function can fail is
 561 * memory allocation failure.
 562 */
 563int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 564{
 565        int error;
 566
 567        VM_BUG_ON_PAGE(!PageLocked(old), old);
 568        VM_BUG_ON_PAGE(!PageLocked(new), new);
 569        VM_BUG_ON_PAGE(new->mapping, new);
 570
 571        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 572        if (!error) {
 573                struct address_space *mapping = old->mapping;
 574                void (*freepage)(struct page *);
 575                unsigned long flags;
 576
 577                pgoff_t offset = old->index;
 578                freepage = mapping->a_ops->freepage;
 579
 580                get_page(new);
 581                new->mapping = mapping;
 582                new->index = offset;
 583
 584                spin_lock_irqsave(&mapping->tree_lock, flags);
 585                __delete_from_page_cache(old, NULL);
 586                error = page_cache_tree_insert(mapping, new, NULL);
 587                BUG_ON(error);
 588
 589                /*
 590                 * hugetlb pages do not participate in page cache accounting.
 591                 */
 592                if (!PageHuge(new))
 593                        __inc_node_page_state(new, NR_FILE_PAGES);
 594                if (PageSwapBacked(new))
 595                        __inc_node_page_state(new, NR_SHMEM);
 596                spin_unlock_irqrestore(&mapping->tree_lock, flags);
 597                mem_cgroup_migrate(old, new);
 598                radix_tree_preload_end();
 599                if (freepage)
 600                        freepage(old);
 601                put_page(old);
 602        }
 603
 604        return error;
 605}
 606EXPORT_SYMBOL_GPL(replace_page_cache_page);
 607
 608static int __add_to_page_cache_locked(struct page *page,
 609                                      struct address_space *mapping,
 610                                      pgoff_t offset, gfp_t gfp_mask,
 611                                      void **shadowp)
 612{
 613        int huge = PageHuge(page);
 614        struct mem_cgroup *memcg;
 615        int error;
 616
 617        VM_BUG_ON_PAGE(!PageLocked(page), page);
 618        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 619
 620        if (!huge) {
 621                error = mem_cgroup_try_charge(page, current->mm,
 622                                              gfp_mask, &memcg, false);
 623                if (error)
 624                        return error;
 625        }
 626
 627        error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 628        if (error) {
 629                if (!huge)
 630                        mem_cgroup_cancel_charge(page, memcg, false);
 631                return error;
 632        }
 633
 634        get_page(page);
 635        page->mapping = mapping;
 636        page->index = offset;
 637
 638        spin_lock_irq(&mapping->tree_lock);
 639        error = page_cache_tree_insert(mapping, page, shadowp);
 640        radix_tree_preload_end();
 641        if (unlikely(error))
 642                goto err_insert;
 643
 644        /* hugetlb pages do not participate in page cache accounting. */
 645        if (!huge)
 646                __inc_node_page_state(page, NR_FILE_PAGES);
 647        spin_unlock_irq(&mapping->tree_lock);
 648        if (!huge)
 649                mem_cgroup_commit_charge(page, memcg, false, false);
 650        trace_mm_filemap_add_to_page_cache(page);
 651        return 0;
 652err_insert:
 653        page->mapping = NULL;
 654        /* Leave page->index set: truncation relies upon it */
 655        spin_unlock_irq(&mapping->tree_lock);
 656        if (!huge)
 657                mem_cgroup_cancel_charge(page, memcg, false);
 658        put_page(page);
 659        return error;
 660}
 661
 662/**
 663 * add_to_page_cache_locked - add a locked page to the pagecache
 664 * @page:       page to add
 665 * @mapping:    the page's address_space
 666 * @offset:     page index
 667 * @gfp_mask:   page allocation mode
 668 *
 669 * This function is used to add a page to the pagecache. It must be locked.
 670 * This function does not add the page to the LRU.  The caller must do that.
 671 */
 672int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 673                pgoff_t offset, gfp_t gfp_mask)
 674{
 675        return __add_to_page_cache_locked(page, mapping, offset,
 676                                          gfp_mask, NULL);
 677}
 678EXPORT_SYMBOL(add_to_page_cache_locked);
 679
 680int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 681                                pgoff_t offset, gfp_t gfp_mask)
 682{
 683        void *shadow = NULL;
 684        int ret;
 685
 686        __SetPageLocked(page);
 687        ret = __add_to_page_cache_locked(page, mapping, offset,
 688                                         gfp_mask, &shadow);
 689        if (unlikely(ret))
 690                __ClearPageLocked(page);
 691        else {
 692                /*
 693                 * The page might have been evicted from cache only
 694                 * recently, in which case it should be activated like
 695                 * any other repeatedly accessed page.
 696                 * The exception is pages getting rewritten; evicting other
 697                 * data from the working set, only to cache data that will
 698                 * get overwritten with something else, is a waste of memory.
 699                 */
 700                if (!(gfp_mask & __GFP_WRITE) &&
 701                    shadow && workingset_refault(shadow)) {
 702                        SetPageActive(page);
 703                        workingset_activation(page);
 704                } else
 705                        ClearPageActive(page);
 706                lru_cache_add(page);
 707        }
 708        return ret;
 709}
 710EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 711
 712#ifdef CONFIG_NUMA
 713struct page *__page_cache_alloc(gfp_t gfp)
 714{
 715        int n;
 716        struct page *page;
 717
 718        if (cpuset_do_page_mem_spread()) {
 719                unsigned int cpuset_mems_cookie;
 720                do {
 721                        cpuset_mems_cookie = read_mems_allowed_begin();
 722                        n = cpuset_mem_spread_node();
 723                        page = __alloc_pages_node(n, gfp, 0);
 724                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 725
 726                return page;
 727        }
 728        return alloc_pages(gfp, 0);
 729}
 730EXPORT_SYMBOL(__page_cache_alloc);
 731#endif
 732
 733/*
 734 * In order to wait for pages to become available there must be
 735 * waitqueues associated with pages. By using a hash table of
 736 * waitqueues where the bucket discipline is to maintain all
 737 * waiters on the same queue and wake all when any of the pages
 738 * become available, and for the woken contexts to check to be
 739 * sure the appropriate page became available, this saves space
 740 * at a cost of "thundering herd" phenomena during rare hash
 741 * collisions.
 742 */
 743#define PAGE_WAIT_TABLE_BITS 8
 744#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 745static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 746
 747static wait_queue_head_t *page_waitqueue(struct page *page)
 748{
 749        return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 750}
 751
 752void __init pagecache_init(void)
 753{
 754        int i;
 755
 756        for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 757                init_waitqueue_head(&page_wait_table[i]);
 758
 759        page_writeback_init();
 760}
 761
 762struct wait_page_key {
 763        struct page *page;
 764        int bit_nr;
 765        int page_match;
 766};
 767
 768struct wait_page_queue {
 769        struct page *page;
 770        int bit_nr;
 771        wait_queue_t wait;
 772};
 773
 774static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 775{
 776        struct wait_page_key *key = arg;
 777        struct wait_page_queue *wait_page
 778                = container_of(wait, struct wait_page_queue, wait);
 779
 780        if (wait_page->page != key->page)
 781               return 0;
 782        key->page_match = 1;
 783
 784        if (wait_page->bit_nr != key->bit_nr)
 785                return 0;
 786        if (test_bit(key->bit_nr, &key->page->flags))
 787                return 0;
 788
 789        return autoremove_wake_function(wait, mode, sync, key);
 790}
 791
 792static void wake_up_page_bit(struct page *page, int bit_nr)
 793{
 794        wait_queue_head_t *q = page_waitqueue(page);
 795        struct wait_page_key key;
 796        unsigned long flags;
 797
 798        key.page = page;
 799        key.bit_nr = bit_nr;
 800        key.page_match = 0;
 801
 802        spin_lock_irqsave(&q->lock, flags);
 803        __wake_up_locked_key(q, TASK_NORMAL, &key);
 804        /*
 805         * It is possible for other pages to have collided on the waitqueue
 806         * hash, so in that case check for a page match. That prevents a long-
 807         * term waiter
 808         *
 809         * It is still possible to miss a case here, when we woke page waiters
 810         * and removed them from the waitqueue, but there are still other
 811         * page waiters.
 812         */
 813        if (!waitqueue_active(q) || !key.page_match) {
 814                ClearPageWaiters(page);
 815                /*
 816                 * It's possible to miss clearing Waiters here, when we woke
 817                 * our page waiters, but the hashed waitqueue has waiters for
 818                 * other pages on it.
 819                 *
 820                 * That's okay, it's a rare case. The next waker will clear it.
 821                 */
 822        }
 823        spin_unlock_irqrestore(&q->lock, flags);
 824}
 825
 826static void wake_up_page(struct page *page, int bit)
 827{
 828        if (!PageWaiters(page))
 829                return;
 830        wake_up_page_bit(page, bit);
 831}
 832
 833static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 834                struct page *page, int bit_nr, int state, bool lock)
 835{
 836        struct wait_page_queue wait_page;
 837        wait_queue_t *wait = &wait_page.wait;
 838        int ret = 0;
 839
 840        init_wait(wait);
 841        wait->func = wake_page_function;
 842        wait_page.page = page;
 843        wait_page.bit_nr = bit_nr;
 844
 845        for (;;) {
 846                spin_lock_irq(&q->lock);
 847
 848                if (likely(list_empty(&wait->task_list))) {
 849                        if (lock)
 850                                __add_wait_queue_tail_exclusive(q, wait);
 851                        else
 852                                __add_wait_queue(q, wait);
 853                        SetPageWaiters(page);
 854                }
 855
 856                set_current_state(state);
 857
 858                spin_unlock_irq(&q->lock);
 859
 860                if (likely(test_bit(bit_nr, &page->flags))) {
 861                        io_schedule();
 862                        if (unlikely(signal_pending_state(state, current))) {
 863                                ret = -EINTR;
 864                                break;
 865                        }
 866                }
 867
 868                if (lock) {
 869                        if (!test_and_set_bit_lock(bit_nr, &page->flags))
 870                                break;
 871                } else {
 872                        if (!test_bit(bit_nr, &page->flags))
 873                                break;
 874                }
 875        }
 876
 877        finish_wait(q, wait);
 878
 879        /*
 880         * A signal could leave PageWaiters set. Clearing it here if
 881         * !waitqueue_active would be possible (by open-coding finish_wait),
 882         * but still fail to catch it in the case of wait hash collision. We
 883         * already can fail to clear wait hash collision cases, so don't
 884         * bother with signals either.
 885         */
 886
 887        return ret;
 888}
 889
 890void wait_on_page_bit(struct page *page, int bit_nr)
 891{
 892        wait_queue_head_t *q = page_waitqueue(page);
 893        wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
 894}
 895EXPORT_SYMBOL(wait_on_page_bit);
 896
 897int wait_on_page_bit_killable(struct page *page, int bit_nr)
 898{
 899        wait_queue_head_t *q = page_waitqueue(page);
 900        return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
 901}
 902
 903/**
 904 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 905 * @page: Page defining the wait queue of interest
 906 * @waiter: Waiter to add to the queue
 907 *
 908 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 909 */
 910void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 911{
 912        wait_queue_head_t *q = page_waitqueue(page);
 913        unsigned long flags;
 914
 915        spin_lock_irqsave(&q->lock, flags);
 916        __add_wait_queue(q, waiter);
 917        SetPageWaiters(page);
 918        spin_unlock_irqrestore(&q->lock, flags);
 919}
 920EXPORT_SYMBOL_GPL(add_page_wait_queue);
 921
 922#ifndef clear_bit_unlock_is_negative_byte
 923
 924/*
 925 * PG_waiters is the high bit in the same byte as PG_lock.
 926 *
 927 * On x86 (and on many other architectures), we can clear PG_lock and
 928 * test the sign bit at the same time. But if the architecture does
 929 * not support that special operation, we just do this all by hand
 930 * instead.
 931 *
 932 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 933 * being cleared, but a memory barrier should be unneccssary since it is
 934 * in the same byte as PG_locked.
 935 */
 936static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
 937{
 938        clear_bit_unlock(nr, mem);
 939        /* smp_mb__after_atomic(); */
 940        return test_bit(PG_waiters, mem);
 941}
 942
 943#endif
 944
 945/**
 946 * unlock_page - unlock a locked page
 947 * @page: the page
 948 *
 949 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 950 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 951 * mechanism between PageLocked pages and PageWriteback pages is shared.
 952 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 953 *
 954 * Note that this depends on PG_waiters being the sign bit in the byte
 955 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 956 * clear the PG_locked bit and test PG_waiters at the same time fairly
 957 * portably (architectures that do LL/SC can test any bit, while x86 can
 958 * test the sign bit).
 959 */
 960void unlock_page(struct page *page)
 961{
 962        BUILD_BUG_ON(PG_waiters != 7);
 963        page = compound_head(page);
 964        VM_BUG_ON_PAGE(!PageLocked(page), page);
 965        if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
 966                wake_up_page_bit(page, PG_locked);
 967}
 968EXPORT_SYMBOL(unlock_page);
 969
 970/**
 971 * end_page_writeback - end writeback against a page
 972 * @page: the page
 973 */
 974void end_page_writeback(struct page *page)
 975{
 976        /*
 977         * TestClearPageReclaim could be used here but it is an atomic
 978         * operation and overkill in this particular case. Failing to
 979         * shuffle a page marked for immediate reclaim is too mild to
 980         * justify taking an atomic operation penalty at the end of
 981         * ever page writeback.
 982         */
 983        if (PageReclaim(page)) {
 984                ClearPageReclaim(page);
 985                rotate_reclaimable_page(page);
 986        }
 987
 988        if (!test_clear_page_writeback(page))
 989                BUG();
 990
 991        smp_mb__after_atomic();
 992        wake_up_page(page, PG_writeback);
 993}
 994EXPORT_SYMBOL(end_page_writeback);
 995
 996/*
 997 * After completing I/O on a page, call this routine to update the page
 998 * flags appropriately
 999 */
1000void page_endio(struct page *page, bool is_write, int err)
1001{
1002        if (!is_write) {
1003                if (!err) {
1004                        SetPageUptodate(page);
1005                } else {
1006                        ClearPageUptodate(page);
1007                        SetPageError(page);
1008                }
1009                unlock_page(page);
1010        } else {
1011                if (err) {
1012                        struct address_space *mapping;
1013
1014                        SetPageError(page);
1015                        mapping = page_mapping(page);
1016                        if (mapping)
1017                                mapping_set_error(mapping, err);
1018                }
1019                end_page_writeback(page);
1020        }
1021}
1022EXPORT_SYMBOL_GPL(page_endio);
1023
1024/**
1025 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1026 * @__page: the page to lock
1027 */
1028void __lock_page(struct page *__page)
1029{
1030        struct page *page = compound_head(__page);
1031        wait_queue_head_t *q = page_waitqueue(page);
1032        wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1033}
1034EXPORT_SYMBOL(__lock_page);
1035
1036int __lock_page_killable(struct page *__page)
1037{
1038        struct page *page = compound_head(__page);
1039        wait_queue_head_t *q = page_waitqueue(page);
1040        return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1041}
1042EXPORT_SYMBOL_GPL(__lock_page_killable);
1043
1044/*
1045 * Return values:
1046 * 1 - page is locked; mmap_sem is still held.
1047 * 0 - page is not locked.
1048 *     mmap_sem has been released (up_read()), unless flags had both
1049 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1050 *     which case mmap_sem is still held.
1051 *
1052 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1053 * with the page locked and the mmap_sem unperturbed.
1054 */
1055int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1056                         unsigned int flags)
1057{
1058        if (flags & FAULT_FLAG_ALLOW_RETRY) {
1059                /*
1060                 * CAUTION! In this case, mmap_sem is not released
1061                 * even though return 0.
1062                 */
1063                if (flags & FAULT_FLAG_RETRY_NOWAIT)
1064                        return 0;
1065
1066                up_read(&mm->mmap_sem);
1067                if (flags & FAULT_FLAG_KILLABLE)
1068                        wait_on_page_locked_killable(page);
1069                else
1070                        wait_on_page_locked(page);
1071                return 0;
1072        } else {
1073                if (flags & FAULT_FLAG_KILLABLE) {
1074                        int ret;
1075
1076                        ret = __lock_page_killable(page);
1077                        if (ret) {
1078                                up_read(&mm->mmap_sem);
1079                                return 0;
1080                        }
1081                } else
1082                        __lock_page(page);
1083                return 1;
1084        }
1085}
1086
1087/**
1088 * page_cache_next_hole - find the next hole (not-present entry)
1089 * @mapping: mapping
1090 * @index: index
1091 * @max_scan: maximum range to search
1092 *
1093 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1094 * lowest indexed hole.
1095 *
1096 * Returns: the index of the hole if found, otherwise returns an index
1097 * outside of the set specified (in which case 'return - index >=
1098 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1099 * be returned.
1100 *
1101 * page_cache_next_hole may be called under rcu_read_lock. However,
1102 * like radix_tree_gang_lookup, this will not atomically search a
1103 * snapshot of the tree at a single point in time. For example, if a
1104 * hole is created at index 5, then subsequently a hole is created at
1105 * index 10, page_cache_next_hole covering both indexes may return 10
1106 * if called under rcu_read_lock.
1107 */
1108pgoff_t page_cache_next_hole(struct address_space *mapping,
1109                             pgoff_t index, unsigned long max_scan)
1110{
1111        unsigned long i;
1112
1113        for (i = 0; i < max_scan; i++) {
1114                struct page *page;
1115
1116                page = radix_tree_lookup(&mapping->page_tree, index);
1117                if (!page || radix_tree_exceptional_entry(page))
1118                        break;
1119                index++;
1120                if (index == 0)
1121                        break;
1122        }
1123
1124        return index;
1125}
1126EXPORT_SYMBOL(page_cache_next_hole);
1127
1128/**
1129 * page_cache_prev_hole - find the prev hole (not-present entry)
1130 * @mapping: mapping
1131 * @index: index
1132 * @max_scan: maximum range to search
1133 *
1134 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1135 * the first hole.
1136 *
1137 * Returns: the index of the hole if found, otherwise returns an index
1138 * outside of the set specified (in which case 'index - return >=
1139 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1140 * will be returned.
1141 *
1142 * page_cache_prev_hole may be called under rcu_read_lock. However,
1143 * like radix_tree_gang_lookup, this will not atomically search a
1144 * snapshot of the tree at a single point in time. For example, if a
1145 * hole is created at index 10, then subsequently a hole is created at
1146 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1147 * called under rcu_read_lock.
1148 */
1149pgoff_t page_cache_prev_hole(struct address_space *mapping,
1150                             pgoff_t index, unsigned long max_scan)
1151{
1152        unsigned long i;
1153
1154        for (i = 0; i < max_scan; i++) {
1155                struct page *page;
1156
1157                page = radix_tree_lookup(&mapping->page_tree, index);
1158                if (!page || radix_tree_exceptional_entry(page))
1159                        break;
1160                index--;
1161                if (index == ULONG_MAX)
1162                        break;
1163        }
1164
1165        return index;
1166}
1167EXPORT_SYMBOL(page_cache_prev_hole);
1168
1169/**
1170 * find_get_entry - find and get a page cache entry
1171 * @mapping: the address_space to search
1172 * @offset: the page cache index
1173 *
1174 * Looks up the page cache slot at @mapping & @offset.  If there is a
1175 * page cache page, it is returned with an increased refcount.
1176 *
1177 * If the slot holds a shadow entry of a previously evicted page, or a
1178 * swap entry from shmem/tmpfs, it is returned.
1179 *
1180 * Otherwise, %NULL is returned.
1181 */
1182struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1183{
1184        void **pagep;
1185        struct page *head, *page;
1186
1187        rcu_read_lock();
1188repeat:
1189        page = NULL;
1190        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1191        if (pagep) {
1192                page = radix_tree_deref_slot(pagep);
1193                if (unlikely(!page))
1194                        goto out;
1195                if (radix_tree_exception(page)) {
1196                        if (radix_tree_deref_retry(page))
1197                                goto repeat;
1198                        /*
1199                         * A shadow entry of a recently evicted page,
1200                         * or a swap entry from shmem/tmpfs.  Return
1201                         * it without attempting to raise page count.
1202                         */
1203                        goto out;
1204                }
1205
1206                head = compound_head(page);
1207                if (!page_cache_get_speculative(head))
1208                        goto repeat;
1209
1210                /* The page was split under us? */
1211                if (compound_head(page) != head) {
1212                        put_page(head);
1213                        goto repeat;
1214                }
1215
1216                /*
1217                 * Has the page moved?
1218                 * This is part of the lockless pagecache protocol. See
1219                 * include/linux/pagemap.h for details.
1220                 */
1221                if (unlikely(page != *pagep)) {
1222                        put_page(head);
1223                        goto repeat;
1224                }
1225        }
1226out:
1227        rcu_read_unlock();
1228
1229        return page;
1230}
1231EXPORT_SYMBOL(find_get_entry);
1232
1233/**
1234 * find_lock_entry - locate, pin and lock a page cache entry
1235 * @mapping: the address_space to search
1236 * @offset: the page cache index
1237 *
1238 * Looks up the page cache slot at @mapping & @offset.  If there is a
1239 * page cache page, it is returned locked and with an increased
1240 * refcount.
1241 *
1242 * If the slot holds a shadow entry of a previously evicted page, or a
1243 * swap entry from shmem/tmpfs, it is returned.
1244 *
1245 * Otherwise, %NULL is returned.
1246 *
1247 * find_lock_entry() may sleep.
1248 */
1249struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1250{
1251        struct page *page;
1252
1253repeat:
1254        page = find_get_entry(mapping, offset);
1255        if (page && !radix_tree_exception(page)) {
1256                lock_page(page);
1257                /* Has the page been truncated? */
1258                if (unlikely(page_mapping(page) != mapping)) {
1259                        unlock_page(page);
1260                        put_page(page);
1261                        goto repeat;
1262                }
1263                VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1264        }
1265        return page;
1266}
1267EXPORT_SYMBOL(find_lock_entry);
1268
1269/**
1270 * pagecache_get_page - find and get a page reference
1271 * @mapping: the address_space to search
1272 * @offset: the page index
1273 * @fgp_flags: PCG flags
1274 * @gfp_mask: gfp mask to use for the page cache data page allocation
1275 *
1276 * Looks up the page cache slot at @mapping & @offset.
1277 *
1278 * PCG flags modify how the page is returned.
1279 *
1280 * @fgp_flags can be:
1281 *
1282 * - FGP_ACCESSED: the page will be marked accessed
1283 * - FGP_LOCK: Page is return locked
1284 * - FGP_CREAT: If page is not present then a new page is allocated using
1285 *   @gfp_mask and added to the page cache and the VM's LRU
1286 *   list. The page is returned locked and with an increased
1287 *   refcount. Otherwise, NULL is returned.
1288 *
1289 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1290 * if the GFP flags specified for FGP_CREAT are atomic.
1291 *
1292 * If there is a page cache page, it is returned with an increased refcount.
1293 */
1294struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1295        int fgp_flags, gfp_t gfp_mask)
1296{
1297        struct page *page;
1298
1299repeat:
1300        page = find_get_entry(mapping, offset);
1301        if (radix_tree_exceptional_entry(page))
1302                page = NULL;
1303        if (!page)
1304                goto no_page;
1305
1306        if (fgp_flags & FGP_LOCK) {
1307                if (fgp_flags & FGP_NOWAIT) {
1308                        if (!trylock_page(page)) {
1309                                put_page(page);
1310                                return NULL;
1311                        }
1312                } else {
1313                        lock_page(page);
1314                }
1315
1316                /* Has the page been truncated? */
1317                if (unlikely(page->mapping != mapping)) {
1318                        unlock_page(page);
1319                        put_page(page);
1320                        goto repeat;
1321                }
1322                VM_BUG_ON_PAGE(page->index != offset, page);
1323        }
1324
1325        if (page && (fgp_flags & FGP_ACCESSED))
1326                mark_page_accessed(page);
1327
1328no_page:
1329        if (!page && (fgp_flags & FGP_CREAT)) {
1330                int err;
1331                if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1332                        gfp_mask |= __GFP_WRITE;
1333                if (fgp_flags & FGP_NOFS)
1334                        gfp_mask &= ~__GFP_FS;
1335
1336                page = __page_cache_alloc(gfp_mask);
1337                if (!page)
1338                        return NULL;
1339
1340                if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1341                        fgp_flags |= FGP_LOCK;
1342
1343                /* Init accessed so avoid atomic mark_page_accessed later */
1344                if (fgp_flags & FGP_ACCESSED)
1345                        __SetPageReferenced(page);
1346
1347                err = add_to_page_cache_lru(page, mapping, offset,
1348                                gfp_mask & GFP_RECLAIM_MASK);
1349                if (unlikely(err)) {
1350                        put_page(page);
1351                        page = NULL;
1352                        if (err == -EEXIST)
1353                                goto repeat;
1354                }
1355        }
1356
1357        return page;
1358}
1359EXPORT_SYMBOL(pagecache_get_page);
1360
1361/**
1362 * find_get_entries - gang pagecache lookup
1363 * @mapping:    The address_space to search
1364 * @start:      The starting page cache index
1365 * @nr_entries: The maximum number of entries
1366 * @entries:    Where the resulting entries are placed
1367 * @indices:    The cache indices corresponding to the entries in @entries
1368 *
1369 * find_get_entries() will search for and return a group of up to
1370 * @nr_entries entries in the mapping.  The entries are placed at
1371 * @entries.  find_get_entries() takes a reference against any actual
1372 * pages it returns.
1373 *
1374 * The search returns a group of mapping-contiguous page cache entries
1375 * with ascending indexes.  There may be holes in the indices due to
1376 * not-present pages.
1377 *
1378 * Any shadow entries of evicted pages, or swap entries from
1379 * shmem/tmpfs, are included in the returned array.
1380 *
1381 * find_get_entries() returns the number of pages and shadow entries
1382 * which were found.
1383 */
1384unsigned find_get_entries(struct address_space *mapping,
1385                          pgoff_t start, unsigned int nr_entries,
1386                          struct page **entries, pgoff_t *indices)
1387{
1388        void **slot;
1389        unsigned int ret = 0;
1390        struct radix_tree_iter iter;
1391
1392        if (!nr_entries)
1393                return 0;
1394
1395        rcu_read_lock();
1396        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1397                struct page *head, *page;
1398repeat:
1399                page = radix_tree_deref_slot(slot);
1400                if (unlikely(!page))
1401                        continue;
1402                if (radix_tree_exception(page)) {
1403                        if (radix_tree_deref_retry(page)) {
1404                                slot = radix_tree_iter_retry(&iter);
1405                                continue;
1406                        }
1407                        /*
1408                         * A shadow entry of a recently evicted page, a swap
1409                         * entry from shmem/tmpfs or a DAX entry.  Return it
1410                         * without attempting to raise page count.
1411                         */
1412                        goto export;
1413                }
1414
1415                head = compound_head(page);
1416                if (!page_cache_get_speculative(head))
1417                        goto repeat;
1418
1419                /* The page was split under us? */
1420                if (compound_head(page) != head) {
1421                        put_page(head);
1422                        goto repeat;
1423                }
1424
1425                /* Has the page moved? */
1426                if (unlikely(page != *slot)) {
1427                        put_page(head);
1428                        goto repeat;
1429                }
1430export:
1431                indices[ret] = iter.index;
1432                entries[ret] = page;
1433                if (++ret == nr_entries)
1434                        break;
1435        }
1436        rcu_read_unlock();
1437        return ret;
1438}
1439
1440/**
1441 * find_get_pages - gang pagecache lookup
1442 * @mapping:    The address_space to search
1443 * @start:      The starting page index
1444 * @nr_pages:   The maximum number of pages
1445 * @pages:      Where the resulting pages are placed
1446 *
1447 * find_get_pages() will search for and return a group of up to
1448 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1449 * find_get_pages() takes a reference against the returned pages.
1450 *
1451 * The search returns a group of mapping-contiguous pages with ascending
1452 * indexes.  There may be holes in the indices due to not-present pages.
1453 *
1454 * find_get_pages() returns the number of pages which were found.
1455 */
1456unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1457                            unsigned int nr_pages, struct page **pages)
1458{
1459        struct radix_tree_iter iter;
1460        void **slot;
1461        unsigned ret = 0;
1462
1463        if (unlikely(!nr_pages))
1464                return 0;
1465
1466        rcu_read_lock();
1467        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1468                struct page *head, *page;
1469repeat:
1470                page = radix_tree_deref_slot(slot);
1471                if (unlikely(!page))
1472                        continue;
1473
1474                if (radix_tree_exception(page)) {
1475                        if (radix_tree_deref_retry(page)) {
1476                                slot = radix_tree_iter_retry(&iter);
1477                                continue;
1478                        }
1479                        /*
1480                         * A shadow entry of a recently evicted page,
1481                         * or a swap entry from shmem/tmpfs.  Skip
1482                         * over it.
1483                         */
1484                        continue;
1485                }
1486
1487                head = compound_head(page);
1488                if (!page_cache_get_speculative(head))
1489                        goto repeat;
1490
1491                /* The page was split under us? */
1492                if (compound_head(page) != head) {
1493                        put_page(head);
1494                        goto repeat;
1495                }
1496
1497                /* Has the page moved? */
1498                if (unlikely(page != *slot)) {
1499                        put_page(head);
1500                        goto repeat;
1501                }
1502
1503                pages[ret] = page;
1504                if (++ret == nr_pages)
1505                        break;
1506        }
1507
1508        rcu_read_unlock();
1509        return ret;
1510}
1511
1512/**
1513 * find_get_pages_contig - gang contiguous pagecache lookup
1514 * @mapping:    The address_space to search
1515 * @index:      The starting page index
1516 * @nr_pages:   The maximum number of pages
1517 * @pages:      Where the resulting pages are placed
1518 *
1519 * find_get_pages_contig() works exactly like find_get_pages(), except
1520 * that the returned number of pages are guaranteed to be contiguous.
1521 *
1522 * find_get_pages_contig() returns the number of pages which were found.
1523 */
1524unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1525                               unsigned int nr_pages, struct page **pages)
1526{
1527        struct radix_tree_iter iter;
1528        void **slot;
1529        unsigned int ret = 0;
1530
1531        if (unlikely(!nr_pages))
1532                return 0;
1533
1534        rcu_read_lock();
1535        radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1536                struct page *head, *page;
1537repeat:
1538                page = radix_tree_deref_slot(slot);
1539                /* The hole, there no reason to continue */
1540                if (unlikely(!page))
1541                        break;
1542
1543                if (radix_tree_exception(page)) {
1544                        if (radix_tree_deref_retry(page)) {
1545                                slot = radix_tree_iter_retry(&iter);
1546                                continue;
1547                        }
1548                        /*
1549                         * A shadow entry of a recently evicted page,
1550                         * or a swap entry from shmem/tmpfs.  Stop
1551                         * looking for contiguous pages.
1552                         */
1553                        break;
1554                }
1555
1556                head = compound_head(page);
1557                if (!page_cache_get_speculative(head))
1558                        goto repeat;
1559
1560                /* The page was split under us? */
1561                if (compound_head(page) != head) {
1562                        put_page(head);
1563                        goto repeat;
1564                }
1565
1566                /* Has the page moved? */
1567                if (unlikely(page != *slot)) {
1568                        put_page(head);
1569                        goto repeat;
1570                }
1571
1572                /*
1573                 * must check mapping and index after taking the ref.
1574                 * otherwise we can get both false positives and false
1575                 * negatives, which is just confusing to the caller.
1576                 */
1577                if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1578                        put_page(page);
1579                        break;
1580                }
1581
1582                pages[ret] = page;
1583                if (++ret == nr_pages)
1584                        break;
1585        }
1586        rcu_read_unlock();
1587        return ret;
1588}
1589EXPORT_SYMBOL(find_get_pages_contig);
1590
1591/**
1592 * find_get_pages_tag - find and return pages that match @tag
1593 * @mapping:    the address_space to search
1594 * @index:      the starting page index
1595 * @tag:        the tag index
1596 * @nr_pages:   the maximum number of pages
1597 * @pages:      where the resulting pages are placed
1598 *
1599 * Like find_get_pages, except we only return pages which are tagged with
1600 * @tag.   We update @index to index the next page for the traversal.
1601 */
1602unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1603                        int tag, unsigned int nr_pages, struct page **pages)
1604{
1605        struct radix_tree_iter iter;
1606        void **slot;
1607        unsigned ret = 0;
1608
1609        if (unlikely(!nr_pages))
1610                return 0;
1611
1612        rcu_read_lock();
1613        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1614                                   &iter, *index, tag) {
1615                struct page *head, *page;
1616repeat:
1617                page = radix_tree_deref_slot(slot);
1618                if (unlikely(!page))
1619                        continue;
1620
1621                if (radix_tree_exception(page)) {
1622                        if (radix_tree_deref_retry(page)) {
1623                                slot = radix_tree_iter_retry(&iter);
1624                                continue;
1625                        }
1626                        /*
1627                         * A shadow entry of a recently evicted page.
1628                         *
1629                         * Those entries should never be tagged, but
1630                         * this tree walk is lockless and the tags are
1631                         * looked up in bulk, one radix tree node at a
1632                         * time, so there is a sizable window for page
1633                         * reclaim to evict a page we saw tagged.
1634                         *
1635                         * Skip over it.
1636                         */
1637                        continue;
1638                }
1639
1640                head = compound_head(page);
1641                if (!page_cache_get_speculative(head))
1642                        goto repeat;
1643
1644                /* The page was split under us? */
1645                if (compound_head(page) != head) {
1646                        put_page(head);
1647                        goto repeat;
1648                }
1649
1650                /* Has the page moved? */
1651                if (unlikely(page != *slot)) {
1652                        put_page(head);
1653                        goto repeat;
1654                }
1655
1656                pages[ret] = page;
1657                if (++ret == nr_pages)
1658                        break;
1659        }
1660
1661        rcu_read_unlock();
1662
1663        if (ret)
1664                *index = pages[ret - 1]->index + 1;
1665
1666        return ret;
1667}
1668EXPORT_SYMBOL(find_get_pages_tag);
1669
1670/**
1671 * find_get_entries_tag - find and return entries that match @tag
1672 * @mapping:    the address_space to search
1673 * @start:      the starting page cache index
1674 * @tag:        the tag index
1675 * @nr_entries: the maximum number of entries
1676 * @entries:    where the resulting entries are placed
1677 * @indices:    the cache indices corresponding to the entries in @entries
1678 *
1679 * Like find_get_entries, except we only return entries which are tagged with
1680 * @tag.
1681 */
1682unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1683                        int tag, unsigned int nr_entries,
1684                        struct page **entries, pgoff_t *indices)
1685{
1686        void **slot;
1687        unsigned int ret = 0;
1688        struct radix_tree_iter iter;
1689
1690        if (!nr_entries)
1691                return 0;
1692
1693        rcu_read_lock();
1694        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1695                                   &iter, start, tag) {
1696                struct page *head, *page;
1697repeat:
1698                page = radix_tree_deref_slot(slot);
1699                if (unlikely(!page))
1700                        continue;
1701                if (radix_tree_exception(page)) {
1702                        if (radix_tree_deref_retry(page)) {
1703                                slot = radix_tree_iter_retry(&iter);
1704                                continue;
1705                        }
1706
1707                        /*
1708                         * A shadow entry of a recently evicted page, a swap
1709                         * entry from shmem/tmpfs or a DAX entry.  Return it
1710                         * without attempting to raise page count.
1711                         */
1712                        goto export;
1713                }
1714
1715                head = compound_head(page);
1716                if (!page_cache_get_speculative(head))
1717                        goto repeat;
1718
1719                /* The page was split under us? */
1720                if (compound_head(page) != head) {
1721                        put_page(head);
1722                        goto repeat;
1723                }
1724
1725                /* Has the page moved? */
1726                if (unlikely(page != *slot)) {
1727                        put_page(head);
1728                        goto repeat;
1729                }
1730export:
1731                indices[ret] = iter.index;
1732                entries[ret] = page;
1733                if (++ret == nr_entries)
1734                        break;
1735        }
1736        rcu_read_unlock();
1737        return ret;
1738}
1739EXPORT_SYMBOL(find_get_entries_tag);
1740
1741/*
1742 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1743 * a _large_ part of the i/o request. Imagine the worst scenario:
1744 *
1745 *      ---R__________________________________________B__________
1746 *         ^ reading here                             ^ bad block(assume 4k)
1747 *
1748 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1749 * => failing the whole request => read(R) => read(R+1) =>
1750 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1751 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1752 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1753 *
1754 * It is going insane. Fix it by quickly scaling down the readahead size.
1755 */
1756static void shrink_readahead_size_eio(struct file *filp,
1757                                        struct file_ra_state *ra)
1758{
1759        ra->ra_pages /= 4;
1760}
1761
1762/**
1763 * do_generic_file_read - generic file read routine
1764 * @filp:       the file to read
1765 * @ppos:       current file position
1766 * @iter:       data destination
1767 * @written:    already copied
1768 *
1769 * This is a generic file read routine, and uses the
1770 * mapping->a_ops->readpage() function for the actual low-level stuff.
1771 *
1772 * This is really ugly. But the goto's actually try to clarify some
1773 * of the logic when it comes to error handling etc.
1774 */
1775static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1776                struct iov_iter *iter, ssize_t written)
1777{
1778        struct address_space *mapping = filp->f_mapping;
1779        struct inode *inode = mapping->host;
1780        struct file_ra_state *ra = &filp->f_ra;
1781        pgoff_t index;
1782        pgoff_t last_index;
1783        pgoff_t prev_index;
1784        unsigned long offset;      /* offset into pagecache page */
1785        unsigned int prev_offset;
1786        int error = 0;
1787
1788        if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1789                return 0;
1790        iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1791
1792        index = *ppos >> PAGE_SHIFT;
1793        prev_index = ra->prev_pos >> PAGE_SHIFT;
1794        prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1795        last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1796        offset = *ppos & ~PAGE_MASK;
1797
1798        for (;;) {
1799                struct page *page;
1800                pgoff_t end_index;
1801                loff_t isize;
1802                unsigned long nr, ret;
1803
1804                cond_resched();
1805find_page:
1806                if (fatal_signal_pending(current)) {
1807                        error = -EINTR;
1808                        goto out;
1809                }
1810
1811                page = find_get_page(mapping, index);
1812                if (!page) {
1813                        page_cache_sync_readahead(mapping,
1814                                        ra, filp,
1815                                        index, last_index - index);
1816                        page = find_get_page(mapping, index);
1817                        if (unlikely(page == NULL))
1818                                goto no_cached_page;
1819                }
1820                if (PageReadahead(page)) {
1821                        page_cache_async_readahead(mapping,
1822                                        ra, filp, page,
1823                                        index, last_index - index);
1824                }
1825                if (!PageUptodate(page)) {
1826                        /*
1827                         * See comment in do_read_cache_page on why
1828                         * wait_on_page_locked is used to avoid unnecessarily
1829                         * serialisations and why it's safe.
1830                         */
1831                        error = wait_on_page_locked_killable(page);
1832                        if (unlikely(error))
1833                                goto readpage_error;
1834                        if (PageUptodate(page))
1835                                goto page_ok;
1836
1837                        if (inode->i_blkbits == PAGE_SHIFT ||
1838                                        !mapping->a_ops->is_partially_uptodate)
1839                                goto page_not_up_to_date;
1840                        /* pipes can't handle partially uptodate pages */
1841                        if (unlikely(iter->type & ITER_PIPE))
1842                                goto page_not_up_to_date;
1843                        if (!trylock_page(page))
1844                                goto page_not_up_to_date;
1845                        /* Did it get truncated before we got the lock? */
1846                        if (!page->mapping)
1847                                goto page_not_up_to_date_locked;
1848                        if (!mapping->a_ops->is_partially_uptodate(page,
1849                                                        offset, iter->count))
1850                                goto page_not_up_to_date_locked;
1851                        unlock_page(page);
1852                }
1853page_ok:
1854                /*
1855                 * i_size must be checked after we know the page is Uptodate.
1856                 *
1857                 * Checking i_size after the check allows us to calculate
1858                 * the correct value for "nr", which means the zero-filled
1859                 * part of the page is not copied back to userspace (unless
1860                 * another truncate extends the file - this is desired though).
1861                 */
1862
1863                isize = i_size_read(inode);
1864                end_index = (isize - 1) >> PAGE_SHIFT;
1865                if (unlikely(!isize || index > end_index)) {
1866                        put_page(page);
1867                        goto out;
1868                }
1869
1870                /* nr is the maximum number of bytes to copy from this page */
1871                nr = PAGE_SIZE;
1872                if (index == end_index) {
1873                        nr = ((isize - 1) & ~PAGE_MASK) + 1;
1874                        if (nr <= offset) {
1875                                put_page(page);
1876                                goto out;
1877                        }
1878                }
1879                nr = nr - offset;
1880
1881                /* If users can be writing to this page using arbitrary
1882                 * virtual addresses, take care about potential aliasing
1883                 * before reading the page on the kernel side.
1884                 */
1885                if (mapping_writably_mapped(mapping))
1886                        flush_dcache_page(page);
1887
1888                /*
1889                 * When a sequential read accesses a page several times,
1890                 * only mark it as accessed the first time.
1891                 */
1892                if (prev_index != index || offset != prev_offset)
1893                        mark_page_accessed(page);
1894                prev_index = index;
1895
1896                /*
1897                 * Ok, we have the page, and it's up-to-date, so
1898                 * now we can copy it to user space...
1899                 */
1900
1901                ret = copy_page_to_iter(page, offset, nr, iter);
1902                offset += ret;
1903                index += offset >> PAGE_SHIFT;
1904                offset &= ~PAGE_MASK;
1905                prev_offset = offset;
1906
1907                put_page(page);
1908                written += ret;
1909                if (!iov_iter_count(iter))
1910                        goto out;
1911                if (ret < nr) {
1912                        error = -EFAULT;
1913                        goto out;
1914                }
1915                continue;
1916
1917page_not_up_to_date:
1918                /* Get exclusive access to the page ... */
1919                error = lock_page_killable(page);
1920                if (unlikely(error))
1921                        goto readpage_error;
1922
1923page_not_up_to_date_locked:
1924                /* Did it get truncated before we got the lock? */
1925                if (!page->mapping) {
1926                        unlock_page(page);
1927                        put_page(page);
1928                        continue;
1929                }
1930
1931                /* Did somebody else fill it already? */
1932                if (PageUptodate(page)) {
1933                        unlock_page(page);
1934                        goto page_ok;
1935                }
1936
1937readpage:
1938                /*
1939                 * A previous I/O error may have been due to temporary
1940                 * failures, eg. multipath errors.
1941                 * PG_error will be set again if readpage fails.
1942                 */
1943                ClearPageError(page);
1944                /* Start the actual read. The read will unlock the page. */
1945                error = mapping->a_ops->readpage(filp, page);
1946
1947                if (unlikely(error)) {
1948                        if (error == AOP_TRUNCATED_PAGE) {
1949                                put_page(page);
1950                                error = 0;
1951                                goto find_page;
1952                        }
1953                        goto readpage_error;
1954                }
1955
1956                if (!PageUptodate(page)) {
1957                        error = lock_page_killable(page);
1958                        if (unlikely(error))
1959                                goto readpage_error;
1960                        if (!PageUptodate(page)) {
1961                                if (page->mapping == NULL) {
1962                                        /*
1963                                         * invalidate_mapping_pages got it
1964                                         */
1965                                        unlock_page(page);
1966                                        put_page(page);
1967                                        goto find_page;
1968                                }
1969                                unlock_page(page);
1970                                shrink_readahead_size_eio(filp, ra);
1971                                error = -EIO;
1972                                goto readpage_error;
1973                        }
1974                        unlock_page(page);
1975                }
1976
1977                goto page_ok;
1978
1979readpage_error:
1980                /* UHHUH! A synchronous read error occurred. Report it */
1981                put_page(page);
1982                goto out;
1983
1984no_cached_page:
1985                /*
1986                 * Ok, it wasn't cached, so we need to create a new
1987                 * page..
1988                 */
1989                page = page_cache_alloc_cold(mapping);
1990                if (!page) {
1991                        error = -ENOMEM;
1992                        goto out;
1993                }
1994                error = add_to_page_cache_lru(page, mapping, index,
1995                                mapping_gfp_constraint(mapping, GFP_KERNEL));
1996                if (error) {
1997                        put_page(page);
1998                        if (error == -EEXIST) {
1999                                error = 0;
2000                                goto find_page;
2001                        }
2002                        goto out;
2003                }
2004                goto readpage;
2005        }
2006
2007out:
2008        ra->prev_pos = prev_index;
2009        ra->prev_pos <<= PAGE_SHIFT;
2010        ra->prev_pos |= prev_offset;
2011
2012        *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2013        file_accessed(filp);
2014        return written ? written : error;
2015}
2016
2017/**
2018 * generic_file_read_iter - generic filesystem read routine
2019 * @iocb:       kernel I/O control block
2020 * @iter:       destination for the data read
2021 *
2022 * This is the "read_iter()" routine for all filesystems
2023 * that can use the page cache directly.
2024 */
2025ssize_t
2026generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2027{
2028        struct file *file = iocb->ki_filp;
2029        ssize_t retval = 0;
2030        size_t count = iov_iter_count(iter);
2031
2032        if (!count)
2033                goto out; /* skip atime */
2034
2035        if (iocb->ki_flags & IOCB_DIRECT) {
2036                struct address_space *mapping = file->f_mapping;
2037                struct inode *inode = mapping->host;
2038                loff_t size;
2039
2040                size = i_size_read(inode);
2041                retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2042                                        iocb->ki_pos + count - 1);
2043                if (retval < 0)
2044                        goto out;
2045
2046                file_accessed(file);
2047
2048                retval = mapping->a_ops->direct_IO(iocb, iter);
2049                if (retval >= 0) {
2050                        iocb->ki_pos += retval;
2051                        count -= retval;
2052                }
2053                iov_iter_revert(iter, count - iov_iter_count(iter));
2054
2055                /*
2056                 * Btrfs can have a short DIO read if we encounter
2057                 * compressed extents, so if there was an error, or if
2058                 * we've already read everything we wanted to, or if
2059                 * there was a short read because we hit EOF, go ahead
2060                 * and return.  Otherwise fallthrough to buffered io for
2061                 * the rest of the read.  Buffered reads will not work for
2062                 * DAX files, so don't bother trying.
2063                 */
2064                if (retval < 0 || !count || iocb->ki_pos >= size ||
2065                    IS_DAX(inode))
2066                        goto out;
2067        }
2068
2069        retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2070out:
2071        return retval;
2072}
2073EXPORT_SYMBOL(generic_file_read_iter);
2074
2075#ifdef CONFIG_MMU
2076/**
2077 * page_cache_read - adds requested page to the page cache if not already there
2078 * @file:       file to read
2079 * @offset:     page index
2080 * @gfp_mask:   memory allocation flags
2081 *
2082 * This adds the requested page to the page cache if it isn't already there,
2083 * and schedules an I/O to read in its contents from disk.
2084 */
2085static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2086{
2087        struct address_space *mapping = file->f_mapping;
2088        struct page *page;
2089        int ret;
2090
2091        do {
2092                page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2093                if (!page)
2094                        return -ENOMEM;
2095
2096                ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2097                if (ret == 0)
2098                        ret = mapping->a_ops->readpage(file, page);
2099                else if (ret == -EEXIST)
2100                        ret = 0; /* losing race to add is OK */
2101
2102                put_page(page);
2103
2104        } while (ret == AOP_TRUNCATED_PAGE);
2105
2106        return ret;
2107}
2108
2109#define MMAP_LOTSAMISS  (100)
2110
2111/*
2112 * Synchronous readahead happens when we don't even find
2113 * a page in the page cache at all.
2114 */
2115static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2116                                   struct file_ra_state *ra,
2117                                   struct file *file,
2118                                   pgoff_t offset)
2119{
2120        struct address_space *mapping = file->f_mapping;
2121
2122        /* If we don't want any read-ahead, don't bother */
2123        if (vma->vm_flags & VM_RAND_READ)
2124                return;
2125        if (!ra->ra_pages)
2126                return;
2127
2128        if (vma->vm_flags & VM_SEQ_READ) {
2129                page_cache_sync_readahead(mapping, ra, file, offset,
2130                                          ra->ra_pages);
2131                return;
2132        }
2133
2134        /* Avoid banging the cache line if not needed */
2135        if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2136                ra->mmap_miss++;
2137
2138        /*
2139         * Do we miss much more than hit in this file? If so,
2140         * stop bothering with read-ahead. It will only hurt.
2141         */
2142        if (ra->mmap_miss > MMAP_LOTSAMISS)
2143                return;
2144
2145        /*
2146         * mmap read-around
2147         */
2148        ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2149        ra->size = ra->ra_pages;
2150        ra->async_size = ra->ra_pages / 4;
2151        ra_submit(ra, mapping, file);
2152}
2153
2154/*
2155 * Asynchronous readahead happens when we find the page and PG_readahead,
2156 * so we want to possibly extend the readahead further..
2157 */
2158static void do_async_mmap_readahead(struct vm_area_struct *vma,
2159                                    struct file_ra_state *ra,
2160                                    struct file *file,
2161                                    struct page *page,
2162                                    pgoff_t offset)
2163{
2164        struct address_space *mapping = file->f_mapping;
2165
2166        /* If we don't want any read-ahead, don't bother */
2167        if (vma->vm_flags & VM_RAND_READ)
2168                return;
2169        if (ra->mmap_miss > 0)
2170                ra->mmap_miss--;
2171        if (PageReadahead(page))
2172                page_cache_async_readahead(mapping, ra, file,
2173                                           page, offset, ra->ra_pages);
2174}
2175
2176/**
2177 * filemap_fault - read in file data for page fault handling
2178 * @vmf:        struct vm_fault containing details of the fault
2179 *
2180 * filemap_fault() is invoked via the vma operations vector for a
2181 * mapped memory region to read in file data during a page fault.
2182 *
2183 * The goto's are kind of ugly, but this streamlines the normal case of having
2184 * it in the page cache, and handles the special cases reasonably without
2185 * having a lot of duplicated code.
2186 *
2187 * vma->vm_mm->mmap_sem must be held on entry.
2188 *
2189 * If our return value has VM_FAULT_RETRY set, it's because
2190 * lock_page_or_retry() returned 0.
2191 * The mmap_sem has usually been released in this case.
2192 * See __lock_page_or_retry() for the exception.
2193 *
2194 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2195 * has not been released.
2196 *
2197 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2198 */
2199int filemap_fault(struct vm_fault *vmf)
2200{
2201        int error;
2202        struct file *file = vmf->vma->vm_file;
2203        struct address_space *mapping = file->f_mapping;
2204        struct file_ra_state *ra = &file->f_ra;
2205        struct inode *inode = mapping->host;
2206        pgoff_t offset = vmf->pgoff;
2207        pgoff_t max_off;
2208        struct page *page;
2209        int ret = 0;
2210
2211        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2212        if (unlikely(offset >= max_off))
2213                return VM_FAULT_SIGBUS;
2214
2215        /*
2216         * Do we have something in the page cache already?
2217         */
2218        page = find_get_page(mapping, offset);
2219        if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2220                /*
2221                 * We found the page, so try async readahead before
2222                 * waiting for the lock.
2223                 */
2224                do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2225        } else if (!page) {
2226                /* No page in the page cache at all */
2227                do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2228                count_vm_event(PGMAJFAULT);
2229                mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2230                ret = VM_FAULT_MAJOR;
2231retry_find:
2232                page = find_get_page(mapping, offset);
2233                if (!page)
2234                        goto no_cached_page;
2235        }
2236
2237        if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2238                put_page(page);
2239                return ret | VM_FAULT_RETRY;
2240        }
2241
2242        /* Did it get truncated? */
2243        if (unlikely(page->mapping != mapping)) {
2244                unlock_page(page);
2245                put_page(page);
2246                goto retry_find;
2247        }
2248        VM_BUG_ON_PAGE(page->index != offset, page);
2249
2250        /*
2251         * We have a locked page in the page cache, now we need to check
2252         * that it's up-to-date. If not, it is going to be due to an error.
2253         */
2254        if (unlikely(!PageUptodate(page)))
2255                goto page_not_uptodate;
2256
2257        /*
2258         * Found the page and have a reference on it.
2259         * We must recheck i_size under page lock.
2260         */
2261        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2262        if (unlikely(offset >= max_off)) {
2263                unlock_page(page);
2264                put_page(page);
2265                return VM_FAULT_SIGBUS;
2266        }
2267
2268        vmf->page = page;
2269        return ret | VM_FAULT_LOCKED;
2270
2271no_cached_page:
2272        /*
2273         * We're only likely to ever get here if MADV_RANDOM is in
2274         * effect.
2275         */
2276        error = page_cache_read(file, offset, vmf->gfp_mask);
2277
2278        /*
2279         * The page we want has now been added to the page cache.
2280         * In the unlikely event that someone removed it in the
2281         * meantime, we'll just come back here and read it again.
2282         */
2283        if (error >= 0)
2284                goto retry_find;
2285
2286        /*
2287         * An error return from page_cache_read can result if the
2288         * system is low on memory, or a problem occurs while trying
2289         * to schedule I/O.
2290         */
2291        if (error == -ENOMEM)
2292                return VM_FAULT_OOM;
2293        return VM_FAULT_SIGBUS;
2294
2295page_not_uptodate:
2296        /*
2297         * Umm, take care of errors if the page isn't up-to-date.
2298         * Try to re-read it _once_. We do this synchronously,
2299         * because there really aren't any performance issues here
2300         * and we need to check for errors.
2301         */
2302        ClearPageError(page);
2303        error = mapping->a_ops->readpage(file, page);
2304        if (!error) {
2305                wait_on_page_locked(page);
2306                if (!PageUptodate(page))
2307                        error = -EIO;
2308        }
2309        put_page(page);
2310
2311        if (!error || error == AOP_TRUNCATED_PAGE)
2312                goto retry_find;
2313
2314        /* Things didn't work out. Return zero to tell the mm layer so. */
2315        shrink_readahead_size_eio(file, ra);
2316        return VM_FAULT_SIGBUS;
2317}
2318EXPORT_SYMBOL(filemap_fault);
2319
2320void filemap_map_pages(struct vm_fault *vmf,
2321                pgoff_t start_pgoff, pgoff_t end_pgoff)
2322{
2323        struct radix_tree_iter iter;
2324        void **slot;
2325        struct file *file = vmf->vma->vm_file;
2326        struct address_space *mapping = file->f_mapping;
2327        pgoff_t last_pgoff = start_pgoff;
2328        unsigned long max_idx;
2329        struct page *head, *page;
2330
2331        rcu_read_lock();
2332        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2333                        start_pgoff) {
2334                if (iter.index > end_pgoff)
2335                        break;
2336repeat:
2337                page = radix_tree_deref_slot(slot);
2338                if (unlikely(!page))
2339                        goto next;
2340                if (radix_tree_exception(page)) {
2341                        if (radix_tree_deref_retry(page)) {
2342                                slot = radix_tree_iter_retry(&iter);
2343                                continue;
2344                        }
2345                        goto next;
2346                }
2347
2348                head = compound_head(page);
2349                if (!page_cache_get_speculative(head))
2350                        goto repeat;
2351
2352                /* The page was split under us? */
2353                if (compound_head(page) != head) {
2354                        put_page(head);
2355                        goto repeat;
2356                }
2357
2358                /* Has the page moved? */
2359                if (unlikely(page != *slot)) {
2360                        put_page(head);
2361                        goto repeat;
2362                }
2363
2364                if (!PageUptodate(page) ||
2365                                PageReadahead(page) ||
2366                                PageHWPoison(page))
2367                        goto skip;
2368                if (!trylock_page(page))
2369                        goto skip;
2370
2371                if (page->mapping != mapping || !PageUptodate(page))
2372                        goto unlock;
2373
2374                max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2375                if (page->index >= max_idx)
2376                        goto unlock;
2377
2378                if (file->f_ra.mmap_miss > 0)
2379                        file->f_ra.mmap_miss--;
2380
2381                vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2382                if (vmf->pte)
2383                        vmf->pte += iter.index - last_pgoff;
2384                last_pgoff = iter.index;
2385                if (alloc_set_pte(vmf, NULL, page))
2386                        goto unlock;
2387                unlock_page(page);
2388                goto next;
2389unlock:
2390                unlock_page(page);
2391skip:
2392                put_page(page);
2393next:
2394                /* Huge page is mapped? No need to proceed. */
2395                if (pmd_trans_huge(*vmf->pmd))
2396                        break;
2397                if (iter.index == end_pgoff)
2398                        break;
2399        }
2400        rcu_read_unlock();
2401}
2402EXPORT_SYMBOL(filemap_map_pages);
2403
2404int filemap_page_mkwrite(struct vm_fault *vmf)
2405{
2406        struct page *page = vmf->page;
2407        struct inode *inode = file_inode(vmf->vma->vm_file);
2408        int ret = VM_FAULT_LOCKED;
2409
2410        sb_start_pagefault(inode->i_sb);
2411        file_update_time(vmf->vma->vm_file);
2412        lock_page(page);
2413        if (page->mapping != inode->i_mapping) {
2414                unlock_page(page);
2415                ret = VM_FAULT_NOPAGE;
2416                goto out;
2417        }
2418        /*
2419         * We mark the page dirty already here so that when freeze is in
2420         * progress, we are guaranteed that writeback during freezing will
2421         * see the dirty page and writeprotect it again.
2422         */
2423        set_page_dirty(page);
2424        wait_for_stable_page(page);
2425out:
2426        sb_end_pagefault(inode->i_sb);
2427        return ret;
2428}
2429EXPORT_SYMBOL(filemap_page_mkwrite);
2430
2431const struct vm_operations_struct generic_file_vm_ops = {
2432        .fault          = filemap_fault,
2433        .map_pages      = filemap_map_pages,
2434        .page_mkwrite   = filemap_page_mkwrite,
2435};
2436
2437/* This is used for a general mmap of a disk file */
2438
2439int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2440{
2441        struct address_space *mapping = file->f_mapping;
2442
2443        if (!mapping->a_ops->readpage)
2444                return -ENOEXEC;
2445        file_accessed(file);
2446        vma->vm_ops = &generic_file_vm_ops;
2447        return 0;
2448}
2449
2450/*
2451 * This is for filesystems which do not implement ->writepage.
2452 */
2453int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2454{
2455        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2456                return -EINVAL;
2457        return generic_file_mmap(file, vma);
2458}
2459#else
2460int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2461{
2462        return -ENOSYS;
2463}
2464int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2465{
2466        return -ENOSYS;
2467}
2468#endif /* CONFIG_MMU */
2469
2470EXPORT_SYMBOL(generic_file_mmap);
2471EXPORT_SYMBOL(generic_file_readonly_mmap);
2472
2473static struct page *wait_on_page_read(struct page *page)
2474{
2475        if (!IS_ERR(page)) {
2476                wait_on_page_locked(page);
2477                if (!PageUptodate(page)) {
2478                        put_page(page);
2479                        page = ERR_PTR(-EIO);
2480                }
2481        }
2482        return page;
2483}
2484
2485static struct page *do_read_cache_page(struct address_space *mapping,
2486                                pgoff_t index,
2487                                int (*filler)(void *, struct page *),
2488                                void *data,
2489                                gfp_t gfp)
2490{
2491        struct page *page;
2492        int err;
2493repeat:
2494        page = find_get_page(mapping, index);
2495        if (!page) {
2496                page = __page_cache_alloc(gfp | __GFP_COLD);
2497                if (!page)
2498                        return ERR_PTR(-ENOMEM);
2499                err = add_to_page_cache_lru(page, mapping, index, gfp);
2500                if (unlikely(err)) {
2501                        put_page(page);
2502                        if (err == -EEXIST)
2503                                goto repeat;
2504                        /* Presumably ENOMEM for radix tree node */
2505                        return ERR_PTR(err);
2506                }
2507
2508filler:
2509                err = filler(data, page);
2510                if (err < 0) {
2511                        put_page(page);
2512                        return ERR_PTR(err);
2513                }
2514
2515                page = wait_on_page_read(page);
2516                if (IS_ERR(page))
2517                        return page;
2518                goto out;
2519        }
2520        if (PageUptodate(page))
2521                goto out;
2522
2523        /*
2524         * Page is not up to date and may be locked due one of the following
2525         * case a: Page is being filled and the page lock is held
2526         * case b: Read/write error clearing the page uptodate status
2527         * case c: Truncation in progress (page locked)
2528         * case d: Reclaim in progress
2529         *
2530         * Case a, the page will be up to date when the page is unlocked.
2531         *    There is no need to serialise on the page lock here as the page
2532         *    is pinned so the lock gives no additional protection. Even if the
2533         *    the page is truncated, the data is still valid if PageUptodate as
2534         *    it's a race vs truncate race.
2535         * Case b, the page will not be up to date
2536         * Case c, the page may be truncated but in itself, the data may still
2537         *    be valid after IO completes as it's a read vs truncate race. The
2538         *    operation must restart if the page is not uptodate on unlock but
2539         *    otherwise serialising on page lock to stabilise the mapping gives
2540         *    no additional guarantees to the caller as the page lock is
2541         *    released before return.
2542         * Case d, similar to truncation. If reclaim holds the page lock, it
2543         *    will be a race with remove_mapping that determines if the mapping
2544         *    is valid on unlock but otherwise the data is valid and there is
2545         *    no need to serialise with page lock.
2546         *
2547         * As the page lock gives no additional guarantee, we optimistically
2548         * wait on the page to be unlocked and check if it's up to date and
2549         * use the page if it is. Otherwise, the page lock is required to
2550         * distinguish between the different cases. The motivation is that we
2551         * avoid spurious serialisations and wakeups when multiple processes
2552         * wait on the same page for IO to complete.
2553         */
2554        wait_on_page_locked(page);
2555        if (PageUptodate(page))
2556                goto out;
2557
2558        /* Distinguish between all the cases under the safety of the lock */
2559        lock_page(page);
2560
2561        /* Case c or d, restart the operation */
2562        if (!page->mapping) {
2563                unlock_page(page);
2564                put_page(page);
2565                goto repeat;
2566        }
2567
2568        /* Someone else locked and filled the page in a very small window */
2569        if (PageUptodate(page)) {
2570                unlock_page(page);
2571                goto out;
2572        }
2573        goto filler;
2574
2575out:
2576        mark_page_accessed(page);
2577        return page;
2578}
2579
2580/**
2581 * read_cache_page - read into page cache, fill it if needed
2582 * @mapping:    the page's address_space
2583 * @index:      the page index
2584 * @filler:     function to perform the read
2585 * @data:       first arg to filler(data, page) function, often left as NULL
2586 *
2587 * Read into the page cache. If a page already exists, and PageUptodate() is
2588 * not set, try to fill the page and wait for it to become unlocked.
2589 *
2590 * If the page does not get brought uptodate, return -EIO.
2591 */
2592struct page *read_cache_page(struct address_space *mapping,
2593                                pgoff_t index,
2594                                int (*filler)(void *, struct page *),
2595                                void *data)
2596{
2597        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2598}
2599EXPORT_SYMBOL(read_cache_page);
2600
2601/**
2602 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2603 * @mapping:    the page's address_space
2604 * @index:      the page index
2605 * @gfp:        the page allocator flags to use if allocating
2606 *
2607 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2608 * any new page allocations done using the specified allocation flags.
2609 *
2610 * If the page does not get brought uptodate, return -EIO.
2611 */
2612struct page *read_cache_page_gfp(struct address_space *mapping,
2613                                pgoff_t index,
2614                                gfp_t gfp)
2615{
2616        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2617
2618        return do_read_cache_page(mapping, index, filler, NULL, gfp);
2619}
2620EXPORT_SYMBOL(read_cache_page_gfp);
2621
2622/*
2623 * Performs necessary checks before doing a write
2624 *
2625 * Can adjust writing position or amount of bytes to write.
2626 * Returns appropriate error code that caller should return or
2627 * zero in case that write should be allowed.
2628 */
2629inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2630{
2631        struct file *file = iocb->ki_filp;
2632        struct inode *inode = file->f_mapping->host;
2633        unsigned long limit = rlimit(RLIMIT_FSIZE);
2634        loff_t pos;
2635
2636        if (!iov_iter_count(from))
2637                return 0;
2638
2639        /* FIXME: this is for backwards compatibility with 2.4 */
2640        if (iocb->ki_flags & IOCB_APPEND)
2641                iocb->ki_pos = i_size_read(inode);
2642
2643        pos = iocb->ki_pos;
2644
2645        if (limit != RLIM_INFINITY) {
2646                if (iocb->ki_pos >= limit) {
2647                        send_sig(SIGXFSZ, current, 0);
2648                        return -EFBIG;
2649                }
2650                iov_iter_truncate(from, limit - (unsigned long)pos);
2651        }
2652
2653        /*
2654         * LFS rule
2655         */
2656        if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2657                                !(file->f_flags & O_LARGEFILE))) {
2658                if (pos >= MAX_NON_LFS)
2659                        return -EFBIG;
2660                iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2661        }
2662
2663        /*
2664         * Are we about to exceed the fs block limit ?
2665         *
2666         * If we have written data it becomes a short write.  If we have
2667         * exceeded without writing data we send a signal and return EFBIG.
2668         * Linus frestrict idea will clean these up nicely..
2669         */
2670        if (unlikely(pos >= inode->i_sb->s_maxbytes))
2671                return -EFBIG;
2672
2673        iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2674        return iov_iter_count(from);
2675}
2676EXPORT_SYMBOL(generic_write_checks);
2677
2678int pagecache_write_begin(struct file *file, struct address_space *mapping,
2679                                loff_t pos, unsigned len, unsigned flags,
2680                                struct page **pagep, void **fsdata)
2681{
2682        const struct address_space_operations *aops = mapping->a_ops;
2683
2684        return aops->write_begin(file, mapping, pos, len, flags,
2685                                                        pagep, fsdata);
2686}
2687EXPORT_SYMBOL(pagecache_write_begin);
2688
2689int pagecache_write_end(struct file *file, struct address_space *mapping,
2690                                loff_t pos, unsigned len, unsigned copied,
2691                                struct page *page, void *fsdata)
2692{
2693        const struct address_space_operations *aops = mapping->a_ops;
2694
2695        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2696}
2697EXPORT_SYMBOL(pagecache_write_end);
2698
2699ssize_t
2700generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2701{
2702        struct file     *file = iocb->ki_filp;
2703        struct address_space *mapping = file->f_mapping;
2704        struct inode    *inode = mapping->host;
2705        loff_t          pos = iocb->ki_pos;
2706        ssize_t         written;
2707        size_t          write_len;
2708        pgoff_t         end;
2709
2710        write_len = iov_iter_count(from);
2711        end = (pos + write_len - 1) >> PAGE_SHIFT;
2712
2713        written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2714        if (written)
2715                goto out;
2716
2717        /*
2718         * After a write we want buffered reads to be sure to go to disk to get
2719         * the new data.  We invalidate clean cached page from the region we're
2720         * about to write.  We do this *before* the write so that we can return
2721         * without clobbering -EIOCBQUEUED from ->direct_IO().
2722         */
2723        written = invalidate_inode_pages2_range(mapping,
2724                                        pos >> PAGE_SHIFT, end);
2725        /*
2726         * If a page can not be invalidated, return 0 to fall back
2727         * to buffered write.
2728         */
2729        if (written) {
2730                if (written == -EBUSY)
2731                        return 0;
2732                goto out;
2733        }
2734
2735        written = mapping->a_ops->direct_IO(iocb, from);
2736
2737        /*
2738         * Finally, try again to invalidate clean pages which might have been
2739         * cached by non-direct readahead, or faulted in by get_user_pages()
2740         * if the source of the write was an mmap'ed region of the file
2741         * we're writing.  Either one is a pretty crazy thing to do,
2742         * so we don't support it 100%.  If this invalidation
2743         * fails, tough, the write still worked...
2744         */
2745        invalidate_inode_pages2_range(mapping,
2746                                pos >> PAGE_SHIFT, end);
2747
2748        if (written > 0) {
2749                pos += written;
2750                write_len -= written;
2751                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2752                        i_size_write(inode, pos);
2753                        mark_inode_dirty(inode);
2754                }
2755                iocb->ki_pos = pos;
2756        }
2757        iov_iter_revert(from, write_len - iov_iter_count(from));
2758out:
2759        return written;
2760}
2761EXPORT_SYMBOL(generic_file_direct_write);
2762
2763/*
2764 * Find or create a page at the given pagecache position. Return the locked
2765 * page. This function is specifically for buffered writes.
2766 */
2767struct page *grab_cache_page_write_begin(struct address_space *mapping,
2768                                        pgoff_t index, unsigned flags)
2769{
2770        struct page *page;
2771        int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2772
2773        if (flags & AOP_FLAG_NOFS)
2774                fgp_flags |= FGP_NOFS;
2775
2776        page = pagecache_get_page(mapping, index, fgp_flags,
2777                        mapping_gfp_mask(mapping));
2778        if (page)
2779                wait_for_stable_page(page);
2780
2781        return page;
2782}
2783EXPORT_SYMBOL(grab_cache_page_write_begin);
2784
2785ssize_t generic_perform_write(struct file *file,
2786                                struct iov_iter *i, loff_t pos)
2787{
2788        struct address_space *mapping = file->f_mapping;
2789        const struct address_space_operations *a_ops = mapping->a_ops;
2790        long status = 0;
2791        ssize_t written = 0;
2792        unsigned int flags = 0;
2793
2794        do {
2795                struct page *page;
2796                unsigned long offset;   /* Offset into pagecache page */
2797                unsigned long bytes;    /* Bytes to write to page */
2798                size_t copied;          /* Bytes copied from user */
2799                void *fsdata;
2800
2801                offset = (pos & (PAGE_SIZE - 1));
2802                bytes = min_t(unsigned long, PAGE_SIZE - offset,
2803                                                iov_iter_count(i));
2804
2805again:
2806                /*
2807                 * Bring in the user page that we will copy from _first_.
2808                 * Otherwise there's a nasty deadlock on copying from the
2809                 * same page as we're writing to, without it being marked
2810                 * up-to-date.
2811                 *
2812                 * Not only is this an optimisation, but it is also required
2813                 * to check that the address is actually valid, when atomic
2814                 * usercopies are used, below.
2815                 */
2816                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2817                        status = -EFAULT;
2818                        break;
2819                }
2820
2821                if (fatal_signal_pending(current)) {
2822                        status = -EINTR;
2823                        break;
2824                }
2825
2826                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2827                                                &page, &fsdata);
2828                if (unlikely(status < 0))
2829                        break;
2830
2831                if (mapping_writably_mapped(mapping))
2832                        flush_dcache_page(page);
2833
2834                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2835                flush_dcache_page(page);
2836
2837                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2838                                                page, fsdata);
2839                if (unlikely(status < 0))
2840                        break;
2841                copied = status;
2842
2843                cond_resched();
2844
2845                iov_iter_advance(i, copied);
2846                if (unlikely(copied == 0)) {
2847                        /*
2848                         * If we were unable to copy any data at all, we must
2849                         * fall back to a single segment length write.
2850                         *
2851                         * If we didn't fallback here, we could livelock
2852                         * because not all segments in the iov can be copied at
2853                         * once without a pagefault.
2854                         */
2855                        bytes = min_t(unsigned long, PAGE_SIZE - offset,
2856                                                iov_iter_single_seg_count(i));
2857                        goto again;
2858                }
2859                pos += copied;
2860                written += copied;
2861
2862                balance_dirty_pages_ratelimited(mapping);
2863        } while (iov_iter_count(i));
2864
2865        return written ? written : status;
2866}
2867EXPORT_SYMBOL(generic_perform_write);
2868
2869/**
2870 * __generic_file_write_iter - write data to a file
2871 * @iocb:       IO state structure (file, offset, etc.)
2872 * @from:       iov_iter with data to write
2873 *
2874 * This function does all the work needed for actually writing data to a
2875 * file. It does all basic checks, removes SUID from the file, updates
2876 * modification times and calls proper subroutines depending on whether we
2877 * do direct IO or a standard buffered write.
2878 *
2879 * It expects i_mutex to be grabbed unless we work on a block device or similar
2880 * object which does not need locking at all.
2881 *
2882 * This function does *not* take care of syncing data in case of O_SYNC write.
2883 * A caller has to handle it. This is mainly due to the fact that we want to
2884 * avoid syncing under i_mutex.
2885 */
2886ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2887{
2888        struct file *file = iocb->ki_filp;
2889        struct address_space * mapping = file->f_mapping;
2890        struct inode    *inode = mapping->host;
2891        ssize_t         written = 0;
2892        ssize_t         err;
2893        ssize_t         status;
2894
2895        /* We can write back this queue in page reclaim */
2896        current->backing_dev_info = inode_to_bdi(inode);
2897        err = file_remove_privs(file);
2898        if (err)
2899                goto out;
2900
2901        err = file_update_time(file);
2902        if (err)
2903                goto out;
2904
2905        if (iocb->ki_flags & IOCB_DIRECT) {
2906                loff_t pos, endbyte;
2907
2908                written = generic_file_direct_write(iocb, from);
2909                /*
2910                 * If the write stopped short of completing, fall back to
2911                 * buffered writes.  Some filesystems do this for writes to
2912                 * holes, for example.  For DAX files, a buffered write will
2913                 * not succeed (even if it did, DAX does not handle dirty
2914                 * page-cache pages correctly).
2915                 */
2916                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2917                        goto out;
2918
2919                status = generic_perform_write(file, from, pos = iocb->ki_pos);
2920                /*
2921                 * If generic_perform_write() returned a synchronous error
2922                 * then we want to return the number of bytes which were
2923                 * direct-written, or the error code if that was zero.  Note
2924                 * that this differs from normal direct-io semantics, which
2925                 * will return -EFOO even if some bytes were written.
2926                 */
2927                if (unlikely(status < 0)) {
2928                        err = status;
2929                        goto out;
2930                }
2931                /*
2932                 * We need to ensure that the page cache pages are written to
2933                 * disk and invalidated to preserve the expected O_DIRECT
2934                 * semantics.
2935                 */
2936                endbyte = pos + status - 1;
2937                err = filemap_write_and_wait_range(mapping, pos, endbyte);
2938                if (err == 0) {
2939                        iocb->ki_pos = endbyte + 1;
2940                        written += status;
2941                        invalidate_mapping_pages(mapping,
2942                                                 pos >> PAGE_SHIFT,
2943                                                 endbyte >> PAGE_SHIFT);
2944                } else {
2945                        /*
2946                         * We don't know how much we wrote, so just return
2947                         * the number of bytes which were direct-written
2948                         */
2949                }
2950        } else {
2951                written = generic_perform_write(file, from, iocb->ki_pos);
2952                if (likely(written > 0))
2953                        iocb->ki_pos += written;
2954        }
2955out:
2956        current->backing_dev_info = NULL;
2957        return written ? written : err;
2958}
2959EXPORT_SYMBOL(__generic_file_write_iter);
2960
2961/**
2962 * generic_file_write_iter - write data to a file
2963 * @iocb:       IO state structure
2964 * @from:       iov_iter with data to write
2965 *
2966 * This is a wrapper around __generic_file_write_iter() to be used by most
2967 * filesystems. It takes care of syncing the file in case of O_SYNC file
2968 * and acquires i_mutex as needed.
2969 */
2970ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2971{
2972        struct file *file = iocb->ki_filp;
2973        struct inode *inode = file->f_mapping->host;
2974        ssize_t ret;
2975
2976        inode_lock(inode);
2977        ret = generic_write_checks(iocb, from);
2978        if (ret > 0)
2979                ret = __generic_file_write_iter(iocb, from);
2980        inode_unlock(inode);
2981
2982        if (ret > 0)
2983                ret = generic_write_sync(iocb, ret);
2984        return ret;
2985}
2986EXPORT_SYMBOL(generic_file_write_iter);
2987
2988/**
2989 * try_to_release_page() - release old fs-specific metadata on a page
2990 *
2991 * @page: the page which the kernel is trying to free
2992 * @gfp_mask: memory allocation flags (and I/O mode)
2993 *
2994 * The address_space is to try to release any data against the page
2995 * (presumably at page->private).  If the release was successful, return '1'.
2996 * Otherwise return zero.
2997 *
2998 * This may also be called if PG_fscache is set on a page, indicating that the
2999 * page is known to the local caching routines.
3000 *
3001 * The @gfp_mask argument specifies whether I/O may be performed to release
3002 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3003 *
3004 */
3005int try_to_release_page(struct page *page, gfp_t gfp_mask)
3006{
3007        struct address_space * const mapping = page->mapping;
3008
3009        BUG_ON(!PageLocked(page));
3010        if (PageWriteback(page))
3011                return 0;
3012
3013        if (mapping && mapping->a_ops->releasepage)
3014                return mapping->a_ops->releasepage(page, gfp_mask);
3015        return try_to_free_buffers(page);
3016}
3017
3018EXPORT_SYMBOL(try_to_release_page);
3019