linux/mm/memory-failure.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.  The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
  52#include <linux/page-isolation.h>
  53#include <linux/suspend.h>
  54#include <linux/slab.h>
  55#include <linux/swapops.h>
  56#include <linux/hugetlb.h>
  57#include <linux/memory_hotplug.h>
  58#include <linux/mm_inline.h>
  59#include <linux/kfifo.h>
  60#include <linux/ratelimit.h>
  61#include "internal.h"
  62#include "ras/ras_event.h"
  63
  64int sysctl_memory_failure_early_kill __read_mostly = 0;
  65
  66int sysctl_memory_failure_recovery __read_mostly = 1;
  67
  68atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  69
  70#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  71
  72u32 hwpoison_filter_enable = 0;
  73u32 hwpoison_filter_dev_major = ~0U;
  74u32 hwpoison_filter_dev_minor = ~0U;
  75u64 hwpoison_filter_flags_mask;
  76u64 hwpoison_filter_flags_value;
  77EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  81EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  82
  83static int hwpoison_filter_dev(struct page *p)
  84{
  85        struct address_space *mapping;
  86        dev_t dev;
  87
  88        if (hwpoison_filter_dev_major == ~0U &&
  89            hwpoison_filter_dev_minor == ~0U)
  90                return 0;
  91
  92        /*
  93         * page_mapping() does not accept slab pages.
  94         */
  95        if (PageSlab(p))
  96                return -EINVAL;
  97
  98        mapping = page_mapping(p);
  99        if (mapping == NULL || mapping->host == NULL)
 100                return -EINVAL;
 101
 102        dev = mapping->host->i_sb->s_dev;
 103        if (hwpoison_filter_dev_major != ~0U &&
 104            hwpoison_filter_dev_major != MAJOR(dev))
 105                return -EINVAL;
 106        if (hwpoison_filter_dev_minor != ~0U &&
 107            hwpoison_filter_dev_minor != MINOR(dev))
 108                return -EINVAL;
 109
 110        return 0;
 111}
 112
 113static int hwpoison_filter_flags(struct page *p)
 114{
 115        if (!hwpoison_filter_flags_mask)
 116                return 0;
 117
 118        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 119                                    hwpoison_filter_flags_value)
 120                return 0;
 121        else
 122                return -EINVAL;
 123}
 124
 125/*
 126 * This allows stress tests to limit test scope to a collection of tasks
 127 * by putting them under some memcg. This prevents killing unrelated/important
 128 * processes such as /sbin/init. Note that the target task may share clean
 129 * pages with init (eg. libc text), which is harmless. If the target task
 130 * share _dirty_ pages with another task B, the test scheme must make sure B
 131 * is also included in the memcg. At last, due to race conditions this filter
 132 * can only guarantee that the page either belongs to the memcg tasks, or is
 133 * a freed page.
 134 */
 135#ifdef CONFIG_MEMCG
 136u64 hwpoison_filter_memcg;
 137EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 138static int hwpoison_filter_task(struct page *p)
 139{
 140        if (!hwpoison_filter_memcg)
 141                return 0;
 142
 143        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 144                return -EINVAL;
 145
 146        return 0;
 147}
 148#else
 149static int hwpoison_filter_task(struct page *p) { return 0; }
 150#endif
 151
 152int hwpoison_filter(struct page *p)
 153{
 154        if (!hwpoison_filter_enable)
 155                return 0;
 156
 157        if (hwpoison_filter_dev(p))
 158                return -EINVAL;
 159
 160        if (hwpoison_filter_flags(p))
 161                return -EINVAL;
 162
 163        if (hwpoison_filter_task(p))
 164                return -EINVAL;
 165
 166        return 0;
 167}
 168#else
 169int hwpoison_filter(struct page *p)
 170{
 171        return 0;
 172}
 173#endif
 174
 175EXPORT_SYMBOL_GPL(hwpoison_filter);
 176
 177/*
 178 * Send all the processes who have the page mapped a signal.
 179 * ``action optional'' if they are not immediately affected by the error
 180 * ``action required'' if error happened in current execution context
 181 */
 182static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
 183                        unsigned long pfn, struct page *page, int flags)
 184{
 185        struct siginfo si;
 186        int ret;
 187
 188        pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 189                pfn, t->comm, t->pid);
 190        si.si_signo = SIGBUS;
 191        si.si_errno = 0;
 192        si.si_addr = (void *)addr;
 193#ifdef __ARCH_SI_TRAPNO
 194        si.si_trapno = trapno;
 195#endif
 196        si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 197
 198        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 199                si.si_code = BUS_MCEERR_AR;
 200                ret = force_sig_info(SIGBUS, &si, current);
 201        } else {
 202                /*
 203                 * Don't use force here, it's convenient if the signal
 204                 * can be temporarily blocked.
 205                 * This could cause a loop when the user sets SIGBUS
 206                 * to SIG_IGN, but hopefully no one will do that?
 207                 */
 208                si.si_code = BUS_MCEERR_AO;
 209                ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 210        }
 211        if (ret < 0)
 212                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 213                        t->comm, t->pid, ret);
 214        return ret;
 215}
 216
 217/*
 218 * When a unknown page type is encountered drain as many buffers as possible
 219 * in the hope to turn the page into a LRU or free page, which we can handle.
 220 */
 221void shake_page(struct page *p, int access)
 222{
 223        if (PageHuge(p))
 224                return;
 225
 226        if (!PageSlab(p)) {
 227                lru_add_drain_all();
 228                if (PageLRU(p))
 229                        return;
 230                drain_all_pages(page_zone(p));
 231                if (PageLRU(p) || is_free_buddy_page(p))
 232                        return;
 233        }
 234
 235        /*
 236         * Only call shrink_node_slabs here (which would also shrink
 237         * other caches) if access is not potentially fatal.
 238         */
 239        if (access)
 240                drop_slab_node(page_to_nid(p));
 241}
 242EXPORT_SYMBOL_GPL(shake_page);
 243
 244/*
 245 * Kill all processes that have a poisoned page mapped and then isolate
 246 * the page.
 247 *
 248 * General strategy:
 249 * Find all processes having the page mapped and kill them.
 250 * But we keep a page reference around so that the page is not
 251 * actually freed yet.
 252 * Then stash the page away
 253 *
 254 * There's no convenient way to get back to mapped processes
 255 * from the VMAs. So do a brute-force search over all
 256 * running processes.
 257 *
 258 * Remember that machine checks are not common (or rather
 259 * if they are common you have other problems), so this shouldn't
 260 * be a performance issue.
 261 *
 262 * Also there are some races possible while we get from the
 263 * error detection to actually handle it.
 264 */
 265
 266struct to_kill {
 267        struct list_head nd;
 268        struct task_struct *tsk;
 269        unsigned long addr;
 270        char addr_valid;
 271};
 272
 273/*
 274 * Failure handling: if we can't find or can't kill a process there's
 275 * not much we can do.  We just print a message and ignore otherwise.
 276 */
 277
 278/*
 279 * Schedule a process for later kill.
 280 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 281 * TBD would GFP_NOIO be enough?
 282 */
 283static void add_to_kill(struct task_struct *tsk, struct page *p,
 284                       struct vm_area_struct *vma,
 285                       struct list_head *to_kill,
 286                       struct to_kill **tkc)
 287{
 288        struct to_kill *tk;
 289
 290        if (*tkc) {
 291                tk = *tkc;
 292                *tkc = NULL;
 293        } else {
 294                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 295                if (!tk) {
 296                        pr_err("Memory failure: Out of memory while machine check handling\n");
 297                        return;
 298                }
 299        }
 300        tk->addr = page_address_in_vma(p, vma);
 301        tk->addr_valid = 1;
 302
 303        /*
 304         * In theory we don't have to kill when the page was
 305         * munmaped. But it could be also a mremap. Since that's
 306         * likely very rare kill anyways just out of paranoia, but use
 307         * a SIGKILL because the error is not contained anymore.
 308         */
 309        if (tk->addr == -EFAULT) {
 310                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 311                        page_to_pfn(p), tsk->comm);
 312                tk->addr_valid = 0;
 313        }
 314        get_task_struct(tsk);
 315        tk->tsk = tsk;
 316        list_add_tail(&tk->nd, to_kill);
 317}
 318
 319/*
 320 * Kill the processes that have been collected earlier.
 321 *
 322 * Only do anything when DOIT is set, otherwise just free the list
 323 * (this is used for clean pages which do not need killing)
 324 * Also when FAIL is set do a force kill because something went
 325 * wrong earlier.
 326 */
 327static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
 328                          bool fail, struct page *page, unsigned long pfn,
 329                          int flags)
 330{
 331        struct to_kill *tk, *next;
 332
 333        list_for_each_entry_safe (tk, next, to_kill, nd) {
 334                if (forcekill) {
 335                        /*
 336                         * In case something went wrong with munmapping
 337                         * make sure the process doesn't catch the
 338                         * signal and then access the memory. Just kill it.
 339                         */
 340                        if (fail || tk->addr_valid == 0) {
 341                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 342                                       pfn, tk->tsk->comm, tk->tsk->pid);
 343                                force_sig(SIGKILL, tk->tsk);
 344                        }
 345
 346                        /*
 347                         * In theory the process could have mapped
 348                         * something else on the address in-between. We could
 349                         * check for that, but we need to tell the
 350                         * process anyways.
 351                         */
 352                        else if (kill_proc(tk->tsk, tk->addr, trapno,
 353                                              pfn, page, flags) < 0)
 354                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 355                                       pfn, tk->tsk->comm, tk->tsk->pid);
 356                }
 357                put_task_struct(tk->tsk);
 358                kfree(tk);
 359        }
 360}
 361
 362/*
 363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 364 * on behalf of the thread group. Return task_struct of the (first found)
 365 * dedicated thread if found, and return NULL otherwise.
 366 *
 367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 368 * have to call rcu_read_lock/unlock() in this function.
 369 */
 370static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 371{
 372        struct task_struct *t;
 373
 374        for_each_thread(tsk, t)
 375                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 376                        return t;
 377        return NULL;
 378}
 379
 380/*
 381 * Determine whether a given process is "early kill" process which expects
 382 * to be signaled when some page under the process is hwpoisoned.
 383 * Return task_struct of the dedicated thread (main thread unless explicitly
 384 * specified) if the process is "early kill," and otherwise returns NULL.
 385 */
 386static struct task_struct *task_early_kill(struct task_struct *tsk,
 387                                           int force_early)
 388{
 389        struct task_struct *t;
 390        if (!tsk->mm)
 391                return NULL;
 392        if (force_early)
 393                return tsk;
 394        t = find_early_kill_thread(tsk);
 395        if (t)
 396                return t;
 397        if (sysctl_memory_failure_early_kill)
 398                return tsk;
 399        return NULL;
 400}
 401
 402/*
 403 * Collect processes when the error hit an anonymous page.
 404 */
 405static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 406                              struct to_kill **tkc, int force_early)
 407{
 408        struct vm_area_struct *vma;
 409        struct task_struct *tsk;
 410        struct anon_vma *av;
 411        pgoff_t pgoff;
 412
 413        av = page_lock_anon_vma_read(page);
 414        if (av == NULL) /* Not actually mapped anymore */
 415                return;
 416
 417        pgoff = page_to_pgoff(page);
 418        read_lock(&tasklist_lock);
 419        for_each_process (tsk) {
 420                struct anon_vma_chain *vmac;
 421                struct task_struct *t = task_early_kill(tsk, force_early);
 422
 423                if (!t)
 424                        continue;
 425                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 426                                               pgoff, pgoff) {
 427                        vma = vmac->vma;
 428                        if (!page_mapped_in_vma(page, vma))
 429                                continue;
 430                        if (vma->vm_mm == t->mm)
 431                                add_to_kill(t, page, vma, to_kill, tkc);
 432                }
 433        }
 434        read_unlock(&tasklist_lock);
 435        page_unlock_anon_vma_read(av);
 436}
 437
 438/*
 439 * Collect processes when the error hit a file mapped page.
 440 */
 441static void collect_procs_file(struct page *page, struct list_head *to_kill,
 442                              struct to_kill **tkc, int force_early)
 443{
 444        struct vm_area_struct *vma;
 445        struct task_struct *tsk;
 446        struct address_space *mapping = page->mapping;
 447
 448        i_mmap_lock_read(mapping);
 449        read_lock(&tasklist_lock);
 450        for_each_process(tsk) {
 451                pgoff_t pgoff = page_to_pgoff(page);
 452                struct task_struct *t = task_early_kill(tsk, force_early);
 453
 454                if (!t)
 455                        continue;
 456                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 457                                      pgoff) {
 458                        /*
 459                         * Send early kill signal to tasks where a vma covers
 460                         * the page but the corrupted page is not necessarily
 461                         * mapped it in its pte.
 462                         * Assume applications who requested early kill want
 463                         * to be informed of all such data corruptions.
 464                         */
 465                        if (vma->vm_mm == t->mm)
 466                                add_to_kill(t, page, vma, to_kill, tkc);
 467                }
 468        }
 469        read_unlock(&tasklist_lock);
 470        i_mmap_unlock_read(mapping);
 471}
 472
 473/*
 474 * Collect the processes who have the corrupted page mapped to kill.
 475 * This is done in two steps for locking reasons.
 476 * First preallocate one tokill structure outside the spin locks,
 477 * so that we can kill at least one process reasonably reliable.
 478 */
 479static void collect_procs(struct page *page, struct list_head *tokill,
 480                                int force_early)
 481{
 482        struct to_kill *tk;
 483
 484        if (!page->mapping)
 485                return;
 486
 487        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 488        if (!tk)
 489                return;
 490        if (PageAnon(page))
 491                collect_procs_anon(page, tokill, &tk, force_early);
 492        else
 493                collect_procs_file(page, tokill, &tk, force_early);
 494        kfree(tk);
 495}
 496
 497static const char *action_name[] = {
 498        [MF_IGNORED] = "Ignored",
 499        [MF_FAILED] = "Failed",
 500        [MF_DELAYED] = "Delayed",
 501        [MF_RECOVERED] = "Recovered",
 502};
 503
 504static const char * const action_page_types[] = {
 505        [MF_MSG_KERNEL]                 = "reserved kernel page",
 506        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 507        [MF_MSG_SLAB]                   = "kernel slab page",
 508        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 509        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 510        [MF_MSG_HUGE]                   = "huge page",
 511        [MF_MSG_FREE_HUGE]              = "free huge page",
 512        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 513        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 514        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 515        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 516        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 517        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 518        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 519        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 520        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 521        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 522        [MF_MSG_BUDDY]                  = "free buddy page",
 523        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 524        [MF_MSG_UNKNOWN]                = "unknown page",
 525};
 526
 527/*
 528 * XXX: It is possible that a page is isolated from LRU cache,
 529 * and then kept in swap cache or failed to remove from page cache.
 530 * The page count will stop it from being freed by unpoison.
 531 * Stress tests should be aware of this memory leak problem.
 532 */
 533static int delete_from_lru_cache(struct page *p)
 534{
 535        if (!isolate_lru_page(p)) {
 536                /*
 537                 * Clear sensible page flags, so that the buddy system won't
 538                 * complain when the page is unpoison-and-freed.
 539                 */
 540                ClearPageActive(p);
 541                ClearPageUnevictable(p);
 542
 543                /*
 544                 * Poisoned page might never drop its ref count to 0 so we have
 545                 * to uncharge it manually from its memcg.
 546                 */
 547                mem_cgroup_uncharge(p);
 548
 549                /*
 550                 * drop the page count elevated by isolate_lru_page()
 551                 */
 552                put_page(p);
 553                return 0;
 554        }
 555        return -EIO;
 556}
 557
 558/*
 559 * Error hit kernel page.
 560 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 561 * could be more sophisticated.
 562 */
 563static int me_kernel(struct page *p, unsigned long pfn)
 564{
 565        return MF_IGNORED;
 566}
 567
 568/*
 569 * Page in unknown state. Do nothing.
 570 */
 571static int me_unknown(struct page *p, unsigned long pfn)
 572{
 573        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 574        return MF_FAILED;
 575}
 576
 577/*
 578 * Clean (or cleaned) page cache page.
 579 */
 580static int me_pagecache_clean(struct page *p, unsigned long pfn)
 581{
 582        int err;
 583        int ret = MF_FAILED;
 584        struct address_space *mapping;
 585
 586        delete_from_lru_cache(p);
 587
 588        /*
 589         * For anonymous pages we're done the only reference left
 590         * should be the one m_f() holds.
 591         */
 592        if (PageAnon(p))
 593                return MF_RECOVERED;
 594
 595        /*
 596         * Now truncate the page in the page cache. This is really
 597         * more like a "temporary hole punch"
 598         * Don't do this for block devices when someone else
 599         * has a reference, because it could be file system metadata
 600         * and that's not safe to truncate.
 601         */
 602        mapping = page_mapping(p);
 603        if (!mapping) {
 604                /*
 605                 * Page has been teared down in the meanwhile
 606                 */
 607                return MF_FAILED;
 608        }
 609
 610        /*
 611         * Truncation is a bit tricky. Enable it per file system for now.
 612         *
 613         * Open: to take i_mutex or not for this? Right now we don't.
 614         */
 615        if (mapping->a_ops->error_remove_page) {
 616                err = mapping->a_ops->error_remove_page(mapping, p);
 617                if (err != 0) {
 618                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 619                                pfn, err);
 620                } else if (page_has_private(p) &&
 621                                !try_to_release_page(p, GFP_NOIO)) {
 622                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 623                                pfn);
 624                } else {
 625                        ret = MF_RECOVERED;
 626                }
 627        } else {
 628                /*
 629                 * If the file system doesn't support it just invalidate
 630                 * This fails on dirty or anything with private pages
 631                 */
 632                if (invalidate_inode_page(p))
 633                        ret = MF_RECOVERED;
 634                else
 635                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 636                                pfn);
 637        }
 638        return ret;
 639}
 640
 641/*
 642 * Dirty pagecache page
 643 * Issues: when the error hit a hole page the error is not properly
 644 * propagated.
 645 */
 646static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 647{
 648        struct address_space *mapping = page_mapping(p);
 649
 650        SetPageError(p);
 651        /* TBD: print more information about the file. */
 652        if (mapping) {
 653                /*
 654                 * IO error will be reported by write(), fsync(), etc.
 655                 * who check the mapping.
 656                 * This way the application knows that something went
 657                 * wrong with its dirty file data.
 658                 *
 659                 * There's one open issue:
 660                 *
 661                 * The EIO will be only reported on the next IO
 662                 * operation and then cleared through the IO map.
 663                 * Normally Linux has two mechanisms to pass IO error
 664                 * first through the AS_EIO flag in the address space
 665                 * and then through the PageError flag in the page.
 666                 * Since we drop pages on memory failure handling the
 667                 * only mechanism open to use is through AS_AIO.
 668                 *
 669                 * This has the disadvantage that it gets cleared on
 670                 * the first operation that returns an error, while
 671                 * the PageError bit is more sticky and only cleared
 672                 * when the page is reread or dropped.  If an
 673                 * application assumes it will always get error on
 674                 * fsync, but does other operations on the fd before
 675                 * and the page is dropped between then the error
 676                 * will not be properly reported.
 677                 *
 678                 * This can already happen even without hwpoisoned
 679                 * pages: first on metadata IO errors (which only
 680                 * report through AS_EIO) or when the page is dropped
 681                 * at the wrong time.
 682                 *
 683                 * So right now we assume that the application DTRT on
 684                 * the first EIO, but we're not worse than other parts
 685                 * of the kernel.
 686                 */
 687                mapping_set_error(mapping, EIO);
 688        }
 689
 690        return me_pagecache_clean(p, pfn);
 691}
 692
 693/*
 694 * Clean and dirty swap cache.
 695 *
 696 * Dirty swap cache page is tricky to handle. The page could live both in page
 697 * cache and swap cache(ie. page is freshly swapped in). So it could be
 698 * referenced concurrently by 2 types of PTEs:
 699 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 700 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 701 * and then
 702 *      - clear dirty bit to prevent IO
 703 *      - remove from LRU
 704 *      - but keep in the swap cache, so that when we return to it on
 705 *        a later page fault, we know the application is accessing
 706 *        corrupted data and shall be killed (we installed simple
 707 *        interception code in do_swap_page to catch it).
 708 *
 709 * Clean swap cache pages can be directly isolated. A later page fault will
 710 * bring in the known good data from disk.
 711 */
 712static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 713{
 714        ClearPageDirty(p);
 715        /* Trigger EIO in shmem: */
 716        ClearPageUptodate(p);
 717
 718        if (!delete_from_lru_cache(p))
 719                return MF_DELAYED;
 720        else
 721                return MF_FAILED;
 722}
 723
 724static int me_swapcache_clean(struct page *p, unsigned long pfn)
 725{
 726        delete_from_swap_cache(p);
 727
 728        if (!delete_from_lru_cache(p))
 729                return MF_RECOVERED;
 730        else
 731                return MF_FAILED;
 732}
 733
 734/*
 735 * Huge pages. Needs work.
 736 * Issues:
 737 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 738 *   To narrow down kill region to one page, we need to break up pmd.
 739 */
 740static int me_huge_page(struct page *p, unsigned long pfn)
 741{
 742        int res = 0;
 743        struct page *hpage = compound_head(p);
 744
 745        if (!PageHuge(hpage))
 746                return MF_DELAYED;
 747
 748        /*
 749         * We can safely recover from error on free or reserved (i.e.
 750         * not in-use) hugepage by dequeuing it from freelist.
 751         * To check whether a hugepage is in-use or not, we can't use
 752         * page->lru because it can be used in other hugepage operations,
 753         * such as __unmap_hugepage_range() and gather_surplus_pages().
 754         * So instead we use page_mapping() and PageAnon().
 755         */
 756        if (!(page_mapping(hpage) || PageAnon(hpage))) {
 757                res = dequeue_hwpoisoned_huge_page(hpage);
 758                if (!res)
 759                        return MF_RECOVERED;
 760        }
 761        return MF_DELAYED;
 762}
 763
 764/*
 765 * Various page states we can handle.
 766 *
 767 * A page state is defined by its current page->flags bits.
 768 * The table matches them in order and calls the right handler.
 769 *
 770 * This is quite tricky because we can access page at any time
 771 * in its live cycle, so all accesses have to be extremely careful.
 772 *
 773 * This is not complete. More states could be added.
 774 * For any missing state don't attempt recovery.
 775 */
 776
 777#define dirty           (1UL << PG_dirty)
 778#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 779#define unevict         (1UL << PG_unevictable)
 780#define mlock           (1UL << PG_mlocked)
 781#define writeback       (1UL << PG_writeback)
 782#define lru             (1UL << PG_lru)
 783#define head            (1UL << PG_head)
 784#define slab            (1UL << PG_slab)
 785#define reserved        (1UL << PG_reserved)
 786
 787static struct page_state {
 788        unsigned long mask;
 789        unsigned long res;
 790        enum mf_action_page_type type;
 791        int (*action)(struct page *p, unsigned long pfn);
 792} error_states[] = {
 793        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 794        /*
 795         * free pages are specially detected outside this table:
 796         * PG_buddy pages only make a small fraction of all free pages.
 797         */
 798
 799        /*
 800         * Could in theory check if slab page is free or if we can drop
 801         * currently unused objects without touching them. But just
 802         * treat it as standard kernel for now.
 803         */
 804        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 805
 806        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 807
 808        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 809        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 810
 811        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 812        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 813
 814        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 815        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 816
 817        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 818        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 819
 820        /*
 821         * Catchall entry: must be at end.
 822         */
 823        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 824};
 825
 826#undef dirty
 827#undef sc
 828#undef unevict
 829#undef mlock
 830#undef writeback
 831#undef lru
 832#undef head
 833#undef slab
 834#undef reserved
 835
 836/*
 837 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 838 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 839 */
 840static void action_result(unsigned long pfn, enum mf_action_page_type type,
 841                          enum mf_result result)
 842{
 843        trace_memory_failure_event(pfn, type, result);
 844
 845        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 846                pfn, action_page_types[type], action_name[result]);
 847}
 848
 849static int page_action(struct page_state *ps, struct page *p,
 850                        unsigned long pfn)
 851{
 852        int result;
 853        int count;
 854
 855        result = ps->action(p, pfn);
 856
 857        count = page_count(p) - 1;
 858        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 859                count--;
 860        if (count != 0) {
 861                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 862                       pfn, action_page_types[ps->type], count);
 863                result = MF_FAILED;
 864        }
 865        action_result(pfn, ps->type, result);
 866
 867        /* Could do more checks here if page looks ok */
 868        /*
 869         * Could adjust zone counters here to correct for the missing page.
 870         */
 871
 872        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 873}
 874
 875/**
 876 * get_hwpoison_page() - Get refcount for memory error handling:
 877 * @page:       raw error page (hit by memory error)
 878 *
 879 * Return: return 0 if failed to grab the refcount, otherwise true (some
 880 * non-zero value.)
 881 */
 882int get_hwpoison_page(struct page *page)
 883{
 884        struct page *head = compound_head(page);
 885
 886        if (!PageHuge(head) && PageTransHuge(head)) {
 887                /*
 888                 * Non anonymous thp exists only in allocation/free time. We
 889                 * can't handle such a case correctly, so let's give it up.
 890                 * This should be better than triggering BUG_ON when kernel
 891                 * tries to touch the "partially handled" page.
 892                 */
 893                if (!PageAnon(head)) {
 894                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 895                                page_to_pfn(page));
 896                        return 0;
 897                }
 898        }
 899
 900        if (get_page_unless_zero(head)) {
 901                if (head == compound_head(page))
 902                        return 1;
 903
 904                pr_info("Memory failure: %#lx cannot catch tail\n",
 905                        page_to_pfn(page));
 906                put_page(head);
 907        }
 908
 909        return 0;
 910}
 911EXPORT_SYMBOL_GPL(get_hwpoison_page);
 912
 913/*
 914 * Do all that is necessary to remove user space mappings. Unmap
 915 * the pages and send SIGBUS to the processes if the data was dirty.
 916 */
 917static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 918                                  int trapno, int flags, struct page **hpagep)
 919{
 920        enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 921        struct address_space *mapping;
 922        LIST_HEAD(tokill);
 923        bool unmap_success;
 924        int kill = 1, forcekill;
 925        struct page *hpage = *hpagep;
 926        bool mlocked = PageMlocked(hpage);
 927
 928        /*
 929         * Here we are interested only in user-mapped pages, so skip any
 930         * other types of pages.
 931         */
 932        if (PageReserved(p) || PageSlab(p))
 933                return true;
 934        if (!(PageLRU(hpage) || PageHuge(p)))
 935                return true;
 936
 937        /*
 938         * This check implies we don't kill processes if their pages
 939         * are in the swap cache early. Those are always late kills.
 940         */
 941        if (!page_mapped(hpage))
 942                return true;
 943
 944        if (PageKsm(p)) {
 945                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 946                return false;
 947        }
 948
 949        if (PageSwapCache(p)) {
 950                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 951                        pfn);
 952                ttu |= TTU_IGNORE_HWPOISON;
 953        }
 954
 955        /*
 956         * Propagate the dirty bit from PTEs to struct page first, because we
 957         * need this to decide if we should kill or just drop the page.
 958         * XXX: the dirty test could be racy: set_page_dirty() may not always
 959         * be called inside page lock (it's recommended but not enforced).
 960         */
 961        mapping = page_mapping(hpage);
 962        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 963            mapping_cap_writeback_dirty(mapping)) {
 964                if (page_mkclean(hpage)) {
 965                        SetPageDirty(hpage);
 966                } else {
 967                        kill = 0;
 968                        ttu |= TTU_IGNORE_HWPOISON;
 969                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 970                                pfn);
 971                }
 972        }
 973
 974        /*
 975         * First collect all the processes that have the page
 976         * mapped in dirty form.  This has to be done before try_to_unmap,
 977         * because ttu takes the rmap data structures down.
 978         *
 979         * Error handling: We ignore errors here because
 980         * there's nothing that can be done.
 981         */
 982        if (kill)
 983                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 984
 985        unmap_success = try_to_unmap(hpage, ttu);
 986        if (!unmap_success)
 987                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
 988                       pfn, page_mapcount(hpage));
 989
 990        /*
 991         * try_to_unmap() might put mlocked page in lru cache, so call
 992         * shake_page() again to ensure that it's flushed.
 993         */
 994        if (mlocked)
 995                shake_page(hpage, 0);
 996
 997        /*
 998         * Now that the dirty bit has been propagated to the
 999         * struct page and all unmaps done we can decide if
1000         * killing is needed or not.  Only kill when the page
1001         * was dirty or the process is not restartable,
1002         * otherwise the tokill list is merely
1003         * freed.  When there was a problem unmapping earlier
1004         * use a more force-full uncatchable kill to prevent
1005         * any accesses to the poisoned memory.
1006         */
1007        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1008        kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1009
1010        return unmap_success;
1011}
1012
1013static void set_page_hwpoison_huge_page(struct page *hpage)
1014{
1015        int i;
1016        int nr_pages = 1 << compound_order(hpage);
1017        for (i = 0; i < nr_pages; i++)
1018                SetPageHWPoison(hpage + i);
1019}
1020
1021static void clear_page_hwpoison_huge_page(struct page *hpage)
1022{
1023        int i;
1024        int nr_pages = 1 << compound_order(hpage);
1025        for (i = 0; i < nr_pages; i++)
1026                ClearPageHWPoison(hpage + i);
1027}
1028
1029/**
1030 * memory_failure - Handle memory failure of a page.
1031 * @pfn: Page Number of the corrupted page
1032 * @trapno: Trap number reported in the signal to user space.
1033 * @flags: fine tune action taken
1034 *
1035 * This function is called by the low level machine check code
1036 * of an architecture when it detects hardware memory corruption
1037 * of a page. It tries its best to recover, which includes
1038 * dropping pages, killing processes etc.
1039 *
1040 * The function is primarily of use for corruptions that
1041 * happen outside the current execution context (e.g. when
1042 * detected by a background scrubber)
1043 *
1044 * Must run in process context (e.g. a work queue) with interrupts
1045 * enabled and no spinlocks hold.
1046 */
1047int memory_failure(unsigned long pfn, int trapno, int flags)
1048{
1049        struct page_state *ps;
1050        struct page *p;
1051        struct page *hpage;
1052        struct page *orig_head;
1053        int res;
1054        unsigned int nr_pages;
1055        unsigned long page_flags;
1056
1057        if (!sysctl_memory_failure_recovery)
1058                panic("Memory failure from trap %d on page %lx", trapno, pfn);
1059
1060        if (!pfn_valid(pfn)) {
1061                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1062                        pfn);
1063                return -ENXIO;
1064        }
1065
1066        p = pfn_to_page(pfn);
1067        orig_head = hpage = compound_head(p);
1068        if (TestSetPageHWPoison(p)) {
1069                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1070                        pfn);
1071                return 0;
1072        }
1073
1074        /*
1075         * Currently errors on hugetlbfs pages are measured in hugepage units,
1076         * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1077         * transparent hugepages, they are supposed to be split and error
1078         * measurement is done in normal page units.  So nr_pages should be one
1079         * in this case.
1080         */
1081        if (PageHuge(p))
1082                nr_pages = 1 << compound_order(hpage);
1083        else /* normal page or thp */
1084                nr_pages = 1;
1085        num_poisoned_pages_add(nr_pages);
1086
1087        /*
1088         * We need/can do nothing about count=0 pages.
1089         * 1) it's a free page, and therefore in safe hand:
1090         *    prep_new_page() will be the gate keeper.
1091         * 2) it's a free hugepage, which is also safe:
1092         *    an affected hugepage will be dequeued from hugepage freelist,
1093         *    so there's no concern about reusing it ever after.
1094         * 3) it's part of a non-compound high order page.
1095         *    Implies some kernel user: cannot stop them from
1096         *    R/W the page; let's pray that the page has been
1097         *    used and will be freed some time later.
1098         * In fact it's dangerous to directly bump up page count from 0,
1099         * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1100         */
1101        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1102                if (is_free_buddy_page(p)) {
1103                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1104                        return 0;
1105                } else if (PageHuge(hpage)) {
1106                        /*
1107                         * Check "filter hit" and "race with other subpage."
1108                         */
1109                        lock_page(hpage);
1110                        if (PageHWPoison(hpage)) {
1111                                if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1112                                    || (p != hpage && TestSetPageHWPoison(hpage))) {
1113                                        num_poisoned_pages_sub(nr_pages);
1114                                        unlock_page(hpage);
1115                                        return 0;
1116                                }
1117                        }
1118                        set_page_hwpoison_huge_page(hpage);
1119                        res = dequeue_hwpoisoned_huge_page(hpage);
1120                        action_result(pfn, MF_MSG_FREE_HUGE,
1121                                      res ? MF_IGNORED : MF_DELAYED);
1122                        unlock_page(hpage);
1123                        return res;
1124                } else {
1125                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1126                        return -EBUSY;
1127                }
1128        }
1129
1130        if (!PageHuge(p) && PageTransHuge(hpage)) {
1131                lock_page(p);
1132                if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1133                        unlock_page(p);
1134                        if (!PageAnon(p))
1135                                pr_err("Memory failure: %#lx: non anonymous thp\n",
1136                                        pfn);
1137                        else
1138                                pr_err("Memory failure: %#lx: thp split failed\n",
1139                                        pfn);
1140                        if (TestClearPageHWPoison(p))
1141                                num_poisoned_pages_sub(nr_pages);
1142                        put_hwpoison_page(p);
1143                        return -EBUSY;
1144                }
1145                unlock_page(p);
1146                VM_BUG_ON_PAGE(!page_count(p), p);
1147                hpage = compound_head(p);
1148        }
1149
1150        /*
1151         * We ignore non-LRU pages for good reasons.
1152         * - PG_locked is only well defined for LRU pages and a few others
1153         * - to avoid races with __SetPageLocked()
1154         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1155         * The check (unnecessarily) ignores LRU pages being isolated and
1156         * walked by the page reclaim code, however that's not a big loss.
1157         */
1158        shake_page(p, 0);
1159        /* shake_page could have turned it free. */
1160        if (!PageLRU(p) && is_free_buddy_page(p)) {
1161                if (flags & MF_COUNT_INCREASED)
1162                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1163                else
1164                        action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1165                return 0;
1166        }
1167
1168        lock_page(hpage);
1169
1170        /*
1171         * The page could have changed compound pages during the locking.
1172         * If this happens just bail out.
1173         */
1174        if (PageCompound(p) && compound_head(p) != orig_head) {
1175                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1176                res = -EBUSY;
1177                goto out;
1178        }
1179
1180        /*
1181         * We use page flags to determine what action should be taken, but
1182         * the flags can be modified by the error containment action.  One
1183         * example is an mlocked page, where PG_mlocked is cleared by
1184         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1185         * correctly, we save a copy of the page flags at this time.
1186         */
1187        if (PageHuge(p))
1188                page_flags = hpage->flags;
1189        else
1190                page_flags = p->flags;
1191
1192        /*
1193         * unpoison always clear PG_hwpoison inside page lock
1194         */
1195        if (!PageHWPoison(p)) {
1196                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1197                num_poisoned_pages_sub(nr_pages);
1198                unlock_page(hpage);
1199                put_hwpoison_page(hpage);
1200                return 0;
1201        }
1202        if (hwpoison_filter(p)) {
1203                if (TestClearPageHWPoison(p))
1204                        num_poisoned_pages_sub(nr_pages);
1205                unlock_page(hpage);
1206                put_hwpoison_page(hpage);
1207                return 0;
1208        }
1209
1210        if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1211                goto identify_page_state;
1212
1213        /*
1214         * For error on the tail page, we should set PG_hwpoison
1215         * on the head page to show that the hugepage is hwpoisoned
1216         */
1217        if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1218                action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1219                unlock_page(hpage);
1220                put_hwpoison_page(hpage);
1221                return 0;
1222        }
1223        /*
1224         * Set PG_hwpoison on all pages in an error hugepage,
1225         * because containment is done in hugepage unit for now.
1226         * Since we have done TestSetPageHWPoison() for the head page with
1227         * page lock held, we can safely set PG_hwpoison bits on tail pages.
1228         */
1229        if (PageHuge(p))
1230                set_page_hwpoison_huge_page(hpage);
1231
1232        /*
1233         * It's very difficult to mess with pages currently under IO
1234         * and in many cases impossible, so we just avoid it here.
1235         */
1236        wait_on_page_writeback(p);
1237
1238        /*
1239         * Now take care of user space mappings.
1240         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1241         *
1242         * When the raw error page is thp tail page, hpage points to the raw
1243         * page after thp split.
1244         */
1245        if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1246                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1247                res = -EBUSY;
1248                goto out;
1249        }
1250
1251        /*
1252         * Torn down by someone else?
1253         */
1254        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1255                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1256                res = -EBUSY;
1257                goto out;
1258        }
1259
1260identify_page_state:
1261        res = -EBUSY;
1262        /*
1263         * The first check uses the current page flags which may not have any
1264         * relevant information. The second check with the saved page flagss is
1265         * carried out only if the first check can't determine the page status.
1266         */
1267        for (ps = error_states;; ps++)
1268                if ((p->flags & ps->mask) == ps->res)
1269                        break;
1270
1271        page_flags |= (p->flags & (1UL << PG_dirty));
1272
1273        if (!ps->mask)
1274                for (ps = error_states;; ps++)
1275                        if ((page_flags & ps->mask) == ps->res)
1276                                break;
1277        res = page_action(ps, p, pfn);
1278out:
1279        unlock_page(hpage);
1280        return res;
1281}
1282EXPORT_SYMBOL_GPL(memory_failure);
1283
1284#define MEMORY_FAILURE_FIFO_ORDER       4
1285#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1286
1287struct memory_failure_entry {
1288        unsigned long pfn;
1289        int trapno;
1290        int flags;
1291};
1292
1293struct memory_failure_cpu {
1294        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1295                      MEMORY_FAILURE_FIFO_SIZE);
1296        spinlock_t lock;
1297        struct work_struct work;
1298};
1299
1300static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1301
1302/**
1303 * memory_failure_queue - Schedule handling memory failure of a page.
1304 * @pfn: Page Number of the corrupted page
1305 * @trapno: Trap number reported in the signal to user space.
1306 * @flags: Flags for memory failure handling
1307 *
1308 * This function is called by the low level hardware error handler
1309 * when it detects hardware memory corruption of a page. It schedules
1310 * the recovering of error page, including dropping pages, killing
1311 * processes etc.
1312 *
1313 * The function is primarily of use for corruptions that
1314 * happen outside the current execution context (e.g. when
1315 * detected by a background scrubber)
1316 *
1317 * Can run in IRQ context.
1318 */
1319void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1320{
1321        struct memory_failure_cpu *mf_cpu;
1322        unsigned long proc_flags;
1323        struct memory_failure_entry entry = {
1324                .pfn =          pfn,
1325                .trapno =       trapno,
1326                .flags =        flags,
1327        };
1328
1329        mf_cpu = &get_cpu_var(memory_failure_cpu);
1330        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1331        if (kfifo_put(&mf_cpu->fifo, entry))
1332                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1333        else
1334                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1335                       pfn);
1336        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1337        put_cpu_var(memory_failure_cpu);
1338}
1339EXPORT_SYMBOL_GPL(memory_failure_queue);
1340
1341static void memory_failure_work_func(struct work_struct *work)
1342{
1343        struct memory_failure_cpu *mf_cpu;
1344        struct memory_failure_entry entry = { 0, };
1345        unsigned long proc_flags;
1346        int gotten;
1347
1348        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1349        for (;;) {
1350                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1351                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1352                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1353                if (!gotten)
1354                        break;
1355                if (entry.flags & MF_SOFT_OFFLINE)
1356                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1357                else
1358                        memory_failure(entry.pfn, entry.trapno, entry.flags);
1359        }
1360}
1361
1362static int __init memory_failure_init(void)
1363{
1364        struct memory_failure_cpu *mf_cpu;
1365        int cpu;
1366
1367        for_each_possible_cpu(cpu) {
1368                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1369                spin_lock_init(&mf_cpu->lock);
1370                INIT_KFIFO(mf_cpu->fifo);
1371                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1372        }
1373
1374        return 0;
1375}
1376core_initcall(memory_failure_init);
1377
1378#define unpoison_pr_info(fmt, pfn, rs)                  \
1379({                                                      \
1380        if (__ratelimit(rs))                            \
1381                pr_info(fmt, pfn);                      \
1382})
1383
1384/**
1385 * unpoison_memory - Unpoison a previously poisoned page
1386 * @pfn: Page number of the to be unpoisoned page
1387 *
1388 * Software-unpoison a page that has been poisoned by
1389 * memory_failure() earlier.
1390 *
1391 * This is only done on the software-level, so it only works
1392 * for linux injected failures, not real hardware failures
1393 *
1394 * Returns 0 for success, otherwise -errno.
1395 */
1396int unpoison_memory(unsigned long pfn)
1397{
1398        struct page *page;
1399        struct page *p;
1400        int freeit = 0;
1401        unsigned int nr_pages;
1402        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1403                                        DEFAULT_RATELIMIT_BURST);
1404
1405        if (!pfn_valid(pfn))
1406                return -ENXIO;
1407
1408        p = pfn_to_page(pfn);
1409        page = compound_head(p);
1410
1411        if (!PageHWPoison(p)) {
1412                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1413                                 pfn, &unpoison_rs);
1414                return 0;
1415        }
1416
1417        if (page_count(page) > 1) {
1418                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1419                                 pfn, &unpoison_rs);
1420                return 0;
1421        }
1422
1423        if (page_mapped(page)) {
1424                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1425                                 pfn, &unpoison_rs);
1426                return 0;
1427        }
1428
1429        if (page_mapping(page)) {
1430                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1431                                 pfn, &unpoison_rs);
1432                return 0;
1433        }
1434
1435        /*
1436         * unpoison_memory() can encounter thp only when the thp is being
1437         * worked by memory_failure() and the page lock is not held yet.
1438         * In such case, we yield to memory_failure() and make unpoison fail.
1439         */
1440        if (!PageHuge(page) && PageTransHuge(page)) {
1441                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1442                                 pfn, &unpoison_rs);
1443                return 0;
1444        }
1445
1446        nr_pages = 1 << compound_order(page);
1447
1448        if (!get_hwpoison_page(p)) {
1449                /*
1450                 * Since HWPoisoned hugepage should have non-zero refcount,
1451                 * race between memory failure and unpoison seems to happen.
1452                 * In such case unpoison fails and memory failure runs
1453                 * to the end.
1454                 */
1455                if (PageHuge(page)) {
1456                        unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1457                                         pfn, &unpoison_rs);
1458                        return 0;
1459                }
1460                if (TestClearPageHWPoison(p))
1461                        num_poisoned_pages_dec();
1462                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463                                 pfn, &unpoison_rs);
1464                return 0;
1465        }
1466
1467        lock_page(page);
1468        /*
1469         * This test is racy because PG_hwpoison is set outside of page lock.
1470         * That's acceptable because that won't trigger kernel panic. Instead,
1471         * the PG_hwpoison page will be caught and isolated on the entrance to
1472         * the free buddy page pool.
1473         */
1474        if (TestClearPageHWPoison(page)) {
1475                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476                                 pfn, &unpoison_rs);
1477                num_poisoned_pages_sub(nr_pages);
1478                freeit = 1;
1479                if (PageHuge(page))
1480                        clear_page_hwpoison_huge_page(page);
1481        }
1482        unlock_page(page);
1483
1484        put_hwpoison_page(page);
1485        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1486                put_hwpoison_page(page);
1487
1488        return 0;
1489}
1490EXPORT_SYMBOL(unpoison_memory);
1491
1492static struct page *new_page(struct page *p, unsigned long private, int **x)
1493{
1494        int nid = page_to_nid(p);
1495        if (PageHuge(p))
1496                return alloc_huge_page_node(page_hstate(compound_head(p)),
1497                                                   nid);
1498        else
1499                return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1500}
1501
1502/*
1503 * Safely get reference count of an arbitrary page.
1504 * Returns 0 for a free page, -EIO for a zero refcount page
1505 * that is not free, and 1 for any other page type.
1506 * For 1 the page is returned with increased page count, otherwise not.
1507 */
1508static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1509{
1510        int ret;
1511
1512        if (flags & MF_COUNT_INCREASED)
1513                return 1;
1514
1515        /*
1516         * When the target page is a free hugepage, just remove it
1517         * from free hugepage list.
1518         */
1519        if (!get_hwpoison_page(p)) {
1520                if (PageHuge(p)) {
1521                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1522                        ret = 0;
1523                } else if (is_free_buddy_page(p)) {
1524                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1525                        ret = 0;
1526                } else {
1527                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1528                                __func__, pfn, p->flags);
1529                        ret = -EIO;
1530                }
1531        } else {
1532                /* Not a free page */
1533                ret = 1;
1534        }
1535        return ret;
1536}
1537
1538static int get_any_page(struct page *page, unsigned long pfn, int flags)
1539{
1540        int ret = __get_any_page(page, pfn, flags);
1541
1542        if (ret == 1 && !PageHuge(page) &&
1543            !PageLRU(page) && !__PageMovable(page)) {
1544                /*
1545                 * Try to free it.
1546                 */
1547                put_hwpoison_page(page);
1548                shake_page(page, 1);
1549
1550                /*
1551                 * Did it turn free?
1552                 */
1553                ret = __get_any_page(page, pfn, 0);
1554                if (ret == 1 && !PageLRU(page)) {
1555                        /* Drop page reference which is from __get_any_page() */
1556                        put_hwpoison_page(page);
1557                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1558                                pfn, page->flags, &page->flags);
1559                        return -EIO;
1560                }
1561        }
1562        return ret;
1563}
1564
1565static int soft_offline_huge_page(struct page *page, int flags)
1566{
1567        int ret;
1568        unsigned long pfn = page_to_pfn(page);
1569        struct page *hpage = compound_head(page);
1570        LIST_HEAD(pagelist);
1571
1572        /*
1573         * This double-check of PageHWPoison is to avoid the race with
1574         * memory_failure(). See also comment in __soft_offline_page().
1575         */
1576        lock_page(hpage);
1577        if (PageHWPoison(hpage)) {
1578                unlock_page(hpage);
1579                put_hwpoison_page(hpage);
1580                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1581                return -EBUSY;
1582        }
1583        unlock_page(hpage);
1584
1585        ret = isolate_huge_page(hpage, &pagelist);
1586        /*
1587         * get_any_page() and isolate_huge_page() takes a refcount each,
1588         * so need to drop one here.
1589         */
1590        put_hwpoison_page(hpage);
1591        if (!ret) {
1592                pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1593                return -EBUSY;
1594        }
1595
1596        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1597                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1598        if (ret) {
1599                pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1600                        pfn, ret, page->flags, &page->flags);
1601                if (!list_empty(&pagelist))
1602                        putback_movable_pages(&pagelist);
1603                if (ret > 0)
1604                        ret = -EIO;
1605        } else {
1606                /* overcommit hugetlb page will be freed to buddy */
1607                if (PageHuge(page)) {
1608                        set_page_hwpoison_huge_page(hpage);
1609                        dequeue_hwpoisoned_huge_page(hpage);
1610                        num_poisoned_pages_add(1 << compound_order(hpage));
1611                } else {
1612                        SetPageHWPoison(page);
1613                        num_poisoned_pages_inc();
1614                }
1615        }
1616        return ret;
1617}
1618
1619static int __soft_offline_page(struct page *page, int flags)
1620{
1621        int ret;
1622        unsigned long pfn = page_to_pfn(page);
1623
1624        /*
1625         * Check PageHWPoison again inside page lock because PageHWPoison
1626         * is set by memory_failure() outside page lock. Note that
1627         * memory_failure() also double-checks PageHWPoison inside page lock,
1628         * so there's no race between soft_offline_page() and memory_failure().
1629         */
1630        lock_page(page);
1631        wait_on_page_writeback(page);
1632        if (PageHWPoison(page)) {
1633                unlock_page(page);
1634                put_hwpoison_page(page);
1635                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1636                return -EBUSY;
1637        }
1638        /*
1639         * Try to invalidate first. This should work for
1640         * non dirty unmapped page cache pages.
1641         */
1642        ret = invalidate_inode_page(page);
1643        unlock_page(page);
1644        /*
1645         * RED-PEN would be better to keep it isolated here, but we
1646         * would need to fix isolation locking first.
1647         */
1648        if (ret == 1) {
1649                put_hwpoison_page(page);
1650                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1651                SetPageHWPoison(page);
1652                num_poisoned_pages_inc();
1653                return 0;
1654        }
1655
1656        /*
1657         * Simple invalidation didn't work.
1658         * Try to migrate to a new page instead. migrate.c
1659         * handles a large number of cases for us.
1660         */
1661        if (PageLRU(page))
1662                ret = isolate_lru_page(page);
1663        else
1664                ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1665        /*
1666         * Drop page reference which is came from get_any_page()
1667         * successful isolate_lru_page() already took another one.
1668         */
1669        put_hwpoison_page(page);
1670        if (!ret) {
1671                LIST_HEAD(pagelist);
1672                /*
1673                 * After isolated lru page, the PageLRU will be cleared,
1674                 * so use !__PageMovable instead for LRU page's mapping
1675                 * cannot have PAGE_MAPPING_MOVABLE.
1676                 */
1677                if (!__PageMovable(page))
1678                        inc_node_page_state(page, NR_ISOLATED_ANON +
1679                                                page_is_file_cache(page));
1680                list_add(&page->lru, &pagelist);
1681                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1682                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1683                if (ret) {
1684                        if (!list_empty(&pagelist))
1685                                putback_movable_pages(&pagelist);
1686
1687                        pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1688                                pfn, ret, page->flags, &page->flags);
1689                        if (ret > 0)
1690                                ret = -EIO;
1691                }
1692        } else {
1693                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1694                        pfn, ret, page_count(page), page->flags, &page->flags);
1695        }
1696        return ret;
1697}
1698
1699static int soft_offline_in_use_page(struct page *page, int flags)
1700{
1701        int ret;
1702        struct page *hpage = compound_head(page);
1703
1704        if (!PageHuge(page) && PageTransHuge(hpage)) {
1705                lock_page(hpage);
1706                if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1707                        unlock_page(hpage);
1708                        if (!PageAnon(hpage))
1709                                pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1710                        else
1711                                pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1712                        put_hwpoison_page(hpage);
1713                        return -EBUSY;
1714                }
1715                unlock_page(hpage);
1716                get_hwpoison_page(page);
1717                put_hwpoison_page(hpage);
1718        }
1719
1720        if (PageHuge(page))
1721                ret = soft_offline_huge_page(page, flags);
1722        else
1723                ret = __soft_offline_page(page, flags);
1724
1725        return ret;
1726}
1727
1728static void soft_offline_free_page(struct page *page)
1729{
1730        if (PageHuge(page)) {
1731                struct page *hpage = compound_head(page);
1732
1733                set_page_hwpoison_huge_page(hpage);
1734                if (!dequeue_hwpoisoned_huge_page(hpage))
1735                        num_poisoned_pages_add(1 << compound_order(hpage));
1736        } else {
1737                if (!TestSetPageHWPoison(page))
1738                        num_poisoned_pages_inc();
1739        }
1740}
1741
1742/**
1743 * soft_offline_page - Soft offline a page.
1744 * @page: page to offline
1745 * @flags: flags. Same as memory_failure().
1746 *
1747 * Returns 0 on success, otherwise negated errno.
1748 *
1749 * Soft offline a page, by migration or invalidation,
1750 * without killing anything. This is for the case when
1751 * a page is not corrupted yet (so it's still valid to access),
1752 * but has had a number of corrected errors and is better taken
1753 * out.
1754 *
1755 * The actual policy on when to do that is maintained by
1756 * user space.
1757 *
1758 * This should never impact any application or cause data loss,
1759 * however it might take some time.
1760 *
1761 * This is not a 100% solution for all memory, but tries to be
1762 * ``good enough'' for the majority of memory.
1763 */
1764int soft_offline_page(struct page *page, int flags)
1765{
1766        int ret;
1767        unsigned long pfn = page_to_pfn(page);
1768
1769        if (PageHWPoison(page)) {
1770                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1771                if (flags & MF_COUNT_INCREASED)
1772                        put_hwpoison_page(page);
1773                return -EBUSY;
1774        }
1775
1776        get_online_mems();
1777        ret = get_any_page(page, pfn, flags);
1778        put_online_mems();
1779
1780        if (ret > 0)
1781                ret = soft_offline_in_use_page(page, flags);
1782        else if (ret == 0)
1783                soft_offline_free_page(page);
1784
1785        return ret;
1786}
1787