linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/sched/mm.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/hugetlb.h>
  41#include <linux/pagemap.h>
  42#include <linux/smp.h>
  43#include <linux/page-flags.h>
  44#include <linux/backing-dev.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/limits.h>
  48#include <linux/export.h>
  49#include <linux/mutex.h>
  50#include <linux/rbtree.h>
  51#include <linux/slab.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/spinlock.h>
  55#include <linux/eventfd.h>
  56#include <linux/poll.h>
  57#include <linux/sort.h>
  58#include <linux/fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/vmpressure.h>
  61#include <linux/mm_inline.h>
  62#include <linux/swap_cgroup.h>
  63#include <linux/cpu.h>
  64#include <linux/oom.h>
  65#include <linux/lockdep.h>
  66#include <linux/file.h>
  67#include <linux/tracehook.h>
  68#include "internal.h"
  69#include <net/sock.h>
  70#include <net/ip.h>
  71#include "slab.h"
  72
  73#include <linux/uaccess.h>
  74
  75#include <trace/events/vmscan.h>
  76
  77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  78EXPORT_SYMBOL(memory_cgrp_subsys);
  79
  80struct mem_cgroup *root_mem_cgroup __read_mostly;
  81
  82#define MEM_CGROUP_RECLAIM_RETRIES      5
  83
  84/* Socket memory accounting disabled? */
  85static bool cgroup_memory_nosocket;
  86
  87/* Kernel memory accounting disabled? */
  88static bool cgroup_memory_nokmem;
  89
  90/* Whether the swap controller is active */
  91#ifdef CONFIG_MEMCG_SWAP
  92int do_swap_account __read_mostly;
  93#else
  94#define do_swap_account         0
  95#endif
  96
  97/* Whether legacy memory+swap accounting is active */
  98static bool do_memsw_account(void)
  99{
 100        return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
 101}
 102
 103static const char *const mem_cgroup_lru_names[] = {
 104        "inactive_anon",
 105        "active_anon",
 106        "inactive_file",
 107        "active_file",
 108        "unevictable",
 109};
 110
 111#define THRESHOLDS_EVENTS_TARGET 128
 112#define SOFTLIMIT_EVENTS_TARGET 1024
 113#define NUMAINFO_EVENTS_TARGET  1024
 114
 115/*
 116 * Cgroups above their limits are maintained in a RB-Tree, independent of
 117 * their hierarchy representation
 118 */
 119
 120struct mem_cgroup_tree_per_node {
 121        struct rb_root rb_root;
 122        spinlock_t lock;
 123};
 124
 125struct mem_cgroup_tree {
 126        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 127};
 128
 129static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 130
 131/* for OOM */
 132struct mem_cgroup_eventfd_list {
 133        struct list_head list;
 134        struct eventfd_ctx *eventfd;
 135};
 136
 137/*
 138 * cgroup_event represents events which userspace want to receive.
 139 */
 140struct mem_cgroup_event {
 141        /*
 142         * memcg which the event belongs to.
 143         */
 144        struct mem_cgroup *memcg;
 145        /*
 146         * eventfd to signal userspace about the event.
 147         */
 148        struct eventfd_ctx *eventfd;
 149        /*
 150         * Each of these stored in a list by the cgroup.
 151         */
 152        struct list_head list;
 153        /*
 154         * register_event() callback will be used to add new userspace
 155         * waiter for changes related to this event.  Use eventfd_signal()
 156         * on eventfd to send notification to userspace.
 157         */
 158        int (*register_event)(struct mem_cgroup *memcg,
 159                              struct eventfd_ctx *eventfd, const char *args);
 160        /*
 161         * unregister_event() callback will be called when userspace closes
 162         * the eventfd or on cgroup removing.  This callback must be set,
 163         * if you want provide notification functionality.
 164         */
 165        void (*unregister_event)(struct mem_cgroup *memcg,
 166                                 struct eventfd_ctx *eventfd);
 167        /*
 168         * All fields below needed to unregister event when
 169         * userspace closes eventfd.
 170         */
 171        poll_table pt;
 172        wait_queue_head_t *wqh;
 173        wait_queue_t wait;
 174        struct work_struct remove;
 175};
 176
 177static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 178static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 179
 180/* Stuffs for move charges at task migration. */
 181/*
 182 * Types of charges to be moved.
 183 */
 184#define MOVE_ANON       0x1U
 185#define MOVE_FILE       0x2U
 186#define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
 187
 188/* "mc" and its members are protected by cgroup_mutex */
 189static struct move_charge_struct {
 190        spinlock_t        lock; /* for from, to */
 191        struct mm_struct  *mm;
 192        struct mem_cgroup *from;
 193        struct mem_cgroup *to;
 194        unsigned long flags;
 195        unsigned long precharge;
 196        unsigned long moved_charge;
 197        unsigned long moved_swap;
 198        struct task_struct *moving_task;        /* a task moving charges */
 199        wait_queue_head_t waitq;                /* a waitq for other context */
 200} mc = {
 201        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 202        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 203};
 204
 205/*
 206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 207 * limit reclaim to prevent infinite loops, if they ever occur.
 208 */
 209#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 210#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 211
 212enum charge_type {
 213        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 214        MEM_CGROUP_CHARGE_TYPE_ANON,
 215        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 216        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 217        NR_CHARGE_TYPE,
 218};
 219
 220/* for encoding cft->private value on file */
 221enum res_type {
 222        _MEM,
 223        _MEMSWAP,
 224        _OOM_TYPE,
 225        _KMEM,
 226        _TCP,
 227};
 228
 229#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 230#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 231#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 232/* Used for OOM nofiier */
 233#define OOM_CONTROL             (0)
 234
 235/* Some nice accessors for the vmpressure. */
 236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 237{
 238        if (!memcg)
 239                memcg = root_mem_cgroup;
 240        return &memcg->vmpressure;
 241}
 242
 243struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 244{
 245        return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 246}
 247
 248static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 249{
 250        return (memcg == root_mem_cgroup);
 251}
 252
 253#ifndef CONFIG_SLOB
 254/*
 255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 256 * The main reason for not using cgroup id for this:
 257 *  this works better in sparse environments, where we have a lot of memcgs,
 258 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 259 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 260 *  200 entry array for that.
 261 *
 262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 263 * will double each time we have to increase it.
 264 */
 265static DEFINE_IDA(memcg_cache_ida);
 266int memcg_nr_cache_ids;
 267
 268/* Protects memcg_nr_cache_ids */
 269static DECLARE_RWSEM(memcg_cache_ids_sem);
 270
 271void memcg_get_cache_ids(void)
 272{
 273        down_read(&memcg_cache_ids_sem);
 274}
 275
 276void memcg_put_cache_ids(void)
 277{
 278        up_read(&memcg_cache_ids_sem);
 279}
 280
 281/*
 282 * MIN_SIZE is different than 1, because we would like to avoid going through
 283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 284 * cgroups is a reasonable guess. In the future, it could be a parameter or
 285 * tunable, but that is strictly not necessary.
 286 *
 287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 288 * this constant directly from cgroup, but it is understandable that this is
 289 * better kept as an internal representation in cgroup.c. In any case, the
 290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 291 * increase ours as well if it increases.
 292 */
 293#define MEMCG_CACHES_MIN_SIZE 4
 294#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 295
 296/*
 297 * A lot of the calls to the cache allocation functions are expected to be
 298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 299 * conditional to this static branch, we'll have to allow modules that does
 300 * kmem_cache_alloc and the such to see this symbol as well
 301 */
 302DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 303EXPORT_SYMBOL(memcg_kmem_enabled_key);
 304
 305struct workqueue_struct *memcg_kmem_cache_wq;
 306
 307#endif /* !CONFIG_SLOB */
 308
 309/**
 310 * mem_cgroup_css_from_page - css of the memcg associated with a page
 311 * @page: page of interest
 312 *
 313 * If memcg is bound to the default hierarchy, css of the memcg associated
 314 * with @page is returned.  The returned css remains associated with @page
 315 * until it is released.
 316 *
 317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 318 * is returned.
 319 */
 320struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 321{
 322        struct mem_cgroup *memcg;
 323
 324        memcg = page->mem_cgroup;
 325
 326        if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 327                memcg = root_mem_cgroup;
 328
 329        return &memcg->css;
 330}
 331
 332/**
 333 * page_cgroup_ino - return inode number of the memcg a page is charged to
 334 * @page: the page
 335 *
 336 * Look up the closest online ancestor of the memory cgroup @page is charged to
 337 * and return its inode number or 0 if @page is not charged to any cgroup. It
 338 * is safe to call this function without holding a reference to @page.
 339 *
 340 * Note, this function is inherently racy, because there is nothing to prevent
 341 * the cgroup inode from getting torn down and potentially reallocated a moment
 342 * after page_cgroup_ino() returns, so it only should be used by callers that
 343 * do not care (such as procfs interfaces).
 344 */
 345ino_t page_cgroup_ino(struct page *page)
 346{
 347        struct mem_cgroup *memcg;
 348        unsigned long ino = 0;
 349
 350        rcu_read_lock();
 351        memcg = READ_ONCE(page->mem_cgroup);
 352        while (memcg && !(memcg->css.flags & CSS_ONLINE))
 353                memcg = parent_mem_cgroup(memcg);
 354        if (memcg)
 355                ino = cgroup_ino(memcg->css.cgroup);
 356        rcu_read_unlock();
 357        return ino;
 358}
 359
 360static struct mem_cgroup_per_node *
 361mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 362{
 363        int nid = page_to_nid(page);
 364
 365        return memcg->nodeinfo[nid];
 366}
 367
 368static struct mem_cgroup_tree_per_node *
 369soft_limit_tree_node(int nid)
 370{
 371        return soft_limit_tree.rb_tree_per_node[nid];
 372}
 373
 374static struct mem_cgroup_tree_per_node *
 375soft_limit_tree_from_page(struct page *page)
 376{
 377        int nid = page_to_nid(page);
 378
 379        return soft_limit_tree.rb_tree_per_node[nid];
 380}
 381
 382static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 383                                         struct mem_cgroup_tree_per_node *mctz,
 384                                         unsigned long new_usage_in_excess)
 385{
 386        struct rb_node **p = &mctz->rb_root.rb_node;
 387        struct rb_node *parent = NULL;
 388        struct mem_cgroup_per_node *mz_node;
 389
 390        if (mz->on_tree)
 391                return;
 392
 393        mz->usage_in_excess = new_usage_in_excess;
 394        if (!mz->usage_in_excess)
 395                return;
 396        while (*p) {
 397                parent = *p;
 398                mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 399                                        tree_node);
 400                if (mz->usage_in_excess < mz_node->usage_in_excess)
 401                        p = &(*p)->rb_left;
 402                /*
 403                 * We can't avoid mem cgroups that are over their soft
 404                 * limit by the same amount
 405                 */
 406                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 407                        p = &(*p)->rb_right;
 408        }
 409        rb_link_node(&mz->tree_node, parent, p);
 410        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 411        mz->on_tree = true;
 412}
 413
 414static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 415                                         struct mem_cgroup_tree_per_node *mctz)
 416{
 417        if (!mz->on_tree)
 418                return;
 419        rb_erase(&mz->tree_node, &mctz->rb_root);
 420        mz->on_tree = false;
 421}
 422
 423static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 424                                       struct mem_cgroup_tree_per_node *mctz)
 425{
 426        unsigned long flags;
 427
 428        spin_lock_irqsave(&mctz->lock, flags);
 429        __mem_cgroup_remove_exceeded(mz, mctz);
 430        spin_unlock_irqrestore(&mctz->lock, flags);
 431}
 432
 433static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 434{
 435        unsigned long nr_pages = page_counter_read(&memcg->memory);
 436        unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 437        unsigned long excess = 0;
 438
 439        if (nr_pages > soft_limit)
 440                excess = nr_pages - soft_limit;
 441
 442        return excess;
 443}
 444
 445static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 446{
 447        unsigned long excess;
 448        struct mem_cgroup_per_node *mz;
 449        struct mem_cgroup_tree_per_node *mctz;
 450
 451        mctz = soft_limit_tree_from_page(page);
 452        if (!mctz)
 453                return;
 454        /*
 455         * Necessary to update all ancestors when hierarchy is used.
 456         * because their event counter is not touched.
 457         */
 458        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 459                mz = mem_cgroup_page_nodeinfo(memcg, page);
 460                excess = soft_limit_excess(memcg);
 461                /*
 462                 * We have to update the tree if mz is on RB-tree or
 463                 * mem is over its softlimit.
 464                 */
 465                if (excess || mz->on_tree) {
 466                        unsigned long flags;
 467
 468                        spin_lock_irqsave(&mctz->lock, flags);
 469                        /* if on-tree, remove it */
 470                        if (mz->on_tree)
 471                                __mem_cgroup_remove_exceeded(mz, mctz);
 472                        /*
 473                         * Insert again. mz->usage_in_excess will be updated.
 474                         * If excess is 0, no tree ops.
 475                         */
 476                        __mem_cgroup_insert_exceeded(mz, mctz, excess);
 477                        spin_unlock_irqrestore(&mctz->lock, flags);
 478                }
 479        }
 480}
 481
 482static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 483{
 484        struct mem_cgroup_tree_per_node *mctz;
 485        struct mem_cgroup_per_node *mz;
 486        int nid;
 487
 488        for_each_node(nid) {
 489                mz = mem_cgroup_nodeinfo(memcg, nid);
 490                mctz = soft_limit_tree_node(nid);
 491                if (mctz)
 492                        mem_cgroup_remove_exceeded(mz, mctz);
 493        }
 494}
 495
 496static struct mem_cgroup_per_node *
 497__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 498{
 499        struct rb_node *rightmost = NULL;
 500        struct mem_cgroup_per_node *mz;
 501
 502retry:
 503        mz = NULL;
 504        rightmost = rb_last(&mctz->rb_root);
 505        if (!rightmost)
 506                goto done;              /* Nothing to reclaim from */
 507
 508        mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
 509        /*
 510         * Remove the node now but someone else can add it back,
 511         * we will to add it back at the end of reclaim to its correct
 512         * position in the tree.
 513         */
 514        __mem_cgroup_remove_exceeded(mz, mctz);
 515        if (!soft_limit_excess(mz->memcg) ||
 516            !css_tryget_online(&mz->memcg->css))
 517                goto retry;
 518done:
 519        return mz;
 520}
 521
 522static struct mem_cgroup_per_node *
 523mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 524{
 525        struct mem_cgroup_per_node *mz;
 526
 527        spin_lock_irq(&mctz->lock);
 528        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 529        spin_unlock_irq(&mctz->lock);
 530        return mz;
 531}
 532
 533/*
 534 * Return page count for single (non recursive) @memcg.
 535 *
 536 * Implementation Note: reading percpu statistics for memcg.
 537 *
 538 * Both of vmstat[] and percpu_counter has threshold and do periodic
 539 * synchronization to implement "quick" read. There are trade-off between
 540 * reading cost and precision of value. Then, we may have a chance to implement
 541 * a periodic synchronization of counter in memcg's counter.
 542 *
 543 * But this _read() function is used for user interface now. The user accounts
 544 * memory usage by memory cgroup and he _always_ requires exact value because
 545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 546 * have to visit all online cpus and make sum. So, for now, unnecessary
 547 * synchronization is not implemented. (just implemented for cpu hotplug)
 548 *
 549 * If there are kernel internal actions which can make use of some not-exact
 550 * value, and reading all cpu value can be performance bottleneck in some
 551 * common workload, threshold and synchronization as vmstat[] should be
 552 * implemented.
 553 */
 554
 555static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
 556                                      enum memcg_event_item event)
 557{
 558        unsigned long val = 0;
 559        int cpu;
 560
 561        for_each_possible_cpu(cpu)
 562                val += per_cpu(memcg->stat->events[event], cpu);
 563        return val;
 564}
 565
 566static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 567                                         struct page *page,
 568                                         bool compound, int nr_pages)
 569{
 570        /*
 571         * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 572         * counted as CACHE even if it's on ANON LRU.
 573         */
 574        if (PageAnon(page))
 575                __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
 576        else {
 577                __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
 578                if (PageSwapBacked(page))
 579                        __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
 580        }
 581
 582        if (compound) {
 583                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 584                __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
 585        }
 586
 587        /* pagein of a big page is an event. So, ignore page size */
 588        if (nr_pages > 0)
 589                __this_cpu_inc(memcg->stat->events[PGPGIN]);
 590        else {
 591                __this_cpu_inc(memcg->stat->events[PGPGOUT]);
 592                nr_pages = -nr_pages; /* for event */
 593        }
 594
 595        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 596}
 597
 598unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 599                                           int nid, unsigned int lru_mask)
 600{
 601        struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
 602        unsigned long nr = 0;
 603        enum lru_list lru;
 604
 605        VM_BUG_ON((unsigned)nid >= nr_node_ids);
 606
 607        for_each_lru(lru) {
 608                if (!(BIT(lru) & lru_mask))
 609                        continue;
 610                nr += mem_cgroup_get_lru_size(lruvec, lru);
 611        }
 612        return nr;
 613}
 614
 615static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 616                        unsigned int lru_mask)
 617{
 618        unsigned long nr = 0;
 619        int nid;
 620
 621        for_each_node_state(nid, N_MEMORY)
 622                nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 623        return nr;
 624}
 625
 626static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 627                                       enum mem_cgroup_events_target target)
 628{
 629        unsigned long val, next;
 630
 631        val = __this_cpu_read(memcg->stat->nr_page_events);
 632        next = __this_cpu_read(memcg->stat->targets[target]);
 633        /* from time_after() in jiffies.h */
 634        if ((long)next - (long)val < 0) {
 635                switch (target) {
 636                case MEM_CGROUP_TARGET_THRESH:
 637                        next = val + THRESHOLDS_EVENTS_TARGET;
 638                        break;
 639                case MEM_CGROUP_TARGET_SOFTLIMIT:
 640                        next = val + SOFTLIMIT_EVENTS_TARGET;
 641                        break;
 642                case MEM_CGROUP_TARGET_NUMAINFO:
 643                        next = val + NUMAINFO_EVENTS_TARGET;
 644                        break;
 645                default:
 646                        break;
 647                }
 648                __this_cpu_write(memcg->stat->targets[target], next);
 649                return true;
 650        }
 651        return false;
 652}
 653
 654/*
 655 * Check events in order.
 656 *
 657 */
 658static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 659{
 660        /* threshold event is triggered in finer grain than soft limit */
 661        if (unlikely(mem_cgroup_event_ratelimit(memcg,
 662                                                MEM_CGROUP_TARGET_THRESH))) {
 663                bool do_softlimit;
 664                bool do_numainfo __maybe_unused;
 665
 666                do_softlimit = mem_cgroup_event_ratelimit(memcg,
 667                                                MEM_CGROUP_TARGET_SOFTLIMIT);
 668#if MAX_NUMNODES > 1
 669                do_numainfo = mem_cgroup_event_ratelimit(memcg,
 670                                                MEM_CGROUP_TARGET_NUMAINFO);
 671#endif
 672                mem_cgroup_threshold(memcg);
 673                if (unlikely(do_softlimit))
 674                        mem_cgroup_update_tree(memcg, page);
 675#if MAX_NUMNODES > 1
 676                if (unlikely(do_numainfo))
 677                        atomic_inc(&memcg->numainfo_events);
 678#endif
 679        }
 680}
 681
 682struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 683{
 684        /*
 685         * mm_update_next_owner() may clear mm->owner to NULL
 686         * if it races with swapoff, page migration, etc.
 687         * So this can be called with p == NULL.
 688         */
 689        if (unlikely(!p))
 690                return NULL;
 691
 692        return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 693}
 694EXPORT_SYMBOL(mem_cgroup_from_task);
 695
 696static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 697{
 698        struct mem_cgroup *memcg = NULL;
 699
 700        rcu_read_lock();
 701        do {
 702                /*
 703                 * Page cache insertions can happen withou an
 704                 * actual mm context, e.g. during disk probing
 705                 * on boot, loopback IO, acct() writes etc.
 706                 */
 707                if (unlikely(!mm))
 708                        memcg = root_mem_cgroup;
 709                else {
 710                        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 711                        if (unlikely(!memcg))
 712                                memcg = root_mem_cgroup;
 713                }
 714        } while (!css_tryget_online(&memcg->css));
 715        rcu_read_unlock();
 716        return memcg;
 717}
 718
 719/**
 720 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 721 * @root: hierarchy root
 722 * @prev: previously returned memcg, NULL on first invocation
 723 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 724 *
 725 * Returns references to children of the hierarchy below @root, or
 726 * @root itself, or %NULL after a full round-trip.
 727 *
 728 * Caller must pass the return value in @prev on subsequent
 729 * invocations for reference counting, or use mem_cgroup_iter_break()
 730 * to cancel a hierarchy walk before the round-trip is complete.
 731 *
 732 * Reclaimers can specify a zone and a priority level in @reclaim to
 733 * divide up the memcgs in the hierarchy among all concurrent
 734 * reclaimers operating on the same zone and priority.
 735 */
 736struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 737                                   struct mem_cgroup *prev,
 738                                   struct mem_cgroup_reclaim_cookie *reclaim)
 739{
 740        struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 741        struct cgroup_subsys_state *css = NULL;
 742        struct mem_cgroup *memcg = NULL;
 743        struct mem_cgroup *pos = NULL;
 744
 745        if (mem_cgroup_disabled())
 746                return NULL;
 747
 748        if (!root)
 749                root = root_mem_cgroup;
 750
 751        if (prev && !reclaim)
 752                pos = prev;
 753
 754        if (!root->use_hierarchy && root != root_mem_cgroup) {
 755                if (prev)
 756                        goto out;
 757                return root;
 758        }
 759
 760        rcu_read_lock();
 761
 762        if (reclaim) {
 763                struct mem_cgroup_per_node *mz;
 764
 765                mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
 766                iter = &mz->iter[reclaim->priority];
 767
 768                if (prev && reclaim->generation != iter->generation)
 769                        goto out_unlock;
 770
 771                while (1) {
 772                        pos = READ_ONCE(iter->position);
 773                        if (!pos || css_tryget(&pos->css))
 774                                break;
 775                        /*
 776                         * css reference reached zero, so iter->position will
 777                         * be cleared by ->css_released. However, we should not
 778                         * rely on this happening soon, because ->css_released
 779                         * is called from a work queue, and by busy-waiting we
 780                         * might block it. So we clear iter->position right
 781                         * away.
 782                         */
 783                        (void)cmpxchg(&iter->position, pos, NULL);
 784                }
 785        }
 786
 787        if (pos)
 788                css = &pos->css;
 789
 790        for (;;) {
 791                css = css_next_descendant_pre(css, &root->css);
 792                if (!css) {
 793                        /*
 794                         * Reclaimers share the hierarchy walk, and a
 795                         * new one might jump in right at the end of
 796                         * the hierarchy - make sure they see at least
 797                         * one group and restart from the beginning.
 798                         */
 799                        if (!prev)
 800                                continue;
 801                        break;
 802                }
 803
 804                /*
 805                 * Verify the css and acquire a reference.  The root
 806                 * is provided by the caller, so we know it's alive
 807                 * and kicking, and don't take an extra reference.
 808                 */
 809                memcg = mem_cgroup_from_css(css);
 810
 811                if (css == &root->css)
 812                        break;
 813
 814                if (css_tryget(css))
 815                        break;
 816
 817                memcg = NULL;
 818        }
 819
 820        if (reclaim) {
 821                /*
 822                 * The position could have already been updated by a competing
 823                 * thread, so check that the value hasn't changed since we read
 824                 * it to avoid reclaiming from the same cgroup twice.
 825                 */
 826                (void)cmpxchg(&iter->position, pos, memcg);
 827
 828                if (pos)
 829                        css_put(&pos->css);
 830
 831                if (!memcg)
 832                        iter->generation++;
 833                else if (!prev)
 834                        reclaim->generation = iter->generation;
 835        }
 836
 837out_unlock:
 838        rcu_read_unlock();
 839out:
 840        if (prev && prev != root)
 841                css_put(&prev->css);
 842
 843        return memcg;
 844}
 845
 846/**
 847 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 848 * @root: hierarchy root
 849 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 850 */
 851void mem_cgroup_iter_break(struct mem_cgroup *root,
 852                           struct mem_cgroup *prev)
 853{
 854        if (!root)
 855                root = root_mem_cgroup;
 856        if (prev && prev != root)
 857                css_put(&prev->css);
 858}
 859
 860static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 861{
 862        struct mem_cgroup *memcg = dead_memcg;
 863        struct mem_cgroup_reclaim_iter *iter;
 864        struct mem_cgroup_per_node *mz;
 865        int nid;
 866        int i;
 867
 868        while ((memcg = parent_mem_cgroup(memcg))) {
 869                for_each_node(nid) {
 870                        mz = mem_cgroup_nodeinfo(memcg, nid);
 871                        for (i = 0; i <= DEF_PRIORITY; i++) {
 872                                iter = &mz->iter[i];
 873                                cmpxchg(&iter->position,
 874                                        dead_memcg, NULL);
 875                        }
 876                }
 877        }
 878}
 879
 880/*
 881 * Iteration constructs for visiting all cgroups (under a tree).  If
 882 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 883 * be used for reference counting.
 884 */
 885#define for_each_mem_cgroup_tree(iter, root)            \
 886        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
 887             iter != NULL;                              \
 888             iter = mem_cgroup_iter(root, iter, NULL))
 889
 890#define for_each_mem_cgroup(iter)                       \
 891        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
 892             iter != NULL;                              \
 893             iter = mem_cgroup_iter(NULL, iter, NULL))
 894
 895/**
 896 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 897 * @memcg: hierarchy root
 898 * @fn: function to call for each task
 899 * @arg: argument passed to @fn
 900 *
 901 * This function iterates over tasks attached to @memcg or to any of its
 902 * descendants and calls @fn for each task. If @fn returns a non-zero
 903 * value, the function breaks the iteration loop and returns the value.
 904 * Otherwise, it will iterate over all tasks and return 0.
 905 *
 906 * This function must not be called for the root memory cgroup.
 907 */
 908int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 909                          int (*fn)(struct task_struct *, void *), void *arg)
 910{
 911        struct mem_cgroup *iter;
 912        int ret = 0;
 913
 914        BUG_ON(memcg == root_mem_cgroup);
 915
 916        for_each_mem_cgroup_tree(iter, memcg) {
 917                struct css_task_iter it;
 918                struct task_struct *task;
 919
 920                css_task_iter_start(&iter->css, &it);
 921                while (!ret && (task = css_task_iter_next(&it)))
 922                        ret = fn(task, arg);
 923                css_task_iter_end(&it);
 924                if (ret) {
 925                        mem_cgroup_iter_break(memcg, iter);
 926                        break;
 927                }
 928        }
 929        return ret;
 930}
 931
 932/**
 933 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 934 * @page: the page
 935 * @zone: zone of the page
 936 *
 937 * This function is only safe when following the LRU page isolation
 938 * and putback protocol: the LRU lock must be held, and the page must
 939 * either be PageLRU() or the caller must have isolated/allocated it.
 940 */
 941struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 942{
 943        struct mem_cgroup_per_node *mz;
 944        struct mem_cgroup *memcg;
 945        struct lruvec *lruvec;
 946
 947        if (mem_cgroup_disabled()) {
 948                lruvec = &pgdat->lruvec;
 949                goto out;
 950        }
 951
 952        memcg = page->mem_cgroup;
 953        /*
 954         * Swapcache readahead pages are added to the LRU - and
 955         * possibly migrated - before they are charged.
 956         */
 957        if (!memcg)
 958                memcg = root_mem_cgroup;
 959
 960        mz = mem_cgroup_page_nodeinfo(memcg, page);
 961        lruvec = &mz->lruvec;
 962out:
 963        /*
 964         * Since a node can be onlined after the mem_cgroup was created,
 965         * we have to be prepared to initialize lruvec->zone here;
 966         * and if offlined then reonlined, we need to reinitialize it.
 967         */
 968        if (unlikely(lruvec->pgdat != pgdat))
 969                lruvec->pgdat = pgdat;
 970        return lruvec;
 971}
 972
 973/**
 974 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 975 * @lruvec: mem_cgroup per zone lru vector
 976 * @lru: index of lru list the page is sitting on
 977 * @zid: zone id of the accounted pages
 978 * @nr_pages: positive when adding or negative when removing
 979 *
 980 * This function must be called under lru_lock, just before a page is added
 981 * to or just after a page is removed from an lru list (that ordering being
 982 * so as to allow it to check that lru_size 0 is consistent with list_empty).
 983 */
 984void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 985                                int zid, int nr_pages)
 986{
 987        struct mem_cgroup_per_node *mz;
 988        unsigned long *lru_size;
 989        long size;
 990
 991        if (mem_cgroup_disabled())
 992                return;
 993
 994        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 995        lru_size = &mz->lru_zone_size[zid][lru];
 996
 997        if (nr_pages < 0)
 998                *lru_size += nr_pages;
 999
1000        size = *lru_size;
1001        if (WARN_ONCE(size < 0,
1002                "%s(%p, %d, %d): lru_size %ld\n",
1003                __func__, lruvec, lru, nr_pages, size)) {
1004                VM_BUG_ON(1);
1005                *lru_size = 0;
1006        }
1007
1008        if (nr_pages > 0)
1009                *lru_size += nr_pages;
1010}
1011
1012bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1013{
1014        struct mem_cgroup *task_memcg;
1015        struct task_struct *p;
1016        bool ret;
1017
1018        p = find_lock_task_mm(task);
1019        if (p) {
1020                task_memcg = get_mem_cgroup_from_mm(p->mm);
1021                task_unlock(p);
1022        } else {
1023                /*
1024                 * All threads may have already detached their mm's, but the oom
1025                 * killer still needs to detect if they have already been oom
1026                 * killed to prevent needlessly killing additional tasks.
1027                 */
1028                rcu_read_lock();
1029                task_memcg = mem_cgroup_from_task(task);
1030                css_get(&task_memcg->css);
1031                rcu_read_unlock();
1032        }
1033        ret = mem_cgroup_is_descendant(task_memcg, memcg);
1034        css_put(&task_memcg->css);
1035        return ret;
1036}
1037
1038/**
1039 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1040 * @memcg: the memory cgroup
1041 *
1042 * Returns the maximum amount of memory @mem can be charged with, in
1043 * pages.
1044 */
1045static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1046{
1047        unsigned long margin = 0;
1048        unsigned long count;
1049        unsigned long limit;
1050
1051        count = page_counter_read(&memcg->memory);
1052        limit = READ_ONCE(memcg->memory.limit);
1053        if (count < limit)
1054                margin = limit - count;
1055
1056        if (do_memsw_account()) {
1057                count = page_counter_read(&memcg->memsw);
1058                limit = READ_ONCE(memcg->memsw.limit);
1059                if (count <= limit)
1060                        margin = min(margin, limit - count);
1061                else
1062                        margin = 0;
1063        }
1064
1065        return margin;
1066}
1067
1068/*
1069 * A routine for checking "mem" is under move_account() or not.
1070 *
1071 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1072 * moving cgroups. This is for waiting at high-memory pressure
1073 * caused by "move".
1074 */
1075static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1076{
1077        struct mem_cgroup *from;
1078        struct mem_cgroup *to;
1079        bool ret = false;
1080        /*
1081         * Unlike task_move routines, we access mc.to, mc.from not under
1082         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1083         */
1084        spin_lock(&mc.lock);
1085        from = mc.from;
1086        to = mc.to;
1087        if (!from)
1088                goto unlock;
1089
1090        ret = mem_cgroup_is_descendant(from, memcg) ||
1091                mem_cgroup_is_descendant(to, memcg);
1092unlock:
1093        spin_unlock(&mc.lock);
1094        return ret;
1095}
1096
1097static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1098{
1099        if (mc.moving_task && current != mc.moving_task) {
1100                if (mem_cgroup_under_move(memcg)) {
1101                        DEFINE_WAIT(wait);
1102                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1103                        /* moving charge context might have finished. */
1104                        if (mc.moving_task)
1105                                schedule();
1106                        finish_wait(&mc.waitq, &wait);
1107                        return true;
1108                }
1109        }
1110        return false;
1111}
1112
1113unsigned int memcg1_stats[] = {
1114        MEMCG_CACHE,
1115        MEMCG_RSS,
1116        MEMCG_RSS_HUGE,
1117        NR_SHMEM,
1118        NR_FILE_MAPPED,
1119        NR_FILE_DIRTY,
1120        NR_WRITEBACK,
1121        MEMCG_SWAP,
1122};
1123
1124static const char *const memcg1_stat_names[] = {
1125        "cache",
1126        "rss",
1127        "rss_huge",
1128        "shmem",
1129        "mapped_file",
1130        "dirty",
1131        "writeback",
1132        "swap",
1133};
1134
1135#define K(x) ((x) << (PAGE_SHIFT-10))
1136/**
1137 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138 * @memcg: The memory cgroup that went over limit
1139 * @p: Task that is going to be killed
1140 *
1141 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1142 * enabled
1143 */
1144void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1145{
1146        struct mem_cgroup *iter;
1147        unsigned int i;
1148
1149        rcu_read_lock();
1150
1151        if (p) {
1152                pr_info("Task in ");
1153                pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1154                pr_cont(" killed as a result of limit of ");
1155        } else {
1156                pr_info("Memory limit reached of cgroup ");
1157        }
1158
1159        pr_cont_cgroup_path(memcg->css.cgroup);
1160        pr_cont("\n");
1161
1162        rcu_read_unlock();
1163
1164        pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1165                K((u64)page_counter_read(&memcg->memory)),
1166                K((u64)memcg->memory.limit), memcg->memory.failcnt);
1167        pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1168                K((u64)page_counter_read(&memcg->memsw)),
1169                K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1170        pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1171                K((u64)page_counter_read(&memcg->kmem)),
1172                K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1173
1174        for_each_mem_cgroup_tree(iter, memcg) {
1175                pr_info("Memory cgroup stats for ");
1176                pr_cont_cgroup_path(iter->css.cgroup);
1177                pr_cont(":");
1178
1179                for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1180                        if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1181                                continue;
1182                        pr_cont(" %s:%luKB", memcg1_stat_names[i],
1183                                K(memcg_page_state(iter, memcg1_stats[i])));
1184                }
1185
1186                for (i = 0; i < NR_LRU_LISTS; i++)
1187                        pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1188                                K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1189
1190                pr_cont("\n");
1191        }
1192}
1193
1194/*
1195 * This function returns the number of memcg under hierarchy tree. Returns
1196 * 1(self count) if no children.
1197 */
1198static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1199{
1200        int num = 0;
1201        struct mem_cgroup *iter;
1202
1203        for_each_mem_cgroup_tree(iter, memcg)
1204                num++;
1205        return num;
1206}
1207
1208/*
1209 * Return the memory (and swap, if configured) limit for a memcg.
1210 */
1211unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1212{
1213        unsigned long limit;
1214
1215        limit = memcg->memory.limit;
1216        if (mem_cgroup_swappiness(memcg)) {
1217                unsigned long memsw_limit;
1218                unsigned long swap_limit;
1219
1220                memsw_limit = memcg->memsw.limit;
1221                swap_limit = memcg->swap.limit;
1222                swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1223                limit = min(limit + swap_limit, memsw_limit);
1224        }
1225        return limit;
1226}
1227
1228static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1229                                     int order)
1230{
1231        struct oom_control oc = {
1232                .zonelist = NULL,
1233                .nodemask = NULL,
1234                .memcg = memcg,
1235                .gfp_mask = gfp_mask,
1236                .order = order,
1237        };
1238        bool ret;
1239
1240        mutex_lock(&oom_lock);
1241        ret = out_of_memory(&oc);
1242        mutex_unlock(&oom_lock);
1243        return ret;
1244}
1245
1246#if MAX_NUMNODES > 1
1247
1248/**
1249 * test_mem_cgroup_node_reclaimable
1250 * @memcg: the target memcg
1251 * @nid: the node ID to be checked.
1252 * @noswap : specify true here if the user wants flle only information.
1253 *
1254 * This function returns whether the specified memcg contains any
1255 * reclaimable pages on a node. Returns true if there are any reclaimable
1256 * pages in the node.
1257 */
1258static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1259                int nid, bool noswap)
1260{
1261        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1262                return true;
1263        if (noswap || !total_swap_pages)
1264                return false;
1265        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1266                return true;
1267        return false;
1268
1269}
1270
1271/*
1272 * Always updating the nodemask is not very good - even if we have an empty
1273 * list or the wrong list here, we can start from some node and traverse all
1274 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1275 *
1276 */
1277static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1278{
1279        int nid;
1280        /*
1281         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282         * pagein/pageout changes since the last update.
1283         */
1284        if (!atomic_read(&memcg->numainfo_events))
1285                return;
1286        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1287                return;
1288
1289        /* make a nodemask where this memcg uses memory from */
1290        memcg->scan_nodes = node_states[N_MEMORY];
1291
1292        for_each_node_mask(nid, node_states[N_MEMORY]) {
1293
1294                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1295                        node_clear(nid, memcg->scan_nodes);
1296        }
1297
1298        atomic_set(&memcg->numainfo_events, 0);
1299        atomic_set(&memcg->numainfo_updating, 0);
1300}
1301
1302/*
1303 * Selecting a node where we start reclaim from. Because what we need is just
1304 * reducing usage counter, start from anywhere is O,K. Considering
1305 * memory reclaim from current node, there are pros. and cons.
1306 *
1307 * Freeing memory from current node means freeing memory from a node which
1308 * we'll use or we've used. So, it may make LRU bad. And if several threads
1309 * hit limits, it will see a contention on a node. But freeing from remote
1310 * node means more costs for memory reclaim because of memory latency.
1311 *
1312 * Now, we use round-robin. Better algorithm is welcomed.
1313 */
1314int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1315{
1316        int node;
1317
1318        mem_cgroup_may_update_nodemask(memcg);
1319        node = memcg->last_scanned_node;
1320
1321        node = next_node_in(node, memcg->scan_nodes);
1322        /*
1323         * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324         * last time it really checked all the LRUs due to rate limiting.
1325         * Fallback to the current node in that case for simplicity.
1326         */
1327        if (unlikely(node == MAX_NUMNODES))
1328                node = numa_node_id();
1329
1330        memcg->last_scanned_node = node;
1331        return node;
1332}
1333#else
1334int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1335{
1336        return 0;
1337}
1338#endif
1339
1340static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1341                                   pg_data_t *pgdat,
1342                                   gfp_t gfp_mask,
1343                                   unsigned long *total_scanned)
1344{
1345        struct mem_cgroup *victim = NULL;
1346        int total = 0;
1347        int loop = 0;
1348        unsigned long excess;
1349        unsigned long nr_scanned;
1350        struct mem_cgroup_reclaim_cookie reclaim = {
1351                .pgdat = pgdat,
1352                .priority = 0,
1353        };
1354
1355        excess = soft_limit_excess(root_memcg);
1356
1357        while (1) {
1358                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1359                if (!victim) {
1360                        loop++;
1361                        if (loop >= 2) {
1362                                /*
1363                                 * If we have not been able to reclaim
1364                                 * anything, it might because there are
1365                                 * no reclaimable pages under this hierarchy
1366                                 */
1367                                if (!total)
1368                                        break;
1369                                /*
1370                                 * We want to do more targeted reclaim.
1371                                 * excess >> 2 is not to excessive so as to
1372                                 * reclaim too much, nor too less that we keep
1373                                 * coming back to reclaim from this cgroup
1374                                 */
1375                                if (total >= (excess >> 2) ||
1376                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1377                                        break;
1378                        }
1379                        continue;
1380                }
1381                total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1382                                        pgdat, &nr_scanned);
1383                *total_scanned += nr_scanned;
1384                if (!soft_limit_excess(root_memcg))
1385                        break;
1386        }
1387        mem_cgroup_iter_break(root_memcg, victim);
1388        return total;
1389}
1390
1391#ifdef CONFIG_LOCKDEP
1392static struct lockdep_map memcg_oom_lock_dep_map = {
1393        .name = "memcg_oom_lock",
1394};
1395#endif
1396
1397static DEFINE_SPINLOCK(memcg_oom_lock);
1398
1399/*
1400 * Check OOM-Killer is already running under our hierarchy.
1401 * If someone is running, return false.
1402 */
1403static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1404{
1405        struct mem_cgroup *iter, *failed = NULL;
1406
1407        spin_lock(&memcg_oom_lock);
1408
1409        for_each_mem_cgroup_tree(iter, memcg) {
1410                if (iter->oom_lock) {
1411                        /*
1412                         * this subtree of our hierarchy is already locked
1413                         * so we cannot give a lock.
1414                         */
1415                        failed = iter;
1416                        mem_cgroup_iter_break(memcg, iter);
1417                        break;
1418                } else
1419                        iter->oom_lock = true;
1420        }
1421
1422        if (failed) {
1423                /*
1424                 * OK, we failed to lock the whole subtree so we have
1425                 * to clean up what we set up to the failing subtree
1426                 */
1427                for_each_mem_cgroup_tree(iter, memcg) {
1428                        if (iter == failed) {
1429                                mem_cgroup_iter_break(memcg, iter);
1430                                break;
1431                        }
1432                        iter->oom_lock = false;
1433                }
1434        } else
1435                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1436
1437        spin_unlock(&memcg_oom_lock);
1438
1439        return !failed;
1440}
1441
1442static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1443{
1444        struct mem_cgroup *iter;
1445
1446        spin_lock(&memcg_oom_lock);
1447        mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1448        for_each_mem_cgroup_tree(iter, memcg)
1449                iter->oom_lock = false;
1450        spin_unlock(&memcg_oom_lock);
1451}
1452
1453static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1454{
1455        struct mem_cgroup *iter;
1456
1457        spin_lock(&memcg_oom_lock);
1458        for_each_mem_cgroup_tree(iter, memcg)
1459                iter->under_oom++;
1460        spin_unlock(&memcg_oom_lock);
1461}
1462
1463static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1464{
1465        struct mem_cgroup *iter;
1466
1467        /*
1468         * When a new child is created while the hierarchy is under oom,
1469         * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1470         */
1471        spin_lock(&memcg_oom_lock);
1472        for_each_mem_cgroup_tree(iter, memcg)
1473                if (iter->under_oom > 0)
1474                        iter->under_oom--;
1475        spin_unlock(&memcg_oom_lock);
1476}
1477
1478static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
1480struct oom_wait_info {
1481        struct mem_cgroup *memcg;
1482        wait_queue_t    wait;
1483};
1484
1485static int memcg_oom_wake_function(wait_queue_t *wait,
1486        unsigned mode, int sync, void *arg)
1487{
1488        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1489        struct mem_cgroup *oom_wait_memcg;
1490        struct oom_wait_info *oom_wait_info;
1491
1492        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493        oom_wait_memcg = oom_wait_info->memcg;
1494
1495        if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1496            !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1497                return 0;
1498        return autoremove_wake_function(wait, mode, sync, arg);
1499}
1500
1501static void memcg_oom_recover(struct mem_cgroup *memcg)
1502{
1503        /*
1504         * For the following lockless ->under_oom test, the only required
1505         * guarantee is that it must see the state asserted by an OOM when
1506         * this function is called as a result of userland actions
1507         * triggered by the notification of the OOM.  This is trivially
1508         * achieved by invoking mem_cgroup_mark_under_oom() before
1509         * triggering notification.
1510         */
1511        if (memcg && memcg->under_oom)
1512                __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1513}
1514
1515static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1516{
1517        if (!current->memcg_may_oom)
1518                return;
1519        /*
1520         * We are in the middle of the charge context here, so we
1521         * don't want to block when potentially sitting on a callstack
1522         * that holds all kinds of filesystem and mm locks.
1523         *
1524         * Also, the caller may handle a failed allocation gracefully
1525         * (like optional page cache readahead) and so an OOM killer
1526         * invocation might not even be necessary.
1527         *
1528         * That's why we don't do anything here except remember the
1529         * OOM context and then deal with it at the end of the page
1530         * fault when the stack is unwound, the locks are released,
1531         * and when we know whether the fault was overall successful.
1532         */
1533        css_get(&memcg->css);
1534        current->memcg_in_oom = memcg;
1535        current->memcg_oom_gfp_mask = mask;
1536        current->memcg_oom_order = order;
1537}
1538
1539/**
1540 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541 * @handle: actually kill/wait or just clean up the OOM state
1542 *
1543 * This has to be called at the end of a page fault if the memcg OOM
1544 * handler was enabled.
1545 *
1546 * Memcg supports userspace OOM handling where failed allocations must
1547 * sleep on a waitqueue until the userspace task resolves the
1548 * situation.  Sleeping directly in the charge context with all kinds
1549 * of locks held is not a good idea, instead we remember an OOM state
1550 * in the task and mem_cgroup_oom_synchronize() has to be called at
1551 * the end of the page fault to complete the OOM handling.
1552 *
1553 * Returns %true if an ongoing memcg OOM situation was detected and
1554 * completed, %false otherwise.
1555 */
1556bool mem_cgroup_oom_synchronize(bool handle)
1557{
1558        struct mem_cgroup *memcg = current->memcg_in_oom;
1559        struct oom_wait_info owait;
1560        bool locked;
1561
1562        /* OOM is global, do not handle */
1563        if (!memcg)
1564                return false;
1565
1566        if (!handle)
1567                goto cleanup;
1568
1569        owait.memcg = memcg;
1570        owait.wait.flags = 0;
1571        owait.wait.func = memcg_oom_wake_function;
1572        owait.wait.private = current;
1573        INIT_LIST_HEAD(&owait.wait.task_list);
1574
1575        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1576        mem_cgroup_mark_under_oom(memcg);
1577
1578        locked = mem_cgroup_oom_trylock(memcg);
1579
1580        if (locked)
1581                mem_cgroup_oom_notify(memcg);
1582
1583        if (locked && !memcg->oom_kill_disable) {
1584                mem_cgroup_unmark_under_oom(memcg);
1585                finish_wait(&memcg_oom_waitq, &owait.wait);
1586                mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1587                                         current->memcg_oom_order);
1588        } else {
1589                schedule();
1590                mem_cgroup_unmark_under_oom(memcg);
1591                finish_wait(&memcg_oom_waitq, &owait.wait);
1592        }
1593
1594        if (locked) {
1595                mem_cgroup_oom_unlock(memcg);
1596                /*
1597                 * There is no guarantee that an OOM-lock contender
1598                 * sees the wakeups triggered by the OOM kill
1599                 * uncharges.  Wake any sleepers explicitely.
1600                 */
1601                memcg_oom_recover(memcg);
1602        }
1603cleanup:
1604        current->memcg_in_oom = NULL;
1605        css_put(&memcg->css);
1606        return true;
1607}
1608
1609/**
1610 * lock_page_memcg - lock a page->mem_cgroup binding
1611 * @page: the page
1612 *
1613 * This function protects unlocked LRU pages from being moved to
1614 * another cgroup and stabilizes their page->mem_cgroup binding.
1615 */
1616void lock_page_memcg(struct page *page)
1617{
1618        struct mem_cgroup *memcg;
1619        unsigned long flags;
1620
1621        /*
1622         * The RCU lock is held throughout the transaction.  The fast
1623         * path can get away without acquiring the memcg->move_lock
1624         * because page moving starts with an RCU grace period.
1625         */
1626        rcu_read_lock();
1627
1628        if (mem_cgroup_disabled())
1629                return;
1630again:
1631        memcg = page->mem_cgroup;
1632        if (unlikely(!memcg))
1633                return;
1634
1635        if (atomic_read(&memcg->moving_account) <= 0)
1636                return;
1637
1638        spin_lock_irqsave(&memcg->move_lock, flags);
1639        if (memcg != page->mem_cgroup) {
1640                spin_unlock_irqrestore(&memcg->move_lock, flags);
1641                goto again;
1642        }
1643
1644        /*
1645         * When charge migration first begins, we can have locked and
1646         * unlocked page stat updates happening concurrently.  Track
1647         * the task who has the lock for unlock_page_memcg().
1648         */
1649        memcg->move_lock_task = current;
1650        memcg->move_lock_flags = flags;
1651
1652        return;
1653}
1654EXPORT_SYMBOL(lock_page_memcg);
1655
1656/**
1657 * unlock_page_memcg - unlock a page->mem_cgroup binding
1658 * @page: the page
1659 */
1660void unlock_page_memcg(struct page *page)
1661{
1662        struct mem_cgroup *memcg = page->mem_cgroup;
1663
1664        if (memcg && memcg->move_lock_task == current) {
1665                unsigned long flags = memcg->move_lock_flags;
1666
1667                memcg->move_lock_task = NULL;
1668                memcg->move_lock_flags = 0;
1669
1670                spin_unlock_irqrestore(&memcg->move_lock, flags);
1671        }
1672
1673        rcu_read_unlock();
1674}
1675EXPORT_SYMBOL(unlock_page_memcg);
1676
1677/*
1678 * size of first charge trial. "32" comes from vmscan.c's magic value.
1679 * TODO: maybe necessary to use big numbers in big irons.
1680 */
1681#define CHARGE_BATCH    32U
1682struct memcg_stock_pcp {
1683        struct mem_cgroup *cached; /* this never be root cgroup */
1684        unsigned int nr_pages;
1685        struct work_struct work;
1686        unsigned long flags;
1687#define FLUSHING_CACHED_CHARGE  0
1688};
1689static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1690static DEFINE_MUTEX(percpu_charge_mutex);
1691
1692/**
1693 * consume_stock: Try to consume stocked charge on this cpu.
1694 * @memcg: memcg to consume from.
1695 * @nr_pages: how many pages to charge.
1696 *
1697 * The charges will only happen if @memcg matches the current cpu's memcg
1698 * stock, and at least @nr_pages are available in that stock.  Failure to
1699 * service an allocation will refill the stock.
1700 *
1701 * returns true if successful, false otherwise.
1702 */
1703static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1704{
1705        struct memcg_stock_pcp *stock;
1706        unsigned long flags;
1707        bool ret = false;
1708
1709        if (nr_pages > CHARGE_BATCH)
1710                return ret;
1711
1712        local_irq_save(flags);
1713
1714        stock = this_cpu_ptr(&memcg_stock);
1715        if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1716                stock->nr_pages -= nr_pages;
1717                ret = true;
1718        }
1719
1720        local_irq_restore(flags);
1721
1722        return ret;
1723}
1724
1725/*
1726 * Returns stocks cached in percpu and reset cached information.
1727 */
1728static void drain_stock(struct memcg_stock_pcp *stock)
1729{
1730        struct mem_cgroup *old = stock->cached;
1731
1732        if (stock->nr_pages) {
1733                page_counter_uncharge(&old->memory, stock->nr_pages);
1734                if (do_memsw_account())
1735                        page_counter_uncharge(&old->memsw, stock->nr_pages);
1736                css_put_many(&old->css, stock->nr_pages);
1737                stock->nr_pages = 0;
1738        }
1739        stock->cached = NULL;
1740}
1741
1742static void drain_local_stock(struct work_struct *dummy)
1743{
1744        struct memcg_stock_pcp *stock;
1745        unsigned long flags;
1746
1747        local_irq_save(flags);
1748
1749        stock = this_cpu_ptr(&memcg_stock);
1750        drain_stock(stock);
1751        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1752
1753        local_irq_restore(flags);
1754}
1755
1756/*
1757 * Cache charges(val) to local per_cpu area.
1758 * This will be consumed by consume_stock() function, later.
1759 */
1760static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1761{
1762        struct memcg_stock_pcp *stock;
1763        unsigned long flags;
1764
1765        local_irq_save(flags);
1766
1767        stock = this_cpu_ptr(&memcg_stock);
1768        if (stock->cached != memcg) { /* reset if necessary */
1769                drain_stock(stock);
1770                stock->cached = memcg;
1771        }
1772        stock->nr_pages += nr_pages;
1773
1774        local_irq_restore(flags);
1775}
1776
1777/*
1778 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1779 * of the hierarchy under it.
1780 */
1781static void drain_all_stock(struct mem_cgroup *root_memcg)
1782{
1783        int cpu, curcpu;
1784
1785        /* If someone's already draining, avoid adding running more workers. */
1786        if (!mutex_trylock(&percpu_charge_mutex))
1787                return;
1788        /* Notify other cpus that system-wide "drain" is running */
1789        get_online_cpus();
1790        curcpu = get_cpu();
1791        for_each_online_cpu(cpu) {
1792                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1793                struct mem_cgroup *memcg;
1794
1795                memcg = stock->cached;
1796                if (!memcg || !stock->nr_pages)
1797                        continue;
1798                if (!mem_cgroup_is_descendant(memcg, root_memcg))
1799                        continue;
1800                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1801                        if (cpu == curcpu)
1802                                drain_local_stock(&stock->work);
1803                        else
1804                                schedule_work_on(cpu, &stock->work);
1805                }
1806        }
1807        put_cpu();
1808        put_online_cpus();
1809        mutex_unlock(&percpu_charge_mutex);
1810}
1811
1812static int memcg_hotplug_cpu_dead(unsigned int cpu)
1813{
1814        struct memcg_stock_pcp *stock;
1815
1816        stock = &per_cpu(memcg_stock, cpu);
1817        drain_stock(stock);
1818        return 0;
1819}
1820
1821static void reclaim_high(struct mem_cgroup *memcg,
1822                         unsigned int nr_pages,
1823                         gfp_t gfp_mask)
1824{
1825        do {
1826                if (page_counter_read(&memcg->memory) <= memcg->high)
1827                        continue;
1828                mem_cgroup_event(memcg, MEMCG_HIGH);
1829                try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1830        } while ((memcg = parent_mem_cgroup(memcg)));
1831}
1832
1833static void high_work_func(struct work_struct *work)
1834{
1835        struct mem_cgroup *memcg;
1836
1837        memcg = container_of(work, struct mem_cgroup, high_work);
1838        reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1839}
1840
1841/*
1842 * Scheduled by try_charge() to be executed from the userland return path
1843 * and reclaims memory over the high limit.
1844 */
1845void mem_cgroup_handle_over_high(void)
1846{
1847        unsigned int nr_pages = current->memcg_nr_pages_over_high;
1848        struct mem_cgroup *memcg;
1849
1850        if (likely(!nr_pages))
1851                return;
1852
1853        memcg = get_mem_cgroup_from_mm(current->mm);
1854        reclaim_high(memcg, nr_pages, GFP_KERNEL);
1855        css_put(&memcg->css);
1856        current->memcg_nr_pages_over_high = 0;
1857}
1858
1859static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1860                      unsigned int nr_pages)
1861{
1862        unsigned int batch = max(CHARGE_BATCH, nr_pages);
1863        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1864        struct mem_cgroup *mem_over_limit;
1865        struct page_counter *counter;
1866        unsigned long nr_reclaimed;
1867        bool may_swap = true;
1868        bool drained = false;
1869
1870        if (mem_cgroup_is_root(memcg))
1871                return 0;
1872retry:
1873        if (consume_stock(memcg, nr_pages))
1874                return 0;
1875
1876        if (!do_memsw_account() ||
1877            page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1878                if (page_counter_try_charge(&memcg->memory, batch, &counter))
1879                        goto done_restock;
1880                if (do_memsw_account())
1881                        page_counter_uncharge(&memcg->memsw, batch);
1882                mem_over_limit = mem_cgroup_from_counter(counter, memory);
1883        } else {
1884                mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1885                may_swap = false;
1886        }
1887
1888        if (batch > nr_pages) {
1889                batch = nr_pages;
1890                goto retry;
1891        }
1892
1893        /*
1894         * Unlike in global OOM situations, memcg is not in a physical
1895         * memory shortage.  Allow dying and OOM-killed tasks to
1896         * bypass the last charges so that they can exit quickly and
1897         * free their memory.
1898         */
1899        if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1900                     fatal_signal_pending(current) ||
1901                     current->flags & PF_EXITING))
1902                goto force;
1903
1904        /*
1905         * Prevent unbounded recursion when reclaim operations need to
1906         * allocate memory. This might exceed the limits temporarily,
1907         * but we prefer facilitating memory reclaim and getting back
1908         * under the limit over triggering OOM kills in these cases.
1909         */
1910        if (unlikely(current->flags & PF_MEMALLOC))
1911                goto force;
1912
1913        if (unlikely(task_in_memcg_oom(current)))
1914                goto nomem;
1915
1916        if (!gfpflags_allow_blocking(gfp_mask))
1917                goto nomem;
1918
1919        mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1920
1921        nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1922                                                    gfp_mask, may_swap);
1923
1924        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1925                goto retry;
1926
1927        if (!drained) {
1928                drain_all_stock(mem_over_limit);
1929                drained = true;
1930                goto retry;
1931        }
1932
1933        if (gfp_mask & __GFP_NORETRY)
1934                goto nomem;
1935        /*
1936         * Even though the limit is exceeded at this point, reclaim
1937         * may have been able to free some pages.  Retry the charge
1938         * before killing the task.
1939         *
1940         * Only for regular pages, though: huge pages are rather
1941         * unlikely to succeed so close to the limit, and we fall back
1942         * to regular pages anyway in case of failure.
1943         */
1944        if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1945                goto retry;
1946        /*
1947         * At task move, charge accounts can be doubly counted. So, it's
1948         * better to wait until the end of task_move if something is going on.
1949         */
1950        if (mem_cgroup_wait_acct_move(mem_over_limit))
1951                goto retry;
1952
1953        if (nr_retries--)
1954                goto retry;
1955
1956        if (gfp_mask & __GFP_NOFAIL)
1957                goto force;
1958
1959        if (fatal_signal_pending(current))
1960                goto force;
1961
1962        mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1963
1964        mem_cgroup_oom(mem_over_limit, gfp_mask,
1965                       get_order(nr_pages * PAGE_SIZE));
1966nomem:
1967        if (!(gfp_mask & __GFP_NOFAIL))
1968                return -ENOMEM;
1969force:
1970        /*
1971         * The allocation either can't fail or will lead to more memory
1972         * being freed very soon.  Allow memory usage go over the limit
1973         * temporarily by force charging it.
1974         */
1975        page_counter_charge(&memcg->memory, nr_pages);
1976        if (do_memsw_account())
1977                page_counter_charge(&memcg->memsw, nr_pages);
1978        css_get_many(&memcg->css, nr_pages);
1979
1980        return 0;
1981
1982done_restock:
1983        css_get_many(&memcg->css, batch);
1984        if (batch > nr_pages)
1985                refill_stock(memcg, batch - nr_pages);
1986
1987        /*
1988         * If the hierarchy is above the normal consumption range, schedule
1989         * reclaim on returning to userland.  We can perform reclaim here
1990         * if __GFP_RECLAIM but let's always punt for simplicity and so that
1991         * GFP_KERNEL can consistently be used during reclaim.  @memcg is
1992         * not recorded as it most likely matches current's and won't
1993         * change in the meantime.  As high limit is checked again before
1994         * reclaim, the cost of mismatch is negligible.
1995         */
1996        do {
1997                if (page_counter_read(&memcg->memory) > memcg->high) {
1998                        /* Don't bother a random interrupted task */
1999                        if (in_interrupt()) {
2000                                schedule_work(&memcg->high_work);
2001                                break;
2002                        }
2003                        current->memcg_nr_pages_over_high += batch;
2004                        set_notify_resume(current);
2005                        break;
2006                }
2007        } while ((memcg = parent_mem_cgroup(memcg)));
2008
2009        return 0;
2010}
2011
2012static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2013{
2014        if (mem_cgroup_is_root(memcg))
2015                return;
2016
2017        page_counter_uncharge(&memcg->memory, nr_pages);
2018        if (do_memsw_account())
2019                page_counter_uncharge(&memcg->memsw, nr_pages);
2020
2021        css_put_many(&memcg->css, nr_pages);
2022}
2023
2024static void lock_page_lru(struct page *page, int *isolated)
2025{
2026        struct zone *zone = page_zone(page);
2027
2028        spin_lock_irq(zone_lru_lock(zone));
2029        if (PageLRU(page)) {
2030                struct lruvec *lruvec;
2031
2032                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2033                ClearPageLRU(page);
2034                del_page_from_lru_list(page, lruvec, page_lru(page));
2035                *isolated = 1;
2036        } else
2037                *isolated = 0;
2038}
2039
2040static void unlock_page_lru(struct page *page, int isolated)
2041{
2042        struct zone *zone = page_zone(page);
2043
2044        if (isolated) {
2045                struct lruvec *lruvec;
2046
2047                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2048                VM_BUG_ON_PAGE(PageLRU(page), page);
2049                SetPageLRU(page);
2050                add_page_to_lru_list(page, lruvec, page_lru(page));
2051        }
2052        spin_unlock_irq(zone_lru_lock(zone));
2053}
2054
2055static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2056                          bool lrucare)
2057{
2058        int isolated;
2059
2060        VM_BUG_ON_PAGE(page->mem_cgroup, page);
2061
2062        /*
2063         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2064         * may already be on some other mem_cgroup's LRU.  Take care of it.
2065         */
2066        if (lrucare)
2067                lock_page_lru(page, &isolated);
2068
2069        /*
2070         * Nobody should be changing or seriously looking at
2071         * page->mem_cgroup at this point:
2072         *
2073         * - the page is uncharged
2074         *
2075         * - the page is off-LRU
2076         *
2077         * - an anonymous fault has exclusive page access, except for
2078         *   a locked page table
2079         *
2080         * - a page cache insertion, a swapin fault, or a migration
2081         *   have the page locked
2082         */
2083        page->mem_cgroup = memcg;
2084
2085        if (lrucare)
2086                unlock_page_lru(page, isolated);
2087}
2088
2089#ifndef CONFIG_SLOB
2090static int memcg_alloc_cache_id(void)
2091{
2092        int id, size;
2093        int err;
2094
2095        id = ida_simple_get(&memcg_cache_ida,
2096                            0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2097        if (id < 0)
2098                return id;
2099
2100        if (id < memcg_nr_cache_ids)
2101                return id;
2102
2103        /*
2104         * There's no space for the new id in memcg_caches arrays,
2105         * so we have to grow them.
2106         */
2107        down_write(&memcg_cache_ids_sem);
2108
2109        size = 2 * (id + 1);
2110        if (size < MEMCG_CACHES_MIN_SIZE)
2111                size = MEMCG_CACHES_MIN_SIZE;
2112        else if (size > MEMCG_CACHES_MAX_SIZE)
2113                size = MEMCG_CACHES_MAX_SIZE;
2114
2115        err = memcg_update_all_caches(size);
2116        if (!err)
2117                err = memcg_update_all_list_lrus(size);
2118        if (!err)
2119                memcg_nr_cache_ids = size;
2120
2121        up_write(&memcg_cache_ids_sem);
2122
2123        if (err) {
2124                ida_simple_remove(&memcg_cache_ida, id);
2125                return err;
2126        }
2127        return id;
2128}
2129
2130static void memcg_free_cache_id(int id)
2131{
2132        ida_simple_remove(&memcg_cache_ida, id);
2133}
2134
2135struct memcg_kmem_cache_create_work {
2136        struct mem_cgroup *memcg;
2137        struct kmem_cache *cachep;
2138        struct work_struct work;
2139};
2140
2141static void memcg_kmem_cache_create_func(struct work_struct *w)
2142{
2143        struct memcg_kmem_cache_create_work *cw =
2144                container_of(w, struct memcg_kmem_cache_create_work, work);
2145        struct mem_cgroup *memcg = cw->memcg;
2146        struct kmem_cache *cachep = cw->cachep;
2147
2148        memcg_create_kmem_cache(memcg, cachep);
2149
2150        css_put(&memcg->css);
2151        kfree(cw);
2152}
2153
2154/*
2155 * Enqueue the creation of a per-memcg kmem_cache.
2156 */
2157static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2158                                               struct kmem_cache *cachep)
2159{
2160        struct memcg_kmem_cache_create_work *cw;
2161
2162        cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2163        if (!cw)
2164                return;
2165
2166        css_get(&memcg->css);
2167
2168        cw->memcg = memcg;
2169        cw->cachep = cachep;
2170        INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2171
2172        queue_work(memcg_kmem_cache_wq, &cw->work);
2173}
2174
2175static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2176                                             struct kmem_cache *cachep)
2177{
2178        /*
2179         * We need to stop accounting when we kmalloc, because if the
2180         * corresponding kmalloc cache is not yet created, the first allocation
2181         * in __memcg_schedule_kmem_cache_create will recurse.
2182         *
2183         * However, it is better to enclose the whole function. Depending on
2184         * the debugging options enabled, INIT_WORK(), for instance, can
2185         * trigger an allocation. This too, will make us recurse. Because at
2186         * this point we can't allow ourselves back into memcg_kmem_get_cache,
2187         * the safest choice is to do it like this, wrapping the whole function.
2188         */
2189        current->memcg_kmem_skip_account = 1;
2190        __memcg_schedule_kmem_cache_create(memcg, cachep);
2191        current->memcg_kmem_skip_account = 0;
2192}
2193
2194static inline bool memcg_kmem_bypass(void)
2195{
2196        if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2197                return true;
2198        return false;
2199}
2200
2201/**
2202 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2203 * @cachep: the original global kmem cache
2204 *
2205 * Return the kmem_cache we're supposed to use for a slab allocation.
2206 * We try to use the current memcg's version of the cache.
2207 *
2208 * If the cache does not exist yet, if we are the first user of it, we
2209 * create it asynchronously in a workqueue and let the current allocation
2210 * go through with the original cache.
2211 *
2212 * This function takes a reference to the cache it returns to assure it
2213 * won't get destroyed while we are working with it. Once the caller is
2214 * done with it, memcg_kmem_put_cache() must be called to release the
2215 * reference.
2216 */
2217struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2218{
2219        struct mem_cgroup *memcg;
2220        struct kmem_cache *memcg_cachep;
2221        int kmemcg_id;
2222
2223        VM_BUG_ON(!is_root_cache(cachep));
2224
2225        if (memcg_kmem_bypass())
2226                return cachep;
2227
2228        if (current->memcg_kmem_skip_account)
2229                return cachep;
2230
2231        memcg = get_mem_cgroup_from_mm(current->mm);
2232        kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2233        if (kmemcg_id < 0)
2234                goto out;
2235
2236        memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2237        if (likely(memcg_cachep))
2238                return memcg_cachep;
2239
2240        /*
2241         * If we are in a safe context (can wait, and not in interrupt
2242         * context), we could be be predictable and return right away.
2243         * This would guarantee that the allocation being performed
2244         * already belongs in the new cache.
2245         *
2246         * However, there are some clashes that can arrive from locking.
2247         * For instance, because we acquire the slab_mutex while doing
2248         * memcg_create_kmem_cache, this means no further allocation
2249         * could happen with the slab_mutex held. So it's better to
2250         * defer everything.
2251         */
2252        memcg_schedule_kmem_cache_create(memcg, cachep);
2253out:
2254        css_put(&memcg->css);
2255        return cachep;
2256}
2257
2258/**
2259 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2260 * @cachep: the cache returned by memcg_kmem_get_cache
2261 */
2262void memcg_kmem_put_cache(struct kmem_cache *cachep)
2263{
2264        if (!is_root_cache(cachep))
2265                css_put(&cachep->memcg_params.memcg->css);
2266}
2267
2268/**
2269 * memcg_kmem_charge: charge a kmem page
2270 * @page: page to charge
2271 * @gfp: reclaim mode
2272 * @order: allocation order
2273 * @memcg: memory cgroup to charge
2274 *
2275 * Returns 0 on success, an error code on failure.
2276 */
2277int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2278                            struct mem_cgroup *memcg)
2279{
2280        unsigned int nr_pages = 1 << order;
2281        struct page_counter *counter;
2282        int ret;
2283
2284        ret = try_charge(memcg, gfp, nr_pages);
2285        if (ret)
2286                return ret;
2287
2288        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2289            !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2290                cancel_charge(memcg, nr_pages);
2291                return -ENOMEM;
2292        }
2293
2294        page->mem_cgroup = memcg;
2295
2296        return 0;
2297}
2298
2299/**
2300 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2301 * @page: page to charge
2302 * @gfp: reclaim mode
2303 * @order: allocation order
2304 *
2305 * Returns 0 on success, an error code on failure.
2306 */
2307int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2308{
2309        struct mem_cgroup *memcg;
2310        int ret = 0;
2311
2312        if (memcg_kmem_bypass())
2313                return 0;
2314
2315        memcg = get_mem_cgroup_from_mm(current->mm);
2316        if (!mem_cgroup_is_root(memcg)) {
2317                ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2318                if (!ret)
2319                        __SetPageKmemcg(page);
2320        }
2321        css_put(&memcg->css);
2322        return ret;
2323}
2324/**
2325 * memcg_kmem_uncharge: uncharge a kmem page
2326 * @page: page to uncharge
2327 * @order: allocation order
2328 */
2329void memcg_kmem_uncharge(struct page *page, int order)
2330{
2331        struct mem_cgroup *memcg = page->mem_cgroup;
2332        unsigned int nr_pages = 1 << order;
2333
2334        if (!memcg)
2335                return;
2336
2337        VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2338
2339        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2340                page_counter_uncharge(&memcg->kmem, nr_pages);
2341
2342        page_counter_uncharge(&memcg->memory, nr_pages);
2343        if (do_memsw_account())
2344                page_counter_uncharge(&memcg->memsw, nr_pages);
2345
2346        page->mem_cgroup = NULL;
2347
2348        /* slab pages do not have PageKmemcg flag set */
2349        if (PageKmemcg(page))
2350                __ClearPageKmemcg(page);
2351
2352        css_put_many(&memcg->css, nr_pages);
2353}
2354#endif /* !CONFIG_SLOB */
2355
2356#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2357
2358/*
2359 * Because tail pages are not marked as "used", set it. We're under
2360 * zone_lru_lock and migration entries setup in all page mappings.
2361 */
2362void mem_cgroup_split_huge_fixup(struct page *head)
2363{
2364        int i;
2365
2366        if (mem_cgroup_disabled())
2367                return;
2368
2369        for (i = 1; i < HPAGE_PMD_NR; i++)
2370                head[i].mem_cgroup = head->mem_cgroup;
2371
2372        __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2373                       HPAGE_PMD_NR);
2374}
2375#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2376
2377#ifdef CONFIG_MEMCG_SWAP
2378static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2379                                         bool charge)
2380{
2381        int val = (charge) ? 1 : -1;
2382        this_cpu_add(memcg->stat->count[MEMCG_SWAP], val);
2383}
2384
2385/**
2386 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2387 * @entry: swap entry to be moved
2388 * @from:  mem_cgroup which the entry is moved from
2389 * @to:  mem_cgroup which the entry is moved to
2390 *
2391 * It succeeds only when the swap_cgroup's record for this entry is the same
2392 * as the mem_cgroup's id of @from.
2393 *
2394 * Returns 0 on success, -EINVAL on failure.
2395 *
2396 * The caller must have charged to @to, IOW, called page_counter_charge() about
2397 * both res and memsw, and called css_get().
2398 */
2399static int mem_cgroup_move_swap_account(swp_entry_t entry,
2400                                struct mem_cgroup *from, struct mem_cgroup *to)
2401{
2402        unsigned short old_id, new_id;
2403
2404        old_id = mem_cgroup_id(from);
2405        new_id = mem_cgroup_id(to);
2406
2407        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2408                mem_cgroup_swap_statistics(from, false);
2409                mem_cgroup_swap_statistics(to, true);
2410                return 0;
2411        }
2412        return -EINVAL;
2413}
2414#else
2415static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2416                                struct mem_cgroup *from, struct mem_cgroup *to)
2417{
2418        return -EINVAL;
2419}
2420#endif
2421
2422static DEFINE_MUTEX(memcg_limit_mutex);
2423
2424static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2425                                   unsigned long limit)
2426{
2427        unsigned long curusage;
2428        unsigned long oldusage;
2429        bool enlarge = false;
2430        int retry_count;
2431        int ret;
2432
2433        /*
2434         * For keeping hierarchical_reclaim simple, how long we should retry
2435         * is depends on callers. We set our retry-count to be function
2436         * of # of children which we should visit in this loop.
2437         */
2438        retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2439                      mem_cgroup_count_children(memcg);
2440
2441        oldusage = page_counter_read(&memcg->memory);
2442
2443        do {
2444                if (signal_pending(current)) {
2445                        ret = -EINTR;
2446                        break;
2447                }
2448
2449                mutex_lock(&memcg_limit_mutex);
2450                if (limit > memcg->memsw.limit) {
2451                        mutex_unlock(&memcg_limit_mutex);
2452                        ret = -EINVAL;
2453                        break;
2454                }
2455                if (limit > memcg->memory.limit)
2456                        enlarge = true;
2457                ret = page_counter_limit(&memcg->memory, limit);
2458                mutex_unlock(&memcg_limit_mutex);
2459
2460                if (!ret)
2461                        break;
2462
2463                try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2464
2465                curusage = page_counter_read(&memcg->memory);
2466                /* Usage is reduced ? */
2467                if (curusage >= oldusage)
2468                        retry_count--;
2469                else
2470                        oldusage = curusage;
2471        } while (retry_count);
2472
2473        if (!ret && enlarge)
2474                memcg_oom_recover(memcg);
2475
2476        return ret;
2477}
2478
2479static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2480                                         unsigned long limit)
2481{
2482        unsigned long curusage;
2483        unsigned long oldusage;
2484        bool enlarge = false;
2485        int retry_count;
2486        int ret;
2487
2488        /* see mem_cgroup_resize_res_limit */
2489        retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2490                      mem_cgroup_count_children(memcg);
2491
2492        oldusage = page_counter_read(&memcg->memsw);
2493
2494        do {
2495                if (signal_pending(current)) {
2496                        ret = -EINTR;
2497                        break;
2498                }
2499
2500                mutex_lock(&memcg_limit_mutex);
2501                if (limit < memcg->memory.limit) {
2502                        mutex_unlock(&memcg_limit_mutex);
2503                        ret = -EINVAL;
2504                        break;
2505                }
2506                if (limit > memcg->memsw.limit)
2507                        enlarge = true;
2508                ret = page_counter_limit(&memcg->memsw, limit);
2509                mutex_unlock(&memcg_limit_mutex);
2510
2511                if (!ret)
2512                        break;
2513
2514                try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2515
2516                curusage = page_counter_read(&memcg->memsw);
2517                /* Usage is reduced ? */
2518                if (curusage >= oldusage)
2519                        retry_count--;
2520                else
2521                        oldusage = curusage;
2522        } while (retry_count);
2523
2524        if (!ret && enlarge)
2525                memcg_oom_recover(memcg);
2526
2527        return ret;
2528}
2529
2530unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2531                                            gfp_t gfp_mask,
2532                                            unsigned long *total_scanned)
2533{
2534        unsigned long nr_reclaimed = 0;
2535        struct mem_cgroup_per_node *mz, *next_mz = NULL;
2536        unsigned long reclaimed;
2537        int loop = 0;
2538        struct mem_cgroup_tree_per_node *mctz;
2539        unsigned long excess;
2540        unsigned long nr_scanned;
2541
2542        if (order > 0)
2543                return 0;
2544
2545        mctz = soft_limit_tree_node(pgdat->node_id);
2546
2547        /*
2548         * Do not even bother to check the largest node if the root
2549         * is empty. Do it lockless to prevent lock bouncing. Races
2550         * are acceptable as soft limit is best effort anyway.
2551         */
2552        if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2553                return 0;
2554
2555        /*
2556         * This loop can run a while, specially if mem_cgroup's continuously
2557         * keep exceeding their soft limit and putting the system under
2558         * pressure
2559         */
2560        do {
2561                if (next_mz)
2562                        mz = next_mz;
2563                else
2564                        mz = mem_cgroup_largest_soft_limit_node(mctz);
2565                if (!mz)
2566                        break;
2567
2568                nr_scanned = 0;
2569                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2570                                                    gfp_mask, &nr_scanned);
2571                nr_reclaimed += reclaimed;
2572                *total_scanned += nr_scanned;
2573                spin_lock_irq(&mctz->lock);
2574                __mem_cgroup_remove_exceeded(mz, mctz);
2575
2576                /*
2577                 * If we failed to reclaim anything from this memory cgroup
2578                 * it is time to move on to the next cgroup
2579                 */
2580                next_mz = NULL;
2581                if (!reclaimed)
2582                        next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2583
2584                excess = soft_limit_excess(mz->memcg);
2585                /*
2586                 * One school of thought says that we should not add
2587                 * back the node to the tree if reclaim returns 0.
2588                 * But our reclaim could return 0, simply because due
2589                 * to priority we are exposing a smaller subset of
2590                 * memory to reclaim from. Consider this as a longer
2591                 * term TODO.
2592                 */
2593                /* If excess == 0, no tree ops */
2594                __mem_cgroup_insert_exceeded(mz, mctz, excess);
2595                spin_unlock_irq(&mctz->lock);
2596                css_put(&mz->memcg->css);
2597                loop++;
2598                /*
2599                 * Could not reclaim anything and there are no more
2600                 * mem cgroups to try or we seem to be looping without
2601                 * reclaiming anything.
2602                 */
2603                if (!nr_reclaimed &&
2604                        (next_mz == NULL ||
2605                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2606                        break;
2607        } while (!nr_reclaimed);
2608        if (next_mz)
2609                css_put(&next_mz->memcg->css);
2610        return nr_reclaimed;
2611}
2612
2613/*
2614 * Test whether @memcg has children, dead or alive.  Note that this
2615 * function doesn't care whether @memcg has use_hierarchy enabled and
2616 * returns %true if there are child csses according to the cgroup
2617 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2618 */
2619static inline bool memcg_has_children(struct mem_cgroup *memcg)
2620{
2621        bool ret;
2622
2623        rcu_read_lock();
2624        ret = css_next_child(NULL, &memcg->css);
2625        rcu_read_unlock();
2626        return ret;
2627}
2628
2629/*
2630 * Reclaims as many pages from the given memcg as possible.
2631 *
2632 * Caller is responsible for holding css reference for memcg.
2633 */
2634static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2635{
2636        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2637
2638        /* we call try-to-free pages for make this cgroup empty */
2639        lru_add_drain_all();
2640        /* try to free all pages in this cgroup */
2641        while (nr_retries && page_counter_read(&memcg->memory)) {
2642                int progress;
2643
2644                if (signal_pending(current))
2645                        return -EINTR;
2646
2647                progress = try_to_free_mem_cgroup_pages(memcg, 1,
2648                                                        GFP_KERNEL, true);
2649                if (!progress) {
2650                        nr_retries--;
2651                        /* maybe some writeback is necessary */
2652                        congestion_wait(BLK_RW_ASYNC, HZ/10);
2653                }
2654
2655        }
2656
2657        return 0;
2658}
2659
2660static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2661                                            char *buf, size_t nbytes,
2662                                            loff_t off)
2663{
2664        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2665
2666        if (mem_cgroup_is_root(memcg))
2667                return -EINVAL;
2668        return mem_cgroup_force_empty(memcg) ?: nbytes;
2669}
2670
2671static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2672                                     struct cftype *cft)
2673{
2674        return mem_cgroup_from_css(css)->use_hierarchy;
2675}
2676
2677static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2678                                      struct cftype *cft, u64 val)
2679{
2680        int retval = 0;
2681        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2682        struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2683
2684        if (memcg->use_hierarchy == val)
2685                return 0;
2686
2687        /*
2688         * If parent's use_hierarchy is set, we can't make any modifications
2689         * in the child subtrees. If it is unset, then the change can
2690         * occur, provided the current cgroup has no children.
2691         *
2692         * For the root cgroup, parent_mem is NULL, we allow value to be
2693         * set if there are no children.
2694         */
2695        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2696                                (val == 1 || val == 0)) {
2697                if (!memcg_has_children(memcg))
2698                        memcg->use_hierarchy = val;
2699                else
2700                        retval = -EBUSY;
2701        } else
2702                retval = -EINVAL;
2703
2704        return retval;
2705}
2706
2707static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2708{
2709        struct mem_cgroup *iter;
2710        int i;
2711
2712        memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2713
2714        for_each_mem_cgroup_tree(iter, memcg) {
2715                for (i = 0; i < MEMCG_NR_STAT; i++)
2716                        stat[i] += memcg_page_state(iter, i);
2717        }
2718}
2719
2720static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2721{
2722        struct mem_cgroup *iter;
2723        int i;
2724
2725        memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2726
2727        for_each_mem_cgroup_tree(iter, memcg) {
2728                for (i = 0; i < MEMCG_NR_EVENTS; i++)
2729                        events[i] += memcg_sum_events(iter, i);
2730        }
2731}
2732
2733static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2734{
2735        unsigned long val = 0;
2736
2737        if (mem_cgroup_is_root(memcg)) {
2738                struct mem_cgroup *iter;
2739
2740                for_each_mem_cgroup_tree(iter, memcg) {
2741                        val += memcg_page_state(iter, MEMCG_CACHE);
2742                        val += memcg_page_state(iter, MEMCG_RSS);
2743                        if (swap)
2744                                val += memcg_page_state(iter, MEMCG_SWAP);
2745                }
2746        } else {
2747                if (!swap)
2748                        val = page_counter_read(&memcg->memory);
2749                else
2750                        val = page_counter_read(&memcg->memsw);
2751        }
2752        return val;
2753}
2754
2755enum {
2756        RES_USAGE,
2757        RES_LIMIT,
2758        RES_MAX_USAGE,
2759        RES_FAILCNT,
2760        RES_SOFT_LIMIT,
2761};
2762
2763static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2764                               struct cftype *cft)
2765{
2766        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2767        struct page_counter *counter;
2768
2769        switch (MEMFILE_TYPE(cft->private)) {
2770        case _MEM:
2771                counter = &memcg->memory;
2772                break;
2773        case _MEMSWAP:
2774                counter = &memcg->memsw;
2775                break;
2776        case _KMEM:
2777                counter = &memcg->kmem;
2778                break;
2779        case _TCP:
2780                counter = &memcg->tcpmem;
2781                break;
2782        default:
2783                BUG();
2784        }
2785
2786        switch (MEMFILE_ATTR(cft->private)) {
2787        case RES_USAGE:
2788                if (counter == &memcg->memory)
2789                        return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2790                if (counter == &memcg->memsw)
2791                        return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2792                return (u64)page_counter_read(counter) * PAGE_SIZE;
2793        case RES_LIMIT:
2794                return (u64)counter->limit * PAGE_SIZE;
2795        case RES_MAX_USAGE:
2796                return (u64)counter->watermark * PAGE_SIZE;
2797        case RES_FAILCNT:
2798                return counter->failcnt;
2799        case RES_SOFT_LIMIT:
2800                return (u64)memcg->soft_limit * PAGE_SIZE;
2801        default:
2802                BUG();
2803        }
2804}
2805
2806#ifndef CONFIG_SLOB
2807static int memcg_online_kmem(struct mem_cgroup *memcg)
2808{
2809        int memcg_id;
2810
2811        if (cgroup_memory_nokmem)
2812                return 0;
2813
2814        BUG_ON(memcg->kmemcg_id >= 0);
2815        BUG_ON(memcg->kmem_state);
2816
2817        memcg_id = memcg_alloc_cache_id();
2818        if (memcg_id < 0)
2819                return memcg_id;
2820
2821        static_branch_inc(&memcg_kmem_enabled_key);
2822        /*
2823         * A memory cgroup is considered kmem-online as soon as it gets
2824         * kmemcg_id. Setting the id after enabling static branching will
2825         * guarantee no one starts accounting before all call sites are
2826         * patched.
2827         */
2828        memcg->kmemcg_id = memcg_id;
2829        memcg->kmem_state = KMEM_ONLINE;
2830        INIT_LIST_HEAD(&memcg->kmem_caches);
2831
2832        return 0;
2833}
2834
2835static void memcg_offline_kmem(struct mem_cgroup *memcg)
2836{
2837        struct cgroup_subsys_state *css;
2838        struct mem_cgroup *parent, *child;
2839        int kmemcg_id;
2840
2841        if (memcg->kmem_state != KMEM_ONLINE)
2842                return;
2843        /*
2844         * Clear the online state before clearing memcg_caches array
2845         * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2846         * guarantees that no cache will be created for this cgroup
2847         * after we are done (see memcg_create_kmem_cache()).
2848         */
2849        memcg->kmem_state = KMEM_ALLOCATED;
2850
2851        memcg_deactivate_kmem_caches(memcg);
2852
2853        kmemcg_id = memcg->kmemcg_id;
2854        BUG_ON(kmemcg_id < 0);
2855
2856        parent = parent_mem_cgroup(memcg);
2857        if (!parent)
2858                parent = root_mem_cgroup;
2859
2860        /*
2861         * Change kmemcg_id of this cgroup and all its descendants to the
2862         * parent's id, and then move all entries from this cgroup's list_lrus
2863         * to ones of the parent. After we have finished, all list_lrus
2864         * corresponding to this cgroup are guaranteed to remain empty. The
2865         * ordering is imposed by list_lru_node->lock taken by
2866         * memcg_drain_all_list_lrus().
2867         */
2868        rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2869        css_for_each_descendant_pre(css, &memcg->css) {
2870                child = mem_cgroup_from_css(css);
2871                BUG_ON(child->kmemcg_id != kmemcg_id);
2872                child->kmemcg_id = parent->kmemcg_id;
2873                if (!memcg->use_hierarchy)
2874                        break;
2875        }
2876        rcu_read_unlock();
2877
2878        memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2879
2880        memcg_free_cache_id(kmemcg_id);
2881}
2882
2883static void memcg_free_kmem(struct mem_cgroup *memcg)
2884{
2885        /* css_alloc() failed, offlining didn't happen */
2886        if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2887                memcg_offline_kmem(memcg);
2888
2889        if (memcg->kmem_state == KMEM_ALLOCATED) {
2890                memcg_destroy_kmem_caches(memcg);
2891                static_branch_dec(&memcg_kmem_enabled_key);
2892                WARN_ON(page_counter_read(&memcg->kmem));
2893        }
2894}
2895#else
2896static int memcg_online_kmem(struct mem_cgroup *memcg)
2897{
2898        return 0;
2899}
2900static void memcg_offline_kmem(struct mem_cgroup *memcg)
2901{
2902}
2903static void memcg_free_kmem(struct mem_cgroup *memcg)
2904{
2905}
2906#endif /* !CONFIG_SLOB */
2907
2908static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2909                                   unsigned long limit)
2910{
2911        int ret;
2912
2913        mutex_lock(&memcg_limit_mutex);
2914        ret = page_counter_limit(&memcg->kmem, limit);
2915        mutex_unlock(&memcg_limit_mutex);
2916        return ret;
2917}
2918
2919static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2920{
2921        int ret;
2922
2923        mutex_lock(&memcg_limit_mutex);
2924
2925        ret = page_counter_limit(&memcg->tcpmem, limit);
2926        if (ret)
2927                goto out;
2928
2929        if (!memcg->tcpmem_active) {
2930                /*
2931                 * The active flag needs to be written after the static_key
2932                 * update. This is what guarantees that the socket activation
2933                 * function is the last one to run. See mem_cgroup_sk_alloc()
2934                 * for details, and note that we don't mark any socket as
2935                 * belonging to this memcg until that flag is up.
2936                 *
2937                 * We need to do this, because static_keys will span multiple
2938                 * sites, but we can't control their order. If we mark a socket
2939                 * as accounted, but the accounting functions are not patched in
2940                 * yet, we'll lose accounting.
2941                 *
2942                 * We never race with the readers in mem_cgroup_sk_alloc(),
2943                 * because when this value change, the code to process it is not
2944                 * patched in yet.
2945                 */
2946                static_branch_inc(&memcg_sockets_enabled_key);
2947                memcg->tcpmem_active = true;
2948        }
2949out:
2950        mutex_unlock(&memcg_limit_mutex);
2951        return ret;
2952}
2953
2954/*
2955 * The user of this function is...
2956 * RES_LIMIT.
2957 */
2958static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2959                                char *buf, size_t nbytes, loff_t off)
2960{
2961        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2962        unsigned long nr_pages;
2963        int ret;
2964
2965        buf = strstrip(buf);
2966        ret = page_counter_memparse(buf, "-1", &nr_pages);
2967        if (ret)
2968                return ret;
2969
2970        switch (MEMFILE_ATTR(of_cft(of)->private)) {
2971        case RES_LIMIT:
2972                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2973                        ret = -EINVAL;
2974                        break;
2975                }
2976                switch (MEMFILE_TYPE(of_cft(of)->private)) {
2977                case _MEM:
2978                        ret = mem_cgroup_resize_limit(memcg, nr_pages);
2979                        break;
2980                case _MEMSWAP:
2981                        ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2982                        break;
2983                case _KMEM:
2984                        ret = memcg_update_kmem_limit(memcg, nr_pages);
2985                        break;
2986                case _TCP:
2987                        ret = memcg_update_tcp_limit(memcg, nr_pages);
2988                        break;
2989                }
2990                break;
2991        case RES_SOFT_LIMIT:
2992                memcg->soft_limit = nr_pages;
2993                ret = 0;
2994                break;
2995        }
2996        return ret ?: nbytes;
2997}
2998
2999static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3000                                size_t nbytes, loff_t off)
3001{
3002        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3003        struct page_counter *counter;
3004
3005        switch (MEMFILE_TYPE(of_cft(of)->private)) {
3006        case _MEM:
3007                counter = &memcg->memory;
3008                break;
3009        case _MEMSWAP:
3010                counter = &memcg->memsw;
3011                break;
3012        case _KMEM:
3013                counter = &memcg->kmem;
3014                break;
3015        case _TCP:
3016                counter = &memcg->tcpmem;
3017                break;
3018        default:
3019                BUG();
3020        }
3021
3022        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3023        case RES_MAX_USAGE:
3024                page_counter_reset_watermark(counter);
3025                break;
3026        case RES_FAILCNT:
3027                counter->failcnt = 0;
3028                break;
3029        default:
3030                BUG();
3031        }
3032
3033        return nbytes;
3034}
3035
3036static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3037                                        struct cftype *cft)
3038{
3039        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3040}
3041
3042#ifdef CONFIG_MMU
3043static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3044                                        struct cftype *cft, u64 val)
3045{
3046        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3047
3048        if (val & ~MOVE_MASK)
3049                return -EINVAL;
3050
3051        /*
3052         * No kind of locking is needed in here, because ->can_attach() will
3053         * check this value once in the beginning of the process, and then carry
3054         * on with stale data. This means that changes to this value will only
3055         * affect task migrations starting after the change.
3056         */
3057        memcg->move_charge_at_immigrate = val;
3058        return 0;
3059}
3060#else
3061static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3062                                        struct cftype *cft, u64 val)
3063{
3064        return -ENOSYS;
3065}
3066#endif
3067
3068#ifdef CONFIG_NUMA
3069static int memcg_numa_stat_show(struct seq_file *m, void *v)
3070{
3071        struct numa_stat {
3072                const char *name;
3073                unsigned int lru_mask;
3074        };
3075
3076        static const struct numa_stat stats[] = {
3077                { "total", LRU_ALL },
3078                { "file", LRU_ALL_FILE },
3079                { "anon", LRU_ALL_ANON },
3080                { "unevictable", BIT(LRU_UNEVICTABLE) },
3081        };
3082        const struct numa_stat *stat;
3083        int nid;
3084        unsigned long nr;
3085        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3086
3087        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3088                nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3089                seq_printf(m, "%s=%lu", stat->name, nr);
3090                for_each_node_state(nid, N_MEMORY) {
3091                        nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3092                                                          stat->lru_mask);
3093                        seq_printf(m, " N%d=%lu", nid, nr);
3094                }
3095                seq_putc(m, '\n');
3096        }
3097
3098        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099                struct mem_cgroup *iter;
3100
3101                nr = 0;
3102                for_each_mem_cgroup_tree(iter, memcg)
3103                        nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3104                seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3105                for_each_node_state(nid, N_MEMORY) {
3106                        nr = 0;
3107                        for_each_mem_cgroup_tree(iter, memcg)
3108                                nr += mem_cgroup_node_nr_lru_pages(
3109                                        iter, nid, stat->lru_mask);
3110                        seq_printf(m, " N%d=%lu", nid, nr);
3111                }
3112                seq_putc(m, '\n');
3113        }
3114
3115        return 0;
3116}
3117#endif /* CONFIG_NUMA */
3118
3119/* Universal VM events cgroup1 shows, original sort order */
3120unsigned int memcg1_events[] = {
3121        PGPGIN,
3122        PGPGOUT,
3123        PGFAULT,
3124        PGMAJFAULT,
3125};
3126
3127static const char *const memcg1_event_names[] = {
3128        "pgpgin",
3129        "pgpgout",
3130        "pgfault",
3131        "pgmajfault",
3132};
3133
3134static int memcg_stat_show(struct seq_file *m, void *v)
3135{
3136        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3137        unsigned long memory, memsw;
3138        struct mem_cgroup *mi;
3139        unsigned int i;
3140
3141        BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3142        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143
3144        for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3145                if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3146                        continue;
3147                seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3148                           memcg_page_state(memcg, memcg1_stats[i]) *
3149                           PAGE_SIZE);
3150        }
3151
3152        for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3153                seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3154                           memcg_sum_events(memcg, memcg1_events[i]));
3155
3156        for (i = 0; i < NR_LRU_LISTS; i++)
3157                seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3158                           mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3159
3160        /* Hierarchical information */
3161        memory = memsw = PAGE_COUNTER_MAX;
3162        for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3163                memory = min(memory, mi->memory.limit);
3164                memsw = min(memsw, mi->memsw.limit);
3165        }
3166        seq_printf(m, "hierarchical_memory_limit %llu\n",
3167                   (u64)memory * PAGE_SIZE);
3168        if (do_memsw_account())
3169                seq_printf(m, "hierarchical_memsw_limit %llu\n",
3170                           (u64)memsw * PAGE_SIZE);
3171
3172        for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3173                unsigned long long val = 0;
3174
3175                if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3176                        continue;
3177                for_each_mem_cgroup_tree(mi, memcg)
3178                        val += memcg_page_state(mi, memcg1_stats[i]) *
3179                        PAGE_SIZE;
3180                seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3181        }
3182
3183        for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3184                unsigned long long val = 0;
3185
3186                for_each_mem_cgroup_tree(mi, memcg)
3187                        val += memcg_sum_events(mi, memcg1_events[i]);
3188                seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3189        }
3190
3191        for (i = 0; i < NR_LRU_LISTS; i++) {
3192                unsigned long long val = 0;
3193
3194                for_each_mem_cgroup_tree(mi, memcg)
3195                        val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3196                seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3197        }
3198
3199#ifdef CONFIG_DEBUG_VM
3200        {
3201                pg_data_t *pgdat;
3202                struct mem_cgroup_per_node *mz;
3203                struct zone_reclaim_stat *rstat;
3204                unsigned long recent_rotated[2] = {0, 0};
3205                unsigned long recent_scanned[2] = {0, 0};
3206
3207                for_each_online_pgdat(pgdat) {
3208                        mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3209                        rstat = &mz->lruvec.reclaim_stat;
3210
3211                        recent_rotated[0] += rstat->recent_rotated[0];
3212                        recent_rotated[1] += rstat->recent_rotated[1];
3213                        recent_scanned[0] += rstat->recent_scanned[0];
3214                        recent_scanned[1] += rstat->recent_scanned[1];
3215                }
3216                seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3217                seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3218                seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3219                seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3220        }
3221#endif
3222
3223        return 0;
3224}
3225
3226static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3227                                      struct cftype *cft)
3228{
3229        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3230
3231        return mem_cgroup_swappiness(memcg);
3232}
3233
3234static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3235                                       struct cftype *cft, u64 val)
3236{
3237        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3238
3239        if (val > 100)
3240                return -EINVAL;
3241
3242        if (css->parent)
3243                memcg->swappiness = val;
3244        else
3245                vm_swappiness = val;
3246
3247        return 0;
3248}
3249
3250static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3251{
3252        struct mem_cgroup_threshold_ary *t;
3253        unsigned long usage;
3254        int i;
3255
3256        rcu_read_lock();
3257        if (!swap)
3258                t = rcu_dereference(memcg->thresholds.primary);
3259        else
3260                t = rcu_dereference(memcg->memsw_thresholds.primary);
3261
3262        if (!t)
3263                goto unlock;
3264
3265        usage = mem_cgroup_usage(memcg, swap);
3266
3267        /*
3268         * current_threshold points to threshold just below or equal to usage.
3269         * If it's not true, a threshold was crossed after last
3270         * call of __mem_cgroup_threshold().
3271         */
3272        i = t->current_threshold;
3273
3274        /*
3275         * Iterate backward over array of thresholds starting from
3276         * current_threshold and check if a threshold is crossed.
3277         * If none of thresholds below usage is crossed, we read
3278         * only one element of the array here.
3279         */
3280        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3281                eventfd_signal(t->entries[i].eventfd, 1);
3282
3283        /* i = current_threshold + 1 */
3284        i++;
3285
3286        /*
3287         * Iterate forward over array of thresholds starting from
3288         * current_threshold+1 and check if a threshold is crossed.
3289         * If none of thresholds above usage is crossed, we read
3290         * only one element of the array here.
3291         */
3292        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3293                eventfd_signal(t->entries[i].eventfd, 1);
3294
3295        /* Update current_threshold */
3296        t->current_threshold = i - 1;
3297unlock:
3298        rcu_read_unlock();
3299}
3300
3301static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3302{
3303        while (memcg) {
3304                __mem_cgroup_threshold(memcg, false);
3305                if (do_memsw_account())
3306                        __mem_cgroup_threshold(memcg, true);
3307
3308                memcg = parent_mem_cgroup(memcg);
3309        }
3310}
3311
3312static int compare_thresholds(const void *a, const void *b)
3313{
3314        const struct mem_cgroup_threshold *_a = a;
3315        const struct mem_cgroup_threshold *_b = b;
3316
3317        if (_a->threshold > _b->threshold)
3318                return 1;
3319
3320        if (_a->threshold < _b->threshold)
3321                return -1;
3322
3323        return 0;
3324}
3325
3326static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3327{
3328        struct mem_cgroup_eventfd_list *ev;
3329
3330        spin_lock(&memcg_oom_lock);
3331
3332        list_for_each_entry(ev, &memcg->oom_notify, list)
3333                eventfd_signal(ev->eventfd, 1);
3334
3335        spin_unlock(&memcg_oom_lock);
3336        return 0;
3337}
3338
3339static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3340{
3341        struct mem_cgroup *iter;
3342
3343        for_each_mem_cgroup_tree(iter, memcg)
3344                mem_cgroup_oom_notify_cb(iter);
3345}
3346
3347static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3348        struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3349{
3350        struct mem_cgroup_thresholds *thresholds;
3351        struct mem_cgroup_threshold_ary *new;
3352        unsigned long threshold;
3353        unsigned long usage;
3354        int i, size, ret;
3355
3356        ret = page_counter_memparse(args, "-1", &threshold);
3357        if (ret)
3358                return ret;
3359
3360        mutex_lock(&memcg->thresholds_lock);
3361
3362        if (type == _MEM) {
3363                thresholds = &memcg->thresholds;
3364                usage = mem_cgroup_usage(memcg, false);
3365        } else if (type == _MEMSWAP) {
3366                thresholds = &memcg->memsw_thresholds;
3367                usage = mem_cgroup_usage(memcg, true);
3368        } else
3369                BUG();
3370
3371        /* Check if a threshold crossed before adding a new one */
3372        if (thresholds->primary)
3373                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3374
3375        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3376
3377        /* Allocate memory for new array of thresholds */
3378        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3379                        GFP_KERNEL);
3380        if (!new) {
3381                ret = -ENOMEM;
3382                goto unlock;
3383        }
3384        new->size = size;
3385
3386        /* Copy thresholds (if any) to new array */
3387        if (thresholds->primary) {
3388                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3389                                sizeof(struct mem_cgroup_threshold));
3390        }
3391
3392        /* Add new threshold */
3393        new->entries[size - 1].eventfd = eventfd;
3394        new->entries[size - 1].threshold = threshold;
3395
3396        /* Sort thresholds. Registering of new threshold isn't time-critical */
3397        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3398                        compare_thresholds, NULL);
3399
3400        /* Find current threshold */
3401        new->current_threshold = -1;
3402        for (i = 0; i < size; i++) {
3403                if (new->entries[i].threshold <= usage) {
3404                        /*
3405                         * new->current_threshold will not be used until
3406                         * rcu_assign_pointer(), so it's safe to increment
3407                         * it here.
3408                         */
3409                        ++new->current_threshold;
3410                } else
3411                        break;
3412        }
3413
3414        /* Free old spare buffer and save old primary buffer as spare */
3415        kfree(thresholds->spare);
3416        thresholds->spare = thresholds->primary;
3417
3418        rcu_assign_pointer(thresholds->primary, new);
3419
3420        /* To be sure that nobody uses thresholds */
3421        synchronize_rcu();
3422
3423unlock:
3424        mutex_unlock(&memcg->thresholds_lock);
3425
3426        return ret;
3427}
3428
3429static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3430        struct eventfd_ctx *eventfd, const char *args)
3431{
3432        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3433}
3434
3435static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3436        struct eventfd_ctx *eventfd, const char *args)
3437{
3438        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3439}
3440
3441static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3442        struct eventfd_ctx *eventfd, enum res_type type)
3443{
3444        struct mem_cgroup_thresholds *thresholds;
3445        struct mem_cgroup_threshold_ary *new;
3446        unsigned long usage;
3447        int i, j, size;
3448
3449        mutex_lock(&memcg->thresholds_lock);
3450
3451        if (type == _MEM) {
3452                thresholds = &memcg->thresholds;
3453                usage = mem_cgroup_usage(memcg, false);
3454        } else if (type == _MEMSWAP) {
3455                thresholds = &memcg->memsw_thresholds;
3456                usage = mem_cgroup_usage(memcg, true);
3457        } else
3458                BUG();
3459
3460        if (!thresholds->primary)
3461                goto unlock;
3462
3463        /* Check if a threshold crossed before removing */
3464        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3465
3466        /* Calculate new number of threshold */
3467        size = 0;
3468        for (i = 0; i < thresholds->primary->size; i++) {
3469                if (thresholds->primary->entries[i].eventfd != eventfd)
3470                        size++;
3471        }
3472
3473        new = thresholds->spare;
3474
3475        /* Set thresholds array to NULL if we don't have thresholds */
3476        if (!size) {
3477                kfree(new);
3478                new = NULL;
3479                goto swap_buffers;
3480        }
3481
3482        new->size = size;
3483
3484        /* Copy thresholds and find current threshold */
3485        new->current_threshold = -1;
3486        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3487                if (thresholds->primary->entries[i].eventfd == eventfd)
3488                        continue;
3489
3490                new->entries[j] = thresholds->primary->entries[i];
3491                if (new->entries[j].threshold <= usage) {
3492                        /*
3493                         * new->current_threshold will not be used
3494                         * until rcu_assign_pointer(), so it's safe to increment
3495                         * it here.
3496                         */
3497                        ++new->current_threshold;
3498                }
3499                j++;
3500        }
3501
3502swap_buffers:
3503        /* Swap primary and spare array */
3504        thresholds->spare = thresholds->primary;
3505
3506        rcu_assign_pointer(thresholds->primary, new);
3507
3508        /* To be sure that nobody uses thresholds */
3509        synchronize_rcu();
3510
3511        /* If all events are unregistered, free the spare array */
3512        if (!new) {
3513                kfree(thresholds->spare);
3514                thresholds->spare = NULL;
3515        }
3516unlock:
3517        mutex_unlock(&memcg->thresholds_lock);
3518}
3519
3520static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3521        struct eventfd_ctx *eventfd)
3522{
3523        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3524}
3525
3526static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3527        struct eventfd_ctx *eventfd)
3528{
3529        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3530}
3531
3532static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3533        struct eventfd_ctx *eventfd, const char *args)
3534{
3535        struct mem_cgroup_eventfd_list *event;
3536
3537        event = kmalloc(sizeof(*event), GFP_KERNEL);
3538        if (!event)
3539                return -ENOMEM;
3540
3541        spin_lock(&memcg_oom_lock);
3542
3543        event->eventfd = eventfd;
3544        list_add(&event->list, &memcg->oom_notify);
3545
3546        /* already in OOM ? */
3547        if (memcg->under_oom)
3548                eventfd_signal(eventfd, 1);
3549        spin_unlock(&memcg_oom_lock);
3550
3551        return 0;
3552}
3553
3554static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3555        struct eventfd_ctx *eventfd)
3556{
3557        struct mem_cgroup_eventfd_list *ev, *tmp;
3558
3559        spin_lock(&memcg_oom_lock);
3560
3561        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3562                if (ev->eventfd == eventfd) {
3563                        list_del(&ev->list);
3564                        kfree(ev);
3565                }
3566        }
3567
3568        spin_unlock(&memcg_oom_lock);
3569}
3570
3571static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3572{
3573        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3574
3575        seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3576        seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3577        return 0;
3578}
3579
3580static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3581        struct cftype *cft, u64 val)
3582{
3583        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584
3585        /* cannot set to root cgroup and only 0 and 1 are allowed */
3586        if (!css->parent || !((val == 0) || (val == 1)))
3587                return -EINVAL;
3588
3589        memcg->oom_kill_disable = val;
3590        if (!val)
3591                memcg_oom_recover(memcg);
3592
3593        return 0;
3594}
3595
3596#ifdef CONFIG_CGROUP_WRITEBACK
3597
3598struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3599{
3600        return &memcg->cgwb_list;
3601}
3602
3603static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3604{
3605        return wb_domain_init(&memcg->cgwb_domain, gfp);
3606}
3607
3608static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3609{
3610        wb_domain_exit(&memcg->cgwb_domain);
3611}
3612
3613static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3614{
3615        wb_domain_size_changed(&memcg->cgwb_domain);
3616}
3617
3618struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3619{
3620        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3621
3622        if (!memcg->css.parent)
3623                return NULL;
3624
3625        return &memcg->cgwb_domain;
3626}
3627
3628/**
3629 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3630 * @wb: bdi_writeback in question
3631 * @pfilepages: out parameter for number of file pages
3632 * @pheadroom: out parameter for number of allocatable pages according to memcg
3633 * @pdirty: out parameter for number of dirty pages
3634 * @pwriteback: out parameter for number of pages under writeback
3635 *
3636 * Determine the numbers of file, headroom, dirty, and writeback pages in
3637 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3638 * is a bit more involved.
3639 *
3640 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3641 * headroom is calculated as the lowest headroom of itself and the
3642 * ancestors.  Note that this doesn't consider the actual amount of
3643 * available memory in the system.  The caller should further cap
3644 * *@pheadroom accordingly.
3645 */
3646void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3647                         unsigned long *pheadroom, unsigned long *pdirty,
3648                         unsigned long *pwriteback)
3649{
3650        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3651        struct mem_cgroup *parent;
3652
3653        *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3654
3655        /* this should eventually include NR_UNSTABLE_NFS */
3656        *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3657        *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3658                                                     (1 << LRU_ACTIVE_FILE));
3659        *pheadroom = PAGE_COUNTER_MAX;
3660
3661        while ((parent = parent_mem_cgroup(memcg))) {
3662                unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3663                unsigned long used = page_counter_read(&memcg->memory);
3664
3665                *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3666                memcg = parent;
3667        }
3668}
3669
3670#else   /* CONFIG_CGROUP_WRITEBACK */
3671
3672static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3673{
3674        return 0;
3675}
3676
3677static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3678{
3679}
3680
3681static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3682{
3683}
3684
3685#endif  /* CONFIG_CGROUP_WRITEBACK */
3686
3687/*
3688 * DO NOT USE IN NEW FILES.
3689 *
3690 * "cgroup.event_control" implementation.
3691 *
3692 * This is way over-engineered.  It tries to support fully configurable
3693 * events for each user.  Such level of flexibility is completely
3694 * unnecessary especially in the light of the planned unified hierarchy.
3695 *
3696 * Please deprecate this and replace with something simpler if at all
3697 * possible.
3698 */
3699
3700/*
3701 * Unregister event and free resources.
3702 *
3703 * Gets called from workqueue.
3704 */
3705static void memcg_event_remove(struct work_struct *work)
3706{
3707        struct mem_cgroup_event *event =
3708                container_of(work, struct mem_cgroup_event, remove);
3709        struct mem_cgroup *memcg = event->memcg;
3710
3711        remove_wait_queue(event->wqh, &event->wait);
3712
3713        event->unregister_event(memcg, event->eventfd);
3714
3715        /* Notify userspace the event is going away. */
3716        eventfd_signal(event->eventfd, 1);
3717
3718        eventfd_ctx_put(event->eventfd);
3719        kfree(event);
3720        css_put(&memcg->css);
3721}
3722
3723/*
3724 * Gets called on POLLHUP on eventfd when user closes it.
3725 *
3726 * Called with wqh->lock held and interrupts disabled.
3727 */
3728static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3729                            int sync, void *key)
3730{
3731        struct mem_cgroup_event *event =
3732                container_of(wait, struct mem_cgroup_event, wait);
3733        struct mem_cgroup *memcg = event->memcg;
3734        unsigned long flags = (unsigned long)key;
3735
3736        if (flags & POLLHUP) {
3737                /*
3738                 * If the event has been detached at cgroup removal, we
3739                 * can simply return knowing the other side will cleanup
3740                 * for us.
3741                 *
3742                 * We can't race against event freeing since the other
3743                 * side will require wqh->lock via remove_wait_queue(),
3744                 * which we hold.
3745                 */
3746                spin_lock(&memcg->event_list_lock);
3747                if (!list_empty(&event->list)) {
3748                        list_del_init(&event->list);
3749                        /*
3750                         * We are in atomic context, but cgroup_event_remove()
3751                         * may sleep, so we have to call it in workqueue.
3752                         */
3753                        schedule_work(&event->remove);
3754                }
3755                spin_unlock(&memcg->event_list_lock);
3756        }
3757
3758        return 0;
3759}
3760
3761static void memcg_event_ptable_queue_proc(struct file *file,
3762                wait_queue_head_t *wqh, poll_table *pt)
3763{
3764        struct mem_cgroup_event *event =
3765                container_of(pt, struct mem_cgroup_event, pt);
3766
3767        event->wqh = wqh;
3768        add_wait_queue(wqh, &event->wait);
3769}
3770
3771/*
3772 * DO NOT USE IN NEW FILES.
3773 *
3774 * Parse input and register new cgroup event handler.
3775 *
3776 * Input must be in format '<event_fd> <control_fd> <args>'.
3777 * Interpretation of args is defined by control file implementation.
3778 */
3779static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3780                                         char *buf, size_t nbytes, loff_t off)
3781{
3782        struct cgroup_subsys_state *css = of_css(of);
3783        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3784        struct mem_cgroup_event *event;
3785        struct cgroup_subsys_state *cfile_css;
3786        unsigned int efd, cfd;
3787        struct fd efile;
3788        struct fd cfile;
3789        const char *name;
3790        char *endp;
3791        int ret;
3792
3793        buf = strstrip(buf);
3794
3795        efd = simple_strtoul(buf, &endp, 10);
3796        if (*endp != ' ')
3797                return -EINVAL;
3798        buf = endp + 1;
3799
3800        cfd = simple_strtoul(buf, &endp, 10);
3801        if ((*endp != ' ') && (*endp != '\0'))
3802                return -EINVAL;
3803        buf = endp + 1;
3804
3805        event = kzalloc(sizeof(*event), GFP_KERNEL);
3806        if (!event)
3807                return -ENOMEM;
3808
3809        event->memcg = memcg;
3810        INIT_LIST_HEAD(&event->list);
3811        init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3812        init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3813        INIT_WORK(&event->remove, memcg_event_remove);
3814
3815        efile = fdget(efd);
3816        if (!efile.file) {
3817                ret = -EBADF;
3818                goto out_kfree;
3819        }
3820
3821        event->eventfd = eventfd_ctx_fileget(efile.file);
3822        if (IS_ERR(event->eventfd)) {
3823                ret = PTR_ERR(event->eventfd);
3824                goto out_put_efile;
3825        }
3826
3827        cfile = fdget(cfd);
3828        if (!cfile.file) {
3829                ret = -EBADF;
3830                goto out_put_eventfd;
3831        }
3832
3833        /* the process need read permission on control file */
3834        /* AV: shouldn't we check that it's been opened for read instead? */
3835        ret = inode_permission(file_inode(cfile.file), MAY_READ);
3836        if (ret < 0)
3837                goto out_put_cfile;
3838
3839        /*
3840         * Determine the event callbacks and set them in @event.  This used
3841         * to be done via struct cftype but cgroup core no longer knows
3842         * about these events.  The following is crude but the whole thing
3843         * is for compatibility anyway.
3844         *
3845         * DO NOT ADD NEW FILES.
3846         */
3847        name = cfile.file->f_path.dentry->d_name.name;
3848
3849        if (!strcmp(name, "memory.usage_in_bytes")) {
3850                event->register_event = mem_cgroup_usage_register_event;
3851                event->unregister_event = mem_cgroup_usage_unregister_event;
3852        } else if (!strcmp(name, "memory.oom_control")) {
3853                event->register_event = mem_cgroup_oom_register_event;
3854                event->unregister_event = mem_cgroup_oom_unregister_event;
3855        } else if (!strcmp(name, "memory.pressure_level")) {
3856                event->register_event = vmpressure_register_event;
3857                event->unregister_event = vmpressure_unregister_event;
3858        } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3859                event->register_event = memsw_cgroup_usage_register_event;
3860                event->unregister_event = memsw_cgroup_usage_unregister_event;
3861        } else {
3862                ret = -EINVAL;
3863                goto out_put_cfile;
3864        }
3865
3866        /*
3867         * Verify @cfile should belong to @css.  Also, remaining events are
3868         * automatically removed on cgroup destruction but the removal is
3869         * asynchronous, so take an extra ref on @css.
3870         */
3871        cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3872                                               &memory_cgrp_subsys);
3873        ret = -EINVAL;
3874        if (IS_ERR(cfile_css))
3875                goto out_put_cfile;
3876        if (cfile_css != css) {
3877                css_put(cfile_css);
3878                goto out_put_cfile;
3879        }
3880
3881        ret = event->register_event(memcg, event->eventfd, buf);
3882        if (ret)
3883                goto out_put_css;
3884
3885        efile.file->f_op->poll(efile.file, &event->pt);
3886
3887        spin_lock(&memcg->event_list_lock);
3888        list_add(&event->list, &memcg->event_list);
3889        spin_unlock(&memcg->event_list_lock);
3890
3891        fdput(cfile);
3892        fdput(efile);
3893
3894        return nbytes;
3895
3896out_put_css:
3897        css_put(css);
3898out_put_cfile:
3899        fdput(cfile);
3900out_put_eventfd:
3901        eventfd_ctx_put(event->eventfd);
3902out_put_efile:
3903        fdput(efile);
3904out_kfree:
3905        kfree(event);
3906
3907        return ret;
3908}
3909
3910static struct cftype mem_cgroup_legacy_files[] = {
3911        {
3912                .name = "usage_in_bytes",
3913                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3914                .read_u64 = mem_cgroup_read_u64,
3915        },
3916        {
3917                .name = "max_usage_in_bytes",
3918                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3919                .write = mem_cgroup_reset,
3920                .read_u64 = mem_cgroup_read_u64,
3921        },
3922        {
3923                .name = "limit_in_bytes",
3924                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3925                .write = mem_cgroup_write,
3926                .read_u64 = mem_cgroup_read_u64,
3927        },
3928        {
3929                .name = "soft_limit_in_bytes",
3930                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3931                .write = mem_cgroup_write,
3932                .read_u64 = mem_cgroup_read_u64,
3933        },
3934        {
3935                .name = "failcnt",
3936                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3937                .write = mem_cgroup_reset,
3938                .read_u64 = mem_cgroup_read_u64,
3939        },
3940        {
3941                .name = "stat",
3942                .seq_show = memcg_stat_show,
3943        },
3944        {
3945                .name = "force_empty",
3946                .write = mem_cgroup_force_empty_write,
3947        },
3948        {
3949                .name = "use_hierarchy",
3950                .write_u64 = mem_cgroup_hierarchy_write,
3951                .read_u64 = mem_cgroup_hierarchy_read,
3952        },
3953        {
3954                .name = "cgroup.event_control",         /* XXX: for compat */
3955                .write = memcg_write_event_control,
3956                .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3957        },
3958        {
3959                .name = "swappiness",
3960                .read_u64 = mem_cgroup_swappiness_read,
3961                .write_u64 = mem_cgroup_swappiness_write,
3962        },
3963        {
3964                .name = "move_charge_at_immigrate",
3965                .read_u64 = mem_cgroup_move_charge_read,
3966                .write_u64 = mem_cgroup_move_charge_write,
3967        },
3968        {
3969                .name = "oom_control",
3970                .seq_show = mem_cgroup_oom_control_read,
3971                .write_u64 = mem_cgroup_oom_control_write,
3972                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3973        },
3974        {
3975                .name = "pressure_level",
3976        },
3977#ifdef CONFIG_NUMA
3978        {
3979                .name = "numa_stat",
3980                .seq_show = memcg_numa_stat_show,
3981        },
3982#endif
3983        {
3984                .name = "kmem.limit_in_bytes",
3985                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3986                .write = mem_cgroup_write,
3987                .read_u64 = mem_cgroup_read_u64,
3988        },
3989        {
3990                .name = "kmem.usage_in_bytes",
3991                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3992                .read_u64 = mem_cgroup_read_u64,
3993        },
3994        {
3995                .name = "kmem.failcnt",
3996                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3997                .write = mem_cgroup_reset,
3998                .read_u64 = mem_cgroup_read_u64,
3999        },
4000        {
4001                .name = "kmem.max_usage_in_bytes",
4002                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4003                .write = mem_cgroup_reset,
4004                .read_u64 = mem_cgroup_read_u64,
4005        },
4006#ifdef CONFIG_SLABINFO
4007        {
4008                .name = "kmem.slabinfo",
4009                .seq_start = memcg_slab_start,
4010                .seq_next = memcg_slab_next,
4011                .seq_stop = memcg_slab_stop,
4012                .seq_show = memcg_slab_show,
4013        },
4014#endif
4015        {
4016                .name = "kmem.tcp.limit_in_bytes",
4017                .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4018                .write = mem_cgroup_write,
4019                .read_u64 = mem_cgroup_read_u64,
4020        },
4021        {
4022                .name = "kmem.tcp.usage_in_bytes",
4023                .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4024                .read_u64 = mem_cgroup_read_u64,
4025        },
4026        {
4027                .name = "kmem.tcp.failcnt",
4028                .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4029                .write = mem_cgroup_reset,
4030                .read_u64 = mem_cgroup_read_u64,
4031        },
4032        {
4033                .name = "kmem.tcp.max_usage_in_bytes",
4034                .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4035                .write = mem_cgroup_reset,
4036                .read_u64 = mem_cgroup_read_u64,
4037        },
4038        { },    /* terminate */
4039};
4040
4041/*
4042 * Private memory cgroup IDR
4043 *
4044 * Swap-out records and page cache shadow entries need to store memcg
4045 * references in constrained space, so we maintain an ID space that is
4046 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4047 * memory-controlled cgroups to 64k.
4048 *
4049 * However, there usually are many references to the oflline CSS after
4050 * the cgroup has been destroyed, such as page cache or reclaimable
4051 * slab objects, that don't need to hang on to the ID. We want to keep
4052 * those dead CSS from occupying IDs, or we might quickly exhaust the
4053 * relatively small ID space and prevent the creation of new cgroups
4054 * even when there are much fewer than 64k cgroups - possibly none.
4055 *
4056 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4057 * be freed and recycled when it's no longer needed, which is usually
4058 * when the CSS is offlined.
4059 *
4060 * The only exception to that are records of swapped out tmpfs/shmem
4061 * pages that need to be attributed to live ancestors on swapin. But
4062 * those references are manageable from userspace.
4063 */
4064
4065static DEFINE_IDR(mem_cgroup_idr);
4066
4067static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4068{
4069        VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4070        atomic_add(n, &memcg->id.ref);
4071}
4072
4073static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4074{
4075        VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4076        if (atomic_sub_and_test(n, &memcg->id.ref)) {
4077                idr_remove(&mem_cgroup_idr, memcg->id.id);
4078                memcg->id.id = 0;
4079
4080                /* Memcg ID pins CSS */
4081                css_put(&memcg->css);
4082        }
4083}
4084
4085static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4086{
4087        mem_cgroup_id_get_many(memcg, 1);
4088}
4089
4090static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4091{
4092        mem_cgroup_id_put_many(memcg, 1);
4093}
4094
4095/**
4096 * mem_cgroup_from_id - look up a memcg from a memcg id
4097 * @id: the memcg id to look up
4098 *
4099 * Caller must hold rcu_read_lock().
4100 */
4101struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4102{
4103        WARN_ON_ONCE(!rcu_read_lock_held());
4104        return idr_find(&mem_cgroup_idr, id);
4105}
4106
4107static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108{
4109        struct mem_cgroup_per_node *pn;
4110        int tmp = node;
4111        /*
4112         * This routine is called against possible nodes.
4113         * But it's BUG to call kmalloc() against offline node.
4114         *
4115         * TODO: this routine can waste much memory for nodes which will
4116         *       never be onlined. It's better to use memory hotplug callback
4117         *       function.
4118         */
4119        if (!node_state(node, N_NORMAL_MEMORY))
4120                tmp = -1;
4121        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4122        if (!pn)
4123                return 1;
4124
4125        lruvec_init(&pn->lruvec);
4126        pn->usage_in_excess = 0;
4127        pn->on_tree = false;
4128        pn->memcg = memcg;
4129
4130        memcg->nodeinfo[node] = pn;
4131        return 0;
4132}
4133
4134static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4135{
4136        kfree(memcg->nodeinfo[node]);
4137}
4138
4139static void __mem_cgroup_free(struct mem_cgroup *memcg)
4140{
4141        int node;
4142
4143        for_each_node(node)
4144                free_mem_cgroup_per_node_info(memcg, node);
4145        free_percpu(memcg->stat);
4146        kfree(memcg);
4147}
4148
4149static void mem_cgroup_free(struct mem_cgroup *memcg)
4150{
4151        memcg_wb_domain_exit(memcg);
4152        __mem_cgroup_free(memcg);
4153}
4154
4155static struct mem_cgroup *mem_cgroup_alloc(void)
4156{
4157        struct mem_cgroup *memcg;
4158        size_t size;
4159        int node;
4160
4161        size = sizeof(struct mem_cgroup);
4162        size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4163
4164        memcg = kzalloc(size, GFP_KERNEL);
4165        if (!memcg)
4166                return NULL;
4167
4168        memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4169                                 1, MEM_CGROUP_ID_MAX,
4170                                 GFP_KERNEL);
4171        if (memcg->id.id < 0)
4172                goto fail;
4173
4174        memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175        if (!memcg->stat)
4176                goto fail;
4177
4178        for_each_node(node)
4179                if (alloc_mem_cgroup_per_node_info(memcg, node))
4180                        goto fail;
4181
4182        if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4183                goto fail;
4184
4185        INIT_WORK(&memcg->high_work, high_work_func);
4186        memcg->last_scanned_node = MAX_NUMNODES;
4187        INIT_LIST_HEAD(&memcg->oom_notify);
4188        mutex_init(&memcg->thresholds_lock);
4189        spin_lock_init(&memcg->move_lock);
4190        vmpressure_init(&memcg->vmpressure);
4191        INIT_LIST_HEAD(&memcg->event_list);
4192        spin_lock_init(&memcg->event_list_lock);
4193        memcg->socket_pressure = jiffies;
4194#ifndef CONFIG_SLOB
4195        memcg->kmemcg_id = -1;
4196#endif
4197#ifdef CONFIG_CGROUP_WRITEBACK
4198        INIT_LIST_HEAD(&memcg->cgwb_list);
4199#endif
4200        idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4201        return memcg;
4202fail:
4203        if (memcg->id.id > 0)
4204                idr_remove(&mem_cgroup_idr, memcg->id.id);
4205        __mem_cgroup_free(memcg);
4206        return NULL;
4207}
4208
4209static struct cgroup_subsys_state * __ref
4210mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4211{
4212        struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4213        struct mem_cgroup *memcg;
4214        long error = -ENOMEM;
4215
4216        memcg = mem_cgroup_alloc();
4217        if (!memcg)
4218                return ERR_PTR(error);
4219
4220        memcg->high = PAGE_COUNTER_MAX;
4221        memcg->soft_limit = PAGE_COUNTER_MAX;
4222        if (parent) {
4223                memcg->swappiness = mem_cgroup_swappiness(parent);
4224                memcg->oom_kill_disable = parent->oom_kill_disable;
4225        }
4226        if (parent && parent->use_hierarchy) {
4227                memcg->use_hierarchy = true;
4228                page_counter_init(&memcg->memory, &parent->memory);
4229                page_counter_init(&memcg->swap, &parent->swap);
4230                page_counter_init(&memcg->memsw, &parent->memsw);
4231                page_counter_init(&memcg->kmem, &parent->kmem);
4232                page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4233        } else {
4234                page_counter_init(&memcg->memory, NULL);
4235                page_counter_init(&memcg->swap, NULL);
4236                page_counter_init(&memcg->memsw, NULL);
4237                page_counter_init(&memcg->kmem, NULL);
4238                page_counter_init(&memcg->tcpmem, NULL);
4239                /*
4240                 * Deeper hierachy with use_hierarchy == false doesn't make
4241                 * much sense so let cgroup subsystem know about this
4242                 * unfortunate state in our controller.
4243                 */
4244                if (parent != root_mem_cgroup)
4245                        memory_cgrp_subsys.broken_hierarchy = true;
4246        }
4247
4248        /* The following stuff does not apply to the root */
4249        if (!parent) {
4250                root_mem_cgroup = memcg;
4251                return &memcg->css;
4252        }
4253
4254        error = memcg_online_kmem(memcg);
4255        if (error)
4256                goto fail;
4257
4258        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4259                static_branch_inc(&memcg_sockets_enabled_key);
4260
4261        return &memcg->css;
4262fail:
4263        mem_cgroup_free(memcg);
4264        return ERR_PTR(-ENOMEM);
4265}
4266
4267static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4268{
4269        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4270
4271        /* Online state pins memcg ID, memcg ID pins CSS */
4272        atomic_set(&memcg->id.ref, 1);
4273        css_get(css);
4274        return 0;
4275}
4276
4277static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4278{
4279        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4280        struct mem_cgroup_event *event, *tmp;
4281
4282        /*
4283         * Unregister events and notify userspace.
4284         * Notify userspace about cgroup removing only after rmdir of cgroup
4285         * directory to avoid race between userspace and kernelspace.
4286         */
4287        spin_lock(&memcg->event_list_lock);
4288        list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4289                list_del_init(&event->list);
4290                schedule_work(&event->remove);
4291        }
4292        spin_unlock(&memcg->event_list_lock);
4293
4294        memcg_offline_kmem(memcg);
4295        wb_memcg_offline(memcg);
4296
4297        mem_cgroup_id_put(memcg);
4298}
4299
4300static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4301{
4302        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303
4304        invalidate_reclaim_iterators(memcg);
4305}
4306
4307static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4308{
4309        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310
4311        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4312                static_branch_dec(&memcg_sockets_enabled_key);
4313
4314        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4315                static_branch_dec(&memcg_sockets_enabled_key);
4316
4317        vmpressure_cleanup(&memcg->vmpressure);
4318        cancel_work_sync(&memcg->high_work);
4319        mem_cgroup_remove_from_trees(memcg);
4320        memcg_free_kmem(memcg);
4321        mem_cgroup_free(memcg);
4322}
4323
4324/**
4325 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4326 * @css: the target css
4327 *
4328 * Reset the states of the mem_cgroup associated with @css.  This is
4329 * invoked when the userland requests disabling on the default hierarchy
4330 * but the memcg is pinned through dependency.  The memcg should stop
4331 * applying policies and should revert to the vanilla state as it may be
4332 * made visible again.
4333 *
4334 * The current implementation only resets the essential configurations.
4335 * This needs to be expanded to cover all the visible parts.
4336 */
4337static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4338{
4339        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4340
4341        page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4342        page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4343        page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4344        page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4345        page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4346        memcg->low = 0;
4347        memcg->high = PAGE_COUNTER_MAX;
4348        memcg->soft_limit = PAGE_COUNTER_MAX;
4349        memcg_wb_domain_size_changed(memcg);
4350}
4351
4352#ifdef CONFIG_MMU
4353/* Handlers for move charge at task migration. */
4354static int mem_cgroup_do_precharge(unsigned long count)
4355{
4356        int ret;
4357
4358        /* Try a single bulk charge without reclaim first, kswapd may wake */
4359        ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4360        if (!ret) {
4361                mc.precharge += count;
4362                return ret;
4363        }
4364
4365        /* Try charges one by one with reclaim, but do not retry */
4366        while (count--) {
4367                ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4368                if (ret)
4369                        return ret;
4370                mc.precharge++;
4371                cond_resched();
4372        }
4373        return 0;
4374}
4375
4376union mc_target {
4377        struct page     *page;
4378        swp_entry_t     ent;
4379};
4380
4381enum mc_target_type {
4382        MC_TARGET_NONE = 0,
4383        MC_TARGET_PAGE,
4384        MC_TARGET_SWAP,
4385};
4386
4387static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4388                                                unsigned long addr, pte_t ptent)
4389{
4390        struct page *page = vm_normal_page(vma, addr, ptent);
4391
4392        if (!page || !page_mapped(page))
4393                return NULL;
4394        if (PageAnon(page)) {
4395                if (!(mc.flags & MOVE_ANON))
4396                        return NULL;
4397        } else {
4398                if (!(mc.flags & MOVE_FILE))
4399                        return NULL;
4400        }
4401        if (!get_page_unless_zero(page))
4402                return NULL;
4403
4404        return page;
4405}
4406
4407#ifdef CONFIG_SWAP
4408static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4409                        pte_t ptent, swp_entry_t *entry)
4410{
4411        struct page *page = NULL;
4412        swp_entry_t ent = pte_to_swp_entry(ptent);
4413
4414        if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4415                return NULL;
4416        /*
4417         * Because lookup_swap_cache() updates some statistics counter,
4418         * we call find_get_page() with swapper_space directly.
4419         */
4420        page = find_get_page(swap_address_space(ent), swp_offset(ent));
4421        if (do_memsw_account())
4422                entry->val = ent.val;
4423
4424        return page;
4425}
4426#else
4427static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4428                        pte_t ptent, swp_entry_t *entry)
4429{
4430        return NULL;
4431}
4432#endif
4433
4434static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4435                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4436{
4437        struct page *page = NULL;
4438        struct address_space *mapping;
4439        pgoff_t pgoff;
4440
4441        if (!vma->vm_file) /* anonymous vma */
4442                return NULL;
4443        if (!(mc.flags & MOVE_FILE))
4444                return NULL;
4445
4446        mapping = vma->vm_file->f_mapping;
4447        pgoff = linear_page_index(vma, addr);
4448
4449        /* page is moved even if it's not RSS of this task(page-faulted). */
4450#ifdef CONFIG_SWAP
4451        /* shmem/tmpfs may report page out on swap: account for that too. */
4452        if (shmem_mapping(mapping)) {
4453                page = find_get_entry(mapping, pgoff);
4454                if (radix_tree_exceptional_entry(page)) {
4455                        swp_entry_t swp = radix_to_swp_entry(page);
4456                        if (do_memsw_account())
4457                                *entry = swp;
4458                        page = find_get_page(swap_address_space(swp),
4459                                             swp_offset(swp));
4460                }
4461        } else
4462                page = find_get_page(mapping, pgoff);
4463#else
4464        page = find_get_page(mapping, pgoff);
4465#endif
4466        return page;
4467}
4468
4469/**
4470 * mem_cgroup_move_account - move account of the page
4471 * @page: the page
4472 * @compound: charge the page as compound or small page
4473 * @from: mem_cgroup which the page is moved from.
4474 * @to: mem_cgroup which the page is moved to. @from != @to.
4475 *
4476 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4477 *
4478 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4479 * from old cgroup.
4480 */
4481static int mem_cgroup_move_account(struct page *page,
4482                                   bool compound,
4483                                   struct mem_cgroup *from,
4484                                   struct mem_cgroup *to)
4485{
4486        unsigned long flags;
4487        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4488        int ret;
4489        bool anon;
4490
4491        VM_BUG_ON(from == to);
4492        VM_BUG_ON_PAGE(PageLRU(page), page);
4493        VM_BUG_ON(compound && !PageTransHuge(page));
4494
4495        /*
4496         * Prevent mem_cgroup_migrate() from looking at
4497         * page->mem_cgroup of its source page while we change it.
4498         */
4499        ret = -EBUSY;
4500        if (!trylock_page(page))
4501                goto out;
4502
4503        ret = -EINVAL;
4504        if (page->mem_cgroup != from)
4505                goto out_unlock;
4506
4507        anon = PageAnon(page);
4508
4509        spin_lock_irqsave(&from->move_lock, flags);
4510
4511        if (!anon && page_mapped(page)) {
4512                __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4513                __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4514        }
4515
4516        /*
4517         * move_lock grabbed above and caller set from->moving_account, so
4518         * mod_memcg_page_state will serialize updates to PageDirty.
4519         * So mapping should be stable for dirty pages.
4520         */
4521        if (!anon && PageDirty(page)) {
4522                struct address_space *mapping = page_mapping(page);
4523
4524                if (mapping_cap_account_dirty(mapping)) {
4525                        __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4526                                       nr_pages);
4527                        __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4528                                       nr_pages);
4529                }
4530        }
4531
4532        if (PageWriteback(page)) {
4533                __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4534                __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4535        }
4536
4537        /*
4538         * It is safe to change page->mem_cgroup here because the page
4539         * is referenced, charged, and isolated - we can't race with
4540         * uncharging, charging, migration, or LRU putback.
4541         */
4542
4543        /* caller should have done css_get */
4544        page->mem_cgroup = to;
4545        spin_unlock_irqrestore(&from->move_lock, flags);
4546
4547        ret = 0;
4548
4549        local_irq_disable();
4550        mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4551        memcg_check_events(to, page);
4552        mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4553        memcg_check_events(from, page);
4554        local_irq_enable();
4555out_unlock:
4556        unlock_page(page);
4557out:
4558        return ret;
4559}
4560
4561/**
4562 * get_mctgt_type - get target type of moving charge
4563 * @vma: the vma the pte to be checked belongs
4564 * @addr: the address corresponding to the pte to be checked
4565 * @ptent: the pte to be checked
4566 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4567 *
4568 * Returns
4569 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4570 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4571 *     move charge. if @target is not NULL, the page is stored in target->page
4572 *     with extra refcnt got(Callers should handle it).
4573 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4574 *     target for charge migration. if @target is not NULL, the entry is stored
4575 *     in target->ent.
4576 *
4577 * Called with pte lock held.
4578 */
4579
4580static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4581                unsigned long addr, pte_t ptent, union mc_target *target)
4582{
4583        struct page *page = NULL;
4584        enum mc_target_type ret = MC_TARGET_NONE;
4585        swp_entry_t ent = { .val = 0 };
4586
4587        if (pte_present(ptent))
4588                page = mc_handle_present_pte(vma, addr, ptent);
4589        else if (is_swap_pte(ptent))
4590                page = mc_handle_swap_pte(vma, ptent, &ent);
4591        else if (pte_none(ptent))
4592                page = mc_handle_file_pte(vma, addr, ptent, &ent);
4593
4594        if (!page && !ent.val)
4595                return ret;
4596        if (page) {
4597                /*
4598                 * Do only loose check w/o serialization.
4599                 * mem_cgroup_move_account() checks the page is valid or
4600                 * not under LRU exclusion.
4601                 */
4602                if (page->mem_cgroup == mc.from) {
4603                        ret = MC_TARGET_PAGE;
4604                        if (target)
4605                                target->page = page;
4606                }
4607                if (!ret || !target)
4608                        put_page(page);
4609        }
4610        /* There is a swap entry and a page doesn't exist or isn't charged */
4611        if (ent.val && !ret &&
4612            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4613                ret = MC_TARGET_SWAP;
4614                if (target)
4615                        target->ent = ent;
4616        }
4617        return ret;
4618}
4619
4620#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4621/*
4622 * We don't consider swapping or file mapped pages because THP does not
4623 * support them for now.
4624 * Caller should make sure that pmd_trans_huge(pmd) is true.
4625 */
4626static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4627                unsigned long addr, pmd_t pmd, union mc_target *target)
4628{
4629        struct page *page = NULL;
4630        enum mc_target_type ret = MC_TARGET_NONE;
4631
4632        page = pmd_page(pmd);
4633        VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4634        if (!(mc.flags & MOVE_ANON))
4635                return ret;
4636        if (page->mem_cgroup == mc.from) {
4637                ret = MC_TARGET_PAGE;
4638                if (target) {
4639                        get_page(page);
4640                        target->page = page;
4641                }
4642        }
4643        return ret;
4644}
4645#else
4646static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4647                unsigned long addr, pmd_t pmd, union mc_target *target)
4648{
4649        return MC_TARGET_NONE;
4650}
4651#endif
4652
4653static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4654                                        unsigned long addr, unsigned long end,
4655                                        struct mm_walk *walk)
4656{
4657        struct vm_area_struct *vma = walk->vma;
4658        pte_t *pte;
4659        spinlock_t *ptl;
4660
4661        ptl = pmd_trans_huge_lock(pmd, vma);
4662        if (ptl) {
4663                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4664                        mc.precharge += HPAGE_PMD_NR;
4665                spin_unlock(ptl);
4666                return 0;
4667        }
4668
4669        if (pmd_trans_unstable(pmd))
4670                return 0;
4671        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4672        for (; addr != end; pte++, addr += PAGE_SIZE)
4673                if (get_mctgt_type(vma, addr, *pte, NULL))
4674                        mc.precharge++; /* increment precharge temporarily */
4675        pte_unmap_unlock(pte - 1, ptl);
4676        cond_resched();
4677
4678        return 0;
4679}
4680
4681static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4682{
4683        unsigned long precharge;
4684
4685        struct mm_walk mem_cgroup_count_precharge_walk = {
4686                .pmd_entry = mem_cgroup_count_precharge_pte_range,
4687                .mm = mm,
4688        };
4689        down_read(&mm->mmap_sem);
4690        walk_page_range(0, mm->highest_vm_end,
4691                        &mem_cgroup_count_precharge_walk);
4692        up_read(&mm->mmap_sem);
4693
4694        precharge = mc.precharge;
4695        mc.precharge = 0;
4696
4697        return precharge;
4698}
4699
4700static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4701{
4702        unsigned long precharge = mem_cgroup_count_precharge(mm);
4703
4704        VM_BUG_ON(mc.moving_task);
4705        mc.moving_task = current;
4706        return mem_cgroup_do_precharge(precharge);
4707}
4708
4709/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4710static void __mem_cgroup_clear_mc(void)
4711{
4712        struct mem_cgroup *from = mc.from;
4713        struct mem_cgroup *to = mc.to;
4714
4715        /* we must uncharge all the leftover precharges from mc.to */
4716        if (mc.precharge) {
4717                cancel_charge(mc.to, mc.precharge);
4718                mc.precharge = 0;
4719        }
4720        /*
4721         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4722         * we must uncharge here.
4723         */
4724        if (mc.moved_charge) {
4725                cancel_charge(mc.from, mc.moved_charge);
4726                mc.moved_charge = 0;
4727        }
4728        /* we must fixup refcnts and charges */
4729        if (mc.moved_swap) {
4730                /* uncharge swap account from the old cgroup */
4731                if (!mem_cgroup_is_root(mc.from))
4732                        page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4733
4734                mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4735
4736                /*
4737                 * we charged both to->memory and to->memsw, so we
4738                 * should uncharge to->memory.
4739                 */
4740                if (!mem_cgroup_is_root(mc.to))
4741                        page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4742
4743                mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4744                css_put_many(&mc.to->css, mc.moved_swap);
4745
4746                mc.moved_swap = 0;
4747        }
4748        memcg_oom_recover(from);
4749        memcg_oom_recover(to);
4750        wake_up_all(&mc.waitq);
4751}
4752
4753static void mem_cgroup_clear_mc(void)
4754{
4755        struct mm_struct *mm = mc.mm;
4756
4757        /*
4758         * we must clear moving_task before waking up waiters at the end of
4759         * task migration.
4760         */
4761        mc.moving_task = NULL;
4762        __mem_cgroup_clear_mc();
4763        spin_lock(&mc.lock);
4764        mc.from = NULL;
4765        mc.to = NULL;
4766        mc.mm = NULL;
4767        spin_unlock(&mc.lock);
4768
4769        mmput(mm);
4770}
4771
4772static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4773{
4774        struct cgroup_subsys_state *css;
4775        struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4776        struct mem_cgroup *from;
4777        struct task_struct *leader, *p;
4778        struct mm_struct *mm;
4779        unsigned long move_flags;
4780        int ret = 0;
4781
4782        /* charge immigration isn't supported on the default hierarchy */
4783        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4784                return 0;
4785
4786        /*
4787         * Multi-process migrations only happen on the default hierarchy
4788         * where charge immigration is not used.  Perform charge
4789         * immigration if @tset contains a leader and whine if there are
4790         * multiple.
4791         */
4792        p = NULL;
4793        cgroup_taskset_for_each_leader(leader, css, tset) {
4794                WARN_ON_ONCE(p);
4795                p = leader;
4796                memcg = mem_cgroup_from_css(css);
4797        }
4798        if (!p)
4799                return 0;
4800
4801        /*
4802         * We are now commited to this value whatever it is. Changes in this
4803         * tunable will only affect upcoming migrations, not the current one.
4804         * So we need to save it, and keep it going.
4805         */
4806        move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4807        if (!move_flags)
4808                return 0;
4809
4810        from = mem_cgroup_from_task(p);
4811
4812        VM_BUG_ON(from == memcg);
4813
4814        mm = get_task_mm(p);
4815        if (!mm)
4816                return 0;
4817        /* We move charges only when we move a owner of the mm */
4818        if (mm->owner == p) {
4819                VM_BUG_ON(mc.from);
4820                VM_BUG_ON(mc.to);
4821                VM_BUG_ON(mc.precharge);
4822                VM_BUG_ON(mc.moved_charge);
4823                VM_BUG_ON(mc.moved_swap);
4824
4825                spin_lock(&mc.lock);
4826                mc.mm = mm;
4827                mc.from = from;
4828                mc.to = memcg;
4829                mc.flags = move_flags;
4830                spin_unlock(&mc.lock);
4831                /* We set mc.moving_task later */
4832
4833                ret = mem_cgroup_precharge_mc(mm);
4834                if (ret)
4835                        mem_cgroup_clear_mc();
4836        } else {
4837                mmput(mm);
4838        }
4839        return ret;
4840}
4841
4842static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4843{
4844        if (mc.to)
4845                mem_cgroup_clear_mc();
4846}
4847
4848static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4849                                unsigned long addr, unsigned long end,
4850                                struct mm_walk *walk)
4851{
4852        int ret = 0;
4853        struct vm_area_struct *vma = walk->vma;
4854        pte_t *pte;
4855        spinlock_t *ptl;
4856        enum mc_target_type target_type;
4857        union mc_target target;
4858        struct page *page;
4859
4860        ptl = pmd_trans_huge_lock(pmd, vma);
4861        if (ptl) {
4862                if (mc.precharge < HPAGE_PMD_NR) {
4863                        spin_unlock(ptl);
4864                        return 0;
4865                }
4866                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4867                if (target_type == MC_TARGET_PAGE) {
4868                        page = target.page;
4869                        if (!isolate_lru_page(page)) {
4870                                if (!mem_cgroup_move_account(page, true,
4871                                                             mc.from, mc.to)) {
4872                                        mc.precharge -= HPAGE_PMD_NR;
4873                                        mc.moved_charge += HPAGE_PMD_NR;
4874                                }
4875                                putback_lru_page(page);
4876                        }
4877                        put_page(page);
4878                }
4879                spin_unlock(ptl);
4880                return 0;
4881        }
4882
4883        if (pmd_trans_unstable(pmd))
4884                return 0;
4885retry:
4886        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4887        for (; addr != end; addr += PAGE_SIZE) {
4888                pte_t ptent = *(pte++);
4889                swp_entry_t ent;
4890
4891                if (!mc.precharge)
4892                        break;
4893
4894                switch (get_mctgt_type(vma, addr, ptent, &target)) {
4895                case MC_TARGET_PAGE:
4896                        page = target.page;
4897                        /*
4898                         * We can have a part of the split pmd here. Moving it
4899                         * can be done but it would be too convoluted so simply
4900                         * ignore such a partial THP and keep it in original
4901                         * memcg. There should be somebody mapping the head.
4902                         */
4903                        if (PageTransCompound(page))
4904                                goto put;
4905                        if (isolate_lru_page(page))
4906                                goto put;
4907                        if (!mem_cgroup_move_account(page, false,
4908                                                mc.from, mc.to)) {
4909                                mc.precharge--;
4910                                /* we uncharge from mc.from later. */
4911                                mc.moved_charge++;
4912                        }
4913                        putback_lru_page(page);
4914put:                    /* get_mctgt_type() gets the page */
4915                        put_page(page);
4916                        break;
4917                case MC_TARGET_SWAP:
4918                        ent = target.ent;
4919                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4920                                mc.precharge--;
4921                                /* we fixup refcnts and charges later. */
4922                                mc.moved_swap++;
4923                        }
4924                        break;
4925                default:
4926                        break;
4927                }
4928        }
4929        pte_unmap_unlock(pte - 1, ptl);
4930        cond_resched();
4931
4932        if (addr != end) {
4933                /*
4934                 * We have consumed all precharges we got in can_attach().
4935                 * We try charge one by one, but don't do any additional
4936                 * charges to mc.to if we have failed in charge once in attach()
4937                 * phase.
4938                 */
4939                ret = mem_cgroup_do_precharge(1);
4940                if (!ret)
4941                        goto retry;
4942        }
4943
4944        return ret;
4945}
4946
4947static void mem_cgroup_move_charge(void)
4948{
4949        struct mm_walk mem_cgroup_move_charge_walk = {
4950                .pmd_entry = mem_cgroup_move_charge_pte_range,
4951                .mm = mc.mm,
4952        };
4953
4954        lru_add_drain_all();
4955        /*
4956         * Signal lock_page_memcg() to take the memcg's move_lock
4957         * while we're moving its pages to another memcg. Then wait
4958         * for already started RCU-only updates to finish.
4959         */
4960        atomic_inc(&mc.from->moving_account);
4961        synchronize_rcu();
4962retry:
4963        if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4964                /*
4965                 * Someone who are holding the mmap_sem might be waiting in
4966                 * waitq. So we cancel all extra charges, wake up all waiters,
4967                 * and retry. Because we cancel precharges, we might not be able
4968                 * to move enough charges, but moving charge is a best-effort
4969                 * feature anyway, so it wouldn't be a big problem.
4970                 */
4971                __mem_cgroup_clear_mc();
4972                cond_resched();
4973                goto retry;
4974        }
4975        /*
4976         * When we have consumed all precharges and failed in doing
4977         * additional charge, the page walk just aborts.
4978         */
4979        walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4980
4981        up_read(&mc.mm->mmap_sem);
4982        atomic_dec(&mc.from->moving_account);
4983}
4984
4985static void mem_cgroup_move_task(void)
4986{
4987        if (mc.to) {
4988                mem_cgroup_move_charge();
4989                mem_cgroup_clear_mc();
4990        }
4991}
4992#else   /* !CONFIG_MMU */
4993static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4994{
4995        return 0;
4996}
4997static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4998{
4999}
5000static void mem_cgroup_move_task(void)
5001{
5002}
5003#endif
5004
5005/*
5006 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5007 * to verify whether we're attached to the default hierarchy on each mount
5008 * attempt.
5009 */
5010static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5011{
5012        /*
5013         * use_hierarchy is forced on the default hierarchy.  cgroup core
5014         * guarantees that @root doesn't have any children, so turning it
5015         * on for the root memcg is enough.
5016         */
5017        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5018                root_mem_cgroup->use_hierarchy = true;
5019        else
5020                root_mem_cgroup->use_hierarchy = false;
5021}
5022
5023static u64 memory_current_read(struct cgroup_subsys_state *css,
5024                               struct cftype *cft)
5025{
5026        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5027
5028        return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5029}
5030
5031static int memory_low_show(struct seq_file *m, void *v)
5032{
5033        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5034        unsigned long low = READ_ONCE(memcg->low);
5035
5036        if (low == PAGE_COUNTER_MAX)
5037                seq_puts(m, "max\n");
5038        else
5039                seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5040
5041        return 0;
5042}
5043
5044static ssize_t memory_low_write(struct kernfs_open_file *of,
5045                                char *buf, size_t nbytes, loff_t off)
5046{
5047        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5048        unsigned long low;
5049        int err;
5050
5051        buf = strstrip(buf);
5052        err = page_counter_memparse(buf, "max", &low);
5053        if (err)
5054                return err;
5055
5056        memcg->low = low;
5057
5058        return nbytes;
5059}
5060
5061static int memory_high_show(struct seq_file *m, void *v)
5062{
5063        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5064        unsigned long high = READ_ONCE(memcg->high);
5065
5066        if (high == PAGE_COUNTER_MAX)
5067                seq_puts(m, "max\n");
5068        else
5069                seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5070
5071        return 0;
5072}
5073
5074static ssize_t memory_high_write(struct kernfs_open_file *of,
5075                                 char *buf, size_t nbytes, loff_t off)
5076{
5077        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5078        unsigned long nr_pages;
5079        unsigned long high;
5080        int err;
5081
5082        buf = strstrip(buf);
5083        err = page_counter_memparse(buf, "max", &high);
5084        if (err)
5085                return err;
5086
5087        memcg->high = high;
5088
5089        nr_pages = page_counter_read(&memcg->memory);
5090        if (nr_pages > high)
5091                try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5092                                             GFP_KERNEL, true);
5093
5094        memcg_wb_domain_size_changed(memcg);
5095        return nbytes;
5096}
5097
5098static int memory_max_show(struct seq_file *m, void *v)
5099{
5100        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5101        unsigned long max = READ_ONCE(memcg->memory.limit);
5102
5103        if (max == PAGE_COUNTER_MAX)
5104                seq_puts(m, "max\n");
5105        else
5106                seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5107
5108        return 0;
5109}
5110
5111static ssize_t memory_max_write(struct kernfs_open_file *of,
5112                                char *buf, size_t nbytes, loff_t off)
5113{
5114        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5115        unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5116        bool drained = false;
5117        unsigned long max;
5118        int err;
5119
5120        buf = strstrip(buf);
5121        err = page_counter_memparse(buf, "max", &max);
5122        if (err)
5123                return err;
5124
5125        xchg(&memcg->memory.limit, max);
5126
5127        for (;;) {
5128                unsigned long nr_pages = page_counter_read(&memcg->memory);
5129
5130                if (nr_pages <= max)
5131                        break;
5132
5133                if (signal_pending(current)) {
5134                        err = -EINTR;
5135                        break;
5136                }
5137
5138                if (!drained) {
5139                        drain_all_stock(memcg);
5140                        drained = true;
5141                        continue;
5142                }
5143
5144                if (nr_reclaims) {
5145                        if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5146                                                          GFP_KERNEL, true))
5147                                nr_reclaims--;
5148                        continue;
5149                }
5150
5151                mem_cgroup_event(memcg, MEMCG_OOM);
5152                if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5153                        break;
5154        }
5155
5156        memcg_wb_domain_size_changed(memcg);
5157        return nbytes;
5158}
5159
5160static int memory_events_show(struct seq_file *m, void *v)
5161{
5162        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5163
5164        seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5165        seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5166        seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5167        seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5168
5169        return 0;
5170}
5171
5172static int memory_stat_show(struct seq_file *m, void *v)
5173{
5174        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5175        unsigned long stat[MEMCG_NR_STAT];
5176        unsigned long events[MEMCG_NR_EVENTS];
5177        int i;
5178
5179        /*
5180         * Provide statistics on the state of the memory subsystem as
5181         * well as cumulative event counters that show past behavior.
5182         *
5183         * This list is ordered following a combination of these gradients:
5184         * 1) generic big picture -> specifics and details
5185         * 2) reflecting userspace activity -> reflecting kernel heuristics
5186         *
5187         * Current memory state:
5188         */
5189
5190        tree_stat(memcg, stat);
5191        tree_events(memcg, events);
5192
5193        seq_printf(m, "anon %llu\n",
5194                   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5195        seq_printf(m, "file %llu\n",
5196                   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5197        seq_printf(m, "kernel_stack %llu\n",
5198                   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5199        seq_printf(m, "slab %llu\n",
5200                   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5201                         stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5202        seq_printf(m, "sock %llu\n",
5203                   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5204
5205        seq_printf(m, "shmem %llu\n",
5206                   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5207        seq_printf(m, "file_mapped %llu\n",
5208                   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5209        seq_printf(m, "file_dirty %llu\n",
5210                   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5211        seq_printf(m, "file_writeback %llu\n",
5212                   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5213
5214        for (i = 0; i < NR_LRU_LISTS; i++) {
5215                struct mem_cgroup *mi;
5216                unsigned long val = 0;
5217
5218                for_each_mem_cgroup_tree(mi, memcg)
5219                        val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5220                seq_printf(m, "%s %llu\n",
5221                           mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5222        }
5223
5224        seq_printf(m, "slab_reclaimable %llu\n",
5225                   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5226        seq_printf(m, "slab_unreclaimable %llu\n",
5227                   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5228
5229        /* Accumulated memory events */
5230
5231        seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5232        seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5233
5234        seq_printf(m, "workingset_refault %lu\n",
5235                   stat[WORKINGSET_REFAULT]);
5236        seq_printf(m, "workingset_activate %lu\n",
5237                   stat[WORKINGSET_ACTIVATE]);
5238        seq_printf(m, "workingset_nodereclaim %lu\n",
5239                   stat[WORKINGSET_NODERECLAIM]);
5240
5241        return 0;
5242}
5243
5244static struct cftype memory_files[] = {
5245        {
5246                .name = "current",
5247                .flags = CFTYPE_NOT_ON_ROOT,
5248                .read_u64 = memory_current_read,
5249        },
5250        {
5251                .name = "low",
5252                .flags = CFTYPE_NOT_ON_ROOT,
5253                .seq_show = memory_low_show,
5254                .write = memory_low_write,
5255        },
5256        {
5257                .name = "high",
5258                .flags = CFTYPE_NOT_ON_ROOT,
5259                .seq_show = memory_high_show,
5260                .write = memory_high_write,
5261        },
5262        {
5263                .name = "max",
5264                .flags = CFTYPE_NOT_ON_ROOT,
5265                .seq_show = memory_max_show,
5266                .write = memory_max_write,
5267        },
5268        {
5269                .name = "events",
5270                .flags = CFTYPE_NOT_ON_ROOT,
5271                .file_offset = offsetof(struct mem_cgroup, events_file),
5272                .seq_show = memory_events_show,
5273        },
5274        {
5275                .name = "stat",
5276                .flags = CFTYPE_NOT_ON_ROOT,
5277                .seq_show = memory_stat_show,
5278        },
5279        { }     /* terminate */
5280};
5281
5282struct cgroup_subsys memory_cgrp_subsys = {
5283        .css_alloc = mem_cgroup_css_alloc,
5284        .css_online = mem_cgroup_css_online,
5285        .css_offline = mem_cgroup_css_offline,
5286        .css_released = mem_cgroup_css_released,
5287        .css_free = mem_cgroup_css_free,
5288        .css_reset = mem_cgroup_css_reset,
5289        .can_attach = mem_cgroup_can_attach,
5290        .cancel_attach = mem_cgroup_cancel_attach,
5291        .post_attach = mem_cgroup_move_task,
5292        .bind = mem_cgroup_bind,
5293        .dfl_cftypes = memory_files,
5294        .legacy_cftypes = mem_cgroup_legacy_files,
5295        .early_init = 0,
5296};
5297
5298/**
5299 * mem_cgroup_low - check if memory consumption is below the normal range
5300 * @root: the highest ancestor to consider
5301 * @memcg: the memory cgroup to check
5302 *
5303 * Returns %true if memory consumption of @memcg, and that of all
5304 * configurable ancestors up to @root, is below the normal range.
5305 */
5306bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5307{
5308        if (mem_cgroup_disabled())
5309                return false;
5310
5311        /*
5312         * The toplevel group doesn't have a configurable range, so
5313         * it's never low when looked at directly, and it is not
5314         * considered an ancestor when assessing the hierarchy.
5315         */
5316
5317        if (memcg == root_mem_cgroup)
5318                return false;
5319
5320        if (page_counter_read(&memcg->memory) >= memcg->low)
5321                return false;
5322
5323        while (memcg != root) {
5324                memcg = parent_mem_cgroup(memcg);
5325
5326                if (memcg == root_mem_cgroup)
5327                        break;
5328
5329                if (page_counter_read(&memcg->memory) >= memcg->low)
5330                        return false;
5331        }
5332        return true;
5333}
5334
5335/**
5336 * mem_cgroup_try_charge - try charging a page
5337 * @page: page to charge
5338 * @mm: mm context of the victim
5339 * @gfp_mask: reclaim mode
5340 * @memcgp: charged memcg return
5341 * @compound: charge the page as compound or small page
5342 *
5343 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5344 * pages according to @gfp_mask if necessary.
5345 *
5346 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5347 * Otherwise, an error code is returned.
5348 *
5349 * After page->mapping has been set up, the caller must finalize the
5350 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5351 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5352 */
5353int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5354                          gfp_t gfp_mask, struct mem_cgroup **memcgp,
5355                          bool compound)
5356{
5357        struct mem_cgroup *memcg = NULL;
5358        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5359        int ret = 0;
5360
5361        if (mem_cgroup_disabled())
5362                goto out;
5363
5364        if (PageSwapCache(page)) {
5365                /*
5366                 * Every swap fault against a single page tries to charge the
5367                 * page, bail as early as possible.  shmem_unuse() encounters
5368                 * already charged pages, too.  The USED bit is protected by
5369                 * the page lock, which serializes swap cache removal, which
5370                 * in turn serializes uncharging.
5371                 */
5372                VM_BUG_ON_PAGE(!PageLocked(page), page);
5373                if (page->mem_cgroup)
5374                        goto out;
5375
5376                if (do_swap_account) {
5377                        swp_entry_t ent = { .val = page_private(page), };
5378                        unsigned short id = lookup_swap_cgroup_id(ent);
5379
5380                        rcu_read_lock();
5381                        memcg = mem_cgroup_from_id(id);
5382                        if (memcg && !css_tryget_online(&memcg->css))
5383                                memcg = NULL;
5384                        rcu_read_unlock();
5385                }
5386        }
5387
5388        if (!memcg)
5389                memcg = get_mem_cgroup_from_mm(mm);
5390
5391        ret = try_charge(memcg, gfp_mask, nr_pages);
5392
5393        css_put(&memcg->css);
5394out:
5395        *memcgp = memcg;
5396        return ret;
5397}
5398
5399/**
5400 * mem_cgroup_commit_charge - commit a page charge
5401 * @page: page to charge
5402 * @memcg: memcg to charge the page to
5403 * @lrucare: page might be on LRU already
5404 * @compound: charge the page as compound or small page
5405 *
5406 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5407 * after page->mapping has been set up.  This must happen atomically
5408 * as part of the page instantiation, i.e. under the page table lock
5409 * for anonymous pages, under the page lock for page and swap cache.
5410 *
5411 * In addition, the page must not be on the LRU during the commit, to
5412 * prevent racing with task migration.  If it might be, use @lrucare.
5413 *
5414 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5415 */
5416void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5417                              bool lrucare, bool compound)
5418{
5419        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5420
5421        VM_BUG_ON_PAGE(!page->mapping, page);
5422        VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5423
5424        if (mem_cgroup_disabled())
5425                return;
5426        /*
5427         * Swap faults will attempt to charge the same page multiple
5428         * times.  But reuse_swap_page() might have removed the page
5429         * from swapcache already, so we can't check PageSwapCache().
5430         */
5431        if (!memcg)
5432                return;
5433
5434        commit_charge(page, memcg, lrucare);
5435
5436        local_irq_disable();
5437        mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5438        memcg_check_events(memcg, page);
5439        local_irq_enable();
5440
5441        if (do_memsw_account() && PageSwapCache(page)) {
5442                swp_entry_t entry = { .val = page_private(page) };
5443                /*
5444                 * The swap entry might not get freed for a long time,
5445                 * let's not wait for it.  The page already received a
5446                 * memory+swap charge, drop the swap entry duplicate.
5447                 */
5448                mem_cgroup_uncharge_swap(entry);
5449        }
5450}
5451
5452/**
5453 * mem_cgroup_cancel_charge - cancel a page charge
5454 * @page: page to charge
5455 * @memcg: memcg to charge the page to
5456 * @compound: charge the page as compound or small page
5457 *
5458 * Cancel a charge transaction started by mem_cgroup_try_charge().
5459 */
5460void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5461                bool compound)
5462{
5463        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5464
5465        if (mem_cgroup_disabled())
5466                return;
5467        /*
5468         * Swap faults will attempt to charge the same page multiple
5469         * times.  But reuse_swap_page() might have removed the page
5470         * from swapcache already, so we can't check PageSwapCache().
5471         */
5472        if (!memcg)
5473                return;
5474
5475        cancel_charge(memcg, nr_pages);
5476}
5477
5478static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5479                           unsigned long nr_anon, unsigned long nr_file,
5480                           unsigned long nr_kmem, unsigned long nr_huge,
5481                           unsigned long nr_shmem, struct page *dummy_page)
5482{
5483        unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5484        unsigned long flags;
5485
5486        if (!mem_cgroup_is_root(memcg)) {
5487                page_counter_uncharge(&memcg->memory, nr_pages);
5488                if (do_memsw_account())
5489                        page_counter_uncharge(&memcg->memsw, nr_pages);
5490                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5491                        page_counter_uncharge(&memcg->kmem, nr_kmem);
5492                memcg_oom_recover(memcg);
5493        }
5494
5495        local_irq_save(flags);
5496        __this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon);
5497        __this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file);
5498        __this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge);
5499        __this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem);
5500        __this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout);
5501        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5502        memcg_check_events(memcg, dummy_page);
5503        local_irq_restore(flags);
5504
5505        if (!mem_cgroup_is_root(memcg))
5506                css_put_many(&memcg->css, nr_pages);
5507}
5508
5509static void uncharge_list(struct list_head *page_list)
5510{
5511        struct mem_cgroup *memcg = NULL;
5512        unsigned long nr_shmem = 0;
5513        unsigned long nr_anon = 0;
5514        unsigned long nr_file = 0;
5515        unsigned long nr_huge = 0;
5516        unsigned long nr_kmem = 0;
5517        unsigned long pgpgout = 0;
5518        struct list_head *next;
5519        struct page *page;
5520
5521        /*
5522         * Note that the list can be a single page->lru; hence the
5523         * do-while loop instead of a simple list_for_each_entry().
5524         */
5525        next = page_list->next;
5526        do {
5527                page = list_entry(next, struct page, lru);
5528                next = page->lru.next;
5529
5530                VM_BUG_ON_PAGE(PageLRU(page), page);
5531                VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5532
5533                if (!page->mem_cgroup)
5534                        continue;
5535
5536                /*
5537                 * Nobody should be changing or seriously looking at
5538                 * page->mem_cgroup at this point, we have fully
5539                 * exclusive access to the page.
5540                 */
5541
5542                if (memcg != page->mem_cgroup) {
5543                        if (memcg) {
5544                                uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5545                                               nr_kmem, nr_huge, nr_shmem, page);
5546                                pgpgout = nr_anon = nr_file = nr_kmem = 0;
5547                                nr_huge = nr_shmem = 0;
5548                        }
5549                        memcg = page->mem_cgroup;
5550                }
5551
5552                if (!PageKmemcg(page)) {
5553                        unsigned int nr_pages = 1;
5554
5555                        if (PageTransHuge(page)) {
5556                                nr_pages <<= compound_order(page);
5557                                nr_huge += nr_pages;
5558                        }
5559                        if (PageAnon(page))
5560                                nr_anon += nr_pages;
5561                        else {
5562                                nr_file += nr_pages;
5563                                if (PageSwapBacked(page))
5564                                        nr_shmem += nr_pages;
5565                        }
5566                        pgpgout++;
5567                } else {
5568                        nr_kmem += 1 << compound_order(page);
5569                        __ClearPageKmemcg(page);
5570                }
5571
5572                page->mem_cgroup = NULL;
5573        } while (next != page_list);
5574
5575        if (memcg)
5576                uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5577                               nr_kmem, nr_huge, nr_shmem, page);
5578}
5579
5580/**
5581 * mem_cgroup_uncharge - uncharge a page
5582 * @page: page to uncharge
5583 *
5584 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5585 * mem_cgroup_commit_charge().
5586 */
5587void mem_cgroup_uncharge(struct page *page)
5588{
5589        if (mem_cgroup_disabled())
5590                return;
5591
5592        /* Don't touch page->lru of any random page, pre-check: */
5593        if (!page->mem_cgroup)
5594                return;
5595
5596        INIT_LIST_HEAD(&page->lru);
5597        uncharge_list(&page->lru);
5598}
5599
5600/**
5601 * mem_cgroup_uncharge_list - uncharge a list of page
5602 * @page_list: list of pages to uncharge
5603 *
5604 * Uncharge a list of pages previously charged with
5605 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5606 */
5607void mem_cgroup_uncharge_list(struct list_head *page_list)
5608{
5609        if (mem_cgroup_disabled())
5610                return;
5611
5612        if (!list_empty(page_list))
5613                uncharge_list(page_list);
5614}
5615
5616/**
5617 * mem_cgroup_migrate - charge a page's replacement
5618 * @oldpage: currently circulating page
5619 * @newpage: replacement page
5620 *
5621 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5622 * be uncharged upon free.
5623 *
5624 * Both pages must be locked, @newpage->mapping must be set up.
5625 */
5626void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5627{
5628        struct mem_cgroup *memcg;
5629        unsigned int nr_pages;
5630        bool compound;
5631        unsigned long flags;
5632
5633        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5634        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5635        VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5636        VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5637                       newpage);
5638
5639        if (mem_cgroup_disabled())
5640                return;
5641
5642        /* Page cache replacement: new page already charged? */
5643        if (newpage->mem_cgroup)
5644                return;
5645
5646        /* Swapcache readahead pages can get replaced before being charged */
5647        memcg = oldpage->mem_cgroup;
5648        if (!memcg)
5649                return;
5650
5651        /* Force-charge the new page. The old one will be freed soon */
5652        compound = PageTransHuge(newpage);
5653        nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5654
5655        page_counter_charge(&memcg->memory, nr_pages);
5656        if (do_memsw_account())
5657                page_counter_charge(&memcg->memsw, nr_pages);
5658        css_get_many(&memcg->css, nr_pages);
5659
5660        commit_charge(newpage, memcg, false);
5661
5662        local_irq_save(flags);
5663        mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5664        memcg_check_events(memcg, newpage);
5665        local_irq_restore(flags);
5666}
5667
5668DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5669EXPORT_SYMBOL(memcg_sockets_enabled_key);
5670
5671void mem_cgroup_sk_alloc(struct sock *sk)
5672{
5673        struct mem_cgroup *memcg;
5674
5675        if (!mem_cgroup_sockets_enabled)
5676                return;
5677
5678        /*
5679         * Socket cloning can throw us here with sk_memcg already
5680         * filled. It won't however, necessarily happen from
5681         * process context. So the test for root memcg given
5682         * the current task's memcg won't help us in this case.
5683         *
5684         * Respecting the original socket's memcg is a better
5685         * decision in this case.
5686         */
5687        if (sk->sk_memcg) {
5688                BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5689                css_get(&sk->sk_memcg->css);
5690                return;
5691        }
5692
5693        rcu_read_lock();
5694        memcg = mem_cgroup_from_task(current);
5695        if (memcg == root_mem_cgroup)
5696                goto out;
5697        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5698                goto out;
5699        if (css_tryget_online(&memcg->css))
5700                sk->sk_memcg = memcg;
5701out:
5702        rcu_read_unlock();
5703}
5704
5705void mem_cgroup_sk_free(struct sock *sk)
5706{
5707        if (sk->sk_memcg)
5708                css_put(&sk->sk_memcg->css);
5709}
5710
5711/**
5712 * mem_cgroup_charge_skmem - charge socket memory
5713 * @memcg: memcg to charge
5714 * @nr_pages: number of pages to charge
5715 *
5716 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5717 * @memcg's configured limit, %false if the charge had to be forced.
5718 */
5719bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5720{
5721        gfp_t gfp_mask = GFP_KERNEL;
5722
5723        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5724                struct page_counter *fail;
5725
5726                if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5727                        memcg->tcpmem_pressure = 0;
5728                        return true;
5729                }
5730                page_counter_charge(&memcg->tcpmem, nr_pages);
5731                memcg->tcpmem_pressure = 1;
5732                return false;
5733        }
5734
5735        /* Don't block in the packet receive path */
5736        if (in_softirq())
5737                gfp_mask = GFP_NOWAIT;
5738
5739        this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5740
5741        if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5742                return true;
5743
5744        try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5745        return false;
5746}
5747
5748/**
5749 * mem_cgroup_uncharge_skmem - uncharge socket memory
5750 * @memcg - memcg to uncharge
5751 * @nr_pages - number of pages to uncharge
5752 */
5753void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5754{
5755        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5756                page_counter_uncharge(&memcg->tcpmem, nr_pages);
5757                return;
5758        }
5759
5760        this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5761
5762        page_counter_uncharge(&memcg->memory, nr_pages);
5763        css_put_many(&memcg->css, nr_pages);
5764}
5765
5766static int __init cgroup_memory(char *s)
5767{
5768        char *token;
5769
5770        while ((token = strsep(&s, ",")) != NULL) {
5771                if (!*token)
5772                        continue;
5773                if (!strcmp(token, "nosocket"))
5774                        cgroup_memory_nosocket = true;
5775                if (!strcmp(token, "nokmem"))
5776                        cgroup_memory_nokmem = true;
5777        }
5778        return 0;
5779}
5780__setup("cgroup.memory=", cgroup_memory);
5781
5782/*
5783 * subsys_initcall() for memory controller.
5784 *
5785 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5786 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5787 * basically everything that doesn't depend on a specific mem_cgroup structure
5788 * should be initialized from here.
5789 */
5790static int __init mem_cgroup_init(void)
5791{
5792        int cpu, node;
5793
5794#ifndef CONFIG_SLOB
5795        /*
5796         * Kmem cache creation is mostly done with the slab_mutex held,
5797         * so use a workqueue with limited concurrency to avoid stalling
5798         * all worker threads in case lots of cgroups are created and
5799         * destroyed simultaneously.
5800         */
5801        memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5802        BUG_ON(!memcg_kmem_cache_wq);
5803#endif
5804
5805        cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5806                                  memcg_hotplug_cpu_dead);
5807
5808        for_each_possible_cpu(cpu)
5809                INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5810                          drain_local_stock);
5811
5812        for_each_node(node) {
5813                struct mem_cgroup_tree_per_node *rtpn;
5814
5815                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5816                                    node_online(node) ? node : NUMA_NO_NODE);
5817
5818                rtpn->rb_root = RB_ROOT;
5819                spin_lock_init(&rtpn->lock);
5820                soft_limit_tree.rb_tree_per_node[node] = rtpn;
5821        }
5822
5823        return 0;
5824}
5825subsys_initcall(mem_cgroup_init);
5826
5827#ifdef CONFIG_MEMCG_SWAP
5828static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5829{
5830        while (!atomic_inc_not_zero(&memcg->id.ref)) {
5831                /*
5832                 * The root cgroup cannot be destroyed, so it's refcount must
5833                 * always be >= 1.
5834                 */
5835                if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5836                        VM_BUG_ON(1);
5837                        break;
5838                }
5839                memcg = parent_mem_cgroup(memcg);
5840                if (!memcg)
5841                        memcg = root_mem_cgroup;
5842        }
5843        return memcg;
5844}
5845
5846/**
5847 * mem_cgroup_swapout - transfer a memsw charge to swap
5848 * @page: page whose memsw charge to transfer
5849 * @entry: swap entry to move the charge to
5850 *
5851 * Transfer the memsw charge of @page to @entry.
5852 */
5853void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5854{
5855        struct mem_cgroup *memcg, *swap_memcg;
5856        unsigned short oldid;
5857
5858        VM_BUG_ON_PAGE(PageLRU(page), page);
5859        VM_BUG_ON_PAGE(page_count(page), page);
5860
5861        if (!do_memsw_account())
5862                return;
5863
5864        memcg = page->mem_cgroup;
5865
5866        /* Readahead page, never charged */
5867        if (!memcg)
5868                return;
5869
5870        /*
5871         * In case the memcg owning these pages has been offlined and doesn't
5872         * have an ID allocated to it anymore, charge the closest online
5873         * ancestor for the swap instead and transfer the memory+swap charge.
5874         */
5875        swap_memcg = mem_cgroup_id_get_online(memcg);
5876        oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5877        VM_BUG_ON_PAGE(oldid, page);
5878        mem_cgroup_swap_statistics(swap_memcg, true);
5879
5880        page->mem_cgroup = NULL;
5881
5882        if (!mem_cgroup_is_root(memcg))
5883                page_counter_uncharge(&memcg->memory, 1);
5884
5885        if (memcg != swap_memcg) {
5886                if (!mem_cgroup_is_root(swap_memcg))
5887                        page_counter_charge(&swap_memcg->memsw, 1);
5888                page_counter_uncharge(&memcg->memsw, 1);
5889        }
5890
5891        /*
5892         * Interrupts should be disabled here because the caller holds the
5893         * mapping->tree_lock lock which is taken with interrupts-off. It is
5894         * important here to have the interrupts disabled because it is the
5895         * only synchronisation we have for udpating the per-CPU variables.
5896         */
5897        VM_BUG_ON(!irqs_disabled());
5898        mem_cgroup_charge_statistics(memcg, page, false, -1);
5899        memcg_check_events(memcg, page);
5900
5901        if (!mem_cgroup_is_root(memcg))
5902                css_put(&memcg->css);
5903}
5904
5905/*
5906 * mem_cgroup_try_charge_swap - try charging a swap entry
5907 * @page: page being added to swap
5908 * @entry: swap entry to charge
5909 *
5910 * Try to charge @entry to the memcg that @page belongs to.
5911 *
5912 * Returns 0 on success, -ENOMEM on failure.
5913 */
5914int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5915{
5916        struct mem_cgroup *memcg;
5917        struct page_counter *counter;
5918        unsigned short oldid;
5919
5920        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5921                return 0;
5922
5923        memcg = page->mem_cgroup;
5924
5925        /* Readahead page, never charged */
5926        if (!memcg)
5927                return 0;
5928
5929        memcg = mem_cgroup_id_get_online(memcg);
5930
5931        if (!mem_cgroup_is_root(memcg) &&
5932            !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5933                mem_cgroup_id_put(memcg);
5934                return -ENOMEM;
5935        }
5936
5937        oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5938        VM_BUG_ON_PAGE(oldid, page);
5939        mem_cgroup_swap_statistics(memcg, true);
5940
5941        return 0;
5942}
5943
5944/**
5945 * mem_cgroup_uncharge_swap - uncharge a swap entry
5946 * @entry: swap entry to uncharge
5947 *
5948 * Drop the swap charge associated with @entry.
5949 */
5950void mem_cgroup_uncharge_swap(swp_entry_t entry)
5951{
5952        struct mem_cgroup *memcg;
5953        unsigned short id;
5954
5955        if (!do_swap_account)
5956                return;
5957
5958        id = swap_cgroup_record(entry, 0);
5959        rcu_read_lock();
5960        memcg = mem_cgroup_from_id(id);
5961        if (memcg) {
5962                if (!mem_cgroup_is_root(memcg)) {
5963                        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964                                page_counter_uncharge(&memcg->swap, 1);
5965                        else
5966                                page_counter_uncharge(&memcg->memsw, 1);
5967                }
5968                mem_cgroup_swap_statistics(memcg, false);
5969                mem_cgroup_id_put(memcg);
5970        }
5971        rcu_read_unlock();
5972}
5973
5974long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5975{
5976        long nr_swap_pages = get_nr_swap_pages();
5977
5978        if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5979                return nr_swap_pages;
5980        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5981                nr_swap_pages = min_t(long, nr_swap_pages,
5982                                      READ_ONCE(memcg->swap.limit) -
5983                                      page_counter_read(&memcg->swap));
5984        return nr_swap_pages;
5985}
5986
5987bool mem_cgroup_swap_full(struct page *page)
5988{
5989        struct mem_cgroup *memcg;
5990
5991        VM_BUG_ON_PAGE(!PageLocked(page), page);
5992
5993        if (vm_swap_full())
5994                return true;
5995        if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5996                return false;
5997
5998        memcg = page->mem_cgroup;
5999        if (!memcg)
6000                return false;
6001
6002        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6003                if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6004                        return true;
6005
6006        return false;
6007}
6008
6009/* for remember boot option*/
6010#ifdef CONFIG_MEMCG_SWAP_ENABLED
6011static int really_do_swap_account __initdata = 1;
6012#else
6013static int really_do_swap_account __initdata;
6014#endif
6015
6016static int __init enable_swap_account(char *s)
6017{
6018        if (!strcmp(s, "1"))
6019                really_do_swap_account = 1;
6020        else if (!strcmp(s, "0"))
6021                really_do_swap_account = 0;
6022        return 1;
6023}
6024__setup("swapaccount=", enable_swap_account);
6025
6026static u64 swap_current_read(struct cgroup_subsys_state *css,
6027                             struct cftype *cft)
6028{
6029        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6030
6031        return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6032}
6033
6034static int swap_max_show(struct seq_file *m, void *v)
6035{
6036        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6037        unsigned long max = READ_ONCE(memcg->swap.limit);
6038
6039        if (max == PAGE_COUNTER_MAX)
6040                seq_puts(m, "max\n");
6041        else
6042                seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6043
6044        return 0;
6045}
6046
6047static ssize_t swap_max_write(struct kernfs_open_file *of,
6048                              char *buf, size_t nbytes, loff_t off)
6049{
6050        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6051        unsigned long max;
6052        int err;
6053
6054        buf = strstrip(buf);
6055        err = page_counter_memparse(buf, "max", &max);
6056        if (err)
6057                return err;
6058
6059        mutex_lock(&memcg_limit_mutex);
6060        err = page_counter_limit(&memcg->swap, max);
6061        mutex_unlock(&memcg_limit_mutex);
6062        if (err)
6063                return err;
6064
6065        return nbytes;
6066}
6067
6068static struct cftype swap_files[] = {
6069        {
6070                .name = "swap.current",
6071                .flags = CFTYPE_NOT_ON_ROOT,
6072                .read_u64 = swap_current_read,
6073        },
6074        {
6075                .name = "swap.max",
6076                .flags = CFTYPE_NOT_ON_ROOT,
6077                .seq_show = swap_max_show,
6078                .write = swap_max_write,
6079        },
6080        { }     /* terminate */
6081};
6082
6083static struct cftype memsw_cgroup_files[] = {
6084        {
6085                .name = "memsw.usage_in_bytes",
6086                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6087                .read_u64 = mem_cgroup_read_u64,
6088        },
6089        {
6090                .name = "memsw.max_usage_in_bytes",
6091                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6092                .write = mem_cgroup_reset,
6093                .read_u64 = mem_cgroup_read_u64,
6094        },
6095        {
6096                .name = "memsw.limit_in_bytes",
6097                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6098                .write = mem_cgroup_write,
6099                .read_u64 = mem_cgroup_read_u64,
6100        },
6101        {
6102                .name = "memsw.failcnt",
6103                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6104                .write = mem_cgroup_reset,
6105                .read_u64 = mem_cgroup_read_u64,
6106        },
6107        { },    /* terminate */
6108};
6109
6110static int __init mem_cgroup_swap_init(void)
6111{
6112        if (!mem_cgroup_disabled() && really_do_swap_account) {
6113                do_swap_account = 1;
6114                WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6115                                               swap_files));
6116                WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6117                                                  memsw_cgroup_files));
6118        }
6119        return 0;
6120}
6121subsys_initcall(mem_cgroup_swap_init);
6122
6123#endif /* CONFIG_MEMCG_SWAP */
6124