linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     mapping->tree_lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   mapping->tree_lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
  46 */
  47
  48#include <linux/mm.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/pagemap.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/slab.h>
  55#include <linux/init.h>
  56#include <linux/ksm.h>
  57#include <linux/rmap.h>
  58#include <linux/rcupdate.h>
  59#include <linux/export.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/migrate.h>
  63#include <linux/hugetlb.h>
  64#include <linux/backing-dev.h>
  65#include <linux/page_idle.h>
  66
  67#include <asm/tlbflush.h>
  68
  69#include <trace/events/tlb.h>
  70
  71#include "internal.h"
  72
  73static struct kmem_cache *anon_vma_cachep;
  74static struct kmem_cache *anon_vma_chain_cachep;
  75
  76static inline struct anon_vma *anon_vma_alloc(void)
  77{
  78        struct anon_vma *anon_vma;
  79
  80        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  81        if (anon_vma) {
  82                atomic_set(&anon_vma->refcount, 1);
  83                anon_vma->degree = 1;   /* Reference for first vma */
  84                anon_vma->parent = anon_vma;
  85                /*
  86                 * Initialise the anon_vma root to point to itself. If called
  87                 * from fork, the root will be reset to the parents anon_vma.
  88                 */
  89                anon_vma->root = anon_vma;
  90        }
  91
  92        return anon_vma;
  93}
  94
  95static inline void anon_vma_free(struct anon_vma *anon_vma)
  96{
  97        VM_BUG_ON(atomic_read(&anon_vma->refcount));
  98
  99        /*
 100         * Synchronize against page_lock_anon_vma_read() such that
 101         * we can safely hold the lock without the anon_vma getting
 102         * freed.
 103         *
 104         * Relies on the full mb implied by the atomic_dec_and_test() from
 105         * put_anon_vma() against the acquire barrier implied by
 106         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 107         *
 108         * page_lock_anon_vma_read()    VS      put_anon_vma()
 109         *   down_read_trylock()                  atomic_dec_and_test()
 110         *   LOCK                                 MB
 111         *   atomic_read()                        rwsem_is_locked()
 112         *
 113         * LOCK should suffice since the actual taking of the lock must
 114         * happen _before_ what follows.
 115         */
 116        might_sleep();
 117        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 118                anon_vma_lock_write(anon_vma);
 119                anon_vma_unlock_write(anon_vma);
 120        }
 121
 122        kmem_cache_free(anon_vma_cachep, anon_vma);
 123}
 124
 125static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 126{
 127        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 128}
 129
 130static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 131{
 132        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 133}
 134
 135static void anon_vma_chain_link(struct vm_area_struct *vma,
 136                                struct anon_vma_chain *avc,
 137                                struct anon_vma *anon_vma)
 138{
 139        avc->vma = vma;
 140        avc->anon_vma = anon_vma;
 141        list_add(&avc->same_vma, &vma->anon_vma_chain);
 142        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 143}
 144
 145/**
 146 * __anon_vma_prepare - attach an anon_vma to a memory region
 147 * @vma: the memory region in question
 148 *
 149 * This makes sure the memory mapping described by 'vma' has
 150 * an 'anon_vma' attached to it, so that we can associate the
 151 * anonymous pages mapped into it with that anon_vma.
 152 *
 153 * The common case will be that we already have one, which
 154 * is handled inline by anon_vma_prepare(). But if
 155 * not we either need to find an adjacent mapping that we
 156 * can re-use the anon_vma from (very common when the only
 157 * reason for splitting a vma has been mprotect()), or we
 158 * allocate a new one.
 159 *
 160 * Anon-vma allocations are very subtle, because we may have
 161 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 162 * and that may actually touch the spinlock even in the newly
 163 * allocated vma (it depends on RCU to make sure that the
 164 * anon_vma isn't actually destroyed).
 165 *
 166 * As a result, we need to do proper anon_vma locking even
 167 * for the new allocation. At the same time, we do not want
 168 * to do any locking for the common case of already having
 169 * an anon_vma.
 170 *
 171 * This must be called with the mmap_sem held for reading.
 172 */
 173int __anon_vma_prepare(struct vm_area_struct *vma)
 174{
 175        struct mm_struct *mm = vma->vm_mm;
 176        struct anon_vma *anon_vma, *allocated;
 177        struct anon_vma_chain *avc;
 178
 179        might_sleep();
 180
 181        avc = anon_vma_chain_alloc(GFP_KERNEL);
 182        if (!avc)
 183                goto out_enomem;
 184
 185        anon_vma = find_mergeable_anon_vma(vma);
 186        allocated = NULL;
 187        if (!anon_vma) {
 188                anon_vma = anon_vma_alloc();
 189                if (unlikely(!anon_vma))
 190                        goto out_enomem_free_avc;
 191                allocated = anon_vma;
 192        }
 193
 194        anon_vma_lock_write(anon_vma);
 195        /* page_table_lock to protect against threads */
 196        spin_lock(&mm->page_table_lock);
 197        if (likely(!vma->anon_vma)) {
 198                vma->anon_vma = anon_vma;
 199                anon_vma_chain_link(vma, avc, anon_vma);
 200                /* vma reference or self-parent link for new root */
 201                anon_vma->degree++;
 202                allocated = NULL;
 203                avc = NULL;
 204        }
 205        spin_unlock(&mm->page_table_lock);
 206        anon_vma_unlock_write(anon_vma);
 207
 208        if (unlikely(allocated))
 209                put_anon_vma(allocated);
 210        if (unlikely(avc))
 211                anon_vma_chain_free(avc);
 212
 213        return 0;
 214
 215 out_enomem_free_avc:
 216        anon_vma_chain_free(avc);
 217 out_enomem:
 218        return -ENOMEM;
 219}
 220
 221/*
 222 * This is a useful helper function for locking the anon_vma root as
 223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 224 * have the same vma.
 225 *
 226 * Such anon_vma's should have the same root, so you'd expect to see
 227 * just a single mutex_lock for the whole traversal.
 228 */
 229static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 230{
 231        struct anon_vma *new_root = anon_vma->root;
 232        if (new_root != root) {
 233                if (WARN_ON_ONCE(root))
 234                        up_write(&root->rwsem);
 235                root = new_root;
 236                down_write(&root->rwsem);
 237        }
 238        return root;
 239}
 240
 241static inline void unlock_anon_vma_root(struct anon_vma *root)
 242{
 243        if (root)
 244                up_write(&root->rwsem);
 245}
 246
 247/*
 248 * Attach the anon_vmas from src to dst.
 249 * Returns 0 on success, -ENOMEM on failure.
 250 *
 251 * If dst->anon_vma is NULL this function tries to find and reuse existing
 252 * anon_vma which has no vmas and only one child anon_vma. This prevents
 253 * degradation of anon_vma hierarchy to endless linear chain in case of
 254 * constantly forking task. On the other hand, an anon_vma with more than one
 255 * child isn't reused even if there was no alive vma, thus rmap walker has a
 256 * good chance of avoiding scanning the whole hierarchy when it searches where
 257 * page is mapped.
 258 */
 259int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 260{
 261        struct anon_vma_chain *avc, *pavc;
 262        struct anon_vma *root = NULL;
 263
 264        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 265                struct anon_vma *anon_vma;
 266
 267                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 268                if (unlikely(!avc)) {
 269                        unlock_anon_vma_root(root);
 270                        root = NULL;
 271                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 272                        if (!avc)
 273                                goto enomem_failure;
 274                }
 275                anon_vma = pavc->anon_vma;
 276                root = lock_anon_vma_root(root, anon_vma);
 277                anon_vma_chain_link(dst, avc, anon_vma);
 278
 279                /*
 280                 * Reuse existing anon_vma if its degree lower than two,
 281                 * that means it has no vma and only one anon_vma child.
 282                 *
 283                 * Do not chose parent anon_vma, otherwise first child
 284                 * will always reuse it. Root anon_vma is never reused:
 285                 * it has self-parent reference and at least one child.
 286                 */
 287                if (!dst->anon_vma && anon_vma != src->anon_vma &&
 288                                anon_vma->degree < 2)
 289                        dst->anon_vma = anon_vma;
 290        }
 291        if (dst->anon_vma)
 292                dst->anon_vma->degree++;
 293        unlock_anon_vma_root(root);
 294        return 0;
 295
 296 enomem_failure:
 297        /*
 298         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 299         * decremented in unlink_anon_vmas().
 300         * We can safely do this because callers of anon_vma_clone() don't care
 301         * about dst->anon_vma if anon_vma_clone() failed.
 302         */
 303        dst->anon_vma = NULL;
 304        unlink_anon_vmas(dst);
 305        return -ENOMEM;
 306}
 307
 308/*
 309 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 310 * the corresponding VMA in the parent process is attached to.
 311 * Returns 0 on success, non-zero on failure.
 312 */
 313int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 314{
 315        struct anon_vma_chain *avc;
 316        struct anon_vma *anon_vma;
 317        int error;
 318
 319        /* Don't bother if the parent process has no anon_vma here. */
 320        if (!pvma->anon_vma)
 321                return 0;
 322
 323        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 324        vma->anon_vma = NULL;
 325
 326        /*
 327         * First, attach the new VMA to the parent VMA's anon_vmas,
 328         * so rmap can find non-COWed pages in child processes.
 329         */
 330        error = anon_vma_clone(vma, pvma);
 331        if (error)
 332                return error;
 333
 334        /* An existing anon_vma has been reused, all done then. */
 335        if (vma->anon_vma)
 336                return 0;
 337
 338        /* Then add our own anon_vma. */
 339        anon_vma = anon_vma_alloc();
 340        if (!anon_vma)
 341                goto out_error;
 342        avc = anon_vma_chain_alloc(GFP_KERNEL);
 343        if (!avc)
 344                goto out_error_free_anon_vma;
 345
 346        /*
 347         * The root anon_vma's spinlock is the lock actually used when we
 348         * lock any of the anon_vmas in this anon_vma tree.
 349         */
 350        anon_vma->root = pvma->anon_vma->root;
 351        anon_vma->parent = pvma->anon_vma;
 352        /*
 353         * With refcounts, an anon_vma can stay around longer than the
 354         * process it belongs to. The root anon_vma needs to be pinned until
 355         * this anon_vma is freed, because the lock lives in the root.
 356         */
 357        get_anon_vma(anon_vma->root);
 358        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 359        vma->anon_vma = anon_vma;
 360        anon_vma_lock_write(anon_vma);
 361        anon_vma_chain_link(vma, avc, anon_vma);
 362        anon_vma->parent->degree++;
 363        anon_vma_unlock_write(anon_vma);
 364
 365        return 0;
 366
 367 out_error_free_anon_vma:
 368        put_anon_vma(anon_vma);
 369 out_error:
 370        unlink_anon_vmas(vma);
 371        return -ENOMEM;
 372}
 373
 374void unlink_anon_vmas(struct vm_area_struct *vma)
 375{
 376        struct anon_vma_chain *avc, *next;
 377        struct anon_vma *root = NULL;
 378
 379        /*
 380         * Unlink each anon_vma chained to the VMA.  This list is ordered
 381         * from newest to oldest, ensuring the root anon_vma gets freed last.
 382         */
 383        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 384                struct anon_vma *anon_vma = avc->anon_vma;
 385
 386                root = lock_anon_vma_root(root, anon_vma);
 387                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 388
 389                /*
 390                 * Leave empty anon_vmas on the list - we'll need
 391                 * to free them outside the lock.
 392                 */
 393                if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
 394                        anon_vma->parent->degree--;
 395                        continue;
 396                }
 397
 398                list_del(&avc->same_vma);
 399                anon_vma_chain_free(avc);
 400        }
 401        if (vma->anon_vma)
 402                vma->anon_vma->degree--;
 403        unlock_anon_vma_root(root);
 404
 405        /*
 406         * Iterate the list once more, it now only contains empty and unlinked
 407         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 408         * needing to write-acquire the anon_vma->root->rwsem.
 409         */
 410        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 411                struct anon_vma *anon_vma = avc->anon_vma;
 412
 413                VM_WARN_ON(anon_vma->degree);
 414                put_anon_vma(anon_vma);
 415
 416                list_del(&avc->same_vma);
 417                anon_vma_chain_free(avc);
 418        }
 419}
 420
 421static void anon_vma_ctor(void *data)
 422{
 423        struct anon_vma *anon_vma = data;
 424
 425        init_rwsem(&anon_vma->rwsem);
 426        atomic_set(&anon_vma->refcount, 0);
 427        anon_vma->rb_root = RB_ROOT;
 428}
 429
 430void __init anon_vma_init(void)
 431{
 432        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 433                        0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 434                        anon_vma_ctor);
 435        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 436                        SLAB_PANIC|SLAB_ACCOUNT);
 437}
 438
 439/*
 440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 441 *
 442 * Since there is no serialization what so ever against page_remove_rmap()
 443 * the best this function can do is return a locked anon_vma that might
 444 * have been relevant to this page.
 445 *
 446 * The page might have been remapped to a different anon_vma or the anon_vma
 447 * returned may already be freed (and even reused).
 448 *
 449 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 451 * ensure that any anon_vma obtained from the page will still be valid for as
 452 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 453 *
 454 * All users of this function must be very careful when walking the anon_vma
 455 * chain and verify that the page in question is indeed mapped in it
 456 * [ something equivalent to page_mapped_in_vma() ].
 457 *
 458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 459 * that the anon_vma pointer from page->mapping is valid if there is a
 460 * mapcount, we can dereference the anon_vma after observing those.
 461 */
 462struct anon_vma *page_get_anon_vma(struct page *page)
 463{
 464        struct anon_vma *anon_vma = NULL;
 465        unsigned long anon_mapping;
 466
 467        rcu_read_lock();
 468        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 469        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 470                goto out;
 471        if (!page_mapped(page))
 472                goto out;
 473
 474        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 475        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 476                anon_vma = NULL;
 477                goto out;
 478        }
 479
 480        /*
 481         * If this page is still mapped, then its anon_vma cannot have been
 482         * freed.  But if it has been unmapped, we have no security against the
 483         * anon_vma structure being freed and reused (for another anon_vma:
 484         * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 485         * above cannot corrupt).
 486         */
 487        if (!page_mapped(page)) {
 488                rcu_read_unlock();
 489                put_anon_vma(anon_vma);
 490                return NULL;
 491        }
 492out:
 493        rcu_read_unlock();
 494
 495        return anon_vma;
 496}
 497
 498/*
 499 * Similar to page_get_anon_vma() except it locks the anon_vma.
 500 *
 501 * Its a little more complex as it tries to keep the fast path to a single
 502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 503 * reference like with page_get_anon_vma() and then block on the mutex.
 504 */
 505struct anon_vma *page_lock_anon_vma_read(struct page *page)
 506{
 507        struct anon_vma *anon_vma = NULL;
 508        struct anon_vma *root_anon_vma;
 509        unsigned long anon_mapping;
 510
 511        rcu_read_lock();
 512        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 513        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 514                goto out;
 515        if (!page_mapped(page))
 516                goto out;
 517
 518        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 519        root_anon_vma = READ_ONCE(anon_vma->root);
 520        if (down_read_trylock(&root_anon_vma->rwsem)) {
 521                /*
 522                 * If the page is still mapped, then this anon_vma is still
 523                 * its anon_vma, and holding the mutex ensures that it will
 524                 * not go away, see anon_vma_free().
 525                 */
 526                if (!page_mapped(page)) {
 527                        up_read(&root_anon_vma->rwsem);
 528                        anon_vma = NULL;
 529                }
 530                goto out;
 531        }
 532
 533        /* trylock failed, we got to sleep */
 534        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 535                anon_vma = NULL;
 536                goto out;
 537        }
 538
 539        if (!page_mapped(page)) {
 540                rcu_read_unlock();
 541                put_anon_vma(anon_vma);
 542                return NULL;
 543        }
 544
 545        /* we pinned the anon_vma, its safe to sleep */
 546        rcu_read_unlock();
 547        anon_vma_lock_read(anon_vma);
 548
 549        if (atomic_dec_and_test(&anon_vma->refcount)) {
 550                /*
 551                 * Oops, we held the last refcount, release the lock
 552                 * and bail -- can't simply use put_anon_vma() because
 553                 * we'll deadlock on the anon_vma_lock_write() recursion.
 554                 */
 555                anon_vma_unlock_read(anon_vma);
 556                __put_anon_vma(anon_vma);
 557                anon_vma = NULL;
 558        }
 559
 560        return anon_vma;
 561
 562out:
 563        rcu_read_unlock();
 564        return anon_vma;
 565}
 566
 567void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 568{
 569        anon_vma_unlock_read(anon_vma);
 570}
 571
 572#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 573/*
 574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 575 * important if a PTE was dirty when it was unmapped that it's flushed
 576 * before any IO is initiated on the page to prevent lost writes. Similarly,
 577 * it must be flushed before freeing to prevent data leakage.
 578 */
 579void try_to_unmap_flush(void)
 580{
 581        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 582        int cpu;
 583
 584        if (!tlb_ubc->flush_required)
 585                return;
 586
 587        cpu = get_cpu();
 588
 589        if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
 590                count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 591                local_flush_tlb();
 592                trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
 593        }
 594
 595        if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
 596                flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
 597        cpumask_clear(&tlb_ubc->cpumask);
 598        tlb_ubc->flush_required = false;
 599        tlb_ubc->writable = false;
 600        put_cpu();
 601}
 602
 603/* Flush iff there are potentially writable TLB entries that can race with IO */
 604void try_to_unmap_flush_dirty(void)
 605{
 606        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 607
 608        if (tlb_ubc->writable)
 609                try_to_unmap_flush();
 610}
 611
 612static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 613{
 614        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 615
 616        cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
 617        tlb_ubc->flush_required = true;
 618
 619        /*
 620         * If the PTE was dirty then it's best to assume it's writable. The
 621         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 622         * before the page is queued for IO.
 623         */
 624        if (writable)
 625                tlb_ubc->writable = true;
 626}
 627
 628/*
 629 * Returns true if the TLB flush should be deferred to the end of a batch of
 630 * unmap operations to reduce IPIs.
 631 */
 632static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 633{
 634        bool should_defer = false;
 635
 636        if (!(flags & TTU_BATCH_FLUSH))
 637                return false;
 638
 639        /* If remote CPUs need to be flushed then defer batch the flush */
 640        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 641                should_defer = true;
 642        put_cpu();
 643
 644        return should_defer;
 645}
 646#else
 647static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 648{
 649}
 650
 651static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 652{
 653        return false;
 654}
 655#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 656
 657/*
 658 * At what user virtual address is page expected in vma?
 659 * Caller should check the page is actually part of the vma.
 660 */
 661unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 662{
 663        unsigned long address;
 664        if (PageAnon(page)) {
 665                struct anon_vma *page__anon_vma = page_anon_vma(page);
 666                /*
 667                 * Note: swapoff's unuse_vma() is more efficient with this
 668                 * check, and needs it to match anon_vma when KSM is active.
 669                 */
 670                if (!vma->anon_vma || !page__anon_vma ||
 671                    vma->anon_vma->root != page__anon_vma->root)
 672                        return -EFAULT;
 673        } else if (page->mapping) {
 674                if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 675                        return -EFAULT;
 676        } else
 677                return -EFAULT;
 678        address = __vma_address(page, vma);
 679        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 680                return -EFAULT;
 681        return address;
 682}
 683
 684pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 685{
 686        pgd_t *pgd;
 687        p4d_t *p4d;
 688        pud_t *pud;
 689        pmd_t *pmd = NULL;
 690        pmd_t pmde;
 691
 692        pgd = pgd_offset(mm, address);
 693        if (!pgd_present(*pgd))
 694                goto out;
 695
 696        p4d = p4d_offset(pgd, address);
 697        if (!p4d_present(*p4d))
 698                goto out;
 699
 700        pud = pud_offset(p4d, address);
 701        if (!pud_present(*pud))
 702                goto out;
 703
 704        pmd = pmd_offset(pud, address);
 705        /*
 706         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 707         * without holding anon_vma lock for write.  So when looking for a
 708         * genuine pmde (in which to find pte), test present and !THP together.
 709         */
 710        pmde = *pmd;
 711        barrier();
 712        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 713                pmd = NULL;
 714out:
 715        return pmd;
 716}
 717
 718struct page_referenced_arg {
 719        int mapcount;
 720        int referenced;
 721        unsigned long vm_flags;
 722        struct mem_cgroup *memcg;
 723};
 724/*
 725 * arg: page_referenced_arg will be passed
 726 */
 727static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 728                        unsigned long address, void *arg)
 729{
 730        struct page_referenced_arg *pra = arg;
 731        struct page_vma_mapped_walk pvmw = {
 732                .page = page,
 733                .vma = vma,
 734                .address = address,
 735        };
 736        int referenced = 0;
 737
 738        while (page_vma_mapped_walk(&pvmw)) {
 739                address = pvmw.address;
 740
 741                if (vma->vm_flags & VM_LOCKED) {
 742                        page_vma_mapped_walk_done(&pvmw);
 743                        pra->vm_flags |= VM_LOCKED;
 744                        return false; /* To break the loop */
 745                }
 746
 747                if (pvmw.pte) {
 748                        if (ptep_clear_flush_young_notify(vma, address,
 749                                                pvmw.pte)) {
 750                                /*
 751                                 * Don't treat a reference through
 752                                 * a sequentially read mapping as such.
 753                                 * If the page has been used in another mapping,
 754                                 * we will catch it; if this other mapping is
 755                                 * already gone, the unmap path will have set
 756                                 * PG_referenced or activated the page.
 757                                 */
 758                                if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 759                                        referenced++;
 760                        }
 761                } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 762                        if (pmdp_clear_flush_young_notify(vma, address,
 763                                                pvmw.pmd))
 764                                referenced++;
 765                } else {
 766                        /* unexpected pmd-mapped page? */
 767                        WARN_ON_ONCE(1);
 768                }
 769
 770                pra->mapcount--;
 771        }
 772
 773        if (referenced)
 774                clear_page_idle(page);
 775        if (test_and_clear_page_young(page))
 776                referenced++;
 777
 778        if (referenced) {
 779                pra->referenced++;
 780                pra->vm_flags |= vma->vm_flags;
 781        }
 782
 783        if (!pra->mapcount)
 784                return false; /* To break the loop */
 785
 786        return true;
 787}
 788
 789static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 790{
 791        struct page_referenced_arg *pra = arg;
 792        struct mem_cgroup *memcg = pra->memcg;
 793
 794        if (!mm_match_cgroup(vma->vm_mm, memcg))
 795                return true;
 796
 797        return false;
 798}
 799
 800/**
 801 * page_referenced - test if the page was referenced
 802 * @page: the page to test
 803 * @is_locked: caller holds lock on the page
 804 * @memcg: target memory cgroup
 805 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 806 *
 807 * Quick test_and_clear_referenced for all mappings to a page,
 808 * returns the number of ptes which referenced the page.
 809 */
 810int page_referenced(struct page *page,
 811                    int is_locked,
 812                    struct mem_cgroup *memcg,
 813                    unsigned long *vm_flags)
 814{
 815        int we_locked = 0;
 816        struct page_referenced_arg pra = {
 817                .mapcount = total_mapcount(page),
 818                .memcg = memcg,
 819        };
 820        struct rmap_walk_control rwc = {
 821                .rmap_one = page_referenced_one,
 822                .arg = (void *)&pra,
 823                .anon_lock = page_lock_anon_vma_read,
 824        };
 825
 826        *vm_flags = 0;
 827        if (!page_mapped(page))
 828                return 0;
 829
 830        if (!page_rmapping(page))
 831                return 0;
 832
 833        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 834                we_locked = trylock_page(page);
 835                if (!we_locked)
 836                        return 1;
 837        }
 838
 839        /*
 840         * If we are reclaiming on behalf of a cgroup, skip
 841         * counting on behalf of references from different
 842         * cgroups
 843         */
 844        if (memcg) {
 845                rwc.invalid_vma = invalid_page_referenced_vma;
 846        }
 847
 848        rmap_walk(page, &rwc);
 849        *vm_flags = pra.vm_flags;
 850
 851        if (we_locked)
 852                unlock_page(page);
 853
 854        return pra.referenced;
 855}
 856
 857static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 858                            unsigned long address, void *arg)
 859{
 860        struct page_vma_mapped_walk pvmw = {
 861                .page = page,
 862                .vma = vma,
 863                .address = address,
 864                .flags = PVMW_SYNC,
 865        };
 866        int *cleaned = arg;
 867
 868        while (page_vma_mapped_walk(&pvmw)) {
 869                int ret = 0;
 870                address = pvmw.address;
 871                if (pvmw.pte) {
 872                        pte_t entry;
 873                        pte_t *pte = pvmw.pte;
 874
 875                        if (!pte_dirty(*pte) && !pte_write(*pte))
 876                                continue;
 877
 878                        flush_cache_page(vma, address, pte_pfn(*pte));
 879                        entry = ptep_clear_flush(vma, address, pte);
 880                        entry = pte_wrprotect(entry);
 881                        entry = pte_mkclean(entry);
 882                        set_pte_at(vma->vm_mm, address, pte, entry);
 883                        ret = 1;
 884                } else {
 885#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 886                        pmd_t *pmd = pvmw.pmd;
 887                        pmd_t entry;
 888
 889                        if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 890                                continue;
 891
 892                        flush_cache_page(vma, address, page_to_pfn(page));
 893                        entry = pmdp_huge_clear_flush(vma, address, pmd);
 894                        entry = pmd_wrprotect(entry);
 895                        entry = pmd_mkclean(entry);
 896                        set_pmd_at(vma->vm_mm, address, pmd, entry);
 897                        ret = 1;
 898#else
 899                        /* unexpected pmd-mapped page? */
 900                        WARN_ON_ONCE(1);
 901#endif
 902                }
 903
 904                if (ret) {
 905                        mmu_notifier_invalidate_page(vma->vm_mm, address);
 906                        (*cleaned)++;
 907                }
 908        }
 909
 910        return true;
 911}
 912
 913static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 914{
 915        if (vma->vm_flags & VM_SHARED)
 916                return false;
 917
 918        return true;
 919}
 920
 921int page_mkclean(struct page *page)
 922{
 923        int cleaned = 0;
 924        struct address_space *mapping;
 925        struct rmap_walk_control rwc = {
 926                .arg = (void *)&cleaned,
 927                .rmap_one = page_mkclean_one,
 928                .invalid_vma = invalid_mkclean_vma,
 929        };
 930
 931        BUG_ON(!PageLocked(page));
 932
 933        if (!page_mapped(page))
 934                return 0;
 935
 936        mapping = page_mapping(page);
 937        if (!mapping)
 938                return 0;
 939
 940        rmap_walk(page, &rwc);
 941
 942        return cleaned;
 943}
 944EXPORT_SYMBOL_GPL(page_mkclean);
 945
 946/**
 947 * page_move_anon_rmap - move a page to our anon_vma
 948 * @page:       the page to move to our anon_vma
 949 * @vma:        the vma the page belongs to
 950 *
 951 * When a page belongs exclusively to one process after a COW event,
 952 * that page can be moved into the anon_vma that belongs to just that
 953 * process, so the rmap code will not search the parent or sibling
 954 * processes.
 955 */
 956void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
 957{
 958        struct anon_vma *anon_vma = vma->anon_vma;
 959
 960        page = compound_head(page);
 961
 962        VM_BUG_ON_PAGE(!PageLocked(page), page);
 963        VM_BUG_ON_VMA(!anon_vma, vma);
 964
 965        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 966        /*
 967         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
 968         * simultaneously, so a concurrent reader (eg page_referenced()'s
 969         * PageAnon()) will not see one without the other.
 970         */
 971        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
 972}
 973
 974/**
 975 * __page_set_anon_rmap - set up new anonymous rmap
 976 * @page:       Page to add to rmap     
 977 * @vma:        VM area to add page to.
 978 * @address:    User virtual address of the mapping     
 979 * @exclusive:  the page is exclusively owned by the current process
 980 */
 981static void __page_set_anon_rmap(struct page *page,
 982        struct vm_area_struct *vma, unsigned long address, int exclusive)
 983{
 984        struct anon_vma *anon_vma = vma->anon_vma;
 985
 986        BUG_ON(!anon_vma);
 987
 988        if (PageAnon(page))
 989                return;
 990
 991        /*
 992         * If the page isn't exclusively mapped into this vma,
 993         * we must use the _oldest_ possible anon_vma for the
 994         * page mapping!
 995         */
 996        if (!exclusive)
 997                anon_vma = anon_vma->root;
 998
 999        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1000        page->mapping = (struct address_space *) anon_vma;
1001        page->index = linear_page_index(vma, address);
1002}
1003
1004/**
1005 * __page_check_anon_rmap - sanity check anonymous rmap addition
1006 * @page:       the page to add the mapping to
1007 * @vma:        the vm area in which the mapping is added
1008 * @address:    the user virtual address mapped
1009 */
1010static void __page_check_anon_rmap(struct page *page,
1011        struct vm_area_struct *vma, unsigned long address)
1012{
1013#ifdef CONFIG_DEBUG_VM
1014        /*
1015         * The page's anon-rmap details (mapping and index) are guaranteed to
1016         * be set up correctly at this point.
1017         *
1018         * We have exclusion against page_add_anon_rmap because the caller
1019         * always holds the page locked, except if called from page_dup_rmap,
1020         * in which case the page is already known to be setup.
1021         *
1022         * We have exclusion against page_add_new_anon_rmap because those pages
1023         * are initially only visible via the pagetables, and the pte is locked
1024         * over the call to page_add_new_anon_rmap.
1025         */
1026        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1027        BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1028#endif
1029}
1030
1031/**
1032 * page_add_anon_rmap - add pte mapping to an anonymous page
1033 * @page:       the page to add the mapping to
1034 * @vma:        the vm area in which the mapping is added
1035 * @address:    the user virtual address mapped
1036 * @compound:   charge the page as compound or small page
1037 *
1038 * The caller needs to hold the pte lock, and the page must be locked in
1039 * the anon_vma case: to serialize mapping,index checking after setting,
1040 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1041 * (but PageKsm is never downgraded to PageAnon).
1042 */
1043void page_add_anon_rmap(struct page *page,
1044        struct vm_area_struct *vma, unsigned long address, bool compound)
1045{
1046        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1047}
1048
1049/*
1050 * Special version of the above for do_swap_page, which often runs
1051 * into pages that are exclusively owned by the current process.
1052 * Everybody else should continue to use page_add_anon_rmap above.
1053 */
1054void do_page_add_anon_rmap(struct page *page,
1055        struct vm_area_struct *vma, unsigned long address, int flags)
1056{
1057        bool compound = flags & RMAP_COMPOUND;
1058        bool first;
1059
1060        if (compound) {
1061                atomic_t *mapcount;
1062                VM_BUG_ON_PAGE(!PageLocked(page), page);
1063                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1064                mapcount = compound_mapcount_ptr(page);
1065                first = atomic_inc_and_test(mapcount);
1066        } else {
1067                first = atomic_inc_and_test(&page->_mapcount);
1068        }
1069
1070        if (first) {
1071                int nr = compound ? hpage_nr_pages(page) : 1;
1072                /*
1073                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1074                 * these counters are not modified in interrupt context, and
1075                 * pte lock(a spinlock) is held, which implies preemption
1076                 * disabled.
1077                 */
1078                if (compound)
1079                        __inc_node_page_state(page, NR_ANON_THPS);
1080                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1081        }
1082        if (unlikely(PageKsm(page)))
1083                return;
1084
1085        VM_BUG_ON_PAGE(!PageLocked(page), page);
1086
1087        /* address might be in next vma when migration races vma_adjust */
1088        if (first)
1089                __page_set_anon_rmap(page, vma, address,
1090                                flags & RMAP_EXCLUSIVE);
1091        else
1092                __page_check_anon_rmap(page, vma, address);
1093}
1094
1095/**
1096 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1097 * @page:       the page to add the mapping to
1098 * @vma:        the vm area in which the mapping is added
1099 * @address:    the user virtual address mapped
1100 * @compound:   charge the page as compound or small page
1101 *
1102 * Same as page_add_anon_rmap but must only be called on *new* pages.
1103 * This means the inc-and-test can be bypassed.
1104 * Page does not have to be locked.
1105 */
1106void page_add_new_anon_rmap(struct page *page,
1107        struct vm_area_struct *vma, unsigned long address, bool compound)
1108{
1109        int nr = compound ? hpage_nr_pages(page) : 1;
1110
1111        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1112        __SetPageSwapBacked(page);
1113        if (compound) {
1114                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1115                /* increment count (starts at -1) */
1116                atomic_set(compound_mapcount_ptr(page), 0);
1117                __inc_node_page_state(page, NR_ANON_THPS);
1118        } else {
1119                /* Anon THP always mapped first with PMD */
1120                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1121                /* increment count (starts at -1) */
1122                atomic_set(&page->_mapcount, 0);
1123        }
1124        __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1125        __page_set_anon_rmap(page, vma, address, 1);
1126}
1127
1128/**
1129 * page_add_file_rmap - add pte mapping to a file page
1130 * @page: the page to add the mapping to
1131 *
1132 * The caller needs to hold the pte lock.
1133 */
1134void page_add_file_rmap(struct page *page, bool compound)
1135{
1136        int i, nr = 1;
1137
1138        VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1139        lock_page_memcg(page);
1140        if (compound && PageTransHuge(page)) {
1141                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1142                        if (atomic_inc_and_test(&page[i]._mapcount))
1143                                nr++;
1144                }
1145                if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1146                        goto out;
1147                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1148                __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1149        } else {
1150                if (PageTransCompound(page) && page_mapping(page)) {
1151                        VM_WARN_ON_ONCE(!PageLocked(page));
1152
1153                        SetPageDoubleMap(compound_head(page));
1154                        if (PageMlocked(page))
1155                                clear_page_mlock(compound_head(page));
1156                }
1157                if (!atomic_inc_and_test(&page->_mapcount))
1158                        goto out;
1159        }
1160        __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1161        mod_memcg_page_state(page, NR_FILE_MAPPED, nr);
1162out:
1163        unlock_page_memcg(page);
1164}
1165
1166static void page_remove_file_rmap(struct page *page, bool compound)
1167{
1168        int i, nr = 1;
1169
1170        VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1171        lock_page_memcg(page);
1172
1173        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1174        if (unlikely(PageHuge(page))) {
1175                /* hugetlb pages are always mapped with pmds */
1176                atomic_dec(compound_mapcount_ptr(page));
1177                goto out;
1178        }
1179
1180        /* page still mapped by someone else? */
1181        if (compound && PageTransHuge(page)) {
1182                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1183                        if (atomic_add_negative(-1, &page[i]._mapcount))
1184                                nr++;
1185                }
1186                if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1187                        goto out;
1188                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1189                __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1190        } else {
1191                if (!atomic_add_negative(-1, &page->_mapcount))
1192                        goto out;
1193        }
1194
1195        /*
1196         * We use the irq-unsafe __{inc|mod}_zone_page_state because
1197         * these counters are not modified in interrupt context, and
1198         * pte lock(a spinlock) is held, which implies preemption disabled.
1199         */
1200        __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1201        mod_memcg_page_state(page, NR_FILE_MAPPED, -nr);
1202
1203        if (unlikely(PageMlocked(page)))
1204                clear_page_mlock(page);
1205out:
1206        unlock_page_memcg(page);
1207}
1208
1209static void page_remove_anon_compound_rmap(struct page *page)
1210{
1211        int i, nr;
1212
1213        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1214                return;
1215
1216        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1217        if (unlikely(PageHuge(page)))
1218                return;
1219
1220        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1221                return;
1222
1223        __dec_node_page_state(page, NR_ANON_THPS);
1224
1225        if (TestClearPageDoubleMap(page)) {
1226                /*
1227                 * Subpages can be mapped with PTEs too. Check how many of
1228                 * themi are still mapped.
1229                 */
1230                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1231                        if (atomic_add_negative(-1, &page[i]._mapcount))
1232                                nr++;
1233                }
1234        } else {
1235                nr = HPAGE_PMD_NR;
1236        }
1237
1238        if (unlikely(PageMlocked(page)))
1239                clear_page_mlock(page);
1240
1241        if (nr) {
1242                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1243                deferred_split_huge_page(page);
1244        }
1245}
1246
1247/**
1248 * page_remove_rmap - take down pte mapping from a page
1249 * @page:       page to remove mapping from
1250 * @compound:   uncharge the page as compound or small page
1251 *
1252 * The caller needs to hold the pte lock.
1253 */
1254void page_remove_rmap(struct page *page, bool compound)
1255{
1256        if (!PageAnon(page))
1257                return page_remove_file_rmap(page, compound);
1258
1259        if (compound)
1260                return page_remove_anon_compound_rmap(page);
1261
1262        /* page still mapped by someone else? */
1263        if (!atomic_add_negative(-1, &page->_mapcount))
1264                return;
1265
1266        /*
1267         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1268         * these counters are not modified in interrupt context, and
1269         * pte lock(a spinlock) is held, which implies preemption disabled.
1270         */
1271        __dec_node_page_state(page, NR_ANON_MAPPED);
1272
1273        if (unlikely(PageMlocked(page)))
1274                clear_page_mlock(page);
1275
1276        if (PageTransCompound(page))
1277                deferred_split_huge_page(compound_head(page));
1278
1279        /*
1280         * It would be tidy to reset the PageAnon mapping here,
1281         * but that might overwrite a racing page_add_anon_rmap
1282         * which increments mapcount after us but sets mapping
1283         * before us: so leave the reset to free_hot_cold_page,
1284         * and remember that it's only reliable while mapped.
1285         * Leaving it set also helps swapoff to reinstate ptes
1286         * faster for those pages still in swapcache.
1287         */
1288}
1289
1290/*
1291 * @arg: enum ttu_flags will be passed to this argument
1292 */
1293static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1294                     unsigned long address, void *arg)
1295{
1296        struct mm_struct *mm = vma->vm_mm;
1297        struct page_vma_mapped_walk pvmw = {
1298                .page = page,
1299                .vma = vma,
1300                .address = address,
1301        };
1302        pte_t pteval;
1303        struct page *subpage;
1304        bool ret = true;
1305        enum ttu_flags flags = (enum ttu_flags)arg;
1306
1307        /* munlock has nothing to gain from examining un-locked vmas */
1308        if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1309                return true;
1310
1311        if (flags & TTU_SPLIT_HUGE_PMD) {
1312                split_huge_pmd_address(vma, address,
1313                                flags & TTU_MIGRATION, page);
1314        }
1315
1316        while (page_vma_mapped_walk(&pvmw)) {
1317                /*
1318                 * If the page is mlock()d, we cannot swap it out.
1319                 * If it's recently referenced (perhaps page_referenced
1320                 * skipped over this mm) then we should reactivate it.
1321                 */
1322                if (!(flags & TTU_IGNORE_MLOCK)) {
1323                        if (vma->vm_flags & VM_LOCKED) {
1324                                /* PTE-mapped THP are never mlocked */
1325                                if (!PageTransCompound(page)) {
1326                                        /*
1327                                         * Holding pte lock, we do *not* need
1328                                         * mmap_sem here
1329                                         */
1330                                        mlock_vma_page(page);
1331                                }
1332                                ret = false;
1333                                page_vma_mapped_walk_done(&pvmw);
1334                                break;
1335                        }
1336                        if (flags & TTU_MUNLOCK)
1337                                continue;
1338                }
1339
1340                /* Unexpected PMD-mapped THP? */
1341                VM_BUG_ON_PAGE(!pvmw.pte, page);
1342
1343                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1344                address = pvmw.address;
1345
1346
1347                if (!(flags & TTU_IGNORE_ACCESS)) {
1348                        if (ptep_clear_flush_young_notify(vma, address,
1349                                                pvmw.pte)) {
1350                                ret = false;
1351                                page_vma_mapped_walk_done(&pvmw);
1352                                break;
1353                        }
1354                }
1355
1356                /* Nuke the page table entry. */
1357                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1358                if (should_defer_flush(mm, flags)) {
1359                        /*
1360                         * We clear the PTE but do not flush so potentially
1361                         * a remote CPU could still be writing to the page.
1362                         * If the entry was previously clean then the
1363                         * architecture must guarantee that a clear->dirty
1364                         * transition on a cached TLB entry is written through
1365                         * and traps if the PTE is unmapped.
1366                         */
1367                        pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1368
1369                        set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1370                } else {
1371                        pteval = ptep_clear_flush(vma, address, pvmw.pte);
1372                }
1373
1374                /* Move the dirty bit to the page. Now the pte is gone. */
1375                if (pte_dirty(pteval))
1376                        set_page_dirty(page);
1377
1378                /* Update high watermark before we lower rss */
1379                update_hiwater_rss(mm);
1380
1381                if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1382                        if (PageHuge(page)) {
1383                                int nr = 1 << compound_order(page);
1384                                hugetlb_count_sub(nr, mm);
1385                        } else {
1386                                dec_mm_counter(mm, mm_counter(page));
1387                        }
1388
1389                        pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1390                        set_pte_at(mm, address, pvmw.pte, pteval);
1391                } else if (pte_unused(pteval)) {
1392                        /*
1393                         * The guest indicated that the page content is of no
1394                         * interest anymore. Simply discard the pte, vmscan
1395                         * will take care of the rest.
1396                         */
1397                        dec_mm_counter(mm, mm_counter(page));
1398                } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1399                                (flags & TTU_MIGRATION)) {
1400                        swp_entry_t entry;
1401                        pte_t swp_pte;
1402                        /*
1403                         * Store the pfn of the page in a special migration
1404                         * pte. do_swap_page() will wait until the migration
1405                         * pte is removed and then restart fault handling.
1406                         */
1407                        entry = make_migration_entry(subpage,
1408                                        pte_write(pteval));
1409                        swp_pte = swp_entry_to_pte(entry);
1410                        if (pte_soft_dirty(pteval))
1411                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1412                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1413                } else if (PageAnon(page)) {
1414                        swp_entry_t entry = { .val = page_private(subpage) };
1415                        pte_t swp_pte;
1416                        /*
1417                         * Store the swap location in the pte.
1418                         * See handle_pte_fault() ...
1419                         */
1420                        if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1421                                WARN_ON_ONCE(1);
1422                                ret = false;
1423                                page_vma_mapped_walk_done(&pvmw);
1424                                break;
1425                        }
1426
1427                        /* MADV_FREE page check */
1428                        if (!PageSwapBacked(page)) {
1429                                if (!PageDirty(page)) {
1430                                        dec_mm_counter(mm, MM_ANONPAGES);
1431                                        goto discard;
1432                                }
1433
1434                                /*
1435                                 * If the page was redirtied, it cannot be
1436                                 * discarded. Remap the page to page table.
1437                                 */
1438                                set_pte_at(mm, address, pvmw.pte, pteval);
1439                                SetPageSwapBacked(page);
1440                                ret = false;
1441                                page_vma_mapped_walk_done(&pvmw);
1442                                break;
1443                        }
1444
1445                        if (swap_duplicate(entry) < 0) {
1446                                set_pte_at(mm, address, pvmw.pte, pteval);
1447                                ret = false;
1448                                page_vma_mapped_walk_done(&pvmw);
1449                                break;
1450                        }
1451                        if (list_empty(&mm->mmlist)) {
1452                                spin_lock(&mmlist_lock);
1453                                if (list_empty(&mm->mmlist))
1454                                        list_add(&mm->mmlist, &init_mm.mmlist);
1455                                spin_unlock(&mmlist_lock);
1456                        }
1457                        dec_mm_counter(mm, MM_ANONPAGES);
1458                        inc_mm_counter(mm, MM_SWAPENTS);
1459                        swp_pte = swp_entry_to_pte(entry);
1460                        if (pte_soft_dirty(pteval))
1461                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1462                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1463                } else
1464                        dec_mm_counter(mm, mm_counter_file(page));
1465discard:
1466                page_remove_rmap(subpage, PageHuge(page));
1467                put_page(page);
1468                mmu_notifier_invalidate_page(mm, address);
1469        }
1470        return ret;
1471}
1472
1473bool is_vma_temporary_stack(struct vm_area_struct *vma)
1474{
1475        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1476
1477        if (!maybe_stack)
1478                return false;
1479
1480        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1481                                                VM_STACK_INCOMPLETE_SETUP)
1482                return true;
1483
1484        return false;
1485}
1486
1487static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1488{
1489        return is_vma_temporary_stack(vma);
1490}
1491
1492static int page_mapcount_is_zero(struct page *page)
1493{
1494        return !total_mapcount(page);
1495}
1496
1497/**
1498 * try_to_unmap - try to remove all page table mappings to a page
1499 * @page: the page to get unmapped
1500 * @flags: action and flags
1501 *
1502 * Tries to remove all the page table entries which are mapping this
1503 * page, used in the pageout path.  Caller must hold the page lock.
1504 *
1505 * If unmap is successful, return true. Otherwise, false.
1506 */
1507bool try_to_unmap(struct page *page, enum ttu_flags flags)
1508{
1509        struct rmap_walk_control rwc = {
1510                .rmap_one = try_to_unmap_one,
1511                .arg = (void *)flags,
1512                .done = page_mapcount_is_zero,
1513                .anon_lock = page_lock_anon_vma_read,
1514        };
1515
1516        /*
1517         * During exec, a temporary VMA is setup and later moved.
1518         * The VMA is moved under the anon_vma lock but not the
1519         * page tables leading to a race where migration cannot
1520         * find the migration ptes. Rather than increasing the
1521         * locking requirements of exec(), migration skips
1522         * temporary VMAs until after exec() completes.
1523         */
1524        if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1525                rwc.invalid_vma = invalid_migration_vma;
1526
1527        if (flags & TTU_RMAP_LOCKED)
1528                rmap_walk_locked(page, &rwc);
1529        else
1530                rmap_walk(page, &rwc);
1531
1532        return !page_mapcount(page) ? true : false;
1533}
1534
1535static int page_not_mapped(struct page *page)
1536{
1537        return !page_mapped(page);
1538};
1539
1540/**
1541 * try_to_munlock - try to munlock a page
1542 * @page: the page to be munlocked
1543 *
1544 * Called from munlock code.  Checks all of the VMAs mapping the page
1545 * to make sure nobody else has this page mlocked. The page will be
1546 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1547 */
1548
1549void try_to_munlock(struct page *page)
1550{
1551        struct rmap_walk_control rwc = {
1552                .rmap_one = try_to_unmap_one,
1553                .arg = (void *)TTU_MUNLOCK,
1554                .done = page_not_mapped,
1555                .anon_lock = page_lock_anon_vma_read,
1556
1557        };
1558
1559        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1560        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1561
1562        rmap_walk(page, &rwc);
1563}
1564
1565void __put_anon_vma(struct anon_vma *anon_vma)
1566{
1567        struct anon_vma *root = anon_vma->root;
1568
1569        anon_vma_free(anon_vma);
1570        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1571                anon_vma_free(root);
1572}
1573
1574static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1575                                        struct rmap_walk_control *rwc)
1576{
1577        struct anon_vma *anon_vma;
1578
1579        if (rwc->anon_lock)
1580                return rwc->anon_lock(page);
1581
1582        /*
1583         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1584         * because that depends on page_mapped(); but not all its usages
1585         * are holding mmap_sem. Users without mmap_sem are required to
1586         * take a reference count to prevent the anon_vma disappearing
1587         */
1588        anon_vma = page_anon_vma(page);
1589        if (!anon_vma)
1590                return NULL;
1591
1592        anon_vma_lock_read(anon_vma);
1593        return anon_vma;
1594}
1595
1596/*
1597 * rmap_walk_anon - do something to anonymous page using the object-based
1598 * rmap method
1599 * @page: the page to be handled
1600 * @rwc: control variable according to each walk type
1601 *
1602 * Find all the mappings of a page using the mapping pointer and the vma chains
1603 * contained in the anon_vma struct it points to.
1604 *
1605 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1606 * where the page was found will be held for write.  So, we won't recheck
1607 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1608 * LOCKED.
1609 */
1610static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1611                bool locked)
1612{
1613        struct anon_vma *anon_vma;
1614        pgoff_t pgoff_start, pgoff_end;
1615        struct anon_vma_chain *avc;
1616
1617        if (locked) {
1618                anon_vma = page_anon_vma(page);
1619                /* anon_vma disappear under us? */
1620                VM_BUG_ON_PAGE(!anon_vma, page);
1621        } else {
1622                anon_vma = rmap_walk_anon_lock(page, rwc);
1623        }
1624        if (!anon_vma)
1625                return;
1626
1627        pgoff_start = page_to_pgoff(page);
1628        pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1629        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1630                        pgoff_start, pgoff_end) {
1631                struct vm_area_struct *vma = avc->vma;
1632                unsigned long address = vma_address(page, vma);
1633
1634                cond_resched();
1635
1636                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1637                        continue;
1638
1639                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1640                        break;
1641                if (rwc->done && rwc->done(page))
1642                        break;
1643        }
1644
1645        if (!locked)
1646                anon_vma_unlock_read(anon_vma);
1647}
1648
1649/*
1650 * rmap_walk_file - do something to file page using the object-based rmap method
1651 * @page: the page to be handled
1652 * @rwc: control variable according to each walk type
1653 *
1654 * Find all the mappings of a page using the mapping pointer and the vma chains
1655 * contained in the address_space struct it points to.
1656 *
1657 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1658 * where the page was found will be held for write.  So, we won't recheck
1659 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1660 * LOCKED.
1661 */
1662static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1663                bool locked)
1664{
1665        struct address_space *mapping = page_mapping(page);
1666        pgoff_t pgoff_start, pgoff_end;
1667        struct vm_area_struct *vma;
1668
1669        /*
1670         * The page lock not only makes sure that page->mapping cannot
1671         * suddenly be NULLified by truncation, it makes sure that the
1672         * structure at mapping cannot be freed and reused yet,
1673         * so we can safely take mapping->i_mmap_rwsem.
1674         */
1675        VM_BUG_ON_PAGE(!PageLocked(page), page);
1676
1677        if (!mapping)
1678                return;
1679
1680        pgoff_start = page_to_pgoff(page);
1681        pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1682        if (!locked)
1683                i_mmap_lock_read(mapping);
1684        vma_interval_tree_foreach(vma, &mapping->i_mmap,
1685                        pgoff_start, pgoff_end) {
1686                unsigned long address = vma_address(page, vma);
1687
1688                cond_resched();
1689
1690                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1691                        continue;
1692
1693                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1694                        goto done;
1695                if (rwc->done && rwc->done(page))
1696                        goto done;
1697        }
1698
1699done:
1700        if (!locked)
1701                i_mmap_unlock_read(mapping);
1702}
1703
1704void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1705{
1706        if (unlikely(PageKsm(page)))
1707                rmap_walk_ksm(page, rwc);
1708        else if (PageAnon(page))
1709                rmap_walk_anon(page, rwc, false);
1710        else
1711                rmap_walk_file(page, rwc, false);
1712}
1713
1714/* Like rmap_walk, but caller holds relevant rmap lock */
1715void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1716{
1717        /* no ksm support for now */
1718        VM_BUG_ON_PAGE(PageKsm(page), page);
1719        if (PageAnon(page))
1720                rmap_walk_anon(page, rwc, true);
1721        else
1722                rmap_walk_file(page, rwc, true);
1723}
1724
1725#ifdef CONFIG_HUGETLB_PAGE
1726/*
1727 * The following three functions are for anonymous (private mapped) hugepages.
1728 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1729 * and no lru code, because we handle hugepages differently from common pages.
1730 */
1731static void __hugepage_set_anon_rmap(struct page *page,
1732        struct vm_area_struct *vma, unsigned long address, int exclusive)
1733{
1734        struct anon_vma *anon_vma = vma->anon_vma;
1735
1736        BUG_ON(!anon_vma);
1737
1738        if (PageAnon(page))
1739                return;
1740        if (!exclusive)
1741                anon_vma = anon_vma->root;
1742
1743        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1744        page->mapping = (struct address_space *) anon_vma;
1745        page->index = linear_page_index(vma, address);
1746}
1747
1748void hugepage_add_anon_rmap(struct page *page,
1749                            struct vm_area_struct *vma, unsigned long address)
1750{
1751        struct anon_vma *anon_vma = vma->anon_vma;
1752        int first;
1753
1754        BUG_ON(!PageLocked(page));
1755        BUG_ON(!anon_vma);
1756        /* address might be in next vma when migration races vma_adjust */
1757        first = atomic_inc_and_test(compound_mapcount_ptr(page));
1758        if (first)
1759                __hugepage_set_anon_rmap(page, vma, address, 0);
1760}
1761
1762void hugepage_add_new_anon_rmap(struct page *page,
1763                        struct vm_area_struct *vma, unsigned long address)
1764{
1765        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1766        atomic_set(compound_mapcount_ptr(page), 0);
1767        __hugepage_set_anon_rmap(page, vma, address, 1);
1768}
1769#endif /* CONFIG_HUGETLB_PAGE */
1770