1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119#include <linux/sched/task_stack.h>
120
121#include <net/sock.h>
122
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
127#include <trace/events/kmem.h>
128
129#include "internal.h"
130
131#include "slab.h"
132
133
134
135
136
137
138
139
140
141
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
153
154#define BYTES_PER_WORD sizeof(void *)
155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172
173
174
175
176
177
178
179
180
181
182
183
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[];
190
191
192
193
194};
195
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
201
202
203
204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206#define CACHE_CACHE 0
207#define SIZE_NODE (MAX_NUMNODES)
208
209static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215static void cache_reap(struct work_struct *unused);
216
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222static int slab_early_init = 1;
223
224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226static void kmem_cache_node_init(struct kmem_cache_node *parent)
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
255#define CFLGS_OFF_SLAB (0x80000000UL)
256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
260
261
262
263
264
265
266
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
303#define STATS_INC_NODEFREES(x) do { } while (0)
304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
305#define STATS_SET_FREEABLE(x, i) do { } while (0)
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327static int obj_offset(struct kmem_cache *cachep)
328{
329 return cachep->obj_offset;
330}
331
332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337}
338
339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348}
349
350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354}
355
356#else
357
358#define obj_offset(x) 0
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
367static inline bool is_store_user_clean(struct kmem_cache *cachep)
368{
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
371
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
376
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381}
382
383#else
384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386#endif
387
388
389
390
391
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
395static bool slab_max_order_set __initdata;
396
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401}
402
403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405{
406 return page->s_mem + cache->size * idx;
407}
408
409
410
411
412
413
414
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417{
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420}
421
422#define BOOT_CPUCACHE_ENTRIES 1
423
424static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430};
431
432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435{
436 return this_cpu_ptr(cachep->cpu_cache);
437}
438
439
440
441
442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 unsigned long flags, size_t *left_over)
444{
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475}
476
477#if DEBUG
478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482{
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487}
488#endif
489
490
491
492
493
494
495
496
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
517#ifdef CONFIG_NUMA
518
519
520
521
522
523
524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526static void init_reap_node(int cpu)
527{
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530}
531
532static void next_reap_node(void)
533{
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
545
546
547
548
549
550
551
552static void start_cpu_timer(int cpu)
553{
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562}
563
564static void init_arraycache(struct array_cache *ac, int limit, int batch)
565{
566
567
568
569
570
571
572
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
579 }
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591}
592
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595{
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608}
609
610
611
612
613
614
615
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631}
632
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
636#define reap_alien(cachep, n) do { } while (0)
637
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640{
641 return NULL;
642}
643
644static inline void free_alien_cache(struct alien_cache **ac_ptr)
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
667 return flags & ~__GFP_NOFAIL;
668}
669
670#else
671
672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
683 spin_lock_init(&alc->lock);
684 return alc;
685}
686
687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688{
689 struct alien_cache **alc_ptr;
690 size_t memsize = sizeof(void *) * nr_node_ids;
691 int i;
692
693 if (limit > 1)
694 limit = 12;
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
708 }
709 }
710 return alc_ptr;
711}
712
713static void free_alien_cache(struct alien_cache **alc_ptr)
714{
715 int i;
716
717 if (!alc_ptr)
718 return;
719 for_each_node(i)
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
722}
723
724static void __drain_alien_cache(struct kmem_cache *cachep,
725 struct array_cache *ac, int node,
726 struct list_head *list)
727{
728 struct kmem_cache_node *n = get_node(cachep, node);
729
730 if (ac->avail) {
731 spin_lock(&n->list_lock);
732
733
734
735
736
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
739
740 free_block(cachep, ac->entry, ac->avail, node, list);
741 ac->avail = 0;
742 spin_unlock(&n->list_lock);
743 }
744}
745
746
747
748
749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750{
751 int node = __this_cpu_read(slab_reap_node);
752
753 if (n->alien) {
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
763 spin_unlock_irq(&alc->lock);
764 slabs_destroy(cachep, &list);
765 }
766 }
767 }
768}
769
770static void drain_alien_cache(struct kmem_cache *cachep,
771 struct alien_cache **alien)
772{
773 int i = 0;
774 struct alien_cache *alc;
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
779 alc = alien[i];
780 if (alc) {
781 LIST_HEAD(list);
782
783 ac = &alc->ac;
784 spin_lock_irqsave(&alc->lock, flags);
785 __drain_alien_cache(cachep, ac, i, &list);
786 spin_unlock_irqrestore(&alc->lock, flags);
787 slabs_destroy(cachep, &list);
788 }
789 }
790}
791
792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
794{
795 struct kmem_cache_node *n;
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
798 LIST_HEAD(list);
799
800 n = get_node(cachep, node);
801 STATS_INC_NODEFREES(cachep);
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
804 ac = &alien->ac;
805 spin_lock(&alien->lock);
806 if (unlikely(ac->avail == ac->limit)) {
807 STATS_INC_ACOVERFLOW(cachep);
808 __drain_alien_cache(cachep, ac, page_node, &list);
809 }
810 ac->entry[ac->avail++] = objp;
811 spin_unlock(&alien->lock);
812 slabs_destroy(cachep, &list);
813 } else {
814 n = get_node(cachep, page_node);
815 spin_lock(&n->list_lock);
816 free_block(cachep, &objp, 1, page_node, &list);
817 spin_unlock(&n->list_lock);
818 slabs_destroy(cachep, &list);
819 }
820 return 1;
821}
822
823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824{
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827
828
829
830
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835}
836
837
838
839
840
841static inline gfp_t gfp_exact_node(gfp_t flags)
842{
843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844}
845#endif
846
847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848{
849 struct kmem_cache_node *n;
850
851
852
853
854
855
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877
878
879
880
881
882 cachep->node[node] = n;
883
884 return 0;
885}
886
887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888
889
890
891
892
893
894
895
896
897static int init_cache_node_node(int node)
898{
899 int ret;
900 struct kmem_cache *cachep;
901
902 list_for_each_entry(cachep, &slab_caches, list) {
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909}
910#endif
911
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961
962
963
964
965
966
967 if (old_shared && force_change)
968 synchronize_sched();
969
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
978#ifdef CONFIG_SMP
979
980static void cpuup_canceled(long cpu)
981{
982 struct kmem_cache *cachep;
983 struct kmem_cache_node *n = NULL;
984 int node = cpu_to_mem(cpu);
985 const struct cpumask *mask = cpumask_of_node(node);
986
987 list_for_each_entry(cachep, &slab_caches, list) {
988 struct array_cache *nc;
989 struct array_cache *shared;
990 struct alien_cache **alien;
991 LIST_HEAD(list);
992
993 n = get_node(cachep, node);
994 if (!n)
995 continue;
996
997 spin_lock_irq(&n->list_lock);
998
999
1000 n->free_limit -= cachep->batchcount;
1001
1002
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
1005 free_block(cachep, nc->entry, nc->avail, node, &list);
1006 nc->avail = 0;
1007 }
1008
1009 if (!cpumask_empty(mask)) {
1010 spin_unlock_irq(&n->list_lock);
1011 goto free_slab;
1012 }
1013
1014 shared = n->shared;
1015 if (shared) {
1016 free_block(cachep, shared->entry,
1017 shared->avail, node, &list);
1018 n->shared = NULL;
1019 }
1020
1021 alien = n->alien;
1022 n->alien = NULL;
1023
1024 spin_unlock_irq(&n->list_lock);
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
1031
1032free_slab:
1033 slabs_destroy(cachep, &list);
1034 }
1035
1036
1037
1038
1039
1040 list_for_each_entry(cachep, &slab_caches, list) {
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044 drain_freelist(cachep, n, INT_MAX);
1045 }
1046}
1047
1048static int cpuup_prepare(long cpu)
1049{
1050 struct kmem_cache *cachep;
1051 int node = cpu_to_mem(cpu);
1052 int err;
1053
1054
1055
1056
1057
1058
1059
1060 err = init_cache_node_node(node);
1061 if (err < 0)
1062 goto bad;
1063
1064
1065
1066
1067
1068 list_for_each_entry(cachep, &slab_caches, list) {
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
1072 }
1073
1074 return 0;
1075bad:
1076 cpuup_canceled(cpu);
1077 return -ENOMEM;
1078}
1079
1080int slab_prepare_cpu(unsigned int cpu)
1081{
1082 int err;
1083
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088}
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106}
1107#endif
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111 start_cpu_timer(cpu);
1112 return 0;
1113}
1114
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117
1118
1119
1120
1121
1122
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127}
1128
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130
1131
1132
1133
1134
1135
1136
1137static int __meminit drain_cache_node_node(int node)
1138{
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
1142 list_for_each_entry(cachep, &slab_caches, list) {
1143 struct kmem_cache_node *n;
1144
1145 n = get_node(cachep, node);
1146 if (!n)
1147 continue;
1148
1149 drain_freelist(cachep, n, INT_MAX);
1150
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162{
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
1173 mutex_lock(&slab_mutex);
1174 ret = init_cache_node_node(nid);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case MEM_GOING_OFFLINE:
1178 mutex_lock(&slab_mutex);
1179 ret = drain_cache_node_node(nid);
1180 mutex_unlock(&slab_mutex);
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188out:
1189 return notifier_from_errno(ret);
1190}
1191#endif
1192
1193
1194
1195
1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 int nodeid)
1198{
1199 struct kmem_cache_node *ptr;
1200
1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 BUG_ON(!ptr);
1203
1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205
1206
1207
1208 spin_lock_init(&ptr->list_lock);
1209
1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 cachep->node[nodeid] = ptr;
1212}
1213
1214
1215
1216
1217
1218static void __init set_up_node(struct kmem_cache *cachep, int index)
1219{
1220 int node;
1221
1222 for_each_online_node(node) {
1223 cachep->node[node] = &init_kmem_cache_node[index + node];
1224 cachep->node[node]->next_reap = jiffies +
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 }
1228}
1229
1230
1231
1232
1233
1234void __init kmem_cache_init(void)
1235{
1236 int i;
1237
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
1240 kmem_cache = &kmem_cache_boot;
1241
1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 use_alien_caches = 0;
1244
1245 for (i = 0; i < NUM_INIT_LISTS; i++)
1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248
1249
1250
1251
1252
1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281 create_boot_cache(kmem_cache, "kmem_cache",
1282 offsetof(struct kmem_cache, node) +
1283 nr_node_ids * sizeof(struct kmem_cache_node *),
1284 SLAB_HWCACHE_ALIGN);
1285 list_add(&kmem_cache->list, &slab_caches);
1286 slab_state = PARTIAL;
1287
1288
1289
1290
1291
1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 kmalloc_info[INDEX_NODE].name,
1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295 slab_state = PARTIAL_NODE;
1296 setup_kmalloc_cache_index_table();
1297
1298 slab_early_init = 0;
1299
1300
1301 {
1302 int nid;
1303
1304 for_each_online_node(nid) {
1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306
1307 init_list(kmalloc_caches[INDEX_NODE],
1308 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 }
1310 }
1311
1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313}
1314
1315void __init kmem_cache_init_late(void)
1316{
1317 struct kmem_cache *cachep;
1318
1319 slab_state = UP;
1320
1321
1322 mutex_lock(&slab_mutex);
1323 list_for_each_entry(cachep, &slab_caches, list)
1324 if (enable_cpucache(cachep, GFP_NOWAIT))
1325 BUG();
1326 mutex_unlock(&slab_mutex);
1327
1328
1329 slab_state = FULL;
1330
1331#ifdef CONFIG_NUMA
1332
1333
1334
1335
1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
1339
1340
1341
1342
1343}
1344
1345static int __init cpucache_init(void)
1346{
1347 int ret;
1348
1349
1350
1351
1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 slab_online_cpu, slab_offline_cpu);
1354 WARN_ON(ret < 0);
1355
1356
1357 slab_state = FULL;
1358 return 0;
1359}
1360__initcall(cpucache_init);
1361
1362static noinline void
1363slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364{
1365#if DEBUG
1366 struct kmem_cache_node *n;
1367 unsigned long flags;
1368 int node;
1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370 DEFAULT_RATELIMIT_BURST);
1371
1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373 return;
1374
1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376 nodeid, gfpflags, &gfpflags);
1377 pr_warn(" cache: %s, object size: %d, order: %d\n",
1378 cachep->name, cachep->size, cachep->gfporder);
1379
1380 for_each_kmem_cache_node(cachep, node, n) {
1381 unsigned long total_slabs, free_slabs, free_objs;
1382
1383 spin_lock_irqsave(&n->list_lock, flags);
1384 total_slabs = n->total_slabs;
1385 free_slabs = n->free_slabs;
1386 free_objs = n->free_objects;
1387 spin_unlock_irqrestore(&n->list_lock, flags);
1388
1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390 node, total_slabs - free_slabs, total_slabs,
1391 (total_slabs * cachep->num) - free_objs,
1392 total_slabs * cachep->num);
1393 }
1394#endif
1395}
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406 int nodeid)
1407{
1408 struct page *page;
1409 int nr_pages;
1410
1411 flags |= cachep->allocflags;
1412 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1413 flags |= __GFP_RECLAIMABLE;
1414
1415 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1416 if (!page) {
1417 slab_out_of_memory(cachep, flags, nodeid);
1418 return NULL;
1419 }
1420
1421 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1422 __free_pages(page, cachep->gfporder);
1423 return NULL;
1424 }
1425
1426 nr_pages = (1 << cachep->gfporder);
1427 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1428 add_zone_page_state(page_zone(page),
1429 NR_SLAB_RECLAIMABLE, nr_pages);
1430 else
1431 add_zone_page_state(page_zone(page),
1432 NR_SLAB_UNRECLAIMABLE, nr_pages);
1433
1434 __SetPageSlab(page);
1435
1436 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1437 SetPageSlabPfmemalloc(page);
1438
1439 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1440 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1441
1442 if (cachep->ctor)
1443 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1444 else
1445 kmemcheck_mark_unallocated_pages(page, nr_pages);
1446 }
1447
1448 return page;
1449}
1450
1451
1452
1453
1454static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1455{
1456 int order = cachep->gfporder;
1457 unsigned long nr_freed = (1 << order);
1458
1459 kmemcheck_free_shadow(page, order);
1460
1461 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1462 sub_zone_page_state(page_zone(page),
1463 NR_SLAB_RECLAIMABLE, nr_freed);
1464 else
1465 sub_zone_page_state(page_zone(page),
1466 NR_SLAB_UNRECLAIMABLE, nr_freed);
1467
1468 BUG_ON(!PageSlab(page));
1469 __ClearPageSlabPfmemalloc(page);
1470 __ClearPageSlab(page);
1471 page_mapcount_reset(page);
1472 page->mapping = NULL;
1473
1474 if (current->reclaim_state)
1475 current->reclaim_state->reclaimed_slab += nr_freed;
1476 memcg_uncharge_slab(page, order, cachep);
1477 __free_pages(page, order);
1478}
1479
1480static void kmem_rcu_free(struct rcu_head *head)
1481{
1482 struct kmem_cache *cachep;
1483 struct page *page;
1484
1485 page = container_of(head, struct page, rcu_head);
1486 cachep = page->slab_cache;
1487
1488 kmem_freepages(cachep, page);
1489}
1490
1491#if DEBUG
1492static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1493{
1494 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1495 (cachep->size % PAGE_SIZE) == 0)
1496 return true;
1497
1498 return false;
1499}
1500
1501#ifdef CONFIG_DEBUG_PAGEALLOC
1502static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1503 unsigned long caller)
1504{
1505 int size = cachep->object_size;
1506
1507 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1508
1509 if (size < 5 * sizeof(unsigned long))
1510 return;
1511
1512 *addr++ = 0x12345678;
1513 *addr++ = caller;
1514 *addr++ = smp_processor_id();
1515 size -= 3 * sizeof(unsigned long);
1516 {
1517 unsigned long *sptr = &caller;
1518 unsigned long svalue;
1519
1520 while (!kstack_end(sptr)) {
1521 svalue = *sptr++;
1522 if (kernel_text_address(svalue)) {
1523 *addr++ = svalue;
1524 size -= sizeof(unsigned long);
1525 if (size <= sizeof(unsigned long))
1526 break;
1527 }
1528 }
1529
1530 }
1531 *addr++ = 0x87654321;
1532}
1533
1534static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1535 int map, unsigned long caller)
1536{
1537 if (!is_debug_pagealloc_cache(cachep))
1538 return;
1539
1540 if (caller)
1541 store_stackinfo(cachep, objp, caller);
1542
1543 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1544}
1545
1546#else
1547static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1548 int map, unsigned long caller) {}
1549
1550#endif
1551
1552static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1553{
1554 int size = cachep->object_size;
1555 addr = &((char *)addr)[obj_offset(cachep)];
1556
1557 memset(addr, val, size);
1558 *(unsigned char *)(addr + size - 1) = POISON_END;
1559}
1560
1561static void dump_line(char *data, int offset, int limit)
1562{
1563 int i;
1564 unsigned char error = 0;
1565 int bad_count = 0;
1566
1567 pr_err("%03x: ", offset);
1568 for (i = 0; i < limit; i++) {
1569 if (data[offset + i] != POISON_FREE) {
1570 error = data[offset + i];
1571 bad_count++;
1572 }
1573 }
1574 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1575 &data[offset], limit, 1);
1576
1577 if (bad_count == 1) {
1578 error ^= POISON_FREE;
1579 if (!(error & (error - 1))) {
1580 pr_err("Single bit error detected. Probably bad RAM.\n");
1581#ifdef CONFIG_X86
1582 pr_err("Run memtest86+ or a similar memory test tool.\n");
1583#else
1584 pr_err("Run a memory test tool.\n");
1585#endif
1586 }
1587 }
1588}
1589#endif
1590
1591#if DEBUG
1592
1593static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1594{
1595 int i, size;
1596 char *realobj;
1597
1598 if (cachep->flags & SLAB_RED_ZONE) {
1599 pr_err("Redzone: 0x%llx/0x%llx\n",
1600 *dbg_redzone1(cachep, objp),
1601 *dbg_redzone2(cachep, objp));
1602 }
1603
1604 if (cachep->flags & SLAB_STORE_USER) {
1605 pr_err("Last user: [<%p>](%pSR)\n",
1606 *dbg_userword(cachep, objp),
1607 *dbg_userword(cachep, objp));
1608 }
1609 realobj = (char *)objp + obj_offset(cachep);
1610 size = cachep->object_size;
1611 for (i = 0; i < size && lines; i += 16, lines--) {
1612 int limit;
1613 limit = 16;
1614 if (i + limit > size)
1615 limit = size - i;
1616 dump_line(realobj, i, limit);
1617 }
1618}
1619
1620static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1621{
1622 char *realobj;
1623 int size, i;
1624 int lines = 0;
1625
1626 if (is_debug_pagealloc_cache(cachep))
1627 return;
1628
1629 realobj = (char *)objp + obj_offset(cachep);
1630 size = cachep->object_size;
1631
1632 for (i = 0; i < size; i++) {
1633 char exp = POISON_FREE;
1634 if (i == size - 1)
1635 exp = POISON_END;
1636 if (realobj[i] != exp) {
1637 int limit;
1638
1639
1640 if (lines == 0) {
1641 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1642 print_tainted(), cachep->name,
1643 realobj, size);
1644 print_objinfo(cachep, objp, 0);
1645 }
1646
1647 i = (i / 16) * 16;
1648 limit = 16;
1649 if (i + limit > size)
1650 limit = size - i;
1651 dump_line(realobj, i, limit);
1652 i += 16;
1653 lines++;
1654
1655 if (lines > 5)
1656 break;
1657 }
1658 }
1659 if (lines != 0) {
1660
1661
1662
1663 struct page *page = virt_to_head_page(objp);
1664 unsigned int objnr;
1665
1666 objnr = obj_to_index(cachep, page, objp);
1667 if (objnr) {
1668 objp = index_to_obj(cachep, page, objnr - 1);
1669 realobj = (char *)objp + obj_offset(cachep);
1670 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1671 print_objinfo(cachep, objp, 2);
1672 }
1673 if (objnr + 1 < cachep->num) {
1674 objp = index_to_obj(cachep, page, objnr + 1);
1675 realobj = (char *)objp + obj_offset(cachep);
1676 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1677 print_objinfo(cachep, objp, 2);
1678 }
1679 }
1680}
1681#endif
1682
1683#if DEBUG
1684static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1685 struct page *page)
1686{
1687 int i;
1688
1689 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1690 poison_obj(cachep, page->freelist - obj_offset(cachep),
1691 POISON_FREE);
1692 }
1693
1694 for (i = 0; i < cachep->num; i++) {
1695 void *objp = index_to_obj(cachep, page, i);
1696
1697 if (cachep->flags & SLAB_POISON) {
1698 check_poison_obj(cachep, objp);
1699 slab_kernel_map(cachep, objp, 1, 0);
1700 }
1701 if (cachep->flags & SLAB_RED_ZONE) {
1702 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1703 slab_error(cachep, "start of a freed object was overwritten");
1704 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1705 slab_error(cachep, "end of a freed object was overwritten");
1706 }
1707 }
1708}
1709#else
1710static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1711 struct page *page)
1712{
1713}
1714#endif
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1726{
1727 void *freelist;
1728
1729 freelist = page->freelist;
1730 slab_destroy_debugcheck(cachep, page);
1731 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1732 call_rcu(&page->rcu_head, kmem_rcu_free);
1733 else
1734 kmem_freepages(cachep, page);
1735
1736
1737
1738
1739
1740 if (OFF_SLAB(cachep))
1741 kmem_cache_free(cachep->freelist_cache, freelist);
1742}
1743
1744static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1745{
1746 struct page *page, *n;
1747
1748 list_for_each_entry_safe(page, n, list, lru) {
1749 list_del(&page->lru);
1750 slab_destroy(cachep, page);
1751 }
1752}
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766static size_t calculate_slab_order(struct kmem_cache *cachep,
1767 size_t size, unsigned long flags)
1768{
1769 size_t left_over = 0;
1770 int gfporder;
1771
1772 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1773 unsigned int num;
1774 size_t remainder;
1775
1776 num = cache_estimate(gfporder, size, flags, &remainder);
1777 if (!num)
1778 continue;
1779
1780
1781 if (num > SLAB_OBJ_MAX_NUM)
1782 break;
1783
1784 if (flags & CFLGS_OFF_SLAB) {
1785 struct kmem_cache *freelist_cache;
1786 size_t freelist_size;
1787
1788 freelist_size = num * sizeof(freelist_idx_t);
1789 freelist_cache = kmalloc_slab(freelist_size, 0u);
1790 if (!freelist_cache)
1791 continue;
1792
1793
1794
1795
1796
1797 if (OFF_SLAB(freelist_cache))
1798 continue;
1799
1800
1801 if (freelist_cache->size > cachep->size / 2)
1802 continue;
1803 }
1804
1805
1806 cachep->num = num;
1807 cachep->gfporder = gfporder;
1808 left_over = remainder;
1809
1810
1811
1812
1813
1814
1815 if (flags & SLAB_RECLAIM_ACCOUNT)
1816 break;
1817
1818
1819
1820
1821
1822 if (gfporder >= slab_max_order)
1823 break;
1824
1825
1826
1827
1828 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1829 break;
1830 }
1831 return left_over;
1832}
1833
1834static struct array_cache __percpu *alloc_kmem_cache_cpus(
1835 struct kmem_cache *cachep, int entries, int batchcount)
1836{
1837 int cpu;
1838 size_t size;
1839 struct array_cache __percpu *cpu_cache;
1840
1841 size = sizeof(void *) * entries + sizeof(struct array_cache);
1842 cpu_cache = __alloc_percpu(size, sizeof(void *));
1843
1844 if (!cpu_cache)
1845 return NULL;
1846
1847 for_each_possible_cpu(cpu) {
1848 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1849 entries, batchcount);
1850 }
1851
1852 return cpu_cache;
1853}
1854
1855static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1856{
1857 if (slab_state >= FULL)
1858 return enable_cpucache(cachep, gfp);
1859
1860 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1861 if (!cachep->cpu_cache)
1862 return 1;
1863
1864 if (slab_state == DOWN) {
1865
1866 set_up_node(kmem_cache, CACHE_CACHE);
1867 } else if (slab_state == PARTIAL) {
1868
1869 set_up_node(cachep, SIZE_NODE);
1870 } else {
1871 int node;
1872
1873 for_each_online_node(node) {
1874 cachep->node[node] = kmalloc_node(
1875 sizeof(struct kmem_cache_node), gfp, node);
1876 BUG_ON(!cachep->node[node]);
1877 kmem_cache_node_init(cachep->node[node]);
1878 }
1879 }
1880
1881 cachep->node[numa_mem_id()]->next_reap =
1882 jiffies + REAPTIMEOUT_NODE +
1883 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1884
1885 cpu_cache_get(cachep)->avail = 0;
1886 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1887 cpu_cache_get(cachep)->batchcount = 1;
1888 cpu_cache_get(cachep)->touched = 0;
1889 cachep->batchcount = 1;
1890 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1891 return 0;
1892}
1893
1894unsigned long kmem_cache_flags(unsigned long object_size,
1895 unsigned long flags, const char *name,
1896 void (*ctor)(void *))
1897{
1898 return flags;
1899}
1900
1901struct kmem_cache *
1902__kmem_cache_alias(const char *name, size_t size, size_t align,
1903 unsigned long flags, void (*ctor)(void *))
1904{
1905 struct kmem_cache *cachep;
1906
1907 cachep = find_mergeable(size, align, flags, name, ctor);
1908 if (cachep) {
1909 cachep->refcount++;
1910
1911
1912
1913
1914
1915 cachep->object_size = max_t(int, cachep->object_size, size);
1916 }
1917 return cachep;
1918}
1919
1920static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1921 size_t size, unsigned long flags)
1922{
1923 size_t left;
1924
1925 cachep->num = 0;
1926
1927 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1928 return false;
1929
1930 left = calculate_slab_order(cachep, size,
1931 flags | CFLGS_OBJFREELIST_SLAB);
1932 if (!cachep->num)
1933 return false;
1934
1935 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1936 return false;
1937
1938 cachep->colour = left / cachep->colour_off;
1939
1940 return true;
1941}
1942
1943static bool set_off_slab_cache(struct kmem_cache *cachep,
1944 size_t size, unsigned long flags)
1945{
1946 size_t left;
1947
1948 cachep->num = 0;
1949
1950
1951
1952
1953
1954 if (flags & SLAB_NOLEAKTRACE)
1955 return false;
1956
1957
1958
1959
1960
1961 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1962 if (!cachep->num)
1963 return false;
1964
1965
1966
1967
1968
1969 if (left >= cachep->num * sizeof(freelist_idx_t))
1970 return false;
1971
1972 cachep->colour = left / cachep->colour_off;
1973
1974 return true;
1975}
1976
1977static bool set_on_slab_cache(struct kmem_cache *cachep,
1978 size_t size, unsigned long flags)
1979{
1980 size_t left;
1981
1982 cachep->num = 0;
1983
1984 left = calculate_slab_order(cachep, size, flags);
1985 if (!cachep->num)
1986 return false;
1987
1988 cachep->colour = left / cachep->colour_off;
1989
1990 return true;
1991}
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014int
2015__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2016{
2017 size_t ralign = BYTES_PER_WORD;
2018 gfp_t gfp;
2019 int err;
2020 size_t size = cachep->size;
2021
2022#if DEBUG
2023#if FORCED_DEBUG
2024
2025
2026
2027
2028
2029
2030 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2031 2 * sizeof(unsigned long long)))
2032 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2033 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2034 flags |= SLAB_POISON;
2035#endif
2036#endif
2037
2038
2039
2040
2041
2042
2043 if (size & (BYTES_PER_WORD - 1)) {
2044 size += (BYTES_PER_WORD - 1);
2045 size &= ~(BYTES_PER_WORD - 1);
2046 }
2047
2048 if (flags & SLAB_RED_ZONE) {
2049 ralign = REDZONE_ALIGN;
2050
2051
2052 size += REDZONE_ALIGN - 1;
2053 size &= ~(REDZONE_ALIGN - 1);
2054 }
2055
2056
2057 if (ralign < cachep->align) {
2058 ralign = cachep->align;
2059 }
2060
2061 if (ralign > __alignof__(unsigned long long))
2062 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063
2064
2065
2066 cachep->align = ralign;
2067 cachep->colour_off = cache_line_size();
2068
2069 if (cachep->colour_off < cachep->align)
2070 cachep->colour_off = cachep->align;
2071
2072 if (slab_is_available())
2073 gfp = GFP_KERNEL;
2074 else
2075 gfp = GFP_NOWAIT;
2076
2077#if DEBUG
2078
2079
2080
2081
2082
2083 if (flags & SLAB_RED_ZONE) {
2084
2085 cachep->obj_offset += sizeof(unsigned long long);
2086 size += 2 * sizeof(unsigned long long);
2087 }
2088 if (flags & SLAB_STORE_USER) {
2089
2090
2091
2092
2093 if (flags & SLAB_RED_ZONE)
2094 size += REDZONE_ALIGN;
2095 else
2096 size += BYTES_PER_WORD;
2097 }
2098#endif
2099
2100 kasan_cache_create(cachep, &size, &flags);
2101
2102 size = ALIGN(size, cachep->align);
2103
2104
2105
2106
2107 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2108 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2109
2110#if DEBUG
2111
2112
2113
2114
2115
2116
2117
2118 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2119 size >= 256 && cachep->object_size > cache_line_size()) {
2120 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2121 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2122
2123 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2124 flags |= CFLGS_OFF_SLAB;
2125 cachep->obj_offset += tmp_size - size;
2126 size = tmp_size;
2127 goto done;
2128 }
2129 }
2130 }
2131#endif
2132
2133 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2134 flags |= CFLGS_OBJFREELIST_SLAB;
2135 goto done;
2136 }
2137
2138 if (set_off_slab_cache(cachep, size, flags)) {
2139 flags |= CFLGS_OFF_SLAB;
2140 goto done;
2141 }
2142
2143 if (set_on_slab_cache(cachep, size, flags))
2144 goto done;
2145
2146 return -E2BIG;
2147
2148done:
2149 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2150 cachep->flags = flags;
2151 cachep->allocflags = __GFP_COMP;
2152 if (flags & SLAB_CACHE_DMA)
2153 cachep->allocflags |= GFP_DMA;
2154 cachep->size = size;
2155 cachep->reciprocal_buffer_size = reciprocal_value(size);
2156
2157#if DEBUG
2158
2159
2160
2161
2162
2163 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2164 (cachep->flags & SLAB_POISON) &&
2165 is_debug_pagealloc_cache(cachep))
2166 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2167#endif
2168
2169 if (OFF_SLAB(cachep)) {
2170 cachep->freelist_cache =
2171 kmalloc_slab(cachep->freelist_size, 0u);
2172 }
2173
2174 err = setup_cpu_cache(cachep, gfp);
2175 if (err) {
2176 __kmem_cache_release(cachep);
2177 return err;
2178 }
2179
2180 return 0;
2181}
2182
2183#if DEBUG
2184static void check_irq_off(void)
2185{
2186 BUG_ON(!irqs_disabled());
2187}
2188
2189static void check_irq_on(void)
2190{
2191 BUG_ON(irqs_disabled());
2192}
2193
2194static void check_mutex_acquired(void)
2195{
2196 BUG_ON(!mutex_is_locked(&slab_mutex));
2197}
2198
2199static void check_spinlock_acquired(struct kmem_cache *cachep)
2200{
2201#ifdef CONFIG_SMP
2202 check_irq_off();
2203 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2204#endif
2205}
2206
2207static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2208{
2209#ifdef CONFIG_SMP
2210 check_irq_off();
2211 assert_spin_locked(&get_node(cachep, node)->list_lock);
2212#endif
2213}
2214
2215#else
2216#define check_irq_off() do { } while(0)
2217#define check_irq_on() do { } while(0)
2218#define check_mutex_acquired() do { } while(0)
2219#define check_spinlock_acquired(x) do { } while(0)
2220#define check_spinlock_acquired_node(x, y) do { } while(0)
2221#endif
2222
2223static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2224 int node, bool free_all, struct list_head *list)
2225{
2226 int tofree;
2227
2228 if (!ac || !ac->avail)
2229 return;
2230
2231 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2232 if (tofree > ac->avail)
2233 tofree = (ac->avail + 1) / 2;
2234
2235 free_block(cachep, ac->entry, tofree, node, list);
2236 ac->avail -= tofree;
2237 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2238}
2239
2240static void do_drain(void *arg)
2241{
2242 struct kmem_cache *cachep = arg;
2243 struct array_cache *ac;
2244 int node = numa_mem_id();
2245 struct kmem_cache_node *n;
2246 LIST_HEAD(list);
2247
2248 check_irq_off();
2249 ac = cpu_cache_get(cachep);
2250 n = get_node(cachep, node);
2251 spin_lock(&n->list_lock);
2252 free_block(cachep, ac->entry, ac->avail, node, &list);
2253 spin_unlock(&n->list_lock);
2254 slabs_destroy(cachep, &list);
2255 ac->avail = 0;
2256}
2257
2258static void drain_cpu_caches(struct kmem_cache *cachep)
2259{
2260 struct kmem_cache_node *n;
2261 int node;
2262 LIST_HEAD(list);
2263
2264 on_each_cpu(do_drain, cachep, 1);
2265 check_irq_on();
2266 for_each_kmem_cache_node(cachep, node, n)
2267 if (n->alien)
2268 drain_alien_cache(cachep, n->alien);
2269
2270 for_each_kmem_cache_node(cachep, node, n) {
2271 spin_lock_irq(&n->list_lock);
2272 drain_array_locked(cachep, n->shared, node, true, &list);
2273 spin_unlock_irq(&n->list_lock);
2274
2275 slabs_destroy(cachep, &list);
2276 }
2277}
2278
2279
2280
2281
2282
2283
2284
2285static int drain_freelist(struct kmem_cache *cache,
2286 struct kmem_cache_node *n, int tofree)
2287{
2288 struct list_head *p;
2289 int nr_freed;
2290 struct page *page;
2291
2292 nr_freed = 0;
2293 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2294
2295 spin_lock_irq(&n->list_lock);
2296 p = n->slabs_free.prev;
2297 if (p == &n->slabs_free) {
2298 spin_unlock_irq(&n->list_lock);
2299 goto out;
2300 }
2301
2302 page = list_entry(p, struct page, lru);
2303 list_del(&page->lru);
2304 n->free_slabs--;
2305 n->total_slabs--;
2306
2307
2308
2309
2310 n->free_objects -= cache->num;
2311 spin_unlock_irq(&n->list_lock);
2312 slab_destroy(cache, page);
2313 nr_freed++;
2314 }
2315out:
2316 return nr_freed;
2317}
2318
2319int __kmem_cache_shrink(struct kmem_cache *cachep)
2320{
2321 int ret = 0;
2322 int node;
2323 struct kmem_cache_node *n;
2324
2325 drain_cpu_caches(cachep);
2326
2327 check_irq_on();
2328 for_each_kmem_cache_node(cachep, node, n) {
2329 drain_freelist(cachep, n, INT_MAX);
2330
2331 ret += !list_empty(&n->slabs_full) ||
2332 !list_empty(&n->slabs_partial);
2333 }
2334 return (ret ? 1 : 0);
2335}
2336
2337#ifdef CONFIG_MEMCG
2338void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2339{
2340 __kmem_cache_shrink(cachep);
2341}
2342#endif
2343
2344int __kmem_cache_shutdown(struct kmem_cache *cachep)
2345{
2346 return __kmem_cache_shrink(cachep);
2347}
2348
2349void __kmem_cache_release(struct kmem_cache *cachep)
2350{
2351 int i;
2352 struct kmem_cache_node *n;
2353
2354 cache_random_seq_destroy(cachep);
2355
2356 free_percpu(cachep->cpu_cache);
2357
2358
2359 for_each_kmem_cache_node(cachep, i, n) {
2360 kfree(n->shared);
2361 free_alien_cache(n->alien);
2362 kfree(n);
2363 cachep->node[i] = NULL;
2364 }
2365}
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381static void *alloc_slabmgmt(struct kmem_cache *cachep,
2382 struct page *page, int colour_off,
2383 gfp_t local_flags, int nodeid)
2384{
2385 void *freelist;
2386 void *addr = page_address(page);
2387
2388 page->s_mem = addr + colour_off;
2389 page->active = 0;
2390
2391 if (OBJFREELIST_SLAB(cachep))
2392 freelist = NULL;
2393 else if (OFF_SLAB(cachep)) {
2394
2395 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2396 local_flags, nodeid);
2397 if (!freelist)
2398 return NULL;
2399 } else {
2400
2401 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2402 cachep->freelist_size;
2403 }
2404
2405 return freelist;
2406}
2407
2408static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2409{
2410 return ((freelist_idx_t *)page->freelist)[idx];
2411}
2412
2413static inline void set_free_obj(struct page *page,
2414 unsigned int idx, freelist_idx_t val)
2415{
2416 ((freelist_idx_t *)(page->freelist))[idx] = val;
2417}
2418
2419static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2420{
2421#if DEBUG
2422 int i;
2423
2424 for (i = 0; i < cachep->num; i++) {
2425 void *objp = index_to_obj(cachep, page, i);
2426
2427 if (cachep->flags & SLAB_STORE_USER)
2428 *dbg_userword(cachep, objp) = NULL;
2429
2430 if (cachep->flags & SLAB_RED_ZONE) {
2431 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2432 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2433 }
2434
2435
2436
2437
2438
2439 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2440 kasan_unpoison_object_data(cachep,
2441 objp + obj_offset(cachep));
2442 cachep->ctor(objp + obj_offset(cachep));
2443 kasan_poison_object_data(
2444 cachep, objp + obj_offset(cachep));
2445 }
2446
2447 if (cachep->flags & SLAB_RED_ZONE) {
2448 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2449 slab_error(cachep, "constructor overwrote the end of an object");
2450 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2451 slab_error(cachep, "constructor overwrote the start of an object");
2452 }
2453
2454 if (cachep->flags & SLAB_POISON) {
2455 poison_obj(cachep, objp, POISON_FREE);
2456 slab_kernel_map(cachep, objp, 0, 0);
2457 }
2458 }
2459#endif
2460}
2461
2462#ifdef CONFIG_SLAB_FREELIST_RANDOM
2463
2464union freelist_init_state {
2465 struct {
2466 unsigned int pos;
2467 unsigned int *list;
2468 unsigned int count;
2469 };
2470 struct rnd_state rnd_state;
2471};
2472
2473
2474
2475
2476
2477static bool freelist_state_initialize(union freelist_init_state *state,
2478 struct kmem_cache *cachep,
2479 unsigned int count)
2480{
2481 bool ret;
2482 unsigned int rand;
2483
2484
2485 rand = get_random_int();
2486
2487
2488 if (!cachep->random_seq) {
2489 prandom_seed_state(&state->rnd_state, rand);
2490 ret = false;
2491 } else {
2492 state->list = cachep->random_seq;
2493 state->count = count;
2494 state->pos = rand % count;
2495 ret = true;
2496 }
2497 return ret;
2498}
2499
2500
2501static freelist_idx_t next_random_slot(union freelist_init_state *state)
2502{
2503 if (state->pos >= state->count)
2504 state->pos = 0;
2505 return state->list[state->pos++];
2506}
2507
2508
2509static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2510{
2511 swap(((freelist_idx_t *)page->freelist)[a],
2512 ((freelist_idx_t *)page->freelist)[b]);
2513}
2514
2515
2516
2517
2518
2519static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2520{
2521 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2522 union freelist_init_state state;
2523 bool precomputed;
2524
2525 if (count < 2)
2526 return false;
2527
2528 precomputed = freelist_state_initialize(&state, cachep, count);
2529
2530
2531 if (OBJFREELIST_SLAB(cachep)) {
2532 if (!precomputed)
2533 objfreelist = count - 1;
2534 else
2535 objfreelist = next_random_slot(&state);
2536 page->freelist = index_to_obj(cachep, page, objfreelist) +
2537 obj_offset(cachep);
2538 count--;
2539 }
2540
2541
2542
2543
2544
2545 if (!precomputed) {
2546 for (i = 0; i < count; i++)
2547 set_free_obj(page, i, i);
2548
2549
2550 for (i = count - 1; i > 0; i--) {
2551 rand = prandom_u32_state(&state.rnd_state);
2552 rand %= (i + 1);
2553 swap_free_obj(page, i, rand);
2554 }
2555 } else {
2556 for (i = 0; i < count; i++)
2557 set_free_obj(page, i, next_random_slot(&state));
2558 }
2559
2560 if (OBJFREELIST_SLAB(cachep))
2561 set_free_obj(page, cachep->num - 1, objfreelist);
2562
2563 return true;
2564}
2565#else
2566static inline bool shuffle_freelist(struct kmem_cache *cachep,
2567 struct page *page)
2568{
2569 return false;
2570}
2571#endif
2572
2573static void cache_init_objs(struct kmem_cache *cachep,
2574 struct page *page)
2575{
2576 int i;
2577 void *objp;
2578 bool shuffled;
2579
2580 cache_init_objs_debug(cachep, page);
2581
2582
2583 shuffled = shuffle_freelist(cachep, page);
2584
2585 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2586 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2587 obj_offset(cachep);
2588 }
2589
2590 for (i = 0; i < cachep->num; i++) {
2591 objp = index_to_obj(cachep, page, i);
2592 kasan_init_slab_obj(cachep, objp);
2593
2594
2595 if (DEBUG == 0 && cachep->ctor) {
2596 kasan_unpoison_object_data(cachep, objp);
2597 cachep->ctor(objp);
2598 kasan_poison_object_data(cachep, objp);
2599 }
2600
2601 if (!shuffled)
2602 set_free_obj(page, i, i);
2603 }
2604}
2605
2606static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2607{
2608 void *objp;
2609
2610 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2611 page->active++;
2612
2613#if DEBUG
2614 if (cachep->flags & SLAB_STORE_USER)
2615 set_store_user_dirty(cachep);
2616#endif
2617
2618 return objp;
2619}
2620
2621static void slab_put_obj(struct kmem_cache *cachep,
2622 struct page *page, void *objp)
2623{
2624 unsigned int objnr = obj_to_index(cachep, page, objp);
2625#if DEBUG
2626 unsigned int i;
2627
2628
2629 for (i = page->active; i < cachep->num; i++) {
2630 if (get_free_obj(page, i) == objnr) {
2631 pr_err("slab: double free detected in cache '%s', objp %p\n",
2632 cachep->name, objp);
2633 BUG();
2634 }
2635 }
2636#endif
2637 page->active--;
2638 if (!page->freelist)
2639 page->freelist = objp + obj_offset(cachep);
2640
2641 set_free_obj(page, page->active, objnr);
2642}
2643
2644
2645
2646
2647
2648
2649static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2650 void *freelist)
2651{
2652 page->slab_cache = cache;
2653 page->freelist = freelist;
2654}
2655
2656
2657
2658
2659
2660static struct page *cache_grow_begin(struct kmem_cache *cachep,
2661 gfp_t flags, int nodeid)
2662{
2663 void *freelist;
2664 size_t offset;
2665 gfp_t local_flags;
2666 int page_node;
2667 struct kmem_cache_node *n;
2668 struct page *page;
2669
2670
2671
2672
2673
2674 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2675 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2676 flags &= ~GFP_SLAB_BUG_MASK;
2677 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2678 invalid_mask, &invalid_mask, flags, &flags);
2679 dump_stack();
2680 }
2681 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2682
2683 check_irq_off();
2684 if (gfpflags_allow_blocking(local_flags))
2685 local_irq_enable();
2686
2687
2688
2689
2690
2691 page = kmem_getpages(cachep, local_flags, nodeid);
2692 if (!page)
2693 goto failed;
2694
2695 page_node = page_to_nid(page);
2696 n = get_node(cachep, page_node);
2697
2698
2699 n->colour_next++;
2700 if (n->colour_next >= cachep->colour)
2701 n->colour_next = 0;
2702
2703 offset = n->colour_next;
2704 if (offset >= cachep->colour)
2705 offset = 0;
2706
2707 offset *= cachep->colour_off;
2708
2709
2710 freelist = alloc_slabmgmt(cachep, page, offset,
2711 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2712 if (OFF_SLAB(cachep) && !freelist)
2713 goto opps1;
2714
2715 slab_map_pages(cachep, page, freelist);
2716
2717 kasan_poison_slab(page);
2718 cache_init_objs(cachep, page);
2719
2720 if (gfpflags_allow_blocking(local_flags))
2721 local_irq_disable();
2722
2723 return page;
2724
2725opps1:
2726 kmem_freepages(cachep, page);
2727failed:
2728 if (gfpflags_allow_blocking(local_flags))
2729 local_irq_disable();
2730 return NULL;
2731}
2732
2733static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2734{
2735 struct kmem_cache_node *n;
2736 void *list = NULL;
2737
2738 check_irq_off();
2739
2740 if (!page)
2741 return;
2742
2743 INIT_LIST_HEAD(&page->lru);
2744 n = get_node(cachep, page_to_nid(page));
2745
2746 spin_lock(&n->list_lock);
2747 n->total_slabs++;
2748 if (!page->active) {
2749 list_add_tail(&page->lru, &(n->slabs_free));
2750 n->free_slabs++;
2751 } else
2752 fixup_slab_list(cachep, n, page, &list);
2753
2754 STATS_INC_GROWN(cachep);
2755 n->free_objects += cachep->num - page->active;
2756 spin_unlock(&n->list_lock);
2757
2758 fixup_objfreelist_debug(cachep, &list);
2759}
2760
2761#if DEBUG
2762
2763
2764
2765
2766
2767
2768static void kfree_debugcheck(const void *objp)
2769{
2770 if (!virt_addr_valid(objp)) {
2771 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2772 (unsigned long)objp);
2773 BUG();
2774 }
2775}
2776
2777static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2778{
2779 unsigned long long redzone1, redzone2;
2780
2781 redzone1 = *dbg_redzone1(cache, obj);
2782 redzone2 = *dbg_redzone2(cache, obj);
2783
2784
2785
2786
2787 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2788 return;
2789
2790 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2791 slab_error(cache, "double free detected");
2792 else
2793 slab_error(cache, "memory outside object was overwritten");
2794
2795 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2796 obj, redzone1, redzone2);
2797}
2798
2799static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2800 unsigned long caller)
2801{
2802 unsigned int objnr;
2803 struct page *page;
2804
2805 BUG_ON(virt_to_cache(objp) != cachep);
2806
2807 objp -= obj_offset(cachep);
2808 kfree_debugcheck(objp);
2809 page = virt_to_head_page(objp);
2810
2811 if (cachep->flags & SLAB_RED_ZONE) {
2812 verify_redzone_free(cachep, objp);
2813 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2814 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2815 }
2816 if (cachep->flags & SLAB_STORE_USER) {
2817 set_store_user_dirty(cachep);
2818 *dbg_userword(cachep, objp) = (void *)caller;
2819 }
2820
2821 objnr = obj_to_index(cachep, page, objp);
2822
2823 BUG_ON(objnr >= cachep->num);
2824 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2825
2826 if (cachep->flags & SLAB_POISON) {
2827 poison_obj(cachep, objp, POISON_FREE);
2828 slab_kernel_map(cachep, objp, 0, caller);
2829 }
2830 return objp;
2831}
2832
2833#else
2834#define kfree_debugcheck(x) do { } while(0)
2835#define cache_free_debugcheck(x,objp,z) (objp)
2836#endif
2837
2838static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2839 void **list)
2840{
2841#if DEBUG
2842 void *next = *list;
2843 void *objp;
2844
2845 while (next) {
2846 objp = next - obj_offset(cachep);
2847 next = *(void **)next;
2848 poison_obj(cachep, objp, POISON_FREE);
2849 }
2850#endif
2851}
2852
2853static inline void fixup_slab_list(struct kmem_cache *cachep,
2854 struct kmem_cache_node *n, struct page *page,
2855 void **list)
2856{
2857
2858 list_del(&page->lru);
2859 if (page->active == cachep->num) {
2860 list_add(&page->lru, &n->slabs_full);
2861 if (OBJFREELIST_SLAB(cachep)) {
2862#if DEBUG
2863
2864 if (cachep->flags & SLAB_POISON) {
2865 void **objp = page->freelist;
2866
2867 *objp = *list;
2868 *list = objp;
2869 }
2870#endif
2871 page->freelist = NULL;
2872 }
2873 } else
2874 list_add(&page->lru, &n->slabs_partial);
2875}
2876
2877
2878static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2879 struct page *page, bool pfmemalloc)
2880{
2881 if (!page)
2882 return NULL;
2883
2884 if (pfmemalloc)
2885 return page;
2886
2887 if (!PageSlabPfmemalloc(page))
2888 return page;
2889
2890
2891 if (n->free_objects > n->free_limit) {
2892 ClearPageSlabPfmemalloc(page);
2893 return page;
2894 }
2895
2896
2897 list_del(&page->lru);
2898 if (!page->active) {
2899 list_add_tail(&page->lru, &n->slabs_free);
2900 n->free_slabs++;
2901 } else
2902 list_add_tail(&page->lru, &n->slabs_partial);
2903
2904 list_for_each_entry(page, &n->slabs_partial, lru) {
2905 if (!PageSlabPfmemalloc(page))
2906 return page;
2907 }
2908
2909 n->free_touched = 1;
2910 list_for_each_entry(page, &n->slabs_free, lru) {
2911 if (!PageSlabPfmemalloc(page)) {
2912 n->free_slabs--;
2913 return page;
2914 }
2915 }
2916
2917 return NULL;
2918}
2919
2920static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2921{
2922 struct page *page;
2923
2924 assert_spin_locked(&n->list_lock);
2925 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2926 if (!page) {
2927 n->free_touched = 1;
2928 page = list_first_entry_or_null(&n->slabs_free, struct page,
2929 lru);
2930 if (page)
2931 n->free_slabs--;
2932 }
2933
2934 if (sk_memalloc_socks())
2935 page = get_valid_first_slab(n, page, pfmemalloc);
2936
2937 return page;
2938}
2939
2940static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2941 struct kmem_cache_node *n, gfp_t flags)
2942{
2943 struct page *page;
2944 void *obj;
2945 void *list = NULL;
2946
2947 if (!gfp_pfmemalloc_allowed(flags))
2948 return NULL;
2949
2950 spin_lock(&n->list_lock);
2951 page = get_first_slab(n, true);
2952 if (!page) {
2953 spin_unlock(&n->list_lock);
2954 return NULL;
2955 }
2956
2957 obj = slab_get_obj(cachep, page);
2958 n->free_objects--;
2959
2960 fixup_slab_list(cachep, n, page, &list);
2961
2962 spin_unlock(&n->list_lock);
2963 fixup_objfreelist_debug(cachep, &list);
2964
2965 return obj;
2966}
2967
2968
2969
2970
2971
2972static __always_inline int alloc_block(struct kmem_cache *cachep,
2973 struct array_cache *ac, struct page *page, int batchcount)
2974{
2975
2976
2977
2978
2979 BUG_ON(page->active >= cachep->num);
2980
2981 while (page->active < cachep->num && batchcount--) {
2982 STATS_INC_ALLOCED(cachep);
2983 STATS_INC_ACTIVE(cachep);
2984 STATS_SET_HIGH(cachep);
2985
2986 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2987 }
2988
2989 return batchcount;
2990}
2991
2992static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2993{
2994 int batchcount;
2995 struct kmem_cache_node *n;
2996 struct array_cache *ac, *shared;
2997 int node;
2998 void *list = NULL;
2999 struct page *page;
3000
3001 check_irq_off();
3002 node = numa_mem_id();
3003
3004 ac = cpu_cache_get(cachep);
3005 batchcount = ac->batchcount;
3006 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3007
3008
3009
3010
3011
3012 batchcount = BATCHREFILL_LIMIT;
3013 }
3014 n = get_node(cachep, node);
3015
3016 BUG_ON(ac->avail > 0 || !n);
3017 shared = READ_ONCE(n->shared);
3018 if (!n->free_objects && (!shared || !shared->avail))
3019 goto direct_grow;
3020
3021 spin_lock(&n->list_lock);
3022 shared = READ_ONCE(n->shared);
3023
3024
3025 if (shared && transfer_objects(ac, shared, batchcount)) {
3026 shared->touched = 1;
3027 goto alloc_done;
3028 }
3029
3030 while (batchcount > 0) {
3031
3032 page = get_first_slab(n, false);
3033 if (!page)
3034 goto must_grow;
3035
3036 check_spinlock_acquired(cachep);
3037
3038 batchcount = alloc_block(cachep, ac, page, batchcount);
3039 fixup_slab_list(cachep, n, page, &list);
3040 }
3041
3042must_grow:
3043 n->free_objects -= ac->avail;
3044alloc_done:
3045 spin_unlock(&n->list_lock);
3046 fixup_objfreelist_debug(cachep, &list);
3047
3048direct_grow:
3049 if (unlikely(!ac->avail)) {
3050
3051 if (sk_memalloc_socks()) {
3052 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3053
3054 if (obj)
3055 return obj;
3056 }
3057
3058 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3059
3060
3061
3062
3063
3064 ac = cpu_cache_get(cachep);
3065 if (!ac->avail && page)
3066 alloc_block(cachep, ac, page, batchcount);
3067 cache_grow_end(cachep, page);
3068
3069 if (!ac->avail)
3070 return NULL;
3071 }
3072 ac->touched = 1;
3073
3074 return ac->entry[--ac->avail];
3075}
3076
3077static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3078 gfp_t flags)
3079{
3080 might_sleep_if(gfpflags_allow_blocking(flags));
3081}
3082
3083#if DEBUG
3084static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3085 gfp_t flags, void *objp, unsigned long caller)
3086{
3087 if (!objp)
3088 return objp;
3089 if (cachep->flags & SLAB_POISON) {
3090 check_poison_obj(cachep, objp);
3091 slab_kernel_map(cachep, objp, 1, 0);
3092 poison_obj(cachep, objp, POISON_INUSE);
3093 }
3094 if (cachep->flags & SLAB_STORE_USER)
3095 *dbg_userword(cachep, objp) = (void *)caller;
3096
3097 if (cachep->flags & SLAB_RED_ZONE) {
3098 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3099 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3100 slab_error(cachep, "double free, or memory outside object was overwritten");
3101 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3102 objp, *dbg_redzone1(cachep, objp),
3103 *dbg_redzone2(cachep, objp));
3104 }
3105 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3106 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3107 }
3108
3109 objp += obj_offset(cachep);
3110 if (cachep->ctor && cachep->flags & SLAB_POISON)
3111 cachep->ctor(objp);
3112 if (ARCH_SLAB_MINALIGN &&
3113 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3114 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3115 objp, (int)ARCH_SLAB_MINALIGN);
3116 }
3117 return objp;
3118}
3119#else
3120#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3121#endif
3122
3123static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3124{
3125 void *objp;
3126 struct array_cache *ac;
3127
3128 check_irq_off();
3129
3130 ac = cpu_cache_get(cachep);
3131 if (likely(ac->avail)) {
3132 ac->touched = 1;
3133 objp = ac->entry[--ac->avail];
3134
3135 STATS_INC_ALLOCHIT(cachep);
3136 goto out;
3137 }
3138
3139 STATS_INC_ALLOCMISS(cachep);
3140 objp = cache_alloc_refill(cachep, flags);
3141
3142
3143
3144
3145 ac = cpu_cache_get(cachep);
3146
3147out:
3148
3149
3150
3151
3152
3153 if (objp)
3154 kmemleak_erase(&ac->entry[ac->avail]);
3155 return objp;
3156}
3157
3158#ifdef CONFIG_NUMA
3159
3160
3161
3162
3163
3164
3165static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3166{
3167 int nid_alloc, nid_here;
3168
3169 if (in_interrupt() || (flags & __GFP_THISNODE))
3170 return NULL;
3171 nid_alloc = nid_here = numa_mem_id();
3172 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3173 nid_alloc = cpuset_slab_spread_node();
3174 else if (current->mempolicy)
3175 nid_alloc = mempolicy_slab_node();
3176 if (nid_alloc != nid_here)
3177 return ____cache_alloc_node(cachep, flags, nid_alloc);
3178 return NULL;
3179}
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3190{
3191 struct zonelist *zonelist;
3192 struct zoneref *z;
3193 struct zone *zone;
3194 enum zone_type high_zoneidx = gfp_zone(flags);
3195 void *obj = NULL;
3196 struct page *page;
3197 int nid;
3198 unsigned int cpuset_mems_cookie;
3199
3200 if (flags & __GFP_THISNODE)
3201 return NULL;
3202
3203retry_cpuset:
3204 cpuset_mems_cookie = read_mems_allowed_begin();
3205 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3206
3207retry:
3208
3209
3210
3211
3212 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3213 nid = zone_to_nid(zone);
3214
3215 if (cpuset_zone_allowed(zone, flags) &&
3216 get_node(cache, nid) &&
3217 get_node(cache, nid)->free_objects) {
3218 obj = ____cache_alloc_node(cache,
3219 gfp_exact_node(flags), nid);
3220 if (obj)
3221 break;
3222 }
3223 }
3224
3225 if (!obj) {
3226
3227
3228
3229
3230
3231
3232 page = cache_grow_begin(cache, flags, numa_mem_id());
3233 cache_grow_end(cache, page);
3234 if (page) {
3235 nid = page_to_nid(page);
3236 obj = ____cache_alloc_node(cache,
3237 gfp_exact_node(flags), nid);
3238
3239
3240
3241
3242
3243 if (!obj)
3244 goto retry;
3245 }
3246 }
3247
3248 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3249 goto retry_cpuset;
3250 return obj;
3251}
3252
3253
3254
3255
3256static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3257 int nodeid)
3258{
3259 struct page *page;
3260 struct kmem_cache_node *n;
3261 void *obj = NULL;
3262 void *list = NULL;
3263
3264 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3265 n = get_node(cachep, nodeid);
3266 BUG_ON(!n);
3267
3268 check_irq_off();
3269 spin_lock(&n->list_lock);
3270 page = get_first_slab(n, false);
3271 if (!page)
3272 goto must_grow;
3273
3274 check_spinlock_acquired_node(cachep, nodeid);
3275
3276 STATS_INC_NODEALLOCS(cachep);
3277 STATS_INC_ACTIVE(cachep);
3278 STATS_SET_HIGH(cachep);
3279
3280 BUG_ON(page->active == cachep->num);
3281
3282 obj = slab_get_obj(cachep, page);
3283 n->free_objects--;
3284
3285 fixup_slab_list(cachep, n, page, &list);
3286
3287 spin_unlock(&n->list_lock);
3288 fixup_objfreelist_debug(cachep, &list);
3289 return obj;
3290
3291must_grow:
3292 spin_unlock(&n->list_lock);
3293 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3294 if (page) {
3295
3296 obj = slab_get_obj(cachep, page);
3297 }
3298 cache_grow_end(cachep, page);
3299
3300 return obj ? obj : fallback_alloc(cachep, flags);
3301}
3302
3303static __always_inline void *
3304slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3305 unsigned long caller)
3306{
3307 unsigned long save_flags;
3308 void *ptr;
3309 int slab_node = numa_mem_id();
3310
3311 flags &= gfp_allowed_mask;
3312 cachep = slab_pre_alloc_hook(cachep, flags);
3313 if (unlikely(!cachep))
3314 return NULL;
3315
3316 cache_alloc_debugcheck_before(cachep, flags);
3317 local_irq_save(save_flags);
3318
3319 if (nodeid == NUMA_NO_NODE)
3320 nodeid = slab_node;
3321
3322 if (unlikely(!get_node(cachep, nodeid))) {
3323
3324 ptr = fallback_alloc(cachep, flags);
3325 goto out;
3326 }
3327
3328 if (nodeid == slab_node) {
3329
3330
3331
3332
3333
3334
3335 ptr = ____cache_alloc(cachep, flags);
3336 if (ptr)
3337 goto out;
3338 }
3339
3340 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3341 out:
3342 local_irq_restore(save_flags);
3343 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3344
3345 if (unlikely(flags & __GFP_ZERO) && ptr)
3346 memset(ptr, 0, cachep->object_size);
3347
3348 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3349 return ptr;
3350}
3351
3352static __always_inline void *
3353__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3354{
3355 void *objp;
3356
3357 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3358 objp = alternate_node_alloc(cache, flags);
3359 if (objp)
3360 goto out;
3361 }
3362 objp = ____cache_alloc(cache, flags);
3363
3364
3365
3366
3367
3368 if (!objp)
3369 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3370
3371 out:
3372 return objp;
3373}
3374#else
3375
3376static __always_inline void *
3377__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3378{
3379 return ____cache_alloc(cachep, flags);
3380}
3381
3382#endif
3383
3384static __always_inline void *
3385slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3386{
3387 unsigned long save_flags;
3388 void *objp;
3389
3390 flags &= gfp_allowed_mask;
3391 cachep = slab_pre_alloc_hook(cachep, flags);
3392 if (unlikely(!cachep))
3393 return NULL;
3394
3395 cache_alloc_debugcheck_before(cachep, flags);
3396 local_irq_save(save_flags);
3397 objp = __do_cache_alloc(cachep, flags);
3398 local_irq_restore(save_flags);
3399 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3400 prefetchw(objp);
3401
3402 if (unlikely(flags & __GFP_ZERO) && objp)
3403 memset(objp, 0, cachep->object_size);
3404
3405 slab_post_alloc_hook(cachep, flags, 1, &objp);
3406 return objp;
3407}
3408
3409
3410
3411
3412
3413static void free_block(struct kmem_cache *cachep, void **objpp,
3414 int nr_objects, int node, struct list_head *list)
3415{
3416 int i;
3417 struct kmem_cache_node *n = get_node(cachep, node);
3418 struct page *page;
3419
3420 n->free_objects += nr_objects;
3421
3422 for (i = 0; i < nr_objects; i++) {
3423 void *objp;
3424 struct page *page;
3425
3426 objp = objpp[i];
3427
3428 page = virt_to_head_page(objp);
3429 list_del(&page->lru);
3430 check_spinlock_acquired_node(cachep, node);
3431 slab_put_obj(cachep, page, objp);
3432 STATS_DEC_ACTIVE(cachep);
3433
3434
3435 if (page->active == 0) {
3436 list_add(&page->lru, &n->slabs_free);
3437 n->free_slabs++;
3438 } else {
3439
3440
3441
3442
3443 list_add_tail(&page->lru, &n->slabs_partial);
3444 }
3445 }
3446
3447 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3448 n->free_objects -= cachep->num;
3449
3450 page = list_last_entry(&n->slabs_free, struct page, lru);
3451 list_move(&page->lru, list);
3452 n->free_slabs--;
3453 n->total_slabs--;
3454 }
3455}
3456
3457static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3458{
3459 int batchcount;
3460 struct kmem_cache_node *n;
3461 int node = numa_mem_id();
3462 LIST_HEAD(list);
3463
3464 batchcount = ac->batchcount;
3465
3466 check_irq_off();
3467 n = get_node(cachep, node);
3468 spin_lock(&n->list_lock);
3469 if (n->shared) {
3470 struct array_cache *shared_array = n->shared;
3471 int max = shared_array->limit - shared_array->avail;
3472 if (max) {
3473 if (batchcount > max)
3474 batchcount = max;
3475 memcpy(&(shared_array->entry[shared_array->avail]),
3476 ac->entry, sizeof(void *) * batchcount);
3477 shared_array->avail += batchcount;
3478 goto free_done;
3479 }
3480 }
3481
3482 free_block(cachep, ac->entry, batchcount, node, &list);
3483free_done:
3484#if STATS
3485 {
3486 int i = 0;
3487 struct page *page;
3488
3489 list_for_each_entry(page, &n->slabs_free, lru) {
3490 BUG_ON(page->active);
3491
3492 i++;
3493 }
3494 STATS_SET_FREEABLE(cachep, i);
3495 }
3496#endif
3497 spin_unlock(&n->list_lock);
3498 slabs_destroy(cachep, &list);
3499 ac->avail -= batchcount;
3500 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3501}
3502
3503
3504
3505
3506
3507static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3508 unsigned long caller)
3509{
3510
3511 if (kasan_slab_free(cachep, objp))
3512 return;
3513
3514 ___cache_free(cachep, objp, caller);
3515}
3516
3517void ___cache_free(struct kmem_cache *cachep, void *objp,
3518 unsigned long caller)
3519{
3520 struct array_cache *ac = cpu_cache_get(cachep);
3521
3522 check_irq_off();
3523 kmemleak_free_recursive(objp, cachep->flags);
3524 objp = cache_free_debugcheck(cachep, objp, caller);
3525
3526 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3527
3528
3529
3530
3531
3532
3533
3534
3535 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3536 return;
3537
3538 if (ac->avail < ac->limit) {
3539 STATS_INC_FREEHIT(cachep);
3540 } else {
3541 STATS_INC_FREEMISS(cachep);
3542 cache_flusharray(cachep, ac);
3543 }
3544
3545 if (sk_memalloc_socks()) {
3546 struct page *page = virt_to_head_page(objp);
3547
3548 if (unlikely(PageSlabPfmemalloc(page))) {
3549 cache_free_pfmemalloc(cachep, page, objp);
3550 return;
3551 }
3552 }
3553
3554 ac->entry[ac->avail++] = objp;
3555}
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3566{
3567 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3568
3569 kasan_slab_alloc(cachep, ret, flags);
3570 trace_kmem_cache_alloc(_RET_IP_, ret,
3571 cachep->object_size, cachep->size, flags);
3572
3573 return ret;
3574}
3575EXPORT_SYMBOL(kmem_cache_alloc);
3576
3577static __always_inline void
3578cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3579 size_t size, void **p, unsigned long caller)
3580{
3581 size_t i;
3582
3583 for (i = 0; i < size; i++)
3584 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3585}
3586
3587int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3588 void **p)
3589{
3590 size_t i;
3591
3592 s = slab_pre_alloc_hook(s, flags);
3593 if (!s)
3594 return 0;
3595
3596 cache_alloc_debugcheck_before(s, flags);
3597
3598 local_irq_disable();
3599 for (i = 0; i < size; i++) {
3600 void *objp = __do_cache_alloc(s, flags);
3601
3602 if (unlikely(!objp))
3603 goto error;
3604 p[i] = objp;
3605 }
3606 local_irq_enable();
3607
3608 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3609
3610
3611 if (unlikely(flags & __GFP_ZERO))
3612 for (i = 0; i < size; i++)
3613 memset(p[i], 0, s->object_size);
3614
3615 slab_post_alloc_hook(s, flags, size, p);
3616
3617 return size;
3618error:
3619 local_irq_enable();
3620 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3621 slab_post_alloc_hook(s, flags, i, p);
3622 __kmem_cache_free_bulk(s, i, p);
3623 return 0;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3626
3627#ifdef CONFIG_TRACING
3628void *
3629kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3630{
3631 void *ret;
3632
3633 ret = slab_alloc(cachep, flags, _RET_IP_);
3634
3635 kasan_kmalloc(cachep, ret, size, flags);
3636 trace_kmalloc(_RET_IP_, ret,
3637 size, cachep->size, flags);
3638 return ret;
3639}
3640EXPORT_SYMBOL(kmem_cache_alloc_trace);
3641#endif
3642
3643#ifdef CONFIG_NUMA
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3656{
3657 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3658
3659 kasan_slab_alloc(cachep, ret, flags);
3660 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3661 cachep->object_size, cachep->size,
3662 flags, nodeid);
3663
3664 return ret;
3665}
3666EXPORT_SYMBOL(kmem_cache_alloc_node);
3667
3668#ifdef CONFIG_TRACING
3669void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3670 gfp_t flags,
3671 int nodeid,
3672 size_t size)
3673{
3674 void *ret;
3675
3676 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3677
3678 kasan_kmalloc(cachep, ret, size, flags);
3679 trace_kmalloc_node(_RET_IP_, ret,
3680 size, cachep->size,
3681 flags, nodeid);
3682 return ret;
3683}
3684EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3685#endif
3686
3687static __always_inline void *
3688__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3689{
3690 struct kmem_cache *cachep;
3691 void *ret;
3692
3693 cachep = kmalloc_slab(size, flags);
3694 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3695 return cachep;
3696 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3697 kasan_kmalloc(cachep, ret, size, flags);
3698
3699 return ret;
3700}
3701
3702void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703{
3704 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3705}
3706EXPORT_SYMBOL(__kmalloc_node);
3707
3708void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709 int node, unsigned long caller)
3710{
3711 return __do_kmalloc_node(size, flags, node, caller);
3712}
3713EXPORT_SYMBOL(__kmalloc_node_track_caller);
3714#endif
3715
3716
3717
3718
3719
3720
3721
3722static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723 unsigned long caller)
3724{
3725 struct kmem_cache *cachep;
3726 void *ret;
3727
3728 cachep = kmalloc_slab(size, flags);
3729 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3730 return cachep;
3731 ret = slab_alloc(cachep, flags, caller);
3732
3733 kasan_kmalloc(cachep, ret, size, flags);
3734 trace_kmalloc(caller, ret,
3735 size, cachep->size, flags);
3736
3737 return ret;
3738}
3739
3740void *__kmalloc(size_t size, gfp_t flags)
3741{
3742 return __do_kmalloc(size, flags, _RET_IP_);
3743}
3744EXPORT_SYMBOL(__kmalloc);
3745
3746void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747{
3748 return __do_kmalloc(size, flags, caller);
3749}
3750EXPORT_SYMBOL(__kmalloc_track_caller);
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3761{
3762 unsigned long flags;
3763 cachep = cache_from_obj(cachep, objp);
3764 if (!cachep)
3765 return;
3766
3767 local_irq_save(flags);
3768 debug_check_no_locks_freed(objp, cachep->object_size);
3769 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3770 debug_check_no_obj_freed(objp, cachep->object_size);
3771 __cache_free(cachep, objp, _RET_IP_);
3772 local_irq_restore(flags);
3773
3774 trace_kmem_cache_free(_RET_IP_, objp);
3775}
3776EXPORT_SYMBOL(kmem_cache_free);
3777
3778void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3779{
3780 struct kmem_cache *s;
3781 size_t i;
3782
3783 local_irq_disable();
3784 for (i = 0; i < size; i++) {
3785 void *objp = p[i];
3786
3787 if (!orig_s)
3788 s = virt_to_cache(objp);
3789 else
3790 s = cache_from_obj(orig_s, objp);
3791
3792 debug_check_no_locks_freed(objp, s->object_size);
3793 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3794 debug_check_no_obj_freed(objp, s->object_size);
3795
3796 __cache_free(s, objp, _RET_IP_);
3797 }
3798 local_irq_enable();
3799
3800
3801}
3802EXPORT_SYMBOL(kmem_cache_free_bulk);
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813void kfree(const void *objp)
3814{
3815 struct kmem_cache *c;
3816 unsigned long flags;
3817
3818 trace_kfree(_RET_IP_, objp);
3819
3820 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3821 return;
3822 local_irq_save(flags);
3823 kfree_debugcheck(objp);
3824 c = virt_to_cache(objp);
3825 debug_check_no_locks_freed(objp, c->object_size);
3826
3827 debug_check_no_obj_freed(objp, c->object_size);
3828 __cache_free(c, (void *)objp, _RET_IP_);
3829 local_irq_restore(flags);
3830}
3831EXPORT_SYMBOL(kfree);
3832
3833
3834
3835
3836static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3837{
3838 int ret;
3839 int node;
3840 struct kmem_cache_node *n;
3841
3842 for_each_online_node(node) {
3843 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3844 if (ret)
3845 goto fail;
3846
3847 }
3848
3849 return 0;
3850
3851fail:
3852 if (!cachep->list.next) {
3853
3854 node--;
3855 while (node >= 0) {
3856 n = get_node(cachep, node);
3857 if (n) {
3858 kfree(n->shared);
3859 free_alien_cache(n->alien);
3860 kfree(n);
3861 cachep->node[node] = NULL;
3862 }
3863 node--;
3864 }
3865 }
3866 return -ENOMEM;
3867}
3868
3869
3870static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3871 int batchcount, int shared, gfp_t gfp)
3872{
3873 struct array_cache __percpu *cpu_cache, *prev;
3874 int cpu;
3875
3876 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3877 if (!cpu_cache)
3878 return -ENOMEM;
3879
3880 prev = cachep->cpu_cache;
3881 cachep->cpu_cache = cpu_cache;
3882
3883
3884
3885
3886 if (prev)
3887 kick_all_cpus_sync();
3888
3889 check_irq_on();
3890 cachep->batchcount = batchcount;
3891 cachep->limit = limit;
3892 cachep->shared = shared;
3893
3894 if (!prev)
3895 goto setup_node;
3896
3897 for_each_online_cpu(cpu) {
3898 LIST_HEAD(list);
3899 int node;
3900 struct kmem_cache_node *n;
3901 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3902
3903 node = cpu_to_mem(cpu);
3904 n = get_node(cachep, node);
3905 spin_lock_irq(&n->list_lock);
3906 free_block(cachep, ac->entry, ac->avail, node, &list);
3907 spin_unlock_irq(&n->list_lock);
3908 slabs_destroy(cachep, &list);
3909 }
3910 free_percpu(prev);
3911
3912setup_node:
3913 return setup_kmem_cache_nodes(cachep, gfp);
3914}
3915
3916static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3917 int batchcount, int shared, gfp_t gfp)
3918{
3919 int ret;
3920 struct kmem_cache *c;
3921
3922 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3923
3924 if (slab_state < FULL)
3925 return ret;
3926
3927 if ((ret < 0) || !is_root_cache(cachep))
3928 return ret;
3929
3930 lockdep_assert_held(&slab_mutex);
3931 for_each_memcg_cache(c, cachep) {
3932
3933 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3934 }
3935
3936 return ret;
3937}
3938
3939
3940static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3941{
3942 int err;
3943 int limit = 0;
3944 int shared = 0;
3945 int batchcount = 0;
3946
3947 err = cache_random_seq_create(cachep, cachep->num, gfp);
3948 if (err)
3949 goto end;
3950
3951 if (!is_root_cache(cachep)) {
3952 struct kmem_cache *root = memcg_root_cache(cachep);
3953 limit = root->limit;
3954 shared = root->shared;
3955 batchcount = root->batchcount;
3956 }
3957
3958 if (limit && shared && batchcount)
3959 goto skip_setup;
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969 if (cachep->size > 131072)
3970 limit = 1;
3971 else if (cachep->size > PAGE_SIZE)
3972 limit = 8;
3973 else if (cachep->size > 1024)
3974 limit = 24;
3975 else if (cachep->size > 256)
3976 limit = 54;
3977 else
3978 limit = 120;
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989 shared = 0;
3990 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3991 shared = 8;
3992
3993#if DEBUG
3994
3995
3996
3997
3998 if (limit > 32)
3999 limit = 32;
4000#endif
4001 batchcount = (limit + 1) / 2;
4002skip_setup:
4003 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4004end:
4005 if (err)
4006 pr_err("enable_cpucache failed for %s, error %d\n",
4007 cachep->name, -err);
4008 return err;
4009}
4010
4011
4012
4013
4014
4015
4016static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4017 struct array_cache *ac, int node)
4018{
4019 LIST_HEAD(list);
4020
4021
4022 check_mutex_acquired();
4023
4024 if (!ac || !ac->avail)
4025 return;
4026
4027 if (ac->touched) {
4028 ac->touched = 0;
4029 return;
4030 }
4031
4032 spin_lock_irq(&n->list_lock);
4033 drain_array_locked(cachep, ac, node, false, &list);
4034 spin_unlock_irq(&n->list_lock);
4035
4036 slabs_destroy(cachep, &list);
4037}
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051static void cache_reap(struct work_struct *w)
4052{
4053 struct kmem_cache *searchp;
4054 struct kmem_cache_node *n;
4055 int node = numa_mem_id();
4056 struct delayed_work *work = to_delayed_work(w);
4057
4058 if (!mutex_trylock(&slab_mutex))
4059
4060 goto out;
4061
4062 list_for_each_entry(searchp, &slab_caches, list) {
4063 check_irq_on();
4064
4065
4066
4067
4068
4069
4070 n = get_node(searchp, node);
4071
4072 reap_alien(searchp, n);
4073
4074 drain_array(searchp, n, cpu_cache_get(searchp), node);
4075
4076
4077
4078
4079
4080 if (time_after(n->next_reap, jiffies))
4081 goto next;
4082
4083 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4084
4085 drain_array(searchp, n, n->shared, node);
4086
4087 if (n->free_touched)
4088 n->free_touched = 0;
4089 else {
4090 int freed;
4091
4092 freed = drain_freelist(searchp, n, (n->free_limit +
4093 5 * searchp->num - 1) / (5 * searchp->num));
4094 STATS_ADD_REAPED(searchp, freed);
4095 }
4096next:
4097 cond_resched();
4098 }
4099 check_irq_on();
4100 mutex_unlock(&slab_mutex);
4101 next_reap_node();
4102out:
4103
4104 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4105}
4106
4107#ifdef CONFIG_SLABINFO
4108void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4109{
4110 unsigned long active_objs, num_objs, active_slabs;
4111 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4112 unsigned long free_slabs = 0;
4113 int node;
4114 struct kmem_cache_node *n;
4115
4116 for_each_kmem_cache_node(cachep, node, n) {
4117 check_irq_on();
4118 spin_lock_irq(&n->list_lock);
4119
4120 total_slabs += n->total_slabs;
4121 free_slabs += n->free_slabs;
4122 free_objs += n->free_objects;
4123
4124 if (n->shared)
4125 shared_avail += n->shared->avail;
4126
4127 spin_unlock_irq(&n->list_lock);
4128 }
4129 num_objs = total_slabs * cachep->num;
4130 active_slabs = total_slabs - free_slabs;
4131 active_objs = num_objs - free_objs;
4132
4133 sinfo->active_objs = active_objs;
4134 sinfo->num_objs = num_objs;
4135 sinfo->active_slabs = active_slabs;
4136 sinfo->num_slabs = total_slabs;
4137 sinfo->shared_avail = shared_avail;
4138 sinfo->limit = cachep->limit;
4139 sinfo->batchcount = cachep->batchcount;
4140 sinfo->shared = cachep->shared;
4141 sinfo->objects_per_slab = cachep->num;
4142 sinfo->cache_order = cachep->gfporder;
4143}
4144
4145void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4146{
4147#if STATS
4148 {
4149 unsigned long high = cachep->high_mark;
4150 unsigned long allocs = cachep->num_allocations;
4151 unsigned long grown = cachep->grown;
4152 unsigned long reaped = cachep->reaped;
4153 unsigned long errors = cachep->errors;
4154 unsigned long max_freeable = cachep->max_freeable;
4155 unsigned long node_allocs = cachep->node_allocs;
4156 unsigned long node_frees = cachep->node_frees;
4157 unsigned long overflows = cachep->node_overflow;
4158
4159 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4160 allocs, high, grown,
4161 reaped, errors, max_freeable, node_allocs,
4162 node_frees, overflows);
4163 }
4164
4165 {
4166 unsigned long allochit = atomic_read(&cachep->allochit);
4167 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4168 unsigned long freehit = atomic_read(&cachep->freehit);
4169 unsigned long freemiss = atomic_read(&cachep->freemiss);
4170
4171 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4172 allochit, allocmiss, freehit, freemiss);
4173 }
4174#endif
4175}
4176
4177#define MAX_SLABINFO_WRITE 128
4178
4179
4180
4181
4182
4183
4184
4185ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4186 size_t count, loff_t *ppos)
4187{
4188 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4189 int limit, batchcount, shared, res;
4190 struct kmem_cache *cachep;
4191
4192 if (count > MAX_SLABINFO_WRITE)
4193 return -EINVAL;
4194 if (copy_from_user(&kbuf, buffer, count))
4195 return -EFAULT;
4196 kbuf[MAX_SLABINFO_WRITE] = '\0';
4197
4198 tmp = strchr(kbuf, ' ');
4199 if (!tmp)
4200 return -EINVAL;
4201 *tmp = '\0';
4202 tmp++;
4203 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4204 return -EINVAL;
4205
4206
4207 mutex_lock(&slab_mutex);
4208 res = -EINVAL;
4209 list_for_each_entry(cachep, &slab_caches, list) {
4210 if (!strcmp(cachep->name, kbuf)) {
4211 if (limit < 1 || batchcount < 1 ||
4212 batchcount > limit || shared < 0) {
4213 res = 0;
4214 } else {
4215 res = do_tune_cpucache(cachep, limit,
4216 batchcount, shared,
4217 GFP_KERNEL);
4218 }
4219 break;
4220 }
4221 }
4222 mutex_unlock(&slab_mutex);
4223 if (res >= 0)
4224 res = count;
4225 return res;
4226}
4227
4228#ifdef CONFIG_DEBUG_SLAB_LEAK
4229
4230static inline int add_caller(unsigned long *n, unsigned long v)
4231{
4232 unsigned long *p;
4233 int l;
4234 if (!v)
4235 return 1;
4236 l = n[1];
4237 p = n + 2;
4238 while (l) {
4239 int i = l/2;
4240 unsigned long *q = p + 2 * i;
4241 if (*q == v) {
4242 q[1]++;
4243 return 1;
4244 }
4245 if (*q > v) {
4246 l = i;
4247 } else {
4248 p = q + 2;
4249 l -= i + 1;
4250 }
4251 }
4252 if (++n[1] == n[0])
4253 return 0;
4254 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4255 p[0] = v;
4256 p[1] = 1;
4257 return 1;
4258}
4259
4260static void handle_slab(unsigned long *n, struct kmem_cache *c,
4261 struct page *page)
4262{
4263 void *p;
4264 int i, j;
4265 unsigned long v;
4266
4267 if (n[0] == n[1])
4268 return;
4269 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4270 bool active = true;
4271
4272 for (j = page->active; j < c->num; j++) {
4273 if (get_free_obj(page, j) == i) {
4274 active = false;
4275 break;
4276 }
4277 }
4278
4279 if (!active)
4280 continue;
4281
4282
4283
4284
4285
4286
4287
4288 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4289 continue;
4290
4291 if (!add_caller(n, v))
4292 return;
4293 }
4294}
4295
4296static void show_symbol(struct seq_file *m, unsigned long address)
4297{
4298#ifdef CONFIG_KALLSYMS
4299 unsigned long offset, size;
4300 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4301
4302 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4303 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4304 if (modname[0])
4305 seq_printf(m, " [%s]", modname);
4306 return;
4307 }
4308#endif
4309 seq_printf(m, "%p", (void *)address);
4310}
4311
4312static int leaks_show(struct seq_file *m, void *p)
4313{
4314 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4315 struct page *page;
4316 struct kmem_cache_node *n;
4317 const char *name;
4318 unsigned long *x = m->private;
4319 int node;
4320 int i;
4321
4322 if (!(cachep->flags & SLAB_STORE_USER))
4323 return 0;
4324 if (!(cachep->flags & SLAB_RED_ZONE))
4325 return 0;
4326
4327
4328
4329
4330
4331
4332
4333 do {
4334 set_store_user_clean(cachep);
4335 drain_cpu_caches(cachep);
4336
4337 x[1] = 0;
4338
4339 for_each_kmem_cache_node(cachep, node, n) {
4340
4341 check_irq_on();
4342 spin_lock_irq(&n->list_lock);
4343
4344 list_for_each_entry(page, &n->slabs_full, lru)
4345 handle_slab(x, cachep, page);
4346 list_for_each_entry(page, &n->slabs_partial, lru)
4347 handle_slab(x, cachep, page);
4348 spin_unlock_irq(&n->list_lock);
4349 }
4350 } while (!is_store_user_clean(cachep));
4351
4352 name = cachep->name;
4353 if (x[0] == x[1]) {
4354
4355 mutex_unlock(&slab_mutex);
4356 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4357 if (!m->private) {
4358
4359 m->private = x;
4360 mutex_lock(&slab_mutex);
4361 return -ENOMEM;
4362 }
4363 *(unsigned long *)m->private = x[0] * 2;
4364 kfree(x);
4365 mutex_lock(&slab_mutex);
4366
4367 m->count = m->size;
4368 return 0;
4369 }
4370 for (i = 0; i < x[1]; i++) {
4371 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4372 show_symbol(m, x[2*i+2]);
4373 seq_putc(m, '\n');
4374 }
4375
4376 return 0;
4377}
4378
4379static const struct seq_operations slabstats_op = {
4380 .start = slab_start,
4381 .next = slab_next,
4382 .stop = slab_stop,
4383 .show = leaks_show,
4384};
4385
4386static int slabstats_open(struct inode *inode, struct file *file)
4387{
4388 unsigned long *n;
4389
4390 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4391 if (!n)
4392 return -ENOMEM;
4393
4394 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4395
4396 return 0;
4397}
4398
4399static const struct file_operations proc_slabstats_operations = {
4400 .open = slabstats_open,
4401 .read = seq_read,
4402 .llseek = seq_lseek,
4403 .release = seq_release_private,
4404};
4405#endif
4406
4407static int __init slab_proc_init(void)
4408{
4409#ifdef CONFIG_DEBUG_SLAB_LEAK
4410 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4411#endif
4412 return 0;
4413}
4414module_init(slab_proc_init);
4415#endif
4416
4417#ifdef CONFIG_HARDENED_USERCOPY
4418
4419
4420
4421
4422
4423
4424const char *__check_heap_object(const void *ptr, unsigned long n,
4425 struct page *page)
4426{
4427 struct kmem_cache *cachep;
4428 unsigned int objnr;
4429 unsigned long offset;
4430
4431
4432 cachep = page->slab_cache;
4433 objnr = obj_to_index(cachep, page, (void *)ptr);
4434 BUG_ON(objnr >= cachep->num);
4435
4436
4437 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4438
4439
4440 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4441 return NULL;
4442
4443 return cachep->name;
4444}
4445#endif
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459size_t ksize(const void *objp)
4460{
4461 size_t size;
4462
4463 BUG_ON(!objp);
4464 if (unlikely(objp == ZERO_SIZE_PTR))
4465 return 0;
4466
4467 size = virt_to_cache(objp)->object_size;
4468
4469
4470
4471 kasan_unpoison_shadow(objp, size);
4472
4473 return size;
4474}
4475EXPORT_SYMBOL(ksize);
4476