linux/mm/hugetlb.c
<<
>>
Prefs
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/sched/signal.h>
  22#include <linux/rmap.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/page-isolation.h>
  26#include <linux/jhash.h>
  27
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/tlb.h>
  31
  32#include <linux/io.h>
  33#include <linux/hugetlb.h>
  34#include <linux/hugetlb_cgroup.h>
  35#include <linux/node.h>
  36#include <linux/userfaultfd_k.h>
  37#include "internal.h"
  38
  39int hugepages_treat_as_movable;
  40
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
  44/*
  45 * Minimum page order among possible hugepage sizes, set to a proper value
  46 * at boot time.
  47 */
  48static unsigned int minimum_order __read_mostly = UINT_MAX;
  49
  50__initdata LIST_HEAD(huge_boot_pages);
  51
  52/* for command line parsing */
  53static struct hstate * __initdata parsed_hstate;
  54static unsigned long __initdata default_hstate_max_huge_pages;
  55static unsigned long __initdata default_hstate_size;
  56static bool __initdata parsed_valid_hugepagesz = true;
  57
  58/*
  59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  60 * free_huge_pages, and surplus_huge_pages.
  61 */
  62DEFINE_SPINLOCK(hugetlb_lock);
  63
  64/*
  65 * Serializes faults on the same logical page.  This is used to
  66 * prevent spurious OOMs when the hugepage pool is fully utilized.
  67 */
  68static int num_fault_mutexes;
  69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  70
  71/* Forward declaration */
  72static int hugetlb_acct_memory(struct hstate *h, long delta);
  73
  74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  75{
  76        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  77
  78        spin_unlock(&spool->lock);
  79
  80        /* If no pages are used, and no other handles to the subpool
  81         * remain, give up any reservations mased on minimum size and
  82         * free the subpool */
  83        if (free) {
  84                if (spool->min_hpages != -1)
  85                        hugetlb_acct_memory(spool->hstate,
  86                                                -spool->min_hpages);
  87                kfree(spool);
  88        }
  89}
  90
  91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  92                                                long min_hpages)
  93{
  94        struct hugepage_subpool *spool;
  95
  96        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  97        if (!spool)
  98                return NULL;
  99
 100        spin_lock_init(&spool->lock);
 101        spool->count = 1;
 102        spool->max_hpages = max_hpages;
 103        spool->hstate = h;
 104        spool->min_hpages = min_hpages;
 105
 106        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 107                kfree(spool);
 108                return NULL;
 109        }
 110        spool->rsv_hpages = min_hpages;
 111
 112        return spool;
 113}
 114
 115void hugepage_put_subpool(struct hugepage_subpool *spool)
 116{
 117        spin_lock(&spool->lock);
 118        BUG_ON(!spool->count);
 119        spool->count--;
 120        unlock_or_release_subpool(spool);
 121}
 122
 123/*
 124 * Subpool accounting for allocating and reserving pages.
 125 * Return -ENOMEM if there are not enough resources to satisfy the
 126 * the request.  Otherwise, return the number of pages by which the
 127 * global pools must be adjusted (upward).  The returned value may
 128 * only be different than the passed value (delta) in the case where
 129 * a subpool minimum size must be manitained.
 130 */
 131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 132                                      long delta)
 133{
 134        long ret = delta;
 135
 136        if (!spool)
 137                return ret;
 138
 139        spin_lock(&spool->lock);
 140
 141        if (spool->max_hpages != -1) {          /* maximum size accounting */
 142                if ((spool->used_hpages + delta) <= spool->max_hpages)
 143                        spool->used_hpages += delta;
 144                else {
 145                        ret = -ENOMEM;
 146                        goto unlock_ret;
 147                }
 148        }
 149
 150        /* minimum size accounting */
 151        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 152                if (delta > spool->rsv_hpages) {
 153                        /*
 154                         * Asking for more reserves than those already taken on
 155                         * behalf of subpool.  Return difference.
 156                         */
 157                        ret = delta - spool->rsv_hpages;
 158                        spool->rsv_hpages = 0;
 159                } else {
 160                        ret = 0;        /* reserves already accounted for */
 161                        spool->rsv_hpages -= delta;
 162                }
 163        }
 164
 165unlock_ret:
 166        spin_unlock(&spool->lock);
 167        return ret;
 168}
 169
 170/*
 171 * Subpool accounting for freeing and unreserving pages.
 172 * Return the number of global page reservations that must be dropped.
 173 * The return value may only be different than the passed value (delta)
 174 * in the case where a subpool minimum size must be maintained.
 175 */
 176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 177                                       long delta)
 178{
 179        long ret = delta;
 180
 181        if (!spool)
 182                return delta;
 183
 184        spin_lock(&spool->lock);
 185
 186        if (spool->max_hpages != -1)            /* maximum size accounting */
 187                spool->used_hpages -= delta;
 188
 189         /* minimum size accounting */
 190        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 191                if (spool->rsv_hpages + delta <= spool->min_hpages)
 192                        ret = 0;
 193                else
 194                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 195
 196                spool->rsv_hpages += delta;
 197                if (spool->rsv_hpages > spool->min_hpages)
 198                        spool->rsv_hpages = spool->min_hpages;
 199        }
 200
 201        /*
 202         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 203         * quota reference, free it now.
 204         */
 205        unlock_or_release_subpool(spool);
 206
 207        return ret;
 208}
 209
 210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 211{
 212        return HUGETLBFS_SB(inode->i_sb)->spool;
 213}
 214
 215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 216{
 217        return subpool_inode(file_inode(vma->vm_file));
 218}
 219
 220/*
 221 * Region tracking -- allows tracking of reservations and instantiated pages
 222 *                    across the pages in a mapping.
 223 *
 224 * The region data structures are embedded into a resv_map and protected
 225 * by a resv_map's lock.  The set of regions within the resv_map represent
 226 * reservations for huge pages, or huge pages that have already been
 227 * instantiated within the map.  The from and to elements are huge page
 228 * indicies into the associated mapping.  from indicates the starting index
 229 * of the region.  to represents the first index past the end of  the region.
 230 *
 231 * For example, a file region structure with from == 0 and to == 4 represents
 232 * four huge pages in a mapping.  It is important to note that the to element
 233 * represents the first element past the end of the region. This is used in
 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 235 *
 236 * Interval notation of the form [from, to) will be used to indicate that
 237 * the endpoint from is inclusive and to is exclusive.
 238 */
 239struct file_region {
 240        struct list_head link;
 241        long from;
 242        long to;
 243};
 244
 245/*
 246 * Add the huge page range represented by [f, t) to the reserve
 247 * map.  In the normal case, existing regions will be expanded
 248 * to accommodate the specified range.  Sufficient regions should
 249 * exist for expansion due to the previous call to region_chg
 250 * with the same range.  However, it is possible that region_del
 251 * could have been called after region_chg and modifed the map
 252 * in such a way that no region exists to be expanded.  In this
 253 * case, pull a region descriptor from the cache associated with
 254 * the map and use that for the new range.
 255 *
 256 * Return the number of new huge pages added to the map.  This
 257 * number is greater than or equal to zero.
 258 */
 259static long region_add(struct resv_map *resv, long f, long t)
 260{
 261        struct list_head *head = &resv->regions;
 262        struct file_region *rg, *nrg, *trg;
 263        long add = 0;
 264
 265        spin_lock(&resv->lock);
 266        /* Locate the region we are either in or before. */
 267        list_for_each_entry(rg, head, link)
 268                if (f <= rg->to)
 269                        break;
 270
 271        /*
 272         * If no region exists which can be expanded to include the
 273         * specified range, the list must have been modified by an
 274         * interleving call to region_del().  Pull a region descriptor
 275         * from the cache and use it for this range.
 276         */
 277        if (&rg->link == head || t < rg->from) {
 278                VM_BUG_ON(resv->region_cache_count <= 0);
 279
 280                resv->region_cache_count--;
 281                nrg = list_first_entry(&resv->region_cache, struct file_region,
 282                                        link);
 283                list_del(&nrg->link);
 284
 285                nrg->from = f;
 286                nrg->to = t;
 287                list_add(&nrg->link, rg->link.prev);
 288
 289                add += t - f;
 290                goto out_locked;
 291        }
 292
 293        /* Round our left edge to the current segment if it encloses us. */
 294        if (f > rg->from)
 295                f = rg->from;
 296
 297        /* Check for and consume any regions we now overlap with. */
 298        nrg = rg;
 299        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 300                if (&rg->link == head)
 301                        break;
 302                if (rg->from > t)
 303                        break;
 304
 305                /* If this area reaches higher then extend our area to
 306                 * include it completely.  If this is not the first area
 307                 * which we intend to reuse, free it. */
 308                if (rg->to > t)
 309                        t = rg->to;
 310                if (rg != nrg) {
 311                        /* Decrement return value by the deleted range.
 312                         * Another range will span this area so that by
 313                         * end of routine add will be >= zero
 314                         */
 315                        add -= (rg->to - rg->from);
 316                        list_del(&rg->link);
 317                        kfree(rg);
 318                }
 319        }
 320
 321        add += (nrg->from - f);         /* Added to beginning of region */
 322        nrg->from = f;
 323        add += t - nrg->to;             /* Added to end of region */
 324        nrg->to = t;
 325
 326out_locked:
 327        resv->adds_in_progress--;
 328        spin_unlock(&resv->lock);
 329        VM_BUG_ON(add < 0);
 330        return add;
 331}
 332
 333/*
 334 * Examine the existing reserve map and determine how many
 335 * huge pages in the specified range [f, t) are NOT currently
 336 * represented.  This routine is called before a subsequent
 337 * call to region_add that will actually modify the reserve
 338 * map to add the specified range [f, t).  region_chg does
 339 * not change the number of huge pages represented by the
 340 * map.  However, if the existing regions in the map can not
 341 * be expanded to represent the new range, a new file_region
 342 * structure is added to the map as a placeholder.  This is
 343 * so that the subsequent region_add call will have all the
 344 * regions it needs and will not fail.
 345 *
 346 * Upon entry, region_chg will also examine the cache of region descriptors
 347 * associated with the map.  If there are not enough descriptors cached, one
 348 * will be allocated for the in progress add operation.
 349 *
 350 * Returns the number of huge pages that need to be added to the existing
 351 * reservation map for the range [f, t).  This number is greater or equal to
 352 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 353 * is needed and can not be allocated.
 354 */
 355static long region_chg(struct resv_map *resv, long f, long t)
 356{
 357        struct list_head *head = &resv->regions;
 358        struct file_region *rg, *nrg = NULL;
 359        long chg = 0;
 360
 361retry:
 362        spin_lock(&resv->lock);
 363retry_locked:
 364        resv->adds_in_progress++;
 365
 366        /*
 367         * Check for sufficient descriptors in the cache to accommodate
 368         * the number of in progress add operations.
 369         */
 370        if (resv->adds_in_progress > resv->region_cache_count) {
 371                struct file_region *trg;
 372
 373                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 374                /* Must drop lock to allocate a new descriptor. */
 375                resv->adds_in_progress--;
 376                spin_unlock(&resv->lock);
 377
 378                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 379                if (!trg) {
 380                        kfree(nrg);
 381                        return -ENOMEM;
 382                }
 383
 384                spin_lock(&resv->lock);
 385                list_add(&trg->link, &resv->region_cache);
 386                resv->region_cache_count++;
 387                goto retry_locked;
 388        }
 389
 390        /* Locate the region we are before or in. */
 391        list_for_each_entry(rg, head, link)
 392                if (f <= rg->to)
 393                        break;
 394
 395        /* If we are below the current region then a new region is required.
 396         * Subtle, allocate a new region at the position but make it zero
 397         * size such that we can guarantee to record the reservation. */
 398        if (&rg->link == head || t < rg->from) {
 399                if (!nrg) {
 400                        resv->adds_in_progress--;
 401                        spin_unlock(&resv->lock);
 402                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 403                        if (!nrg)
 404                                return -ENOMEM;
 405
 406                        nrg->from = f;
 407                        nrg->to   = f;
 408                        INIT_LIST_HEAD(&nrg->link);
 409                        goto retry;
 410                }
 411
 412                list_add(&nrg->link, rg->link.prev);
 413                chg = t - f;
 414                goto out_nrg;
 415        }
 416
 417        /* Round our left edge to the current segment if it encloses us. */
 418        if (f > rg->from)
 419                f = rg->from;
 420        chg = t - f;
 421
 422        /* Check for and consume any regions we now overlap with. */
 423        list_for_each_entry(rg, rg->link.prev, link) {
 424                if (&rg->link == head)
 425                        break;
 426                if (rg->from > t)
 427                        goto out;
 428
 429                /* We overlap with this area, if it extends further than
 430                 * us then we must extend ourselves.  Account for its
 431                 * existing reservation. */
 432                if (rg->to > t) {
 433                        chg += rg->to - t;
 434                        t = rg->to;
 435                }
 436                chg -= rg->to - rg->from;
 437        }
 438
 439out:
 440        spin_unlock(&resv->lock);
 441        /*  We already know we raced and no longer need the new region */
 442        kfree(nrg);
 443        return chg;
 444out_nrg:
 445        spin_unlock(&resv->lock);
 446        return chg;
 447}
 448
 449/*
 450 * Abort the in progress add operation.  The adds_in_progress field
 451 * of the resv_map keeps track of the operations in progress between
 452 * calls to region_chg and region_add.  Operations are sometimes
 453 * aborted after the call to region_chg.  In such cases, region_abort
 454 * is called to decrement the adds_in_progress counter.
 455 *
 456 * NOTE: The range arguments [f, t) are not needed or used in this
 457 * routine.  They are kept to make reading the calling code easier as
 458 * arguments will match the associated region_chg call.
 459 */
 460static void region_abort(struct resv_map *resv, long f, long t)
 461{
 462        spin_lock(&resv->lock);
 463        VM_BUG_ON(!resv->region_cache_count);
 464        resv->adds_in_progress--;
 465        spin_unlock(&resv->lock);
 466}
 467
 468/*
 469 * Delete the specified range [f, t) from the reserve map.  If the
 470 * t parameter is LONG_MAX, this indicates that ALL regions after f
 471 * should be deleted.  Locate the regions which intersect [f, t)
 472 * and either trim, delete or split the existing regions.
 473 *
 474 * Returns the number of huge pages deleted from the reserve map.
 475 * In the normal case, the return value is zero or more.  In the
 476 * case where a region must be split, a new region descriptor must
 477 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 478 * NOTE: If the parameter t == LONG_MAX, then we will never split
 479 * a region and possibly return -ENOMEM.  Callers specifying
 480 * t == LONG_MAX do not need to check for -ENOMEM error.
 481 */
 482static long region_del(struct resv_map *resv, long f, long t)
 483{
 484        struct list_head *head = &resv->regions;
 485        struct file_region *rg, *trg;
 486        struct file_region *nrg = NULL;
 487        long del = 0;
 488
 489retry:
 490        spin_lock(&resv->lock);
 491        list_for_each_entry_safe(rg, trg, head, link) {
 492                /*
 493                 * Skip regions before the range to be deleted.  file_region
 494                 * ranges are normally of the form [from, to).  However, there
 495                 * may be a "placeholder" entry in the map which is of the form
 496                 * (from, to) with from == to.  Check for placeholder entries
 497                 * at the beginning of the range to be deleted.
 498                 */
 499                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 500                        continue;
 501
 502                if (rg->from >= t)
 503                        break;
 504
 505                if (f > rg->from && t < rg->to) { /* Must split region */
 506                        /*
 507                         * Check for an entry in the cache before dropping
 508                         * lock and attempting allocation.
 509                         */
 510                        if (!nrg &&
 511                            resv->region_cache_count > resv->adds_in_progress) {
 512                                nrg = list_first_entry(&resv->region_cache,
 513                                                        struct file_region,
 514                                                        link);
 515                                list_del(&nrg->link);
 516                                resv->region_cache_count--;
 517                        }
 518
 519                        if (!nrg) {
 520                                spin_unlock(&resv->lock);
 521                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 522                                if (!nrg)
 523                                        return -ENOMEM;
 524                                goto retry;
 525                        }
 526
 527                        del += t - f;
 528
 529                        /* New entry for end of split region */
 530                        nrg->from = t;
 531                        nrg->to = rg->to;
 532                        INIT_LIST_HEAD(&nrg->link);
 533
 534                        /* Original entry is trimmed */
 535                        rg->to = f;
 536
 537                        list_add(&nrg->link, &rg->link);
 538                        nrg = NULL;
 539                        break;
 540                }
 541
 542                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 543                        del += rg->to - rg->from;
 544                        list_del(&rg->link);
 545                        kfree(rg);
 546                        continue;
 547                }
 548
 549                if (f <= rg->from) {    /* Trim beginning of region */
 550                        del += t - rg->from;
 551                        rg->from = t;
 552                } else {                /* Trim end of region */
 553                        del += rg->to - f;
 554                        rg->to = f;
 555                }
 556        }
 557
 558        spin_unlock(&resv->lock);
 559        kfree(nrg);
 560        return del;
 561}
 562
 563/*
 564 * A rare out of memory error was encountered which prevented removal of
 565 * the reserve map region for a page.  The huge page itself was free'ed
 566 * and removed from the page cache.  This routine will adjust the subpool
 567 * usage count, and the global reserve count if needed.  By incrementing
 568 * these counts, the reserve map entry which could not be deleted will
 569 * appear as a "reserved" entry instead of simply dangling with incorrect
 570 * counts.
 571 */
 572void hugetlb_fix_reserve_counts(struct inode *inode)
 573{
 574        struct hugepage_subpool *spool = subpool_inode(inode);
 575        long rsv_adjust;
 576
 577        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 578        if (rsv_adjust) {
 579                struct hstate *h = hstate_inode(inode);
 580
 581                hugetlb_acct_memory(h, 1);
 582        }
 583}
 584
 585/*
 586 * Count and return the number of huge pages in the reserve map
 587 * that intersect with the range [f, t).
 588 */
 589static long region_count(struct resv_map *resv, long f, long t)
 590{
 591        struct list_head *head = &resv->regions;
 592        struct file_region *rg;
 593        long chg = 0;
 594
 595        spin_lock(&resv->lock);
 596        /* Locate each segment we overlap with, and count that overlap. */
 597        list_for_each_entry(rg, head, link) {
 598                long seg_from;
 599                long seg_to;
 600
 601                if (rg->to <= f)
 602                        continue;
 603                if (rg->from >= t)
 604                        break;
 605
 606                seg_from = max(rg->from, f);
 607                seg_to = min(rg->to, t);
 608
 609                chg += seg_to - seg_from;
 610        }
 611        spin_unlock(&resv->lock);
 612
 613        return chg;
 614}
 615
 616/*
 617 * Convert the address within this vma to the page offset within
 618 * the mapping, in pagecache page units; huge pages here.
 619 */
 620static pgoff_t vma_hugecache_offset(struct hstate *h,
 621                        struct vm_area_struct *vma, unsigned long address)
 622{
 623        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 624                        (vma->vm_pgoff >> huge_page_order(h));
 625}
 626
 627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 628                                     unsigned long address)
 629{
 630        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 631}
 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
 633
 634/*
 635 * Return the size of the pages allocated when backing a VMA. In the majority
 636 * cases this will be same size as used by the page table entries.
 637 */
 638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 639{
 640        struct hstate *hstate;
 641
 642        if (!is_vm_hugetlb_page(vma))
 643                return PAGE_SIZE;
 644
 645        hstate = hstate_vma(vma);
 646
 647        return 1UL << huge_page_shift(hstate);
 648}
 649EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 650
 651/*
 652 * Return the page size being used by the MMU to back a VMA. In the majority
 653 * of cases, the page size used by the kernel matches the MMU size. On
 654 * architectures where it differs, an architecture-specific version of this
 655 * function is required.
 656 */
 657#ifndef vma_mmu_pagesize
 658unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 659{
 660        return vma_kernel_pagesize(vma);
 661}
 662#endif
 663
 664/*
 665 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 666 * bits of the reservation map pointer, which are always clear due to
 667 * alignment.
 668 */
 669#define HPAGE_RESV_OWNER    (1UL << 0)
 670#define HPAGE_RESV_UNMAPPED (1UL << 1)
 671#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 672
 673/*
 674 * These helpers are used to track how many pages are reserved for
 675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 676 * is guaranteed to have their future faults succeed.
 677 *
 678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 679 * the reserve counters are updated with the hugetlb_lock held. It is safe
 680 * to reset the VMA at fork() time as it is not in use yet and there is no
 681 * chance of the global counters getting corrupted as a result of the values.
 682 *
 683 * The private mapping reservation is represented in a subtly different
 684 * manner to a shared mapping.  A shared mapping has a region map associated
 685 * with the underlying file, this region map represents the backing file
 686 * pages which have ever had a reservation assigned which this persists even
 687 * after the page is instantiated.  A private mapping has a region map
 688 * associated with the original mmap which is attached to all VMAs which
 689 * reference it, this region map represents those offsets which have consumed
 690 * reservation ie. where pages have been instantiated.
 691 */
 692static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 693{
 694        return (unsigned long)vma->vm_private_data;
 695}
 696
 697static void set_vma_private_data(struct vm_area_struct *vma,
 698                                                        unsigned long value)
 699{
 700        vma->vm_private_data = (void *)value;
 701}
 702
 703struct resv_map *resv_map_alloc(void)
 704{
 705        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 706        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 707
 708        if (!resv_map || !rg) {
 709                kfree(resv_map);
 710                kfree(rg);
 711                return NULL;
 712        }
 713
 714        kref_init(&resv_map->refs);
 715        spin_lock_init(&resv_map->lock);
 716        INIT_LIST_HEAD(&resv_map->regions);
 717
 718        resv_map->adds_in_progress = 0;
 719
 720        INIT_LIST_HEAD(&resv_map->region_cache);
 721        list_add(&rg->link, &resv_map->region_cache);
 722        resv_map->region_cache_count = 1;
 723
 724        return resv_map;
 725}
 726
 727void resv_map_release(struct kref *ref)
 728{
 729        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 730        struct list_head *head = &resv_map->region_cache;
 731        struct file_region *rg, *trg;
 732
 733        /* Clear out any active regions before we release the map. */
 734        region_del(resv_map, 0, LONG_MAX);
 735
 736        /* ... and any entries left in the cache */
 737        list_for_each_entry_safe(rg, trg, head, link) {
 738                list_del(&rg->link);
 739                kfree(rg);
 740        }
 741
 742        VM_BUG_ON(resv_map->adds_in_progress);
 743
 744        kfree(resv_map);
 745}
 746
 747static inline struct resv_map *inode_resv_map(struct inode *inode)
 748{
 749        return inode->i_mapping->private_data;
 750}
 751
 752static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 753{
 754        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 755        if (vma->vm_flags & VM_MAYSHARE) {
 756                struct address_space *mapping = vma->vm_file->f_mapping;
 757                struct inode *inode = mapping->host;
 758
 759                return inode_resv_map(inode);
 760
 761        } else {
 762                return (struct resv_map *)(get_vma_private_data(vma) &
 763                                                        ~HPAGE_RESV_MASK);
 764        }
 765}
 766
 767static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 768{
 769        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 770        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 771
 772        set_vma_private_data(vma, (get_vma_private_data(vma) &
 773                                HPAGE_RESV_MASK) | (unsigned long)map);
 774}
 775
 776static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 777{
 778        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 779        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 780
 781        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 782}
 783
 784static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 785{
 786        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 787
 788        return (get_vma_private_data(vma) & flag) != 0;
 789}
 790
 791/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 792void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 793{
 794        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 795        if (!(vma->vm_flags & VM_MAYSHARE))
 796                vma->vm_private_data = (void *)0;
 797}
 798
 799/* Returns true if the VMA has associated reserve pages */
 800static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 801{
 802        if (vma->vm_flags & VM_NORESERVE) {
 803                /*
 804                 * This address is already reserved by other process(chg == 0),
 805                 * so, we should decrement reserved count. Without decrementing,
 806                 * reserve count remains after releasing inode, because this
 807                 * allocated page will go into page cache and is regarded as
 808                 * coming from reserved pool in releasing step.  Currently, we
 809                 * don't have any other solution to deal with this situation
 810                 * properly, so add work-around here.
 811                 */
 812                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 813                        return true;
 814                else
 815                        return false;
 816        }
 817
 818        /* Shared mappings always use reserves */
 819        if (vma->vm_flags & VM_MAYSHARE) {
 820                /*
 821                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 822                 * be a region map for all pages.  The only situation where
 823                 * there is no region map is if a hole was punched via
 824                 * fallocate.  In this case, there really are no reverves to
 825                 * use.  This situation is indicated if chg != 0.
 826                 */
 827                if (chg)
 828                        return false;
 829                else
 830                        return true;
 831        }
 832
 833        /*
 834         * Only the process that called mmap() has reserves for
 835         * private mappings.
 836         */
 837        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 838                /*
 839                 * Like the shared case above, a hole punch or truncate
 840                 * could have been performed on the private mapping.
 841                 * Examine the value of chg to determine if reserves
 842                 * actually exist or were previously consumed.
 843                 * Very Subtle - The value of chg comes from a previous
 844                 * call to vma_needs_reserves().  The reserve map for
 845                 * private mappings has different (opposite) semantics
 846                 * than that of shared mappings.  vma_needs_reserves()
 847                 * has already taken this difference in semantics into
 848                 * account.  Therefore, the meaning of chg is the same
 849                 * as in the shared case above.  Code could easily be
 850                 * combined, but keeping it separate draws attention to
 851                 * subtle differences.
 852                 */
 853                if (chg)
 854                        return false;
 855                else
 856                        return true;
 857        }
 858
 859        return false;
 860}
 861
 862static void enqueue_huge_page(struct hstate *h, struct page *page)
 863{
 864        int nid = page_to_nid(page);
 865        list_move(&page->lru, &h->hugepage_freelists[nid]);
 866        h->free_huge_pages++;
 867        h->free_huge_pages_node[nid]++;
 868}
 869
 870static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 871{
 872        struct page *page;
 873
 874        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 875                if (!is_migrate_isolate_page(page))
 876                        break;
 877        /*
 878         * if 'non-isolated free hugepage' not found on the list,
 879         * the allocation fails.
 880         */
 881        if (&h->hugepage_freelists[nid] == &page->lru)
 882                return NULL;
 883        list_move(&page->lru, &h->hugepage_activelist);
 884        set_page_refcounted(page);
 885        h->free_huge_pages--;
 886        h->free_huge_pages_node[nid]--;
 887        return page;
 888}
 889
 890/* Movability of hugepages depends on migration support. */
 891static inline gfp_t htlb_alloc_mask(struct hstate *h)
 892{
 893        if (hugepages_treat_as_movable || hugepage_migration_supported(h))
 894                return GFP_HIGHUSER_MOVABLE;
 895        else
 896                return GFP_HIGHUSER;
 897}
 898
 899static struct page *dequeue_huge_page_vma(struct hstate *h,
 900                                struct vm_area_struct *vma,
 901                                unsigned long address, int avoid_reserve,
 902                                long chg)
 903{
 904        struct page *page = NULL;
 905        struct mempolicy *mpol;
 906        nodemask_t *nodemask;
 907        struct zonelist *zonelist;
 908        struct zone *zone;
 909        struct zoneref *z;
 910        unsigned int cpuset_mems_cookie;
 911
 912        /*
 913         * A child process with MAP_PRIVATE mappings created by their parent
 914         * have no page reserves. This check ensures that reservations are
 915         * not "stolen". The child may still get SIGKILLed
 916         */
 917        if (!vma_has_reserves(vma, chg) &&
 918                        h->free_huge_pages - h->resv_huge_pages == 0)
 919                goto err;
 920
 921        /* If reserves cannot be used, ensure enough pages are in the pool */
 922        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 923                goto err;
 924
 925retry_cpuset:
 926        cpuset_mems_cookie = read_mems_allowed_begin();
 927        zonelist = huge_zonelist(vma, address,
 928                                        htlb_alloc_mask(h), &mpol, &nodemask);
 929
 930        for_each_zone_zonelist_nodemask(zone, z, zonelist,
 931                                                MAX_NR_ZONES - 1, nodemask) {
 932                if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
 933                        page = dequeue_huge_page_node(h, zone_to_nid(zone));
 934                        if (page) {
 935                                if (avoid_reserve)
 936                                        break;
 937                                if (!vma_has_reserves(vma, chg))
 938                                        break;
 939
 940                                SetPagePrivate(page);
 941                                h->resv_huge_pages--;
 942                                break;
 943                        }
 944                }
 945        }
 946
 947        mpol_cond_put(mpol);
 948        if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 949                goto retry_cpuset;
 950        return page;
 951
 952err:
 953        return NULL;
 954}
 955
 956/*
 957 * common helper functions for hstate_next_node_to_{alloc|free}.
 958 * We may have allocated or freed a huge page based on a different
 959 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 960 * be outside of *nodes_allowed.  Ensure that we use an allowed
 961 * node for alloc or free.
 962 */
 963static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 964{
 965        nid = next_node_in(nid, *nodes_allowed);
 966        VM_BUG_ON(nid >= MAX_NUMNODES);
 967
 968        return nid;
 969}
 970
 971static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 972{
 973        if (!node_isset(nid, *nodes_allowed))
 974                nid = next_node_allowed(nid, nodes_allowed);
 975        return nid;
 976}
 977
 978/*
 979 * returns the previously saved node ["this node"] from which to
 980 * allocate a persistent huge page for the pool and advance the
 981 * next node from which to allocate, handling wrap at end of node
 982 * mask.
 983 */
 984static int hstate_next_node_to_alloc(struct hstate *h,
 985                                        nodemask_t *nodes_allowed)
 986{
 987        int nid;
 988
 989        VM_BUG_ON(!nodes_allowed);
 990
 991        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 992        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 993
 994        return nid;
 995}
 996
 997/*
 998 * helper for free_pool_huge_page() - return the previously saved
 999 * node ["this node"] from which to free a huge page.  Advance the
1000 * next node id whether or not we find a free huge page to free so
1001 * that the next attempt to free addresses the next node.
1002 */
1003static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1004{
1005        int nid;
1006
1007        VM_BUG_ON(!nodes_allowed);
1008
1009        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1010        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1011
1012        return nid;
1013}
1014
1015#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1016        for (nr_nodes = nodes_weight(*mask);                            \
1017                nr_nodes > 0 &&                                         \
1018                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1019                nr_nodes--)
1020
1021#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1022        for (nr_nodes = nodes_weight(*mask);                            \
1023                nr_nodes > 0 &&                                         \
1024                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1025                nr_nodes--)
1026
1027#if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1028        ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1029        defined(CONFIG_CMA))
1030static void destroy_compound_gigantic_page(struct page *page,
1031                                        unsigned int order)
1032{
1033        int i;
1034        int nr_pages = 1 << order;
1035        struct page *p = page + 1;
1036
1037        atomic_set(compound_mapcount_ptr(page), 0);
1038        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1039                clear_compound_head(p);
1040                set_page_refcounted(p);
1041        }
1042
1043        set_compound_order(page, 0);
1044        __ClearPageHead(page);
1045}
1046
1047static void free_gigantic_page(struct page *page, unsigned int order)
1048{
1049        free_contig_range(page_to_pfn(page), 1 << order);
1050}
1051
1052static int __alloc_gigantic_page(unsigned long start_pfn,
1053                                unsigned long nr_pages)
1054{
1055        unsigned long end_pfn = start_pfn + nr_pages;
1056        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1057                                  GFP_KERNEL);
1058}
1059
1060static bool pfn_range_valid_gigantic(struct zone *z,
1061                        unsigned long start_pfn, unsigned long nr_pages)
1062{
1063        unsigned long i, end_pfn = start_pfn + nr_pages;
1064        struct page *page;
1065
1066        for (i = start_pfn; i < end_pfn; i++) {
1067                if (!pfn_valid(i))
1068                        return false;
1069
1070                page = pfn_to_page(i);
1071
1072                if (page_zone(page) != z)
1073                        return false;
1074
1075                if (PageReserved(page))
1076                        return false;
1077
1078                if (page_count(page) > 0)
1079                        return false;
1080
1081                if (PageHuge(page))
1082                        return false;
1083        }
1084
1085        return true;
1086}
1087
1088static bool zone_spans_last_pfn(const struct zone *zone,
1089                        unsigned long start_pfn, unsigned long nr_pages)
1090{
1091        unsigned long last_pfn = start_pfn + nr_pages - 1;
1092        return zone_spans_pfn(zone, last_pfn);
1093}
1094
1095static struct page *alloc_gigantic_page(int nid, unsigned int order)
1096{
1097        unsigned long nr_pages = 1 << order;
1098        unsigned long ret, pfn, flags;
1099        struct zone *z;
1100
1101        z = NODE_DATA(nid)->node_zones;
1102        for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1103                spin_lock_irqsave(&z->lock, flags);
1104
1105                pfn = ALIGN(z->zone_start_pfn, nr_pages);
1106                while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1107                        if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1108                                /*
1109                                 * We release the zone lock here because
1110                                 * alloc_contig_range() will also lock the zone
1111                                 * at some point. If there's an allocation
1112                                 * spinning on this lock, it may win the race
1113                                 * and cause alloc_contig_range() to fail...
1114                                 */
1115                                spin_unlock_irqrestore(&z->lock, flags);
1116                                ret = __alloc_gigantic_page(pfn, nr_pages);
1117                                if (!ret)
1118                                        return pfn_to_page(pfn);
1119                                spin_lock_irqsave(&z->lock, flags);
1120                        }
1121                        pfn += nr_pages;
1122                }
1123
1124                spin_unlock_irqrestore(&z->lock, flags);
1125        }
1126
1127        return NULL;
1128}
1129
1130static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1131static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1132
1133static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1134{
1135        struct page *page;
1136
1137        page = alloc_gigantic_page(nid, huge_page_order(h));
1138        if (page) {
1139                prep_compound_gigantic_page(page, huge_page_order(h));
1140                prep_new_huge_page(h, page, nid);
1141        }
1142
1143        return page;
1144}
1145
1146static int alloc_fresh_gigantic_page(struct hstate *h,
1147                                nodemask_t *nodes_allowed)
1148{
1149        struct page *page = NULL;
1150        int nr_nodes, node;
1151
1152        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1153                page = alloc_fresh_gigantic_page_node(h, node);
1154                if (page)
1155                        return 1;
1156        }
1157
1158        return 0;
1159}
1160
1161static inline bool gigantic_page_supported(void) { return true; }
1162#else
1163static inline bool gigantic_page_supported(void) { return false; }
1164static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1165static inline void destroy_compound_gigantic_page(struct page *page,
1166                                                unsigned int order) { }
1167static inline int alloc_fresh_gigantic_page(struct hstate *h,
1168                                        nodemask_t *nodes_allowed) { return 0; }
1169#endif
1170
1171static void update_and_free_page(struct hstate *h, struct page *page)
1172{
1173        int i;
1174
1175        if (hstate_is_gigantic(h) && !gigantic_page_supported())
1176                return;
1177
1178        h->nr_huge_pages--;
1179        h->nr_huge_pages_node[page_to_nid(page)]--;
1180        for (i = 0; i < pages_per_huge_page(h); i++) {
1181                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1182                                1 << PG_referenced | 1 << PG_dirty |
1183                                1 << PG_active | 1 << PG_private |
1184                                1 << PG_writeback);
1185        }
1186        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1187        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1188        set_page_refcounted(page);
1189        if (hstate_is_gigantic(h)) {
1190                destroy_compound_gigantic_page(page, huge_page_order(h));
1191                free_gigantic_page(page, huge_page_order(h));
1192        } else {
1193                __free_pages(page, huge_page_order(h));
1194        }
1195}
1196
1197struct hstate *size_to_hstate(unsigned long size)
1198{
1199        struct hstate *h;
1200
1201        for_each_hstate(h) {
1202                if (huge_page_size(h) == size)
1203                        return h;
1204        }
1205        return NULL;
1206}
1207
1208/*
1209 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1210 * to hstate->hugepage_activelist.)
1211 *
1212 * This function can be called for tail pages, but never returns true for them.
1213 */
1214bool page_huge_active(struct page *page)
1215{
1216        VM_BUG_ON_PAGE(!PageHuge(page), page);
1217        return PageHead(page) && PagePrivate(&page[1]);
1218}
1219
1220/* never called for tail page */
1221static void set_page_huge_active(struct page *page)
1222{
1223        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1224        SetPagePrivate(&page[1]);
1225}
1226
1227static void clear_page_huge_active(struct page *page)
1228{
1229        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1230        ClearPagePrivate(&page[1]);
1231}
1232
1233void free_huge_page(struct page *page)
1234{
1235        /*
1236         * Can't pass hstate in here because it is called from the
1237         * compound page destructor.
1238         */
1239        struct hstate *h = page_hstate(page);
1240        int nid = page_to_nid(page);
1241        struct hugepage_subpool *spool =
1242                (struct hugepage_subpool *)page_private(page);
1243        bool restore_reserve;
1244
1245        set_page_private(page, 0);
1246        page->mapping = NULL;
1247        VM_BUG_ON_PAGE(page_count(page), page);
1248        VM_BUG_ON_PAGE(page_mapcount(page), page);
1249        restore_reserve = PagePrivate(page);
1250        ClearPagePrivate(page);
1251
1252        /*
1253         * A return code of zero implies that the subpool will be under its
1254         * minimum size if the reservation is not restored after page is free.
1255         * Therefore, force restore_reserve operation.
1256         */
1257        if (hugepage_subpool_put_pages(spool, 1) == 0)
1258                restore_reserve = true;
1259
1260        spin_lock(&hugetlb_lock);
1261        clear_page_huge_active(page);
1262        hugetlb_cgroup_uncharge_page(hstate_index(h),
1263                                     pages_per_huge_page(h), page);
1264        if (restore_reserve)
1265                h->resv_huge_pages++;
1266
1267        if (h->surplus_huge_pages_node[nid]) {
1268                /* remove the page from active list */
1269                list_del(&page->lru);
1270                update_and_free_page(h, page);
1271                h->surplus_huge_pages--;
1272                h->surplus_huge_pages_node[nid]--;
1273        } else {
1274                arch_clear_hugepage_flags(page);
1275                enqueue_huge_page(h, page);
1276        }
1277        spin_unlock(&hugetlb_lock);
1278}
1279
1280static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1281{
1282        INIT_LIST_HEAD(&page->lru);
1283        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1284        spin_lock(&hugetlb_lock);
1285        set_hugetlb_cgroup(page, NULL);
1286        h->nr_huge_pages++;
1287        h->nr_huge_pages_node[nid]++;
1288        spin_unlock(&hugetlb_lock);
1289        put_page(page); /* free it into the hugepage allocator */
1290}
1291
1292static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1293{
1294        int i;
1295        int nr_pages = 1 << order;
1296        struct page *p = page + 1;
1297
1298        /* we rely on prep_new_huge_page to set the destructor */
1299        set_compound_order(page, order);
1300        __ClearPageReserved(page);
1301        __SetPageHead(page);
1302        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1303                /*
1304                 * For gigantic hugepages allocated through bootmem at
1305                 * boot, it's safer to be consistent with the not-gigantic
1306                 * hugepages and clear the PG_reserved bit from all tail pages
1307                 * too.  Otherwse drivers using get_user_pages() to access tail
1308                 * pages may get the reference counting wrong if they see
1309                 * PG_reserved set on a tail page (despite the head page not
1310                 * having PG_reserved set).  Enforcing this consistency between
1311                 * head and tail pages allows drivers to optimize away a check
1312                 * on the head page when they need know if put_page() is needed
1313                 * after get_user_pages().
1314                 */
1315                __ClearPageReserved(p);
1316                set_page_count(p, 0);
1317                set_compound_head(p, page);
1318        }
1319        atomic_set(compound_mapcount_ptr(page), -1);
1320}
1321
1322/*
1323 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1324 * transparent huge pages.  See the PageTransHuge() documentation for more
1325 * details.
1326 */
1327int PageHuge(struct page *page)
1328{
1329        if (!PageCompound(page))
1330                return 0;
1331
1332        page = compound_head(page);
1333        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1334}
1335EXPORT_SYMBOL_GPL(PageHuge);
1336
1337/*
1338 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1339 * normal or transparent huge pages.
1340 */
1341int PageHeadHuge(struct page *page_head)
1342{
1343        if (!PageHead(page_head))
1344                return 0;
1345
1346        return get_compound_page_dtor(page_head) == free_huge_page;
1347}
1348
1349pgoff_t __basepage_index(struct page *page)
1350{
1351        struct page *page_head = compound_head(page);
1352        pgoff_t index = page_index(page_head);
1353        unsigned long compound_idx;
1354
1355        if (!PageHuge(page_head))
1356                return page_index(page);
1357
1358        if (compound_order(page_head) >= MAX_ORDER)
1359                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1360        else
1361                compound_idx = page - page_head;
1362
1363        return (index << compound_order(page_head)) + compound_idx;
1364}
1365
1366static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1367{
1368        struct page *page;
1369
1370        page = __alloc_pages_node(nid,
1371                htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1372                                                __GFP_REPEAT|__GFP_NOWARN,
1373                huge_page_order(h));
1374        if (page) {
1375                prep_new_huge_page(h, page, nid);
1376        }
1377
1378        return page;
1379}
1380
1381static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1382{
1383        struct page *page;
1384        int nr_nodes, node;
1385        int ret = 0;
1386
1387        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1388                page = alloc_fresh_huge_page_node(h, node);
1389                if (page) {
1390                        ret = 1;
1391                        break;
1392                }
1393        }
1394
1395        if (ret)
1396                count_vm_event(HTLB_BUDDY_PGALLOC);
1397        else
1398                count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1399
1400        return ret;
1401}
1402
1403/*
1404 * Free huge page from pool from next node to free.
1405 * Attempt to keep persistent huge pages more or less
1406 * balanced over allowed nodes.
1407 * Called with hugetlb_lock locked.
1408 */
1409static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1410                                                         bool acct_surplus)
1411{
1412        int nr_nodes, node;
1413        int ret = 0;
1414
1415        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1416                /*
1417                 * If we're returning unused surplus pages, only examine
1418                 * nodes with surplus pages.
1419                 */
1420                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1421                    !list_empty(&h->hugepage_freelists[node])) {
1422                        struct page *page =
1423                                list_entry(h->hugepage_freelists[node].next,
1424                                          struct page, lru);
1425                        list_del(&page->lru);
1426                        h->free_huge_pages--;
1427                        h->free_huge_pages_node[node]--;
1428                        if (acct_surplus) {
1429                                h->surplus_huge_pages--;
1430                                h->surplus_huge_pages_node[node]--;
1431                        }
1432                        update_and_free_page(h, page);
1433                        ret = 1;
1434                        break;
1435                }
1436        }
1437
1438        return ret;
1439}
1440
1441/*
1442 * Dissolve a given free hugepage into free buddy pages. This function does
1443 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1444 * number of free hugepages would be reduced below the number of reserved
1445 * hugepages.
1446 */
1447static int dissolve_free_huge_page(struct page *page)
1448{
1449        int rc = 0;
1450
1451        spin_lock(&hugetlb_lock);
1452        if (PageHuge(page) && !page_count(page)) {
1453                struct page *head = compound_head(page);
1454                struct hstate *h = page_hstate(head);
1455                int nid = page_to_nid(head);
1456                if (h->free_huge_pages - h->resv_huge_pages == 0) {
1457                        rc = -EBUSY;
1458                        goto out;
1459                }
1460                list_del(&head->lru);
1461                h->free_huge_pages--;
1462                h->free_huge_pages_node[nid]--;
1463                h->max_huge_pages--;
1464                update_and_free_page(h, head);
1465        }
1466out:
1467        spin_unlock(&hugetlb_lock);
1468        return rc;
1469}
1470
1471/*
1472 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1473 * make specified memory blocks removable from the system.
1474 * Note that this will dissolve a free gigantic hugepage completely, if any
1475 * part of it lies within the given range.
1476 * Also note that if dissolve_free_huge_page() returns with an error, all
1477 * free hugepages that were dissolved before that error are lost.
1478 */
1479int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1480{
1481        unsigned long pfn;
1482        struct page *page;
1483        int rc = 0;
1484
1485        if (!hugepages_supported())
1486                return rc;
1487
1488        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1489                page = pfn_to_page(pfn);
1490                if (PageHuge(page) && !page_count(page)) {
1491                        rc = dissolve_free_huge_page(page);
1492                        if (rc)
1493                                break;
1494                }
1495        }
1496
1497        return rc;
1498}
1499
1500/*
1501 * There are 3 ways this can get called:
1502 * 1. With vma+addr: we use the VMA's memory policy
1503 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1504 *    page from any node, and let the buddy allocator itself figure
1505 *    it out.
1506 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1507 *    strictly from 'nid'
1508 */
1509static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1510                struct vm_area_struct *vma, unsigned long addr, int nid)
1511{
1512        int order = huge_page_order(h);
1513        gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1514        unsigned int cpuset_mems_cookie;
1515
1516        /*
1517         * We need a VMA to get a memory policy.  If we do not
1518         * have one, we use the 'nid' argument.
1519         *
1520         * The mempolicy stuff below has some non-inlined bits
1521         * and calls ->vm_ops.  That makes it hard to optimize at
1522         * compile-time, even when NUMA is off and it does
1523         * nothing.  This helps the compiler optimize it out.
1524         */
1525        if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1526                /*
1527                 * If a specific node is requested, make sure to
1528                 * get memory from there, but only when a node
1529                 * is explicitly specified.
1530                 */
1531                if (nid != NUMA_NO_NODE)
1532                        gfp |= __GFP_THISNODE;
1533                /*
1534                 * Make sure to call something that can handle
1535                 * nid=NUMA_NO_NODE
1536                 */
1537                return alloc_pages_node(nid, gfp, order);
1538        }
1539
1540        /*
1541         * OK, so we have a VMA.  Fetch the mempolicy and try to
1542         * allocate a huge page with it.  We will only reach this
1543         * when CONFIG_NUMA=y.
1544         */
1545        do {
1546                struct page *page;
1547                struct mempolicy *mpol;
1548                struct zonelist *zl;
1549                nodemask_t *nodemask;
1550
1551                cpuset_mems_cookie = read_mems_allowed_begin();
1552                zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1553                mpol_cond_put(mpol);
1554                page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1555                if (page)
1556                        return page;
1557        } while (read_mems_allowed_retry(cpuset_mems_cookie));
1558
1559        return NULL;
1560}
1561
1562/*
1563 * There are two ways to allocate a huge page:
1564 * 1. When you have a VMA and an address (like a fault)
1565 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1566 *
1567 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1568 * this case which signifies that the allocation should be done with
1569 * respect for the VMA's memory policy.
1570 *
1571 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1572 * implies that memory policies will not be taken in to account.
1573 */
1574static struct page *__alloc_buddy_huge_page(struct hstate *h,
1575                struct vm_area_struct *vma, unsigned long addr, int nid)
1576{
1577        struct page *page;
1578        unsigned int r_nid;
1579
1580        if (hstate_is_gigantic(h))
1581                return NULL;
1582
1583        /*
1584         * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1585         * This makes sure the caller is picking _one_ of the modes with which
1586         * we can call this function, not both.
1587         */
1588        if (vma || (addr != -1)) {
1589                VM_WARN_ON_ONCE(addr == -1);
1590                VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1591        }
1592        /*
1593         * Assume we will successfully allocate the surplus page to
1594         * prevent racing processes from causing the surplus to exceed
1595         * overcommit
1596         *
1597         * This however introduces a different race, where a process B
1598         * tries to grow the static hugepage pool while alloc_pages() is
1599         * called by process A. B will only examine the per-node
1600         * counters in determining if surplus huge pages can be
1601         * converted to normal huge pages in adjust_pool_surplus(). A
1602         * won't be able to increment the per-node counter, until the
1603         * lock is dropped by B, but B doesn't drop hugetlb_lock until
1604         * no more huge pages can be converted from surplus to normal
1605         * state (and doesn't try to convert again). Thus, we have a
1606         * case where a surplus huge page exists, the pool is grown, and
1607         * the surplus huge page still exists after, even though it
1608         * should just have been converted to a normal huge page. This
1609         * does not leak memory, though, as the hugepage will be freed
1610         * once it is out of use. It also does not allow the counters to
1611         * go out of whack in adjust_pool_surplus() as we don't modify
1612         * the node values until we've gotten the hugepage and only the
1613         * per-node value is checked there.
1614         */
1615        spin_lock(&hugetlb_lock);
1616        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1617                spin_unlock(&hugetlb_lock);
1618                return NULL;
1619        } else {
1620                h->nr_huge_pages++;
1621                h->surplus_huge_pages++;
1622        }
1623        spin_unlock(&hugetlb_lock);
1624
1625        page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1626
1627        spin_lock(&hugetlb_lock);
1628        if (page) {
1629                INIT_LIST_HEAD(&page->lru);
1630                r_nid = page_to_nid(page);
1631                set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1632                set_hugetlb_cgroup(page, NULL);
1633                /*
1634                 * We incremented the global counters already
1635                 */
1636                h->nr_huge_pages_node[r_nid]++;
1637                h->surplus_huge_pages_node[r_nid]++;
1638                __count_vm_event(HTLB_BUDDY_PGALLOC);
1639        } else {
1640                h->nr_huge_pages--;
1641                h->surplus_huge_pages--;
1642                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1643        }
1644        spin_unlock(&hugetlb_lock);
1645
1646        return page;
1647}
1648
1649/*
1650 * Allocate a huge page from 'nid'.  Note, 'nid' may be
1651 * NUMA_NO_NODE, which means that it may be allocated
1652 * anywhere.
1653 */
1654static
1655struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1656{
1657        unsigned long addr = -1;
1658
1659        return __alloc_buddy_huge_page(h, NULL, addr, nid);
1660}
1661
1662/*
1663 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1664 */
1665static
1666struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1667                struct vm_area_struct *vma, unsigned long addr)
1668{
1669        return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1670}
1671
1672/*
1673 * This allocation function is useful in the context where vma is irrelevant.
1674 * E.g. soft-offlining uses this function because it only cares physical
1675 * address of error page.
1676 */
1677struct page *alloc_huge_page_node(struct hstate *h, int nid)
1678{
1679        struct page *page = NULL;
1680
1681        spin_lock(&hugetlb_lock);
1682        if (h->free_huge_pages - h->resv_huge_pages > 0)
1683                page = dequeue_huge_page_node(h, nid);
1684        spin_unlock(&hugetlb_lock);
1685
1686        if (!page)
1687                page = __alloc_buddy_huge_page_no_mpol(h, nid);
1688
1689        return page;
1690}
1691
1692/*
1693 * Increase the hugetlb pool such that it can accommodate a reservation
1694 * of size 'delta'.
1695 */
1696static int gather_surplus_pages(struct hstate *h, int delta)
1697{
1698        struct list_head surplus_list;
1699        struct page *page, *tmp;
1700        int ret, i;
1701        int needed, allocated;
1702        bool alloc_ok = true;
1703
1704        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1705        if (needed <= 0) {
1706                h->resv_huge_pages += delta;
1707                return 0;
1708        }
1709
1710        allocated = 0;
1711        INIT_LIST_HEAD(&surplus_list);
1712
1713        ret = -ENOMEM;
1714retry:
1715        spin_unlock(&hugetlb_lock);
1716        for (i = 0; i < needed; i++) {
1717                page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1718                if (!page) {
1719                        alloc_ok = false;
1720                        break;
1721                }
1722                list_add(&page->lru, &surplus_list);
1723        }
1724        allocated += i;
1725
1726        /*
1727         * After retaking hugetlb_lock, we need to recalculate 'needed'
1728         * because either resv_huge_pages or free_huge_pages may have changed.
1729         */
1730        spin_lock(&hugetlb_lock);
1731        needed = (h->resv_huge_pages + delta) -
1732                        (h->free_huge_pages + allocated);
1733        if (needed > 0) {
1734                if (alloc_ok)
1735                        goto retry;
1736                /*
1737                 * We were not able to allocate enough pages to
1738                 * satisfy the entire reservation so we free what
1739                 * we've allocated so far.
1740                 */
1741                goto free;
1742        }
1743        /*
1744         * The surplus_list now contains _at_least_ the number of extra pages
1745         * needed to accommodate the reservation.  Add the appropriate number
1746         * of pages to the hugetlb pool and free the extras back to the buddy
1747         * allocator.  Commit the entire reservation here to prevent another
1748         * process from stealing the pages as they are added to the pool but
1749         * before they are reserved.
1750         */
1751        needed += allocated;
1752        h->resv_huge_pages += delta;
1753        ret = 0;
1754
1755        /* Free the needed pages to the hugetlb pool */
1756        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757                if ((--needed) < 0)
1758                        break;
1759                /*
1760                 * This page is now managed by the hugetlb allocator and has
1761                 * no users -- drop the buddy allocator's reference.
1762                 */
1763                put_page_testzero(page);
1764                VM_BUG_ON_PAGE(page_count(page), page);
1765                enqueue_huge_page(h, page);
1766        }
1767free:
1768        spin_unlock(&hugetlb_lock);
1769
1770        /* Free unnecessary surplus pages to the buddy allocator */
1771        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772                put_page(page);
1773        spin_lock(&hugetlb_lock);
1774
1775        return ret;
1776}
1777
1778/*
1779 * This routine has two main purposes:
1780 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1782 *    to the associated reservation map.
1783 * 2) Free any unused surplus pages that may have been allocated to satisfy
1784 *    the reservation.  As many as unused_resv_pages may be freed.
1785 *
1786 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1787 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1788 * we must make sure nobody else can claim pages we are in the process of
1789 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1790 * number of huge pages we plan to free when dropping the lock.
1791 */
1792static void return_unused_surplus_pages(struct hstate *h,
1793                                        unsigned long unused_resv_pages)
1794{
1795        unsigned long nr_pages;
1796
1797        /* Cannot return gigantic pages currently */
1798        if (hstate_is_gigantic(h))
1799                goto out;
1800
1801        /*
1802         * Part (or even all) of the reservation could have been backed
1803         * by pre-allocated pages. Only free surplus pages.
1804         */
1805        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806
1807        /*
1808         * We want to release as many surplus pages as possible, spread
1809         * evenly across all nodes with memory. Iterate across these nodes
1810         * until we can no longer free unreserved surplus pages. This occurs
1811         * when the nodes with surplus pages have no free pages.
1812         * free_pool_huge_page() will balance the the freed pages across the
1813         * on-line nodes with memory and will handle the hstate accounting.
1814         *
1815         * Note that we decrement resv_huge_pages as we free the pages.  If
1816         * we drop the lock, resv_huge_pages will still be sufficiently large
1817         * to cover subsequent pages we may free.
1818         */
1819        while (nr_pages--) {
1820                h->resv_huge_pages--;
1821                unused_resv_pages--;
1822                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823                        goto out;
1824                cond_resched_lock(&hugetlb_lock);
1825        }
1826
1827out:
1828        /* Fully uncommit the reservation */
1829        h->resv_huge_pages -= unused_resv_pages;
1830}
1831
1832
1833/*
1834 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835 * are used by the huge page allocation routines to manage reservations.
1836 *
1837 * vma_needs_reservation is called to determine if the huge page at addr
1838 * within the vma has an associated reservation.  If a reservation is
1839 * needed, the value 1 is returned.  The caller is then responsible for
1840 * managing the global reservation and subpool usage counts.  After
1841 * the huge page has been allocated, vma_commit_reservation is called
1842 * to add the page to the reservation map.  If the page allocation fails,
1843 * the reservation must be ended instead of committed.  vma_end_reservation
1844 * is called in such cases.
1845 *
1846 * In the normal case, vma_commit_reservation returns the same value
1847 * as the preceding vma_needs_reservation call.  The only time this
1848 * is not the case is if a reserve map was changed between calls.  It
1849 * is the responsibility of the caller to notice the difference and
1850 * take appropriate action.
1851 *
1852 * vma_add_reservation is used in error paths where a reservation must
1853 * be restored when a newly allocated huge page must be freed.  It is
1854 * to be called after calling vma_needs_reservation to determine if a
1855 * reservation exists.
1856 */
1857enum vma_resv_mode {
1858        VMA_NEEDS_RESV,
1859        VMA_COMMIT_RESV,
1860        VMA_END_RESV,
1861        VMA_ADD_RESV,
1862};
1863static long __vma_reservation_common(struct hstate *h,
1864                                struct vm_area_struct *vma, unsigned long addr,
1865                                enum vma_resv_mode mode)
1866{
1867        struct resv_map *resv;
1868        pgoff_t idx;
1869        long ret;
1870
1871        resv = vma_resv_map(vma);
1872        if (!resv)
1873                return 1;
1874
1875        idx = vma_hugecache_offset(h, vma, addr);
1876        switch (mode) {
1877        case VMA_NEEDS_RESV:
1878                ret = region_chg(resv, idx, idx + 1);
1879                break;
1880        case VMA_COMMIT_RESV:
1881                ret = region_add(resv, idx, idx + 1);
1882                break;
1883        case VMA_END_RESV:
1884                region_abort(resv, idx, idx + 1);
1885                ret = 0;
1886                break;
1887        case VMA_ADD_RESV:
1888                if (vma->vm_flags & VM_MAYSHARE)
1889                        ret = region_add(resv, idx, idx + 1);
1890                else {
1891                        region_abort(resv, idx, idx + 1);
1892                        ret = region_del(resv, idx, idx + 1);
1893                }
1894                break;
1895        default:
1896                BUG();
1897        }
1898
1899        if (vma->vm_flags & VM_MAYSHARE)
1900                return ret;
1901        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902                /*
1903                 * In most cases, reserves always exist for private mappings.
1904                 * However, a file associated with mapping could have been
1905                 * hole punched or truncated after reserves were consumed.
1906                 * As subsequent fault on such a range will not use reserves.
1907                 * Subtle - The reserve map for private mappings has the
1908                 * opposite meaning than that of shared mappings.  If NO
1909                 * entry is in the reserve map, it means a reservation exists.
1910                 * If an entry exists in the reserve map, it means the
1911                 * reservation has already been consumed.  As a result, the
1912                 * return value of this routine is the opposite of the
1913                 * value returned from reserve map manipulation routines above.
1914                 */
1915                if (ret)
1916                        return 0;
1917                else
1918                        return 1;
1919        }
1920        else
1921                return ret < 0 ? ret : 0;
1922}
1923
1924static long vma_needs_reservation(struct hstate *h,
1925                        struct vm_area_struct *vma, unsigned long addr)
1926{
1927        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928}
1929
1930static long vma_commit_reservation(struct hstate *h,
1931                        struct vm_area_struct *vma, unsigned long addr)
1932{
1933        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934}
1935
1936static void vma_end_reservation(struct hstate *h,
1937                        struct vm_area_struct *vma, unsigned long addr)
1938{
1939        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940}
1941
1942static long vma_add_reservation(struct hstate *h,
1943                        struct vm_area_struct *vma, unsigned long addr)
1944{
1945        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946}
1947
1948/*
1949 * This routine is called to restore a reservation on error paths.  In the
1950 * specific error paths, a huge page was allocated (via alloc_huge_page)
1951 * and is about to be freed.  If a reservation for the page existed,
1952 * alloc_huge_page would have consumed the reservation and set PagePrivate
1953 * in the newly allocated page.  When the page is freed via free_huge_page,
1954 * the global reservation count will be incremented if PagePrivate is set.
1955 * However, free_huge_page can not adjust the reserve map.  Adjust the
1956 * reserve map here to be consistent with global reserve count adjustments
1957 * to be made by free_huge_page.
1958 */
1959static void restore_reserve_on_error(struct hstate *h,
1960                        struct vm_area_struct *vma, unsigned long address,
1961                        struct page *page)
1962{
1963        if (unlikely(PagePrivate(page))) {
1964                long rc = vma_needs_reservation(h, vma, address);
1965
1966                if (unlikely(rc < 0)) {
1967                        /*
1968                         * Rare out of memory condition in reserve map
1969                         * manipulation.  Clear PagePrivate so that
1970                         * global reserve count will not be incremented
1971                         * by free_huge_page.  This will make it appear
1972                         * as though the reservation for this page was
1973                         * consumed.  This may prevent the task from
1974                         * faulting in the page at a later time.  This
1975                         * is better than inconsistent global huge page
1976                         * accounting of reserve counts.
1977                         */
1978                        ClearPagePrivate(page);
1979                } else if (rc) {
1980                        rc = vma_add_reservation(h, vma, address);
1981                        if (unlikely(rc < 0))
1982                                /*
1983                                 * See above comment about rare out of
1984                                 * memory condition.
1985                                 */
1986                                ClearPagePrivate(page);
1987                } else
1988                        vma_end_reservation(h, vma, address);
1989        }
1990}
1991
1992struct page *alloc_huge_page(struct vm_area_struct *vma,
1993                                    unsigned long addr, int avoid_reserve)
1994{
1995        struct hugepage_subpool *spool = subpool_vma(vma);
1996        struct hstate *h = hstate_vma(vma);
1997        struct page *page;
1998        long map_chg, map_commit;
1999        long gbl_chg;
2000        int ret, idx;
2001        struct hugetlb_cgroup *h_cg;
2002
2003        idx = hstate_index(h);
2004        /*
2005         * Examine the region/reserve map to determine if the process
2006         * has a reservation for the page to be allocated.  A return
2007         * code of zero indicates a reservation exists (no change).
2008         */
2009        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010        if (map_chg < 0)
2011                return ERR_PTR(-ENOMEM);
2012
2013        /*
2014         * Processes that did not create the mapping will have no
2015         * reserves as indicated by the region/reserve map. Check
2016         * that the allocation will not exceed the subpool limit.
2017         * Allocations for MAP_NORESERVE mappings also need to be
2018         * checked against any subpool limit.
2019         */
2020        if (map_chg || avoid_reserve) {
2021                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022                if (gbl_chg < 0) {
2023                        vma_end_reservation(h, vma, addr);
2024                        return ERR_PTR(-ENOSPC);
2025                }
2026
2027                /*
2028                 * Even though there was no reservation in the region/reserve
2029                 * map, there could be reservations associated with the
2030                 * subpool that can be used.  This would be indicated if the
2031                 * return value of hugepage_subpool_get_pages() is zero.
2032                 * However, if avoid_reserve is specified we still avoid even
2033                 * the subpool reservations.
2034                 */
2035                if (avoid_reserve)
2036                        gbl_chg = 1;
2037        }
2038
2039        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040        if (ret)
2041                goto out_subpool_put;
2042
2043        spin_lock(&hugetlb_lock);
2044        /*
2045         * glb_chg is passed to indicate whether or not a page must be taken
2046         * from the global free pool (global change).  gbl_chg == 0 indicates
2047         * a reservation exists for the allocation.
2048         */
2049        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050        if (!page) {
2051                spin_unlock(&hugetlb_lock);
2052                page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053                if (!page)
2054                        goto out_uncharge_cgroup;
2055                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056                        SetPagePrivate(page);
2057                        h->resv_huge_pages--;
2058                }
2059                spin_lock(&hugetlb_lock);
2060                list_move(&page->lru, &h->hugepage_activelist);
2061                /* Fall through */
2062        }
2063        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064        spin_unlock(&hugetlb_lock);
2065
2066        set_page_private(page, (unsigned long)spool);
2067
2068        map_commit = vma_commit_reservation(h, vma, addr);
2069        if (unlikely(map_chg > map_commit)) {
2070                /*
2071                 * The page was added to the reservation map between
2072                 * vma_needs_reservation and vma_commit_reservation.
2073                 * This indicates a race with hugetlb_reserve_pages.
2074                 * Adjust for the subpool count incremented above AND
2075                 * in hugetlb_reserve_pages for the same page.  Also,
2076                 * the reservation count added in hugetlb_reserve_pages
2077                 * no longer applies.
2078                 */
2079                long rsv_adjust;
2080
2081                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082                hugetlb_acct_memory(h, -rsv_adjust);
2083        }
2084        return page;
2085
2086out_uncharge_cgroup:
2087        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088out_subpool_put:
2089        if (map_chg || avoid_reserve)
2090                hugepage_subpool_put_pages(spool, 1);
2091        vma_end_reservation(h, vma, addr);
2092        return ERR_PTR(-ENOSPC);
2093}
2094
2095/*
2096 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2097 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2098 * where no ERR_VALUE is expected to be returned.
2099 */
2100struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2101                                unsigned long addr, int avoid_reserve)
2102{
2103        struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2104        if (IS_ERR(page))
2105                page = NULL;
2106        return page;
2107}
2108
2109int __weak alloc_bootmem_huge_page(struct hstate *h)
2110{
2111        struct huge_bootmem_page *m;
2112        int nr_nodes, node;
2113
2114        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2115                void *addr;
2116
2117                addr = memblock_virt_alloc_try_nid_nopanic(
2118                                huge_page_size(h), huge_page_size(h),
2119                                0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2120                if (addr) {
2121                        /*
2122                         * Use the beginning of the huge page to store the
2123                         * huge_bootmem_page struct (until gather_bootmem
2124                         * puts them into the mem_map).
2125                         */
2126                        m = addr;
2127                        goto found;
2128                }
2129        }
2130        return 0;
2131
2132found:
2133        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2134        /* Put them into a private list first because mem_map is not up yet */
2135        list_add(&m->list, &huge_boot_pages);
2136        m->hstate = h;
2137        return 1;
2138}
2139
2140static void __init prep_compound_huge_page(struct page *page,
2141                unsigned int order)
2142{
2143        if (unlikely(order > (MAX_ORDER - 1)))
2144                prep_compound_gigantic_page(page, order);
2145        else
2146                prep_compound_page(page, order);
2147}
2148
2149/* Put bootmem huge pages into the standard lists after mem_map is up */
2150static void __init gather_bootmem_prealloc(void)
2151{
2152        struct huge_bootmem_page *m;
2153
2154        list_for_each_entry(m, &huge_boot_pages, list) {
2155                struct hstate *h = m->hstate;
2156                struct page *page;
2157
2158#ifdef CONFIG_HIGHMEM
2159                page = pfn_to_page(m->phys >> PAGE_SHIFT);
2160                memblock_free_late(__pa(m),
2161                                   sizeof(struct huge_bootmem_page));
2162#else
2163                page = virt_to_page(m);
2164#endif
2165                WARN_ON(page_count(page) != 1);
2166                prep_compound_huge_page(page, h->order);
2167                WARN_ON(PageReserved(page));
2168                prep_new_huge_page(h, page, page_to_nid(page));
2169                /*
2170                 * If we had gigantic hugepages allocated at boot time, we need
2171                 * to restore the 'stolen' pages to totalram_pages in order to
2172                 * fix confusing memory reports from free(1) and another
2173                 * side-effects, like CommitLimit going negative.
2174                 */
2175                if (hstate_is_gigantic(h))
2176                        adjust_managed_page_count(page, 1 << h->order);
2177        }
2178}
2179
2180static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2181{
2182        unsigned long i;
2183
2184        for (i = 0; i < h->max_huge_pages; ++i) {
2185                if (hstate_is_gigantic(h)) {
2186                        if (!alloc_bootmem_huge_page(h))
2187                                break;
2188                } else if (!alloc_fresh_huge_page(h,
2189                                         &node_states[N_MEMORY]))
2190                        break;
2191        }
2192        h->max_huge_pages = i;
2193}
2194
2195static void __init hugetlb_init_hstates(void)
2196{
2197        struct hstate *h;
2198
2199        for_each_hstate(h) {
2200                if (minimum_order > huge_page_order(h))
2201                        minimum_order = huge_page_order(h);
2202
2203                /* oversize hugepages were init'ed in early boot */
2204                if (!hstate_is_gigantic(h))
2205                        hugetlb_hstate_alloc_pages(h);
2206        }
2207        VM_BUG_ON(minimum_order == UINT_MAX);
2208}
2209
2210static char * __init memfmt(char *buf, unsigned long n)
2211{
2212        if (n >= (1UL << 30))
2213                sprintf(buf, "%lu GB", n >> 30);
2214        else if (n >= (1UL << 20))
2215                sprintf(buf, "%lu MB", n >> 20);
2216        else
2217                sprintf(buf, "%lu KB", n >> 10);
2218        return buf;
2219}
2220
2221static void __init report_hugepages(void)
2222{
2223        struct hstate *h;
2224
2225        for_each_hstate(h) {
2226                char buf[32];
2227                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2228                        memfmt(buf, huge_page_size(h)),
2229                        h->free_huge_pages);
2230        }
2231}
2232
2233#ifdef CONFIG_HIGHMEM
2234static void try_to_free_low(struct hstate *h, unsigned long count,
2235                                                nodemask_t *nodes_allowed)
2236{
2237        int i;
2238
2239        if (hstate_is_gigantic(h))
2240                return;
2241
2242        for_each_node_mask(i, *nodes_allowed) {
2243                struct page *page, *next;
2244                struct list_head *freel = &h->hugepage_freelists[i];
2245                list_for_each_entry_safe(page, next, freel, lru) {
2246                        if (count >= h->nr_huge_pages)
2247                                return;
2248                        if (PageHighMem(page))
2249                                continue;
2250                        list_del(&page->lru);
2251                        update_and_free_page(h, page);
2252                        h->free_huge_pages--;
2253                        h->free_huge_pages_node[page_to_nid(page)]--;
2254                }
2255        }
2256}
2257#else
2258static inline void try_to_free_low(struct hstate *h, unsigned long count,
2259                                                nodemask_t *nodes_allowed)
2260{
2261}
2262#endif
2263
2264/*
2265 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2266 * balanced by operating on them in a round-robin fashion.
2267 * Returns 1 if an adjustment was made.
2268 */
2269static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2270                                int delta)
2271{
2272        int nr_nodes, node;
2273
2274        VM_BUG_ON(delta != -1 && delta != 1);
2275
2276        if (delta < 0) {
2277                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2278                        if (h->surplus_huge_pages_node[node])
2279                                goto found;
2280                }
2281        } else {
2282                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2283                        if (h->surplus_huge_pages_node[node] <
2284                                        h->nr_huge_pages_node[node])
2285                                goto found;
2286                }
2287        }
2288        return 0;
2289
2290found:
2291        h->surplus_huge_pages += delta;
2292        h->surplus_huge_pages_node[node] += delta;
2293        return 1;
2294}
2295
2296#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2297static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2298                                                nodemask_t *nodes_allowed)
2299{
2300        unsigned long min_count, ret;
2301
2302        if (hstate_is_gigantic(h) && !gigantic_page_supported())
2303                return h->max_huge_pages;
2304
2305        /*
2306         * Increase the pool size
2307         * First take pages out of surplus state.  Then make up the
2308         * remaining difference by allocating fresh huge pages.
2309         *
2310         * We might race with __alloc_buddy_huge_page() here and be unable
2311         * to convert a surplus huge page to a normal huge page. That is
2312         * not critical, though, it just means the overall size of the
2313         * pool might be one hugepage larger than it needs to be, but
2314         * within all the constraints specified by the sysctls.
2315         */
2316        spin_lock(&hugetlb_lock);
2317        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2318                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2319                        break;
2320        }
2321
2322        while (count > persistent_huge_pages(h)) {
2323                /*
2324                 * If this allocation races such that we no longer need the
2325                 * page, free_huge_page will handle it by freeing the page
2326                 * and reducing the surplus.
2327                 */
2328                spin_unlock(&hugetlb_lock);
2329
2330                /* yield cpu to avoid soft lockup */
2331                cond_resched();
2332
2333                if (hstate_is_gigantic(h))
2334                        ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2335                else
2336                        ret = alloc_fresh_huge_page(h, nodes_allowed);
2337                spin_lock(&hugetlb_lock);
2338                if (!ret)
2339                        goto out;
2340
2341                /* Bail for signals. Probably ctrl-c from user */
2342                if (signal_pending(current))
2343                        goto out;
2344        }
2345
2346        /*
2347         * Decrease the pool size
2348         * First return free pages to the buddy allocator (being careful
2349         * to keep enough around to satisfy reservations).  Then place
2350         * pages into surplus state as needed so the pool will shrink
2351         * to the desired size as pages become free.
2352         *
2353         * By placing pages into the surplus state independent of the
2354         * overcommit value, we are allowing the surplus pool size to
2355         * exceed overcommit. There are few sane options here. Since
2356         * __alloc_buddy_huge_page() is checking the global counter,
2357         * though, we'll note that we're not allowed to exceed surplus
2358         * and won't grow the pool anywhere else. Not until one of the
2359         * sysctls are changed, or the surplus pages go out of use.
2360         */
2361        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2362        min_count = max(count, min_count);
2363        try_to_free_low(h, min_count, nodes_allowed);
2364        while (min_count < persistent_huge_pages(h)) {
2365                if (!free_pool_huge_page(h, nodes_allowed, 0))
2366                        break;
2367                cond_resched_lock(&hugetlb_lock);
2368        }
2369        while (count < persistent_huge_pages(h)) {
2370                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2371                        break;
2372        }
2373out:
2374        ret = persistent_huge_pages(h);
2375        spin_unlock(&hugetlb_lock);
2376        return ret;
2377}
2378
2379#define HSTATE_ATTR_RO(_name) \
2380        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2381
2382#define HSTATE_ATTR(_name) \
2383        static struct kobj_attribute _name##_attr = \
2384                __ATTR(_name, 0644, _name##_show, _name##_store)
2385
2386static struct kobject *hugepages_kobj;
2387static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2388
2389static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2390
2391static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2392{
2393        int i;
2394
2395        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2396                if (hstate_kobjs[i] == kobj) {
2397                        if (nidp)
2398                                *nidp = NUMA_NO_NODE;
2399                        return &hstates[i];
2400                }
2401
2402        return kobj_to_node_hstate(kobj, nidp);
2403}
2404
2405static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2406                                        struct kobj_attribute *attr, char *buf)
2407{
2408        struct hstate *h;
2409        unsigned long nr_huge_pages;
2410        int nid;
2411
2412        h = kobj_to_hstate(kobj, &nid);
2413        if (nid == NUMA_NO_NODE)
2414                nr_huge_pages = h->nr_huge_pages;
2415        else
2416                nr_huge_pages = h->nr_huge_pages_node[nid];
2417
2418        return sprintf(buf, "%lu\n", nr_huge_pages);
2419}
2420
2421static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2422                                           struct hstate *h, int nid,
2423                                           unsigned long count, size_t len)
2424{
2425        int err;
2426        NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2427
2428        if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2429                err = -EINVAL;
2430                goto out;
2431        }
2432
2433        if (nid == NUMA_NO_NODE) {
2434                /*
2435                 * global hstate attribute
2436                 */
2437                if (!(obey_mempolicy &&
2438                                init_nodemask_of_mempolicy(nodes_allowed))) {
2439                        NODEMASK_FREE(nodes_allowed);
2440                        nodes_allowed = &node_states[N_MEMORY];
2441                }
2442        } else if (nodes_allowed) {
2443                /*
2444                 * per node hstate attribute: adjust count to global,
2445                 * but restrict alloc/free to the specified node.
2446                 */
2447                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2448                init_nodemask_of_node(nodes_allowed, nid);
2449        } else
2450                nodes_allowed = &node_states[N_MEMORY];
2451
2452        h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2453
2454        if (nodes_allowed != &node_states[N_MEMORY])
2455                NODEMASK_FREE(nodes_allowed);
2456
2457        return len;
2458out:
2459        NODEMASK_FREE(nodes_allowed);
2460        return err;
2461}
2462
2463static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2464                                         struct kobject *kobj, const char *buf,
2465                                         size_t len)
2466{
2467        struct hstate *h;
2468        unsigned long count;
2469        int nid;
2470        int err;
2471
2472        err = kstrtoul(buf, 10, &count);
2473        if (err)
2474                return err;
2475
2476        h = kobj_to_hstate(kobj, &nid);
2477        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2478}
2479
2480static ssize_t nr_hugepages_show(struct kobject *kobj,
2481                                       struct kobj_attribute *attr, char *buf)
2482{
2483        return nr_hugepages_show_common(kobj, attr, buf);
2484}
2485
2486static ssize_t nr_hugepages_store(struct kobject *kobj,
2487               struct kobj_attribute *attr, const char *buf, size_t len)
2488{
2489        return nr_hugepages_store_common(false, kobj, buf, len);
2490}
2491HSTATE_ATTR(nr_hugepages);
2492
2493#ifdef CONFIG_NUMA
2494
2495/*
2496 * hstate attribute for optionally mempolicy-based constraint on persistent
2497 * huge page alloc/free.
2498 */
2499static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2500                                       struct kobj_attribute *attr, char *buf)
2501{
2502        return nr_hugepages_show_common(kobj, attr, buf);
2503}
2504
2505static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2506               struct kobj_attribute *attr, const char *buf, size_t len)
2507{
2508        return nr_hugepages_store_common(true, kobj, buf, len);
2509}
2510HSTATE_ATTR(nr_hugepages_mempolicy);
2511#endif
2512
2513
2514static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2515                                        struct kobj_attribute *attr, char *buf)
2516{
2517        struct hstate *h = kobj_to_hstate(kobj, NULL);
2518        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2519}
2520
2521static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2522                struct kobj_attribute *attr, const char *buf, size_t count)
2523{
2524        int err;
2525        unsigned long input;
2526        struct hstate *h = kobj_to_hstate(kobj, NULL);
2527
2528        if (hstate_is_gigantic(h))
2529                return -EINVAL;
2530
2531        err = kstrtoul(buf, 10, &input);
2532        if (err)
2533                return err;
2534
2535        spin_lock(&hugetlb_lock);
2536        h->nr_overcommit_huge_pages = input;
2537        spin_unlock(&hugetlb_lock);
2538
2539        return count;
2540}
2541HSTATE_ATTR(nr_overcommit_hugepages);
2542
2543static ssize_t free_hugepages_show(struct kobject *kobj,
2544                                        struct kobj_attribute *attr, char *buf)
2545{
2546        struct hstate *h;
2547        unsigned long free_huge_pages;
2548        int nid;
2549
2550        h = kobj_to_hstate(kobj, &nid);
2551        if (nid == NUMA_NO_NODE)
2552                free_huge_pages = h->free_huge_pages;
2553        else
2554                free_huge_pages = h->free_huge_pages_node[nid];
2555
2556        return sprintf(buf, "%lu\n", free_huge_pages);
2557}
2558HSTATE_ATTR_RO(free_hugepages);
2559
2560static ssize_t resv_hugepages_show(struct kobject *kobj,
2561                                        struct kobj_attribute *attr, char *buf)
2562{
2563        struct hstate *h = kobj_to_hstate(kobj, NULL);
2564        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2565}
2566HSTATE_ATTR_RO(resv_hugepages);
2567
2568static ssize_t surplus_hugepages_show(struct kobject *kobj,
2569                                        struct kobj_attribute *attr, char *buf)
2570{
2571        struct hstate *h;
2572        unsigned long surplus_huge_pages;
2573        int nid;
2574
2575        h = kobj_to_hstate(kobj, &nid);
2576        if (nid == NUMA_NO_NODE)
2577                surplus_huge_pages = h->surplus_huge_pages;
2578        else
2579                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2580
2581        return sprintf(buf, "%lu\n", surplus_huge_pages);
2582}
2583HSTATE_ATTR_RO(surplus_hugepages);
2584
2585static struct attribute *hstate_attrs[] = {
2586        &nr_hugepages_attr.attr,
2587        &nr_overcommit_hugepages_attr.attr,
2588        &free_hugepages_attr.attr,
2589        &resv_hugepages_attr.attr,
2590        &surplus_hugepages_attr.attr,
2591#ifdef CONFIG_NUMA
2592        &nr_hugepages_mempolicy_attr.attr,
2593#endif
2594        NULL,
2595};
2596
2597static struct attribute_group hstate_attr_group = {
2598        .attrs = hstate_attrs,
2599};
2600
2601static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2602                                    struct kobject **hstate_kobjs,
2603                                    struct attribute_group *hstate_attr_group)
2604{
2605        int retval;
2606        int hi = hstate_index(h);
2607
2608        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2609        if (!hstate_kobjs[hi])
2610                return -ENOMEM;
2611
2612        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2613        if (retval)
2614                kobject_put(hstate_kobjs[hi]);
2615
2616        return retval;
2617}
2618
2619static void __init hugetlb_sysfs_init(void)
2620{
2621        struct hstate *h;
2622        int err;
2623
2624        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2625        if (!hugepages_kobj)
2626                return;
2627
2628        for_each_hstate(h) {
2629                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2630                                         hstate_kobjs, &hstate_attr_group);
2631                if (err)
2632                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2633        }
2634}
2635
2636#ifdef CONFIG_NUMA
2637
2638/*
2639 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2640 * with node devices in node_devices[] using a parallel array.  The array
2641 * index of a node device or _hstate == node id.
2642 * This is here to avoid any static dependency of the node device driver, in
2643 * the base kernel, on the hugetlb module.
2644 */
2645struct node_hstate {
2646        struct kobject          *hugepages_kobj;
2647        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2648};
2649static struct node_hstate node_hstates[MAX_NUMNODES];
2650
2651/*
2652 * A subset of global hstate attributes for node devices
2653 */
2654static struct attribute *per_node_hstate_attrs[] = {
2655        &nr_hugepages_attr.attr,
2656        &free_hugepages_attr.attr,
2657        &surplus_hugepages_attr.attr,
2658        NULL,
2659};
2660
2661static struct attribute_group per_node_hstate_attr_group = {
2662        .attrs = per_node_hstate_attrs,
2663};
2664
2665/*
2666 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2667 * Returns node id via non-NULL nidp.
2668 */
2669static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2670{
2671        int nid;
2672
2673        for (nid = 0; nid < nr_node_ids; nid++) {
2674                struct node_hstate *nhs = &node_hstates[nid];
2675                int i;
2676                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2677                        if (nhs->hstate_kobjs[i] == kobj) {
2678                                if (nidp)
2679                                        *nidp = nid;
2680                                return &hstates[i];
2681                        }
2682        }
2683
2684        BUG();
2685        return NULL;
2686}
2687
2688/*
2689 * Unregister hstate attributes from a single node device.
2690 * No-op if no hstate attributes attached.
2691 */
2692static void hugetlb_unregister_node(struct node *node)
2693{
2694        struct hstate *h;
2695        struct node_hstate *nhs = &node_hstates[node->dev.id];
2696
2697        if (!nhs->hugepages_kobj)
2698                return;         /* no hstate attributes */
2699
2700        for_each_hstate(h) {
2701                int idx = hstate_index(h);
2702                if (nhs->hstate_kobjs[idx]) {
2703                        kobject_put(nhs->hstate_kobjs[idx]);
2704                        nhs->hstate_kobjs[idx] = NULL;
2705                }
2706        }
2707
2708        kobject_put(nhs->hugepages_kobj);
2709        nhs->hugepages_kobj = NULL;
2710}
2711
2712
2713/*
2714 * Register hstate attributes for a single node device.
2715 * No-op if attributes already registered.
2716 */
2717static void hugetlb_register_node(struct node *node)
2718{
2719        struct hstate *h;
2720        struct node_hstate *nhs = &node_hstates[node->dev.id];
2721        int err;
2722
2723        if (nhs->hugepages_kobj)
2724                return;         /* already allocated */
2725
2726        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2727                                                        &node->dev.kobj);
2728        if (!nhs->hugepages_kobj)
2729                return;
2730
2731        for_each_hstate(h) {
2732                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2733                                                nhs->hstate_kobjs,
2734                                                &per_node_hstate_attr_group);
2735                if (err) {
2736                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2737                                h->name, node->dev.id);
2738                        hugetlb_unregister_node(node);
2739                        break;
2740                }
2741        }
2742}
2743
2744/*
2745 * hugetlb init time:  register hstate attributes for all registered node
2746 * devices of nodes that have memory.  All on-line nodes should have
2747 * registered their associated device by this time.
2748 */
2749static void __init hugetlb_register_all_nodes(void)
2750{
2751        int nid;
2752
2753        for_each_node_state(nid, N_MEMORY) {
2754                struct node *node = node_devices[nid];
2755                if (node->dev.id == nid)
2756                        hugetlb_register_node(node);
2757        }
2758
2759        /*
2760         * Let the node device driver know we're here so it can
2761         * [un]register hstate attributes on node hotplug.
2762         */
2763        register_hugetlbfs_with_node(hugetlb_register_node,
2764                                     hugetlb_unregister_node);
2765}
2766#else   /* !CONFIG_NUMA */
2767
2768static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2769{
2770        BUG();
2771        if (nidp)
2772                *nidp = -1;
2773        return NULL;
2774}
2775
2776static void hugetlb_register_all_nodes(void) { }
2777
2778#endif
2779
2780static int __init hugetlb_init(void)
2781{
2782        int i;
2783
2784        if (!hugepages_supported())
2785                return 0;
2786
2787        if (!size_to_hstate(default_hstate_size)) {
2788                default_hstate_size = HPAGE_SIZE;
2789                if (!size_to_hstate(default_hstate_size))
2790                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2791        }
2792        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2793        if (default_hstate_max_huge_pages) {
2794                if (!default_hstate.max_huge_pages)
2795                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2796        }
2797
2798        hugetlb_init_hstates();
2799        gather_bootmem_prealloc();
2800        report_hugepages();
2801
2802        hugetlb_sysfs_init();
2803        hugetlb_register_all_nodes();
2804        hugetlb_cgroup_file_init();
2805
2806#ifdef CONFIG_SMP
2807        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2808#else
2809        num_fault_mutexes = 1;
2810#endif
2811        hugetlb_fault_mutex_table =
2812                kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2813        BUG_ON(!hugetlb_fault_mutex_table);
2814
2815        for (i = 0; i < num_fault_mutexes; i++)
2816                mutex_init(&hugetlb_fault_mutex_table[i]);
2817        return 0;
2818}
2819subsys_initcall(hugetlb_init);
2820
2821/* Should be called on processing a hugepagesz=... option */
2822void __init hugetlb_bad_size(void)
2823{
2824        parsed_valid_hugepagesz = false;
2825}
2826
2827void __init hugetlb_add_hstate(unsigned int order)
2828{
2829        struct hstate *h;
2830        unsigned long i;
2831
2832        if (size_to_hstate(PAGE_SIZE << order)) {
2833                pr_warn("hugepagesz= specified twice, ignoring\n");
2834                return;
2835        }
2836        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2837        BUG_ON(order == 0);
2838        h = &hstates[hugetlb_max_hstate++];
2839        h->order = order;
2840        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2841        h->nr_huge_pages = 0;
2842        h->free_huge_pages = 0;
2843        for (i = 0; i < MAX_NUMNODES; ++i)
2844                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2845        INIT_LIST_HEAD(&h->hugepage_activelist);
2846        h->next_nid_to_alloc = first_memory_node;
2847        h->next_nid_to_free = first_memory_node;
2848        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2849                                        huge_page_size(h)/1024);
2850
2851        parsed_hstate = h;
2852}
2853
2854static int __init hugetlb_nrpages_setup(char *s)
2855{
2856        unsigned long *mhp;
2857        static unsigned long *last_mhp;
2858
2859        if (!parsed_valid_hugepagesz) {
2860                pr_warn("hugepages = %s preceded by "
2861                        "an unsupported hugepagesz, ignoring\n", s);
2862                parsed_valid_hugepagesz = true;
2863                return 1;
2864        }
2865        /*
2866         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2867         * so this hugepages= parameter goes to the "default hstate".
2868         */
2869        else if (!hugetlb_max_hstate)
2870                mhp = &default_hstate_max_huge_pages;
2871        else
2872                mhp = &parsed_hstate->max_huge_pages;
2873
2874        if (mhp == last_mhp) {
2875                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2876                return 1;
2877        }
2878
2879        if (sscanf(s, "%lu", mhp) <= 0)
2880                *mhp = 0;
2881
2882        /*
2883         * Global state is always initialized later in hugetlb_init.
2884         * But we need to allocate >= MAX_ORDER hstates here early to still
2885         * use the bootmem allocator.
2886         */
2887        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2888                hugetlb_hstate_alloc_pages(parsed_hstate);
2889
2890        last_mhp = mhp;
2891
2892        return 1;
2893}
2894__setup("hugepages=", hugetlb_nrpages_setup);
2895
2896static int __init hugetlb_default_setup(char *s)
2897{
2898        default_hstate_size = memparse(s, &s);
2899        return 1;
2900}
2901__setup("default_hugepagesz=", hugetlb_default_setup);
2902
2903static unsigned int cpuset_mems_nr(unsigned int *array)
2904{
2905        int node;
2906        unsigned int nr = 0;
2907
2908        for_each_node_mask(node, cpuset_current_mems_allowed)
2909                nr += array[node];
2910
2911        return nr;
2912}
2913
2914#ifdef CONFIG_SYSCTL
2915static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2916                         struct ctl_table *table, int write,
2917                         void __user *buffer, size_t *length, loff_t *ppos)
2918{
2919        struct hstate *h = &default_hstate;
2920        unsigned long tmp = h->max_huge_pages;
2921        int ret;
2922
2923        if (!hugepages_supported())
2924                return -EOPNOTSUPP;
2925
2926        table->data = &tmp;
2927        table->maxlen = sizeof(unsigned long);
2928        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2929        if (ret)
2930                goto out;
2931
2932        if (write)
2933                ret = __nr_hugepages_store_common(obey_mempolicy, h,
2934                                                  NUMA_NO_NODE, tmp, *length);
2935out:
2936        return ret;
2937}
2938
2939int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2940                          void __user *buffer, size_t *length, loff_t *ppos)
2941{
2942
2943        return hugetlb_sysctl_handler_common(false, table, write,
2944                                                        buffer, length, ppos);
2945}
2946
2947#ifdef CONFIG_NUMA
2948int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2949                          void __user *buffer, size_t *length, loff_t *ppos)
2950{
2951        return hugetlb_sysctl_handler_common(true, table, write,
2952                                                        buffer, length, ppos);
2953}
2954#endif /* CONFIG_NUMA */
2955
2956int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2957                        void __user *buffer,
2958                        size_t *length, loff_t *ppos)
2959{
2960        struct hstate *h = &default_hstate;
2961        unsigned long tmp;
2962        int ret;
2963
2964        if (!hugepages_supported())
2965                return -EOPNOTSUPP;
2966
2967        tmp = h->nr_overcommit_huge_pages;
2968
2969        if (write && hstate_is_gigantic(h))
2970                return -EINVAL;
2971
2972        table->data = &tmp;
2973        table->maxlen = sizeof(unsigned long);
2974        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2975        if (ret)
2976                goto out;
2977
2978        if (write) {
2979                spin_lock(&hugetlb_lock);
2980                h->nr_overcommit_huge_pages = tmp;
2981                spin_unlock(&hugetlb_lock);
2982        }
2983out:
2984        return ret;
2985}
2986
2987#endif /* CONFIG_SYSCTL */
2988
2989void hugetlb_report_meminfo(struct seq_file *m)
2990{
2991        struct hstate *h = &default_hstate;
2992        if (!hugepages_supported())
2993                return;
2994        seq_printf(m,
2995                        "HugePages_Total:   %5lu\n"
2996                        "HugePages_Free:    %5lu\n"
2997                        "HugePages_Rsvd:    %5lu\n"
2998                        "HugePages_Surp:    %5lu\n"
2999                        "Hugepagesize:   %8lu kB\n",
3000                        h->nr_huge_pages,
3001                        h->free_huge_pages,
3002                        h->resv_huge_pages,
3003                        h->surplus_huge_pages,
3004                        1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3005}
3006
3007int hugetlb_report_node_meminfo(int nid, char *buf)
3008{
3009        struct hstate *h = &default_hstate;
3010        if (!hugepages_supported())
3011                return 0;
3012        return sprintf(buf,
3013                "Node %d HugePages_Total: %5u\n"
3014                "Node %d HugePages_Free:  %5u\n"
3015                "Node %d HugePages_Surp:  %5u\n",
3016                nid, h->nr_huge_pages_node[nid],
3017                nid, h->free_huge_pages_node[nid],
3018                nid, h->surplus_huge_pages_node[nid]);
3019}
3020
3021void hugetlb_show_meminfo(void)
3022{
3023        struct hstate *h;
3024        int nid;
3025
3026        if (!hugepages_supported())
3027                return;
3028
3029        for_each_node_state(nid, N_MEMORY)
3030                for_each_hstate(h)
3031                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3032                                nid,
3033                                h->nr_huge_pages_node[nid],
3034                                h->free_huge_pages_node[nid],
3035                                h->surplus_huge_pages_node[nid],
3036                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3037}
3038
3039void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3040{
3041        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3042                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3043}
3044
3045/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3046unsigned long hugetlb_total_pages(void)
3047{
3048        struct hstate *h;
3049        unsigned long nr_total_pages = 0;
3050
3051        for_each_hstate(h)
3052                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3053        return nr_total_pages;
3054}
3055
3056static int hugetlb_acct_memory(struct hstate *h, long delta)
3057{
3058        int ret = -ENOMEM;
3059
3060        spin_lock(&hugetlb_lock);
3061        /*
3062         * When cpuset is configured, it breaks the strict hugetlb page
3063         * reservation as the accounting is done on a global variable. Such
3064         * reservation is completely rubbish in the presence of cpuset because
3065         * the reservation is not checked against page availability for the
3066         * current cpuset. Application can still potentially OOM'ed by kernel
3067         * with lack of free htlb page in cpuset that the task is in.
3068         * Attempt to enforce strict accounting with cpuset is almost
3069         * impossible (or too ugly) because cpuset is too fluid that
3070         * task or memory node can be dynamically moved between cpusets.
3071         *
3072         * The change of semantics for shared hugetlb mapping with cpuset is
3073         * undesirable. However, in order to preserve some of the semantics,
3074         * we fall back to check against current free page availability as
3075         * a best attempt and hopefully to minimize the impact of changing
3076         * semantics that cpuset has.
3077         */
3078        if (delta > 0) {
3079                if (gather_surplus_pages(h, delta) < 0)
3080                        goto out;
3081
3082                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3083                        return_unused_surplus_pages(h, delta);
3084                        goto out;
3085                }
3086        }
3087
3088        ret = 0;
3089        if (delta < 0)
3090                return_unused_surplus_pages(h, (unsigned long) -delta);
3091
3092out:
3093        spin_unlock(&hugetlb_lock);
3094        return ret;
3095}
3096
3097static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3098{
3099        struct resv_map *resv = vma_resv_map(vma);
3100
3101        /*
3102         * This new VMA should share its siblings reservation map if present.
3103         * The VMA will only ever have a valid reservation map pointer where
3104         * it is being copied for another still existing VMA.  As that VMA
3105         * has a reference to the reservation map it cannot disappear until
3106         * after this open call completes.  It is therefore safe to take a
3107         * new reference here without additional locking.
3108         */
3109        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3110                kref_get(&resv->refs);
3111}
3112
3113static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3114{
3115        struct hstate *h = hstate_vma(vma);
3116        struct resv_map *resv = vma_resv_map(vma);
3117        struct hugepage_subpool *spool = subpool_vma(vma);
3118        unsigned long reserve, start, end;
3119        long gbl_reserve;
3120
3121        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3122                return;
3123
3124        start = vma_hugecache_offset(h, vma, vma->vm_start);
3125        end = vma_hugecache_offset(h, vma, vma->vm_end);
3126
3127        reserve = (end - start) - region_count(resv, start, end);
3128
3129        kref_put(&resv->refs, resv_map_release);
3130
3131        if (reserve) {
3132                /*
3133                 * Decrement reserve counts.  The global reserve count may be
3134                 * adjusted if the subpool has a minimum size.
3135                 */
3136                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3137                hugetlb_acct_memory(h, -gbl_reserve);
3138        }
3139}
3140
3141/*
3142 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3143 * handle_mm_fault() to try to instantiate regular-sized pages in the
3144 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3145 * this far.
3146 */
3147static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3148{
3149        BUG();
3150        return 0;
3151}
3152
3153const struct vm_operations_struct hugetlb_vm_ops = {
3154        .fault = hugetlb_vm_op_fault,
3155        .open = hugetlb_vm_op_open,
3156        .close = hugetlb_vm_op_close,
3157};
3158
3159static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3160                                int writable)
3161{
3162        pte_t entry;
3163
3164        if (writable) {
3165                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3166                                         vma->vm_page_prot)));
3167        } else {
3168                entry = huge_pte_wrprotect(mk_huge_pte(page,
3169                                           vma->vm_page_prot));
3170        }
3171        entry = pte_mkyoung(entry);
3172        entry = pte_mkhuge(entry);
3173        entry = arch_make_huge_pte(entry, vma, page, writable);
3174
3175        return entry;
3176}
3177
3178static void set_huge_ptep_writable(struct vm_area_struct *vma,
3179                                   unsigned long address, pte_t *ptep)
3180{
3181        pte_t entry;
3182
3183        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3184        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3185                update_mmu_cache(vma, address, ptep);
3186}
3187
3188static int is_hugetlb_entry_migration(pte_t pte)
3189{
3190        swp_entry_t swp;
3191
3192        if (huge_pte_none(pte) || pte_present(pte))
3193                return 0;
3194        swp = pte_to_swp_entry(pte);
3195        if (non_swap_entry(swp) && is_migration_entry(swp))
3196                return 1;
3197        else
3198                return 0;
3199}
3200
3201static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3202{
3203        swp_entry_t swp;
3204
3205        if (huge_pte_none(pte) || pte_present(pte))
3206                return 0;
3207        swp = pte_to_swp_entry(pte);
3208        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3209                return 1;
3210        else
3211                return 0;
3212}
3213
3214int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3215                            struct vm_area_struct *vma)
3216{
3217        pte_t *src_pte, *dst_pte, entry;
3218        struct page *ptepage;
3219        unsigned long addr;
3220        int cow;
3221        struct hstate *h = hstate_vma(vma);
3222        unsigned long sz = huge_page_size(h);
3223        unsigned long mmun_start;       /* For mmu_notifiers */
3224        unsigned long mmun_end;         /* For mmu_notifiers */
3225        int ret = 0;
3226
3227        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3228
3229        mmun_start = vma->vm_start;
3230        mmun_end = vma->vm_end;
3231        if (cow)
3232                mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3233
3234        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3235                spinlock_t *src_ptl, *dst_ptl;
3236                src_pte = huge_pte_offset(src, addr);
3237                if (!src_pte)
3238                        continue;
3239                dst_pte = huge_pte_alloc(dst, addr, sz);
3240                if (!dst_pte) {
3241                        ret = -ENOMEM;
3242                        break;
3243                }
3244
3245                /* If the pagetables are shared don't copy or take references */
3246                if (dst_pte == src_pte)
3247                        continue;
3248
3249                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3250                src_ptl = huge_pte_lockptr(h, src, src_pte);
3251                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3252                entry = huge_ptep_get(src_pte);
3253                if (huge_pte_none(entry)) { /* skip none entry */
3254                        ;
3255                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3256                                    is_hugetlb_entry_hwpoisoned(entry))) {
3257                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3258
3259                        if (is_write_migration_entry(swp_entry) && cow) {
3260                                /*
3261                                 * COW mappings require pages in both
3262                                 * parent and child to be set to read.
3263                                 */
3264                                make_migration_entry_read(&swp_entry);
3265                                entry = swp_entry_to_pte(swp_entry);
3266                                set_huge_pte_at(src, addr, src_pte, entry);
3267                        }
3268                        set_huge_pte_at(dst, addr, dst_pte, entry);
3269                } else {
3270                        if (cow) {
3271                                huge_ptep_set_wrprotect(src, addr, src_pte);
3272                                mmu_notifier_invalidate_range(src, mmun_start,
3273                                                                   mmun_end);
3274                        }
3275                        entry = huge_ptep_get(src_pte);
3276                        ptepage = pte_page(entry);
3277                        get_page(ptepage);
3278                        page_dup_rmap(ptepage, true);
3279                        set_huge_pte_at(dst, addr, dst_pte, entry);
3280                        hugetlb_count_add(pages_per_huge_page(h), dst);
3281                }
3282                spin_unlock(src_ptl);
3283                spin_unlock(dst_ptl);
3284        }
3285
3286        if (cow)
3287                mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3288
3289        return ret;
3290}
3291
3292void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3293                            unsigned long start, unsigned long end,
3294                            struct page *ref_page)
3295{
3296        struct mm_struct *mm = vma->vm_mm;
3297        unsigned long address;
3298        pte_t *ptep;
3299        pte_t pte;
3300        spinlock_t *ptl;
3301        struct page *page;
3302        struct hstate *h = hstate_vma(vma);
3303        unsigned long sz = huge_page_size(h);
3304        const unsigned long mmun_start = start; /* For mmu_notifiers */
3305        const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3306
3307        WARN_ON(!is_vm_hugetlb_page(vma));
3308        BUG_ON(start & ~huge_page_mask(h));
3309        BUG_ON(end & ~huge_page_mask(h));
3310
3311        /*
3312         * This is a hugetlb vma, all the pte entries should point
3313         * to huge page.
3314         */
3315        tlb_remove_check_page_size_change(tlb, sz);
3316        tlb_start_vma(tlb, vma);
3317        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3318        address = start;
3319        for (; address < end; address += sz) {
3320                ptep = huge_pte_offset(mm, address);
3321                if (!ptep)
3322                        continue;
3323
3324                ptl = huge_pte_lock(h, mm, ptep);
3325                if (huge_pmd_unshare(mm, &address, ptep)) {
3326                        spin_unlock(ptl);
3327                        continue;
3328                }
3329
3330                pte = huge_ptep_get(ptep);
3331                if (huge_pte_none(pte)) {
3332                        spin_unlock(ptl);
3333                        continue;
3334                }
3335
3336                /*
3337                 * Migrating hugepage or HWPoisoned hugepage is already
3338                 * unmapped and its refcount is dropped, so just clear pte here.
3339                 */
3340                if (unlikely(!pte_present(pte))) {
3341                        huge_pte_clear(mm, address, ptep);
3342                        spin_unlock(ptl);
3343                        continue;
3344                }
3345
3346                page = pte_page(pte);
3347                /*
3348                 * If a reference page is supplied, it is because a specific
3349                 * page is being unmapped, not a range. Ensure the page we
3350                 * are about to unmap is the actual page of interest.
3351                 */
3352                if (ref_page) {
3353                        if (page != ref_page) {
3354                                spin_unlock(ptl);
3355                                continue;
3356                        }
3357                        /*
3358                         * Mark the VMA as having unmapped its page so that
3359                         * future faults in this VMA will fail rather than
3360                         * looking like data was lost
3361                         */
3362                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3363                }
3364
3365                pte = huge_ptep_get_and_clear(mm, address, ptep);
3366                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3367                if (huge_pte_dirty(pte))
3368                        set_page_dirty(page);
3369
3370                hugetlb_count_sub(pages_per_huge_page(h), mm);
3371                page_remove_rmap(page, true);
3372
3373                spin_unlock(ptl);
3374                tlb_remove_page_size(tlb, page, huge_page_size(h));
3375                /*
3376                 * Bail out after unmapping reference page if supplied
3377                 */
3378                if (ref_page)
3379                        break;
3380        }
3381        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3382        tlb_end_vma(tlb, vma);
3383}
3384
3385void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3386                          struct vm_area_struct *vma, unsigned long start,
3387                          unsigned long end, struct page *ref_page)
3388{
3389        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3390
3391        /*
3392         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3393         * test will fail on a vma being torn down, and not grab a page table
3394         * on its way out.  We're lucky that the flag has such an appropriate
3395         * name, and can in fact be safely cleared here. We could clear it
3396         * before the __unmap_hugepage_range above, but all that's necessary
3397         * is to clear it before releasing the i_mmap_rwsem. This works
3398         * because in the context this is called, the VMA is about to be
3399         * destroyed and the i_mmap_rwsem is held.
3400         */
3401        vma->vm_flags &= ~VM_MAYSHARE;
3402}
3403
3404void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3405                          unsigned long end, struct page *ref_page)
3406{
3407        struct mm_struct *mm;
3408        struct mmu_gather tlb;
3409
3410        mm = vma->vm_mm;
3411
3412        tlb_gather_mmu(&tlb, mm, start, end);
3413        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3414        tlb_finish_mmu(&tlb, start, end);
3415}
3416
3417/*
3418 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3419 * mappping it owns the reserve page for. The intention is to unmap the page
3420 * from other VMAs and let the children be SIGKILLed if they are faulting the
3421 * same region.
3422 */
3423static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3424                              struct page *page, unsigned long address)
3425{
3426        struct hstate *h = hstate_vma(vma);
3427        struct vm_area_struct *iter_vma;
3428        struct address_space *mapping;
3429        pgoff_t pgoff;
3430
3431        /*
3432         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3433         * from page cache lookup which is in HPAGE_SIZE units.
3434         */
3435        address = address & huge_page_mask(h);
3436        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3437                        vma->vm_pgoff;
3438        mapping = vma->vm_file->f_mapping;
3439
3440        /*
3441         * Take the mapping lock for the duration of the table walk. As
3442         * this mapping should be shared between all the VMAs,
3443         * __unmap_hugepage_range() is called as the lock is already held
3444         */
3445        i_mmap_lock_write(mapping);
3446        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3447                /* Do not unmap the current VMA */
3448                if (iter_vma == vma)
3449                        continue;
3450
3451                /*
3452                 * Shared VMAs have their own reserves and do not affect
3453                 * MAP_PRIVATE accounting but it is possible that a shared
3454                 * VMA is using the same page so check and skip such VMAs.
3455                 */
3456                if (iter_vma->vm_flags & VM_MAYSHARE)
3457                        continue;
3458
3459                /*
3460                 * Unmap the page from other VMAs without their own reserves.
3461                 * They get marked to be SIGKILLed if they fault in these
3462                 * areas. This is because a future no-page fault on this VMA
3463                 * could insert a zeroed page instead of the data existing
3464                 * from the time of fork. This would look like data corruption
3465                 */
3466                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3467                        unmap_hugepage_range(iter_vma, address,
3468                                             address + huge_page_size(h), page);
3469        }
3470        i_mmap_unlock_write(mapping);
3471}
3472
3473/*
3474 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3475 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3476 * cannot race with other handlers or page migration.
3477 * Keep the pte_same checks anyway to make transition from the mutex easier.
3478 */
3479static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3480                       unsigned long address, pte_t *ptep,
3481                       struct page *pagecache_page, spinlock_t *ptl)
3482{
3483        pte_t pte;
3484        struct hstate *h = hstate_vma(vma);
3485        struct page *old_page, *new_page;
3486        int ret = 0, outside_reserve = 0;
3487        unsigned long mmun_start;       /* For mmu_notifiers */
3488        unsigned long mmun_end;         /* For mmu_notifiers */
3489
3490        pte = huge_ptep_get(ptep);
3491        old_page = pte_page(pte);
3492
3493retry_avoidcopy:
3494        /* If no-one else is actually using this page, avoid the copy
3495         * and just make the page writable */
3496        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3497                page_move_anon_rmap(old_page, vma);
3498                set_huge_ptep_writable(vma, address, ptep);
3499                return 0;
3500        }
3501
3502        /*
3503         * If the process that created a MAP_PRIVATE mapping is about to
3504         * perform a COW due to a shared page count, attempt to satisfy
3505         * the allocation without using the existing reserves. The pagecache
3506         * page is used to determine if the reserve at this address was
3507         * consumed or not. If reserves were used, a partial faulted mapping
3508         * at the time of fork() could consume its reserves on COW instead
3509         * of the full address range.
3510         */
3511        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3512                        old_page != pagecache_page)
3513                outside_reserve = 1;
3514
3515        get_page(old_page);
3516
3517        /*
3518         * Drop page table lock as buddy allocator may be called. It will
3519         * be acquired again before returning to the caller, as expected.
3520         */
3521        spin_unlock(ptl);
3522        new_page = alloc_huge_page(vma, address, outside_reserve);
3523
3524        if (IS_ERR(new_page)) {
3525                /*
3526                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3527                 * it is due to references held by a child and an insufficient
3528                 * huge page pool. To guarantee the original mappers
3529                 * reliability, unmap the page from child processes. The child
3530                 * may get SIGKILLed if it later faults.
3531                 */
3532                if (outside_reserve) {
3533                        put_page(old_page);
3534                        BUG_ON(huge_pte_none(pte));
3535                        unmap_ref_private(mm, vma, old_page, address);
3536                        BUG_ON(huge_pte_none(pte));
3537                        spin_lock(ptl);
3538                        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3539                        if (likely(ptep &&
3540                                   pte_same(huge_ptep_get(ptep), pte)))
3541                                goto retry_avoidcopy;
3542                        /*
3543                         * race occurs while re-acquiring page table
3544                         * lock, and our job is done.
3545                         */
3546                        return 0;
3547                }
3548
3549                ret = (PTR_ERR(new_page) == -ENOMEM) ?
3550                        VM_FAULT_OOM : VM_FAULT_SIGBUS;
3551                goto out_release_old;
3552        }
3553
3554        /*
3555         * When the original hugepage is shared one, it does not have
3556         * anon_vma prepared.
3557         */
3558        if (unlikely(anon_vma_prepare(vma))) {
3559                ret = VM_FAULT_OOM;
3560                goto out_release_all;
3561        }
3562
3563        copy_user_huge_page(new_page, old_page, address, vma,
3564                            pages_per_huge_page(h));
3565        __SetPageUptodate(new_page);
3566        set_page_huge_active(new_page);
3567
3568        mmun_start = address & huge_page_mask(h);
3569        mmun_end = mmun_start + huge_page_size(h);
3570        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3571
3572        /*
3573         * Retake the page table lock to check for racing updates
3574         * before the page tables are altered
3575         */
3576        spin_lock(ptl);
3577        ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3578        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3579                ClearPagePrivate(new_page);
3580
3581                /* Break COW */
3582                huge_ptep_clear_flush(vma, address, ptep);
3583                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3584                set_huge_pte_at(mm, address, ptep,
3585                                make_huge_pte(vma, new_page, 1));
3586                page_remove_rmap(old_page, true);
3587                hugepage_add_new_anon_rmap(new_page, vma, address);
3588                /* Make the old page be freed below */
3589                new_page = old_page;
3590        }
3591        spin_unlock(ptl);
3592        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3593out_release_all:
3594        restore_reserve_on_error(h, vma, address, new_page);
3595        put_page(new_page);
3596out_release_old:
3597        put_page(old_page);
3598
3599        spin_lock(ptl); /* Caller expects lock to be held */
3600        return ret;
3601}
3602
3603/* Return the pagecache page at a given address within a VMA */
3604static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3605                        struct vm_area_struct *vma, unsigned long address)
3606{
3607        struct address_space *mapping;
3608        pgoff_t idx;
3609
3610        mapping = vma->vm_file->f_mapping;
3611        idx = vma_hugecache_offset(h, vma, address);
3612
3613        return find_lock_page(mapping, idx);
3614}
3615
3616/*
3617 * Return whether there is a pagecache page to back given address within VMA.
3618 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3619 */
3620static bool hugetlbfs_pagecache_present(struct hstate *h,
3621                        struct vm_area_struct *vma, unsigned long address)
3622{
3623        struct address_space *mapping;
3624        pgoff_t idx;
3625        struct page *page;
3626
3627        mapping = vma->vm_file->f_mapping;
3628        idx = vma_hugecache_offset(h, vma, address);
3629
3630        page = find_get_page(mapping, idx);
3631        if (page)
3632                put_page(page);
3633        return page != NULL;
3634}
3635
3636int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3637                           pgoff_t idx)
3638{
3639        struct inode *inode = mapping->host;
3640        struct hstate *h = hstate_inode(inode);
3641        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3642
3643        if (err)
3644                return err;
3645        ClearPagePrivate(page);
3646
3647        spin_lock(&inode->i_lock);
3648        inode->i_blocks += blocks_per_huge_page(h);
3649        spin_unlock(&inode->i_lock);
3650        return 0;
3651}
3652
3653static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3654                           struct address_space *mapping, pgoff_t idx,
3655                           unsigned long address, pte_t *ptep, unsigned int flags)
3656{
3657        struct hstate *h = hstate_vma(vma);
3658        int ret = VM_FAULT_SIGBUS;
3659        int anon_rmap = 0;
3660        unsigned long size;
3661        struct page *page;
3662        pte_t new_pte;
3663        spinlock_t *ptl;
3664
3665        /*
3666         * Currently, we are forced to kill the process in the event the
3667         * original mapper has unmapped pages from the child due to a failed
3668         * COW. Warn that such a situation has occurred as it may not be obvious
3669         */
3670        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3671                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3672                           current->pid);
3673                return ret;
3674        }
3675
3676        /*
3677         * Use page lock to guard against racing truncation
3678         * before we get page_table_lock.
3679         */
3680retry:
3681        page = find_lock_page(mapping, idx);
3682        if (!page) {
3683                size = i_size_read(mapping->host) >> huge_page_shift(h);
3684                if (idx >= size)
3685                        goto out;
3686
3687                /*
3688                 * Check for page in userfault range
3689                 */
3690                if (userfaultfd_missing(vma)) {
3691                        u32 hash;
3692                        struct vm_fault vmf = {
3693                                .vma = vma,
3694                                .address = address,
3695                                .flags = flags,
3696                                /*
3697                                 * Hard to debug if it ends up being
3698                                 * used by a callee that assumes
3699                                 * something about the other
3700                                 * uninitialized fields... same as in
3701                                 * memory.c
3702                                 */
3703                        };
3704
3705                        /*
3706                         * hugetlb_fault_mutex must be dropped before
3707                         * handling userfault.  Reacquire after handling
3708                         * fault to make calling code simpler.
3709                         */
3710                        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3711                                                        idx, address);
3712                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3713                        ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3714                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3715                        goto out;
3716                }
3717
3718                page = alloc_huge_page(vma, address, 0);
3719                if (IS_ERR(page)) {
3720                        ret = PTR_ERR(page);
3721                        if (ret == -ENOMEM)
3722                                ret = VM_FAULT_OOM;
3723                        else
3724                                ret = VM_FAULT_SIGBUS;
3725                        goto out;
3726                }
3727                clear_huge_page(page, address, pages_per_huge_page(h));
3728                __SetPageUptodate(page);
3729                set_page_huge_active(page);
3730
3731                if (vma->vm_flags & VM_MAYSHARE) {
3732                        int err = huge_add_to_page_cache(page, mapping, idx);
3733                        if (err) {
3734                                put_page(page);
3735                                if (err == -EEXIST)
3736                                        goto retry;
3737                                goto out;
3738                        }
3739                } else {
3740                        lock_page(page);
3741                        if (unlikely(anon_vma_prepare(vma))) {
3742                                ret = VM_FAULT_OOM;
3743                                goto backout_unlocked;
3744                        }
3745                        anon_rmap = 1;
3746                }
3747        } else {
3748                /*
3749                 * If memory error occurs between mmap() and fault, some process
3750                 * don't have hwpoisoned swap entry for errored virtual address.
3751                 * So we need to block hugepage fault by PG_hwpoison bit check.
3752                 */
3753                if (unlikely(PageHWPoison(page))) {
3754                        ret = VM_FAULT_HWPOISON |
3755                                VM_FAULT_SET_HINDEX(hstate_index(h));
3756                        goto backout_unlocked;
3757                }
3758        }
3759
3760        /*
3761         * If we are going to COW a private mapping later, we examine the
3762         * pending reservations for this page now. This will ensure that
3763         * any allocations necessary to record that reservation occur outside
3764         * the spinlock.
3765         */
3766        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3767                if (vma_needs_reservation(h, vma, address) < 0) {
3768                        ret = VM_FAULT_OOM;
3769                        goto backout_unlocked;
3770                }
3771                /* Just decrements count, does not deallocate */
3772                vma_end_reservation(h, vma, address);
3773        }
3774
3775        ptl = huge_pte_lock(h, mm, ptep);
3776        size = i_size_read(mapping->host) >> huge_page_shift(h);
3777        if (idx >= size)
3778                goto backout;
3779
3780        ret = 0;
3781        if (!huge_pte_none(huge_ptep_get(ptep)))
3782                goto backout;
3783
3784        if (anon_rmap) {
3785                ClearPagePrivate(page);
3786                hugepage_add_new_anon_rmap(page, vma, address);
3787        } else
3788                page_dup_rmap(page, true);
3789        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3790                                && (vma->vm_flags & VM_SHARED)));
3791        set_huge_pte_at(mm, address, ptep, new_pte);
3792
3793        hugetlb_count_add(pages_per_huge_page(h), mm);
3794        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3795                /* Optimization, do the COW without a second fault */
3796                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3797        }
3798
3799        spin_unlock(ptl);
3800        unlock_page(page);
3801out:
3802        return ret;
3803
3804backout:
3805        spin_unlock(ptl);
3806backout_unlocked:
3807        unlock_page(page);
3808        restore_reserve_on_error(h, vma, address, page);
3809        put_page(page);
3810        goto out;
3811}
3812
3813#ifdef CONFIG_SMP
3814u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3815                            struct vm_area_struct *vma,
3816                            struct address_space *mapping,
3817                            pgoff_t idx, unsigned long address)
3818{
3819        unsigned long key[2];
3820        u32 hash;
3821
3822        if (vma->vm_flags & VM_SHARED) {
3823                key[0] = (unsigned long) mapping;
3824                key[1] = idx;
3825        } else {
3826                key[0] = (unsigned long) mm;
3827                key[1] = address >> huge_page_shift(h);
3828        }
3829
3830        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3831
3832        return hash & (num_fault_mutexes - 1);
3833}
3834#else
3835/*
3836 * For uniprocesor systems we always use a single mutex, so just
3837 * return 0 and avoid the hashing overhead.
3838 */
3839u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3840                            struct vm_area_struct *vma,
3841                            struct address_space *mapping,
3842                            pgoff_t idx, unsigned long address)
3843{
3844        return 0;
3845}
3846#endif
3847
3848int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3849                        unsigned long address, unsigned int flags)
3850{
3851        pte_t *ptep, entry;
3852        spinlock_t *ptl;
3853        int ret;
3854        u32 hash;
3855        pgoff_t idx;
3856        struct page *page = NULL;
3857        struct page *pagecache_page = NULL;
3858        struct hstate *h = hstate_vma(vma);
3859        struct address_space *mapping;
3860        int need_wait_lock = 0;
3861
3862        address &= huge_page_mask(h);
3863
3864        ptep = huge_pte_offset(mm, address);
3865        if (ptep) {
3866                entry = huge_ptep_get(ptep);
3867                if (unlikely(is_hugetlb_entry_migration(entry))) {
3868                        migration_entry_wait_huge(vma, mm, ptep);
3869                        return 0;
3870                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3871                        return VM_FAULT_HWPOISON_LARGE |
3872                                VM_FAULT_SET_HINDEX(hstate_index(h));
3873        } else {
3874                ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3875                if (!ptep)
3876                        return VM_FAULT_OOM;
3877        }
3878
3879        mapping = vma->vm_file->f_mapping;
3880        idx = vma_hugecache_offset(h, vma, address);
3881
3882        /*
3883         * Serialize hugepage allocation and instantiation, so that we don't
3884         * get spurious allocation failures if two CPUs race to instantiate
3885         * the same page in the page cache.
3886         */
3887        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3888        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3889
3890        entry = huge_ptep_get(ptep);
3891        if (huge_pte_none(entry)) {
3892                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3893                goto out_mutex;
3894        }
3895
3896        ret = 0;
3897
3898        /*
3899         * entry could be a migration/hwpoison entry at this point, so this
3900         * check prevents the kernel from going below assuming that we have
3901         * a active hugepage in pagecache. This goto expects the 2nd page fault,
3902         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3903         * handle it.
3904         */
3905        if (!pte_present(entry))
3906                goto out_mutex;
3907
3908        /*
3909         * If we are going to COW the mapping later, we examine the pending
3910         * reservations for this page now. This will ensure that any
3911         * allocations necessary to record that reservation occur outside the
3912         * spinlock. For private mappings, we also lookup the pagecache
3913         * page now as it is used to determine if a reservation has been
3914         * consumed.
3915         */
3916        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3917                if (vma_needs_reservation(h, vma, address) < 0) {
3918                        ret = VM_FAULT_OOM;
3919                        goto out_mutex;
3920                }
3921                /* Just decrements count, does not deallocate */
3922                vma_end_reservation(h, vma, address);
3923
3924                if (!(vma->vm_flags & VM_MAYSHARE))
3925                        pagecache_page = hugetlbfs_pagecache_page(h,
3926                                                                vma, address);
3927        }
3928
3929        ptl = huge_pte_lock(h, mm, ptep);
3930
3931        /* Check for a racing update before calling hugetlb_cow */
3932        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3933                goto out_ptl;
3934
3935        /*
3936         * hugetlb_cow() requires page locks of pte_page(entry) and
3937         * pagecache_page, so here we need take the former one
3938         * when page != pagecache_page or !pagecache_page.
3939         */
3940        page = pte_page(entry);
3941        if (page != pagecache_page)
3942                if (!trylock_page(page)) {
3943                        need_wait_lock = 1;
3944                        goto out_ptl;
3945                }
3946
3947        get_page(page);
3948
3949        if (flags & FAULT_FLAG_WRITE) {
3950                if (!huge_pte_write(entry)) {
3951                        ret = hugetlb_cow(mm, vma, address, ptep,
3952                                          pagecache_page, ptl);
3953                        goto out_put_page;
3954                }
3955                entry = huge_pte_mkdirty(entry);
3956        }
3957        entry = pte_mkyoung(entry);
3958        if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3959                                                flags & FAULT_FLAG_WRITE))
3960                update_mmu_cache(vma, address, ptep);
3961out_put_page:
3962        if (page != pagecache_page)
3963                unlock_page(page);
3964        put_page(page);
3965out_ptl:
3966        spin_unlock(ptl);
3967
3968        if (pagecache_page) {
3969                unlock_page(pagecache_page);
3970                put_page(pagecache_page);
3971        }
3972out_mutex:
3973        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3974        /*
3975         * Generally it's safe to hold refcount during waiting page lock. But
3976         * here we just wait to defer the next page fault to avoid busy loop and
3977         * the page is not used after unlocked before returning from the current
3978         * page fault. So we are safe from accessing freed page, even if we wait
3979         * here without taking refcount.
3980         */
3981        if (need_wait_lock)
3982                wait_on_page_locked(page);
3983        return ret;
3984}
3985
3986/*
3987 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3988 * modifications for huge pages.
3989 */
3990int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3991                            pte_t *dst_pte,
3992                            struct vm_area_struct *dst_vma,
3993                            unsigned long dst_addr,
3994                            unsigned long src_addr,
3995                            struct page **pagep)
3996{
3997        int vm_shared = dst_vma->vm_flags & VM_SHARED;
3998        struct hstate *h = hstate_vma(dst_vma);
3999        pte_t _dst_pte;
4000        spinlock_t *ptl;
4001        int ret;
4002        struct page *page;
4003
4004        if (!*pagep) {
4005                ret = -ENOMEM;
4006                page = alloc_huge_page(dst_vma, dst_addr, 0);
4007                if (IS_ERR(page))
4008                        goto out;
4009
4010                ret = copy_huge_page_from_user(page,
4011                                                (const void __user *) src_addr,
4012                                                pages_per_huge_page(h), false);
4013
4014                /* fallback to copy_from_user outside mmap_sem */
4015                if (unlikely(ret)) {
4016                        ret = -EFAULT;
4017                        *pagep = page;
4018                        /* don't free the page */
4019                        goto out;
4020                }
4021        } else {
4022                page = *pagep;
4023                *pagep = NULL;
4024        }
4025
4026        /*
4027         * The memory barrier inside __SetPageUptodate makes sure that
4028         * preceding stores to the page contents become visible before
4029         * the set_pte_at() write.
4030         */
4031        __SetPageUptodate(page);
4032        set_page_huge_active(page);
4033
4034        /*
4035         * If shared, add to page cache
4036         */
4037        if (vm_shared) {
4038                struct address_space *mapping = dst_vma->vm_file->f_mapping;
4039                pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4040
4041                ret = huge_add_to_page_cache(page, mapping, idx);
4042                if (ret)
4043                        goto out_release_nounlock;
4044        }
4045
4046        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4047        spin_lock(ptl);
4048
4049        ret = -EEXIST;
4050        if (!huge_pte_none(huge_ptep_get(dst_pte)))
4051                goto out_release_unlock;
4052
4053        if (vm_shared) {
4054                page_dup_rmap(page, true);
4055        } else {
4056                ClearPagePrivate(page);
4057                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4058        }
4059
4060        _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4061        if (dst_vma->vm_flags & VM_WRITE)
4062                _dst_pte = huge_pte_mkdirty(_dst_pte);
4063        _dst_pte = pte_mkyoung(_dst_pte);
4064
4065        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4066
4067        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4068                                        dst_vma->vm_flags & VM_WRITE);
4069        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4070
4071        /* No need to invalidate - it was non-present before */
4072        update_mmu_cache(dst_vma, dst_addr, dst_pte);
4073
4074        spin_unlock(ptl);
4075        if (vm_shared)
4076                unlock_page(page);
4077        ret = 0;
4078out:
4079        return ret;
4080out_release_unlock:
4081        spin_unlock(ptl);
4082out_release_nounlock:
4083        if (vm_shared)
4084                unlock_page(page);
4085        put_page(page);
4086        goto out;
4087}
4088
4089long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4090                         struct page **pages, struct vm_area_struct **vmas,
4091                         unsigned long *position, unsigned long *nr_pages,
4092                         long i, unsigned int flags, int *nonblocking)
4093{
4094        unsigned long pfn_offset;
4095        unsigned long vaddr = *position;
4096        unsigned long remainder = *nr_pages;
4097        struct hstate *h = hstate_vma(vma);
4098
4099        while (vaddr < vma->vm_end && remainder) {
4100                pte_t *pte;
4101                spinlock_t *ptl = NULL;
4102                int absent;
4103                struct page *page;
4104
4105                /*
4106                 * If we have a pending SIGKILL, don't keep faulting pages and
4107                 * potentially allocating memory.
4108                 */
4109                if (unlikely(fatal_signal_pending(current))) {
4110                        remainder = 0;
4111                        break;
4112                }
4113
4114                /*
4115                 * Some archs (sparc64, sh*) have multiple pte_ts to
4116                 * each hugepage.  We have to make sure we get the
4117                 * first, for the page indexing below to work.
4118                 *
4119                 * Note that page table lock is not held when pte is null.
4120                 */
4121                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4122                if (pte)
4123                        ptl = huge_pte_lock(h, mm, pte);
4124                absent = !pte || huge_pte_none(huge_ptep_get(pte));
4125
4126                /*
4127                 * When coredumping, it suits get_dump_page if we just return
4128                 * an error where there's an empty slot with no huge pagecache
4129                 * to back it.  This way, we avoid allocating a hugepage, and
4130                 * the sparse dumpfile avoids allocating disk blocks, but its
4131                 * huge holes still show up with zeroes where they need to be.
4132                 */
4133                if (absent && (flags & FOLL_DUMP) &&
4134                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4135                        if (pte)
4136                                spin_unlock(ptl);
4137                        remainder = 0;
4138                        break;
4139                }
4140
4141                /*
4142                 * We need call hugetlb_fault for both hugepages under migration
4143                 * (in which case hugetlb_fault waits for the migration,) and
4144                 * hwpoisoned hugepages (in which case we need to prevent the
4145                 * caller from accessing to them.) In order to do this, we use
4146                 * here is_swap_pte instead of is_hugetlb_entry_migration and
4147                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4148                 * both cases, and because we can't follow correct pages
4149                 * directly from any kind of swap entries.
4150                 */
4151                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4152                    ((flags & FOLL_WRITE) &&
4153                      !huge_pte_write(huge_ptep_get(pte)))) {
4154                        int ret;
4155                        unsigned int fault_flags = 0;
4156
4157                        if (pte)
4158                                spin_unlock(ptl);
4159                        if (flags & FOLL_WRITE)
4160                                fault_flags |= FAULT_FLAG_WRITE;
4161                        if (nonblocking)
4162                                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4163                        if (flags & FOLL_NOWAIT)
4164                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4165                                        FAULT_FLAG_RETRY_NOWAIT;
4166                        if (flags & FOLL_TRIED) {
4167                                VM_WARN_ON_ONCE(fault_flags &
4168                                                FAULT_FLAG_ALLOW_RETRY);
4169                                fault_flags |= FAULT_FLAG_TRIED;
4170                        }
4171                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4172                        if (ret & VM_FAULT_ERROR) {
4173                                int err = vm_fault_to_errno(ret, flags);
4174
4175                                if (err)
4176                                        return err;
4177
4178                                remainder = 0;
4179                                break;
4180                        }
4181                        if (ret & VM_FAULT_RETRY) {
4182                                if (nonblocking)
4183                                        *nonblocking = 0;
4184                                *nr_pages = 0;
4185                                /*
4186                                 * VM_FAULT_RETRY must not return an
4187                                 * error, it will return zero
4188                                 * instead.
4189                                 *
4190                                 * No need to update "position" as the
4191                                 * caller will not check it after
4192                                 * *nr_pages is set to 0.
4193                                 */
4194                                return i;
4195                        }
4196                        continue;
4197                }
4198
4199                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4200                page = pte_page(huge_ptep_get(pte));
4201same_page:
4202                if (pages) {
4203                        pages[i] = mem_map_offset(page, pfn_offset);
4204                        get_page(pages[i]);
4205                }
4206
4207                if (vmas)
4208                        vmas[i] = vma;
4209
4210                vaddr += PAGE_SIZE;
4211                ++pfn_offset;
4212                --remainder;
4213                ++i;
4214                if (vaddr < vma->vm_end && remainder &&
4215                                pfn_offset < pages_per_huge_page(h)) {
4216                        /*
4217                         * We use pfn_offset to avoid touching the pageframes
4218                         * of this compound page.
4219                         */
4220                        goto same_page;
4221                }
4222                spin_unlock(ptl);
4223        }
4224        *nr_pages = remainder;
4225        /*
4226         * setting position is actually required only if remainder is
4227         * not zero but it's faster not to add a "if (remainder)"
4228         * branch.
4229         */
4230        *position = vaddr;
4231
4232        return i ? i : -EFAULT;
4233}
4234
4235#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4236/*
4237 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4238 * implement this.
4239 */
4240#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4241#endif
4242
4243unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4244                unsigned long address, unsigned long end, pgprot_t newprot)
4245{
4246        struct mm_struct *mm = vma->vm_mm;
4247        unsigned long start = address;
4248        pte_t *ptep;
4249        pte_t pte;
4250        struct hstate *h = hstate_vma(vma);
4251        unsigned long pages = 0;
4252
4253        BUG_ON(address >= end);
4254        flush_cache_range(vma, address, end);
4255
4256        mmu_notifier_invalidate_range_start(mm, start, end);
4257        i_mmap_lock_write(vma->vm_file->f_mapping);
4258        for (; address < end; address += huge_page_size(h)) {
4259                spinlock_t *ptl;
4260                ptep = huge_pte_offset(mm, address);
4261                if (!ptep)
4262                        continue;
4263                ptl = huge_pte_lock(h, mm, ptep);
4264                if (huge_pmd_unshare(mm, &address, ptep)) {
4265                        pages++;
4266                        spin_unlock(ptl);
4267                        continue;
4268                }
4269                pte = huge_ptep_get(ptep);
4270                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4271                        spin_unlock(ptl);
4272                        continue;
4273                }
4274                if (unlikely(is_hugetlb_entry_migration(pte))) {
4275                        swp_entry_t entry = pte_to_swp_entry(pte);
4276
4277                        if (is_write_migration_entry(entry)) {
4278                                pte_t newpte;
4279
4280                                make_migration_entry_read(&entry);
4281                                newpte = swp_entry_to_pte(entry);
4282                                set_huge_pte_at(mm, address, ptep, newpte);
4283                                pages++;
4284                        }
4285                        spin_unlock(ptl);
4286                        continue;
4287                }
4288                if (!huge_pte_none(pte)) {
4289                        pte = huge_ptep_get_and_clear(mm, address, ptep);
4290                        pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4291                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4292                        set_huge_pte_at(mm, address, ptep, pte);
4293                        pages++;
4294                }
4295                spin_unlock(ptl);
4296        }
4297        /*
4298         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4299         * may have cleared our pud entry and done put_page on the page table:
4300         * once we release i_mmap_rwsem, another task can do the final put_page
4301         * and that page table be reused and filled with junk.
4302         */
4303        flush_hugetlb_tlb_range(vma, start, end);
4304        mmu_notifier_invalidate_range(mm, start, end);
4305        i_mmap_unlock_write(vma->vm_file->f_mapping);
4306        mmu_notifier_invalidate_range_end(mm, start, end);
4307
4308        return pages << h->order;
4309}
4310
4311int hugetlb_reserve_pages(struct inode *inode,
4312                                        long from, long to,
4313                                        struct vm_area_struct *vma,
4314                                        vm_flags_t vm_flags)
4315{
4316        long ret, chg;
4317        struct hstate *h = hstate_inode(inode);
4318        struct hugepage_subpool *spool = subpool_inode(inode);
4319        struct resv_map *resv_map;
4320        long gbl_reserve;
4321
4322        /*
4323         * Only apply hugepage reservation if asked. At fault time, an
4324         * attempt will be made for VM_NORESERVE to allocate a page
4325         * without using reserves
4326         */
4327        if (vm_flags & VM_NORESERVE)
4328                return 0;
4329
4330        /*
4331         * Shared mappings base their reservation on the number of pages that
4332         * are already allocated on behalf of the file. Private mappings need
4333         * to reserve the full area even if read-only as mprotect() may be
4334         * called to make the mapping read-write. Assume !vma is a shm mapping
4335         */
4336        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4337                resv_map = inode_resv_map(inode);
4338
4339                chg = region_chg(resv_map, from, to);
4340
4341        } else {
4342                resv_map = resv_map_alloc();
4343                if (!resv_map)
4344                        return -ENOMEM;
4345
4346                chg = to - from;
4347
4348                set_vma_resv_map(vma, resv_map);
4349                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4350        }
4351
4352        if (chg < 0) {
4353                ret = chg;
4354                goto out_err;
4355        }
4356
4357        /*
4358         * There must be enough pages in the subpool for the mapping. If
4359         * the subpool has a minimum size, there may be some global
4360         * reservations already in place (gbl_reserve).
4361         */
4362        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4363        if (gbl_reserve < 0) {
4364                ret = -ENOSPC;
4365                goto out_err;
4366        }
4367
4368        /*
4369         * Check enough hugepages are available for the reservation.
4370         * Hand the pages back to the subpool if there are not
4371         */
4372        ret = hugetlb_acct_memory(h, gbl_reserve);
4373        if (ret < 0) {
4374                /* put back original number of pages, chg */
4375                (void)hugepage_subpool_put_pages(spool, chg);
4376                goto out_err;
4377        }
4378
4379        /*
4380         * Account for the reservations made. Shared mappings record regions
4381         * that have reservations as they are shared by multiple VMAs.
4382         * When the last VMA disappears, the region map says how much
4383         * the reservation was and the page cache tells how much of
4384         * the reservation was consumed. Private mappings are per-VMA and
4385         * only the consumed reservations are tracked. When the VMA
4386         * disappears, the original reservation is the VMA size and the
4387         * consumed reservations are stored in the map. Hence, nothing
4388         * else has to be done for private mappings here
4389         */
4390        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4391                long add = region_add(resv_map, from, to);
4392
4393                if (unlikely(chg > add)) {
4394                        /*
4395                         * pages in this range were added to the reserve
4396                         * map between region_chg and region_add.  This
4397                         * indicates a race with alloc_huge_page.  Adjust
4398                         * the subpool and reserve counts modified above
4399                         * based on the difference.
4400                         */
4401                        long rsv_adjust;
4402
4403                        rsv_adjust = hugepage_subpool_put_pages(spool,
4404                                                                chg - add);
4405                        hugetlb_acct_memory(h, -rsv_adjust);
4406                }
4407        }
4408        return 0;
4409out_err:
4410        if (!vma || vma->vm_flags & VM_MAYSHARE)
4411                /* Don't call region_abort if region_chg failed */
4412                if (chg >= 0)
4413                        region_abort(resv_map, from, to);
4414        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4415                kref_put(&resv_map->refs, resv_map_release);
4416        return ret;
4417}
4418
4419long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4420                                                                long freed)
4421{
4422        struct hstate *h = hstate_inode(inode);
4423        struct resv_map *resv_map = inode_resv_map(inode);
4424        long chg = 0;
4425        struct hugepage_subpool *spool = subpool_inode(inode);
4426        long gbl_reserve;
4427
4428        if (resv_map) {
4429                chg = region_del(resv_map, start, end);
4430                /*
4431                 * region_del() can fail in the rare case where a region
4432                 * must be split and another region descriptor can not be
4433                 * allocated.  If end == LONG_MAX, it will not fail.
4434                 */
4435                if (chg < 0)
4436                        return chg;
4437        }
4438
4439        spin_lock(&inode->i_lock);
4440        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4441        spin_unlock(&inode->i_lock);
4442
4443        /*
4444         * If the subpool has a minimum size, the number of global
4445         * reservations to be released may be adjusted.
4446         */
4447        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4448        hugetlb_acct_memory(h, -gbl_reserve);
4449
4450        return 0;
4451}
4452
4453#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4454static unsigned long page_table_shareable(struct vm_area_struct *svma,
4455                                struct vm_area_struct *vma,
4456                                unsigned long addr, pgoff_t idx)
4457{
4458        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4459                                svma->vm_start;
4460        unsigned long sbase = saddr & PUD_MASK;
4461        unsigned long s_end = sbase + PUD_SIZE;
4462
4463        /* Allow segments to share if only one is marked locked */
4464        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4465        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4466
4467        /*
4468         * match the virtual addresses, permission and the alignment of the
4469         * page table page.
4470         */
4471        if (pmd_index(addr) != pmd_index(saddr) ||
4472            vm_flags != svm_flags ||
4473            sbase < svma->vm_start || svma->vm_end < s_end)
4474                return 0;
4475
4476        return saddr;
4477}
4478
4479static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4480{
4481        unsigned long base = addr & PUD_MASK;
4482        unsigned long end = base + PUD_SIZE;
4483
4484        /*
4485         * check on proper vm_flags and page table alignment
4486         */
4487        if (vma->vm_flags & VM_MAYSHARE &&
4488            vma->vm_start <= base && end <= vma->vm_end)
4489                return true;
4490        return false;
4491}
4492
4493/*
4494 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4495 * and returns the corresponding pte. While this is not necessary for the
4496 * !shared pmd case because we can allocate the pmd later as well, it makes the
4497 * code much cleaner. pmd allocation is essential for the shared case because
4498 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4499 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4500 * bad pmd for sharing.
4501 */
4502pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4503{
4504        struct vm_area_struct *vma = find_vma(mm, addr);
4505        struct address_space *mapping = vma->vm_file->f_mapping;
4506        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4507                        vma->vm_pgoff;
4508        struct vm_area_struct *svma;
4509        unsigned long saddr;
4510        pte_t *spte = NULL;
4511        pte_t *pte;
4512        spinlock_t *ptl;
4513
4514        if (!vma_shareable(vma, addr))
4515                return (pte_t *)pmd_alloc(mm, pud, addr);
4516
4517        i_mmap_lock_write(mapping);
4518        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4519                if (svma == vma)
4520                        continue;
4521
4522                saddr = page_table_shareable(svma, vma, addr, idx);
4523                if (saddr) {
4524                        spte = huge_pte_offset(svma->vm_mm, saddr);
4525                        if (spte) {
4526                                get_page(virt_to_page(spte));
4527                                break;
4528                        }
4529                }
4530        }
4531
4532        if (!spte)
4533                goto out;
4534
4535        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4536        if (pud_none(*pud)) {
4537                pud_populate(mm, pud,
4538                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4539                mm_inc_nr_pmds(mm);
4540        } else {
4541                put_page(virt_to_page(spte));
4542        }
4543        spin_unlock(ptl);
4544out:
4545        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4546        i_mmap_unlock_write(mapping);
4547        return pte;
4548}
4549
4550/*
4551 * unmap huge page backed by shared pte.
4552 *
4553 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4554 * indicated by page_count > 1, unmap is achieved by clearing pud and
4555 * decrementing the ref count. If count == 1, the pte page is not shared.
4556 *
4557 * called with page table lock held.
4558 *
4559 * returns: 1 successfully unmapped a shared pte page
4560 *          0 the underlying pte page is not shared, or it is the last user
4561 */
4562int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4563{
4564        pgd_t *pgd = pgd_offset(mm, *addr);
4565        p4d_t *p4d = p4d_offset(pgd, *addr);
4566        pud_t *pud = pud_offset(p4d, *addr);
4567
4568        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4569        if (page_count(virt_to_page(ptep)) == 1)
4570                return 0;
4571
4572        pud_clear(pud);
4573        put_page(virt_to_page(ptep));
4574        mm_dec_nr_pmds(mm);
4575        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4576        return 1;
4577}
4578#define want_pmd_share()        (1)
4579#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4580pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4581{
4582        return NULL;
4583}
4584
4585int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4586{
4587        return 0;
4588}
4589#define want_pmd_share()        (0)
4590#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4591
4592#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4593pte_t *huge_pte_alloc(struct mm_struct *mm,
4594                        unsigned long addr, unsigned long sz)
4595{
4596        pgd_t *pgd;
4597        p4d_t *p4d;
4598        pud_t *pud;
4599        pte_t *pte = NULL;
4600
4601        pgd = pgd_offset(mm, addr);
4602        p4d = p4d_offset(pgd, addr);
4603        pud = pud_alloc(mm, p4d, addr);
4604        if (pud) {
4605                if (sz == PUD_SIZE) {
4606                        pte = (pte_t *)pud;
4607                } else {
4608                        BUG_ON(sz != PMD_SIZE);
4609                        if (want_pmd_share() && pud_none(*pud))
4610                                pte = huge_pmd_share(mm, addr, pud);
4611                        else
4612                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4613                }
4614        }
4615        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4616
4617        return pte;
4618}
4619
4620pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4621{
4622        pgd_t *pgd;
4623        p4d_t *p4d;
4624        pud_t *pud;
4625        pmd_t *pmd;
4626
4627        pgd = pgd_offset(mm, addr);
4628        if (!pgd_present(*pgd))
4629                return NULL;
4630        p4d = p4d_offset(pgd, addr);
4631        if (!p4d_present(*p4d))
4632                return NULL;
4633        pud = pud_offset(p4d, addr);
4634        if (!pud_present(*pud))
4635                return NULL;
4636        if (pud_huge(*pud))
4637                return (pte_t *)pud;
4638        pmd = pmd_offset(pud, addr);
4639        return (pte_t *) pmd;
4640}
4641
4642#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4643
4644/*
4645 * These functions are overwritable if your architecture needs its own
4646 * behavior.
4647 */
4648struct page * __weak
4649follow_huge_addr(struct mm_struct *mm, unsigned long address,
4650                              int write)
4651{
4652        return ERR_PTR(-EINVAL);
4653}
4654
4655struct page * __weak
4656follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4657                pmd_t *pmd, int flags)
4658{
4659        struct page *page = NULL;
4660        spinlock_t *ptl;
4661        pte_t pte;
4662retry:
4663        ptl = pmd_lockptr(mm, pmd);
4664        spin_lock(ptl);
4665        /*
4666         * make sure that the address range covered by this pmd is not
4667         * unmapped from other threads.
4668         */
4669        if (!pmd_huge(*pmd))
4670                goto out;
4671        pte = huge_ptep_get((pte_t *)pmd);
4672        if (pte_present(pte)) {
4673                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4674                if (flags & FOLL_GET)
4675                        get_page(page);
4676        } else {
4677                if (is_hugetlb_entry_migration(pte)) {
4678                        spin_unlock(ptl);
4679                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4680                        goto retry;
4681                }
4682                /*
4683                 * hwpoisoned entry is treated as no_page_table in
4684                 * follow_page_mask().
4685                 */
4686        }
4687out:
4688        spin_unlock(ptl);
4689        return page;
4690}
4691
4692struct page * __weak
4693follow_huge_pud(struct mm_struct *mm, unsigned long address,
4694                pud_t *pud, int flags)
4695{
4696        if (flags & FOLL_GET)
4697                return NULL;
4698
4699        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4700}
4701
4702#ifdef CONFIG_MEMORY_FAILURE
4703
4704/*
4705 * This function is called from memory failure code.
4706 */
4707int dequeue_hwpoisoned_huge_page(struct page *hpage)
4708{
4709        struct hstate *h = page_hstate(hpage);
4710        int nid = page_to_nid(hpage);
4711        int ret = -EBUSY;
4712
4713        spin_lock(&hugetlb_lock);
4714        /*
4715         * Just checking !page_huge_active is not enough, because that could be
4716         * an isolated/hwpoisoned hugepage (which have >0 refcount).
4717         */
4718        if (!page_huge_active(hpage) && !page_count(hpage)) {
4719                /*
4720                 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4721                 * but dangling hpage->lru can trigger list-debug warnings
4722                 * (this happens when we call unpoison_memory() on it),
4723                 * so let it point to itself with list_del_init().
4724                 */
4725                list_del_init(&hpage->lru);
4726                set_page_refcounted(hpage);
4727                h->free_huge_pages--;
4728                h->free_huge_pages_node[nid]--;
4729                ret = 0;
4730        }
4731        spin_unlock(&hugetlb_lock);
4732        return ret;
4733}
4734#endif
4735
4736bool isolate_huge_page(struct page *page, struct list_head *list)
4737{
4738        bool ret = true;
4739
4740        VM_BUG_ON_PAGE(!PageHead(page), page);
4741        spin_lock(&hugetlb_lock);
4742        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4743                ret = false;
4744                goto unlock;
4745        }
4746        clear_page_huge_active(page);
4747        list_move_tail(&page->lru, list);
4748unlock:
4749        spin_unlock(&hugetlb_lock);
4750        return ret;
4751}
4752
4753void putback_active_hugepage(struct page *page)
4754{
4755        VM_BUG_ON_PAGE(!PageHead(page), page);
4756        spin_lock(&hugetlb_lock);
4757        set_page_huge_active(page);
4758        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4759        spin_unlock(&hugetlb_lock);
4760        put_page(page);
4761}
4762