linux/mm/mlock.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/mlock.c
   3 *
   4 *  (C) Copyright 1995 Linus Torvalds
   5 *  (C) Copyright 2002 Christoph Hellwig
   6 */
   7
   8#include <linux/capability.h>
   9#include <linux/mman.h>
  10#include <linux/mm.h>
  11#include <linux/sched/user.h>
  12#include <linux/swap.h>
  13#include <linux/swapops.h>
  14#include <linux/pagemap.h>
  15#include <linux/pagevec.h>
  16#include <linux/mempolicy.h>
  17#include <linux/syscalls.h>
  18#include <linux/sched.h>
  19#include <linux/export.h>
  20#include <linux/rmap.h>
  21#include <linux/mmzone.h>
  22#include <linux/hugetlb.h>
  23#include <linux/memcontrol.h>
  24#include <linux/mm_inline.h>
  25
  26#include "internal.h"
  27
  28bool can_do_mlock(void)
  29{
  30        if (rlimit(RLIMIT_MEMLOCK) != 0)
  31                return true;
  32        if (capable(CAP_IPC_LOCK))
  33                return true;
  34        return false;
  35}
  36EXPORT_SYMBOL(can_do_mlock);
  37
  38/*
  39 * Mlocked pages are marked with PageMlocked() flag for efficient testing
  40 * in vmscan and, possibly, the fault path; and to support semi-accurate
  41 * statistics.
  42 *
  43 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  44 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  45 * The unevictable list is an LRU sibling list to the [in]active lists.
  46 * PageUnevictable is set to indicate the unevictable state.
  47 *
  48 * When lazy mlocking via vmscan, it is important to ensure that the
  49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  50 * may have mlocked a page that is being munlocked. So lazy mlock must take
  51 * the mmap_sem for read, and verify that the vma really is locked
  52 * (see mm/rmap.c).
  53 */
  54
  55/*
  56 *  LRU accounting for clear_page_mlock()
  57 */
  58void clear_page_mlock(struct page *page)
  59{
  60        if (!TestClearPageMlocked(page))
  61                return;
  62
  63        mod_zone_page_state(page_zone(page), NR_MLOCK,
  64                            -hpage_nr_pages(page));
  65        count_vm_event(UNEVICTABLE_PGCLEARED);
  66        if (!isolate_lru_page(page)) {
  67                putback_lru_page(page);
  68        } else {
  69                /*
  70                 * We lost the race. the page already moved to evictable list.
  71                 */
  72                if (PageUnevictable(page))
  73                        count_vm_event(UNEVICTABLE_PGSTRANDED);
  74        }
  75}
  76
  77/*
  78 * Mark page as mlocked if not already.
  79 * If page on LRU, isolate and putback to move to unevictable list.
  80 */
  81void mlock_vma_page(struct page *page)
  82{
  83        /* Serialize with page migration */
  84        BUG_ON(!PageLocked(page));
  85
  86        VM_BUG_ON_PAGE(PageTail(page), page);
  87        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
  88
  89        if (!TestSetPageMlocked(page)) {
  90                mod_zone_page_state(page_zone(page), NR_MLOCK,
  91                                    hpage_nr_pages(page));
  92                count_vm_event(UNEVICTABLE_PGMLOCKED);
  93                if (!isolate_lru_page(page))
  94                        putback_lru_page(page);
  95        }
  96}
  97
  98/*
  99 * Isolate a page from LRU with optional get_page() pin.
 100 * Assumes lru_lock already held and page already pinned.
 101 */
 102static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
 103{
 104        if (PageLRU(page)) {
 105                struct lruvec *lruvec;
 106
 107                lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
 108                if (getpage)
 109                        get_page(page);
 110                ClearPageLRU(page);
 111                del_page_from_lru_list(page, lruvec, page_lru(page));
 112                return true;
 113        }
 114
 115        return false;
 116}
 117
 118/*
 119 * Finish munlock after successful page isolation
 120 *
 121 * Page must be locked. This is a wrapper for try_to_munlock()
 122 * and putback_lru_page() with munlock accounting.
 123 */
 124static void __munlock_isolated_page(struct page *page)
 125{
 126        /*
 127         * Optimization: if the page was mapped just once, that's our mapping
 128         * and we don't need to check all the other vmas.
 129         */
 130        if (page_mapcount(page) > 1)
 131                try_to_munlock(page);
 132
 133        /* Did try_to_unlock() succeed or punt? */
 134        if (!PageMlocked(page))
 135                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 136
 137        putback_lru_page(page);
 138}
 139
 140/*
 141 * Accounting for page isolation fail during munlock
 142 *
 143 * Performs accounting when page isolation fails in munlock. There is nothing
 144 * else to do because it means some other task has already removed the page
 145 * from the LRU. putback_lru_page() will take care of removing the page from
 146 * the unevictable list, if necessary. vmscan [page_referenced()] will move
 147 * the page back to the unevictable list if some other vma has it mlocked.
 148 */
 149static void __munlock_isolation_failed(struct page *page)
 150{
 151        if (PageUnevictable(page))
 152                __count_vm_event(UNEVICTABLE_PGSTRANDED);
 153        else
 154                __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 155}
 156
 157/**
 158 * munlock_vma_page - munlock a vma page
 159 * @page - page to be unlocked, either a normal page or THP page head
 160 *
 161 * returns the size of the page as a page mask (0 for normal page,
 162 *         HPAGE_PMD_NR - 1 for THP head page)
 163 *
 164 * called from munlock()/munmap() path with page supposedly on the LRU.
 165 * When we munlock a page, because the vma where we found the page is being
 166 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 167 * page locked so that we can leave it on the unevictable lru list and not
 168 * bother vmscan with it.  However, to walk the page's rmap list in
 169 * try_to_munlock() we must isolate the page from the LRU.  If some other
 170 * task has removed the page from the LRU, we won't be able to do that.
 171 * So we clear the PageMlocked as we might not get another chance.  If we
 172 * can't isolate the page, we leave it for putback_lru_page() and vmscan
 173 * [page_referenced()/try_to_unmap()] to deal with.
 174 */
 175unsigned int munlock_vma_page(struct page *page)
 176{
 177        int nr_pages;
 178        struct zone *zone = page_zone(page);
 179
 180        /* For try_to_munlock() and to serialize with page migration */
 181        BUG_ON(!PageLocked(page));
 182
 183        VM_BUG_ON_PAGE(PageTail(page), page);
 184
 185        /*
 186         * Serialize with any parallel __split_huge_page_refcount() which
 187         * might otherwise copy PageMlocked to part of the tail pages before
 188         * we clear it in the head page. It also stabilizes hpage_nr_pages().
 189         */
 190        spin_lock_irq(zone_lru_lock(zone));
 191
 192        if (!TestClearPageMlocked(page)) {
 193                /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
 194                nr_pages = 1;
 195                goto unlock_out;
 196        }
 197
 198        nr_pages = hpage_nr_pages(page);
 199        __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
 200
 201        if (__munlock_isolate_lru_page(page, true)) {
 202                spin_unlock_irq(zone_lru_lock(zone));
 203                __munlock_isolated_page(page);
 204                goto out;
 205        }
 206        __munlock_isolation_failed(page);
 207
 208unlock_out:
 209        spin_unlock_irq(zone_lru_lock(zone));
 210
 211out:
 212        return nr_pages - 1;
 213}
 214
 215/*
 216 * convert get_user_pages() return value to posix mlock() error
 217 */
 218static int __mlock_posix_error_return(long retval)
 219{
 220        if (retval == -EFAULT)
 221                retval = -ENOMEM;
 222        else if (retval == -ENOMEM)
 223                retval = -EAGAIN;
 224        return retval;
 225}
 226
 227/*
 228 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
 229 *
 230 * The fast path is available only for evictable pages with single mapping.
 231 * Then we can bypass the per-cpu pvec and get better performance.
 232 * when mapcount > 1 we need try_to_munlock() which can fail.
 233 * when !page_evictable(), we need the full redo logic of putback_lru_page to
 234 * avoid leaving evictable page in unevictable list.
 235 *
 236 * In case of success, @page is added to @pvec and @pgrescued is incremented
 237 * in case that the page was previously unevictable. @page is also unlocked.
 238 */
 239static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
 240                int *pgrescued)
 241{
 242        VM_BUG_ON_PAGE(PageLRU(page), page);
 243        VM_BUG_ON_PAGE(!PageLocked(page), page);
 244
 245        if (page_mapcount(page) <= 1 && page_evictable(page)) {
 246                pagevec_add(pvec, page);
 247                if (TestClearPageUnevictable(page))
 248                        (*pgrescued)++;
 249                unlock_page(page);
 250                return true;
 251        }
 252
 253        return false;
 254}
 255
 256/*
 257 * Putback multiple evictable pages to the LRU
 258 *
 259 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
 260 * the pages might have meanwhile become unevictable but that is OK.
 261 */
 262static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
 263{
 264        count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 265        /*
 266         *__pagevec_lru_add() calls release_pages() so we don't call
 267         * put_page() explicitly
 268         */
 269        __pagevec_lru_add(pvec);
 270        count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 271}
 272
 273/*
 274 * Munlock a batch of pages from the same zone
 275 *
 276 * The work is split to two main phases. First phase clears the Mlocked flag
 277 * and attempts to isolate the pages, all under a single zone lru lock.
 278 * The second phase finishes the munlock only for pages where isolation
 279 * succeeded.
 280 *
 281 * Note that the pagevec may be modified during the process.
 282 */
 283static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
 284{
 285        int i;
 286        int nr = pagevec_count(pvec);
 287        int delta_munlocked = -nr;
 288        struct pagevec pvec_putback;
 289        int pgrescued = 0;
 290
 291        pagevec_init(&pvec_putback, 0);
 292
 293        /* Phase 1: page isolation */
 294        spin_lock_irq(zone_lru_lock(zone));
 295        for (i = 0; i < nr; i++) {
 296                struct page *page = pvec->pages[i];
 297
 298                if (TestClearPageMlocked(page)) {
 299                        /*
 300                         * We already have pin from follow_page_mask()
 301                         * so we can spare the get_page() here.
 302                         */
 303                        if (__munlock_isolate_lru_page(page, false))
 304                                continue;
 305                        else
 306                                __munlock_isolation_failed(page);
 307                } else {
 308                        delta_munlocked++;
 309                }
 310
 311                /*
 312                 * We won't be munlocking this page in the next phase
 313                 * but we still need to release the follow_page_mask()
 314                 * pin. We cannot do it under lru_lock however. If it's
 315                 * the last pin, __page_cache_release() would deadlock.
 316                 */
 317                pagevec_add(&pvec_putback, pvec->pages[i]);
 318                pvec->pages[i] = NULL;
 319        }
 320        __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
 321        spin_unlock_irq(zone_lru_lock(zone));
 322
 323        /* Now we can release pins of pages that we are not munlocking */
 324        pagevec_release(&pvec_putback);
 325
 326        /* Phase 2: page munlock */
 327        for (i = 0; i < nr; i++) {
 328                struct page *page = pvec->pages[i];
 329
 330                if (page) {
 331                        lock_page(page);
 332                        if (!__putback_lru_fast_prepare(page, &pvec_putback,
 333                                        &pgrescued)) {
 334                                /*
 335                                 * Slow path. We don't want to lose the last
 336                                 * pin before unlock_page()
 337                                 */
 338                                get_page(page); /* for putback_lru_page() */
 339                                __munlock_isolated_page(page);
 340                                unlock_page(page);
 341                                put_page(page); /* from follow_page_mask() */
 342                        }
 343                }
 344        }
 345
 346        /*
 347         * Phase 3: page putback for pages that qualified for the fast path
 348         * This will also call put_page() to return pin from follow_page_mask()
 349         */
 350        if (pagevec_count(&pvec_putback))
 351                __putback_lru_fast(&pvec_putback, pgrescued);
 352}
 353
 354/*
 355 * Fill up pagevec for __munlock_pagevec using pte walk
 356 *
 357 * The function expects that the struct page corresponding to @start address is
 358 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
 359 *
 360 * The rest of @pvec is filled by subsequent pages within the same pmd and same
 361 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
 362 * pages also get pinned.
 363 *
 364 * Returns the address of the next page that should be scanned. This equals
 365 * @start + PAGE_SIZE when no page could be added by the pte walk.
 366 */
 367static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
 368                struct vm_area_struct *vma, int zoneid, unsigned long start,
 369                unsigned long end)
 370{
 371        pte_t *pte;
 372        spinlock_t *ptl;
 373
 374        /*
 375         * Initialize pte walk starting at the already pinned page where we
 376         * are sure that there is a pte, as it was pinned under the same
 377         * mmap_sem write op.
 378         */
 379        pte = get_locked_pte(vma->vm_mm, start, &ptl);
 380        /* Make sure we do not cross the page table boundary */
 381        end = pgd_addr_end(start, end);
 382        end = p4d_addr_end(start, end);
 383        end = pud_addr_end(start, end);
 384        end = pmd_addr_end(start, end);
 385
 386        /* The page next to the pinned page is the first we will try to get */
 387        start += PAGE_SIZE;
 388        while (start < end) {
 389                struct page *page = NULL;
 390                pte++;
 391                if (pte_present(*pte))
 392                        page = vm_normal_page(vma, start, *pte);
 393                /*
 394                 * Break if page could not be obtained or the page's node+zone does not
 395                 * match
 396                 */
 397                if (!page || page_zone_id(page) != zoneid)
 398                        break;
 399
 400                /*
 401                 * Do not use pagevec for PTE-mapped THP,
 402                 * munlock_vma_pages_range() will handle them.
 403                 */
 404                if (PageTransCompound(page))
 405                        break;
 406
 407                get_page(page);
 408                /*
 409                 * Increase the address that will be returned *before* the
 410                 * eventual break due to pvec becoming full by adding the page
 411                 */
 412                start += PAGE_SIZE;
 413                if (pagevec_add(pvec, page) == 0)
 414                        break;
 415        }
 416        pte_unmap_unlock(pte, ptl);
 417        return start;
 418}
 419
 420/*
 421 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 422 * @vma - vma containing range to be munlock()ed.
 423 * @start - start address in @vma of the range
 424 * @end - end of range in @vma.
 425 *
 426 *  For mremap(), munmap() and exit().
 427 *
 428 * Called with @vma VM_LOCKED.
 429 *
 430 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 431 * deal with this.
 432 *
 433 * We don't save and restore VM_LOCKED here because pages are
 434 * still on lru.  In unmap path, pages might be scanned by reclaim
 435 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 436 * free them.  This will result in freeing mlocked pages.
 437 */
 438void munlock_vma_pages_range(struct vm_area_struct *vma,
 439                             unsigned long start, unsigned long end)
 440{
 441        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 442
 443        while (start < end) {
 444                struct page *page;
 445                unsigned int page_mask = 0;
 446                unsigned long page_increm;
 447                struct pagevec pvec;
 448                struct zone *zone;
 449                int zoneid;
 450
 451                pagevec_init(&pvec, 0);
 452                /*
 453                 * Although FOLL_DUMP is intended for get_dump_page(),
 454                 * it just so happens that its special treatment of the
 455                 * ZERO_PAGE (returning an error instead of doing get_page)
 456                 * suits munlock very well (and if somehow an abnormal page
 457                 * has sneaked into the range, we won't oops here: great).
 458                 */
 459                page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
 460
 461                if (page && !IS_ERR(page)) {
 462                        if (PageTransTail(page)) {
 463                                VM_BUG_ON_PAGE(PageMlocked(page), page);
 464                                put_page(page); /* follow_page_mask() */
 465                        } else if (PageTransHuge(page)) {
 466                                lock_page(page);
 467                                /*
 468                                 * Any THP page found by follow_page_mask() may
 469                                 * have gotten split before reaching
 470                                 * munlock_vma_page(), so we need to compute
 471                                 * the page_mask here instead.
 472                                 */
 473                                page_mask = munlock_vma_page(page);
 474                                unlock_page(page);
 475                                put_page(page); /* follow_page_mask() */
 476                        } else {
 477                                /*
 478                                 * Non-huge pages are handled in batches via
 479                                 * pagevec. The pin from follow_page_mask()
 480                                 * prevents them from collapsing by THP.
 481                                 */
 482                                pagevec_add(&pvec, page);
 483                                zone = page_zone(page);
 484                                zoneid = page_zone_id(page);
 485
 486                                /*
 487                                 * Try to fill the rest of pagevec using fast
 488                                 * pte walk. This will also update start to
 489                                 * the next page to process. Then munlock the
 490                                 * pagevec.
 491                                 */
 492                                start = __munlock_pagevec_fill(&pvec, vma,
 493                                                zoneid, start, end);
 494                                __munlock_pagevec(&pvec, zone);
 495                                goto next;
 496                        }
 497                }
 498                page_increm = 1 + page_mask;
 499                start += page_increm * PAGE_SIZE;
 500next:
 501                cond_resched();
 502        }
 503}
 504
 505/*
 506 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 507 *
 508 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 509 * munlock is a no-op.  However, for some special vmas, we go ahead and
 510 * populate the ptes.
 511 *
 512 * For vmas that pass the filters, merge/split as appropriate.
 513 */
 514static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 515        unsigned long start, unsigned long end, vm_flags_t newflags)
 516{
 517        struct mm_struct *mm = vma->vm_mm;
 518        pgoff_t pgoff;
 519        int nr_pages;
 520        int ret = 0;
 521        int lock = !!(newflags & VM_LOCKED);
 522        vm_flags_t old_flags = vma->vm_flags;
 523
 524        if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
 525            is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
 526                /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
 527                goto out;
 528
 529        pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 530        *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 531                          vma->vm_file, pgoff, vma_policy(vma),
 532                          vma->vm_userfaultfd_ctx);
 533        if (*prev) {
 534                vma = *prev;
 535                goto success;
 536        }
 537
 538        if (start != vma->vm_start) {
 539                ret = split_vma(mm, vma, start, 1);
 540                if (ret)
 541                        goto out;
 542        }
 543
 544        if (end != vma->vm_end) {
 545                ret = split_vma(mm, vma, end, 0);
 546                if (ret)
 547                        goto out;
 548        }
 549
 550success:
 551        /*
 552         * Keep track of amount of locked VM.
 553         */
 554        nr_pages = (end - start) >> PAGE_SHIFT;
 555        if (!lock)
 556                nr_pages = -nr_pages;
 557        else if (old_flags & VM_LOCKED)
 558                nr_pages = 0;
 559        mm->locked_vm += nr_pages;
 560
 561        /*
 562         * vm_flags is protected by the mmap_sem held in write mode.
 563         * It's okay if try_to_unmap_one unmaps a page just after we
 564         * set VM_LOCKED, populate_vma_page_range will bring it back.
 565         */
 566
 567        if (lock)
 568                vma->vm_flags = newflags;
 569        else
 570                munlock_vma_pages_range(vma, start, end);
 571
 572out:
 573        *prev = vma;
 574        return ret;
 575}
 576
 577static int apply_vma_lock_flags(unsigned long start, size_t len,
 578                                vm_flags_t flags)
 579{
 580        unsigned long nstart, end, tmp;
 581        struct vm_area_struct * vma, * prev;
 582        int error;
 583
 584        VM_BUG_ON(offset_in_page(start));
 585        VM_BUG_ON(len != PAGE_ALIGN(len));
 586        end = start + len;
 587        if (end < start)
 588                return -EINVAL;
 589        if (end == start)
 590                return 0;
 591        vma = find_vma(current->mm, start);
 592        if (!vma || vma->vm_start > start)
 593                return -ENOMEM;
 594
 595        prev = vma->vm_prev;
 596        if (start > vma->vm_start)
 597                prev = vma;
 598
 599        for (nstart = start ; ; ) {
 600                vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 601
 602                newflags |= flags;
 603
 604                /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 605                tmp = vma->vm_end;
 606                if (tmp > end)
 607                        tmp = end;
 608                error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 609                if (error)
 610                        break;
 611                nstart = tmp;
 612                if (nstart < prev->vm_end)
 613                        nstart = prev->vm_end;
 614                if (nstart >= end)
 615                        break;
 616
 617                vma = prev->vm_next;
 618                if (!vma || vma->vm_start != nstart) {
 619                        error = -ENOMEM;
 620                        break;
 621                }
 622        }
 623        return error;
 624}
 625
 626/*
 627 * Go through vma areas and sum size of mlocked
 628 * vma pages, as return value.
 629 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
 630 * is also counted.
 631 * Return value: previously mlocked page counts
 632 */
 633static int count_mm_mlocked_page_nr(struct mm_struct *mm,
 634                unsigned long start, size_t len)
 635{
 636        struct vm_area_struct *vma;
 637        int count = 0;
 638
 639        if (mm == NULL)
 640                mm = current->mm;
 641
 642        vma = find_vma(mm, start);
 643        if (vma == NULL)
 644                vma = mm->mmap;
 645
 646        for (; vma ; vma = vma->vm_next) {
 647                if (start >= vma->vm_end)
 648                        continue;
 649                if (start + len <=  vma->vm_start)
 650                        break;
 651                if (vma->vm_flags & VM_LOCKED) {
 652                        if (start > vma->vm_start)
 653                                count -= (start - vma->vm_start);
 654                        if (start + len < vma->vm_end) {
 655                                count += start + len - vma->vm_start;
 656                                break;
 657                        }
 658                        count += vma->vm_end - vma->vm_start;
 659                }
 660        }
 661
 662        return count >> PAGE_SHIFT;
 663}
 664
 665static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 666{
 667        unsigned long locked;
 668        unsigned long lock_limit;
 669        int error = -ENOMEM;
 670
 671        if (!can_do_mlock())
 672                return -EPERM;
 673
 674        lru_add_drain_all();    /* flush pagevec */
 675
 676        len = PAGE_ALIGN(len + (offset_in_page(start)));
 677        start &= PAGE_MASK;
 678
 679        lock_limit = rlimit(RLIMIT_MEMLOCK);
 680        lock_limit >>= PAGE_SHIFT;
 681        locked = len >> PAGE_SHIFT;
 682
 683        if (down_write_killable(&current->mm->mmap_sem))
 684                return -EINTR;
 685
 686        locked += current->mm->locked_vm;
 687        if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
 688                /*
 689                 * It is possible that the regions requested intersect with
 690                 * previously mlocked areas, that part area in "mm->locked_vm"
 691                 * should not be counted to new mlock increment count. So check
 692                 * and adjust locked count if necessary.
 693                 */
 694                locked -= count_mm_mlocked_page_nr(current->mm,
 695                                start, len);
 696        }
 697
 698        /* check against resource limits */
 699        if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 700                error = apply_vma_lock_flags(start, len, flags);
 701
 702        up_write(&current->mm->mmap_sem);
 703        if (error)
 704                return error;
 705
 706        error = __mm_populate(start, len, 0);
 707        if (error)
 708                return __mlock_posix_error_return(error);
 709        return 0;
 710}
 711
 712SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 713{
 714        return do_mlock(start, len, VM_LOCKED);
 715}
 716
 717SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
 718{
 719        vm_flags_t vm_flags = VM_LOCKED;
 720
 721        if (flags & ~MLOCK_ONFAULT)
 722                return -EINVAL;
 723
 724        if (flags & MLOCK_ONFAULT)
 725                vm_flags |= VM_LOCKONFAULT;
 726
 727        return do_mlock(start, len, vm_flags);
 728}
 729
 730SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 731{
 732        int ret;
 733
 734        len = PAGE_ALIGN(len + (offset_in_page(start)));
 735        start &= PAGE_MASK;
 736
 737        if (down_write_killable(&current->mm->mmap_sem))
 738                return -EINTR;
 739        ret = apply_vma_lock_flags(start, len, 0);
 740        up_write(&current->mm->mmap_sem);
 741
 742        return ret;
 743}
 744
 745/*
 746 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
 747 * and translate into the appropriate modifications to mm->def_flags and/or the
 748 * flags for all current VMAs.
 749 *
 750 * There are a couple of subtleties with this.  If mlockall() is called multiple
 751 * times with different flags, the values do not necessarily stack.  If mlockall
 752 * is called once including the MCL_FUTURE flag and then a second time without
 753 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
 754 */
 755static int apply_mlockall_flags(int flags)
 756{
 757        struct vm_area_struct * vma, * prev = NULL;
 758        vm_flags_t to_add = 0;
 759
 760        current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
 761        if (flags & MCL_FUTURE) {
 762                current->mm->def_flags |= VM_LOCKED;
 763
 764                if (flags & MCL_ONFAULT)
 765                        current->mm->def_flags |= VM_LOCKONFAULT;
 766
 767                if (!(flags & MCL_CURRENT))
 768                        goto out;
 769        }
 770
 771        if (flags & MCL_CURRENT) {
 772                to_add |= VM_LOCKED;
 773                if (flags & MCL_ONFAULT)
 774                        to_add |= VM_LOCKONFAULT;
 775        }
 776
 777        for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 778                vm_flags_t newflags;
 779
 780                newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 781                newflags |= to_add;
 782
 783                /* Ignore errors */
 784                mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 785                cond_resched_rcu_qs();
 786        }
 787out:
 788        return 0;
 789}
 790
 791SYSCALL_DEFINE1(mlockall, int, flags)
 792{
 793        unsigned long lock_limit;
 794        int ret;
 795
 796        if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
 797                return -EINVAL;
 798
 799        if (!can_do_mlock())
 800                return -EPERM;
 801
 802        if (flags & MCL_CURRENT)
 803                lru_add_drain_all();    /* flush pagevec */
 804
 805        lock_limit = rlimit(RLIMIT_MEMLOCK);
 806        lock_limit >>= PAGE_SHIFT;
 807
 808        if (down_write_killable(&current->mm->mmap_sem))
 809                return -EINTR;
 810
 811        ret = -ENOMEM;
 812        if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 813            capable(CAP_IPC_LOCK))
 814                ret = apply_mlockall_flags(flags);
 815        up_write(&current->mm->mmap_sem);
 816        if (!ret && (flags & MCL_CURRENT))
 817                mm_populate(0, TASK_SIZE);
 818
 819        return ret;
 820}
 821
 822SYSCALL_DEFINE0(munlockall)
 823{
 824        int ret;
 825
 826        if (down_write_killable(&current->mm->mmap_sem))
 827                return -EINTR;
 828        ret = apply_mlockall_flags(0);
 829        up_write(&current->mm->mmap_sem);
 830        return ret;
 831}
 832
 833/*
 834 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 835 * shm segments) get accounted against the user_struct instead.
 836 */
 837static DEFINE_SPINLOCK(shmlock_user_lock);
 838
 839int user_shm_lock(size_t size, struct user_struct *user)
 840{
 841        unsigned long lock_limit, locked;
 842        int allowed = 0;
 843
 844        locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 845        lock_limit = rlimit(RLIMIT_MEMLOCK);
 846        if (lock_limit == RLIM_INFINITY)
 847                allowed = 1;
 848        lock_limit >>= PAGE_SHIFT;
 849        spin_lock(&shmlock_user_lock);
 850        if (!allowed &&
 851            locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 852                goto out;
 853        get_uid(user);
 854        user->locked_shm += locked;
 855        allowed = 1;
 856out:
 857        spin_unlock(&shmlock_user_lock);
 858        return allowed;
 859}
 860
 861void user_shm_unlock(size_t size, struct user_struct *user)
 862{
 863        spin_lock(&shmlock_user_lock);
 864        user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 865        spin_unlock(&shmlock_user_lock);
 866        free_uid(user);
 867}
 868