linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/rcupdate.h>
 106#include        <linux/string.h>
 107#include        <linux/uaccess.h>
 108#include        <linux/nodemask.h>
 109#include        <linux/kmemleak.h>
 110#include        <linux/mempolicy.h>
 111#include        <linux/mutex.h>
 112#include        <linux/fault-inject.h>
 113#include        <linux/rtmutex.h>
 114#include        <linux/reciprocal_div.h>
 115#include        <linux/debugobjects.h>
 116#include        <linux/kmemcheck.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119#include        <linux/sched/task_stack.h>
 120
 121#include        <net/sock.h>
 122
 123#include        <asm/cacheflush.h>
 124#include        <asm/tlbflush.h>
 125#include        <asm/page.h>
 126
 127#include <trace/events/kmem.h>
 128
 129#include        "internal.h"
 130
 131#include        "slab.h"
 132
 133/*
 134 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 135 *                0 for faster, smaller code (especially in the critical paths).
 136 *
 137 * STATS        - 1 to collect stats for /proc/slabinfo.
 138 *                0 for faster, smaller code (especially in the critical paths).
 139 *
 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 141 */
 142
 143#ifdef CONFIG_DEBUG_SLAB
 144#define DEBUG           1
 145#define STATS           1
 146#define FORCED_DEBUG    1
 147#else
 148#define DEBUG           0
 149#define STATS           0
 150#define FORCED_DEBUG    0
 151#endif
 152
 153/* Shouldn't this be in a header file somewhere? */
 154#define BYTES_PER_WORD          sizeof(void *)
 155#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 156
 157#ifndef ARCH_KMALLOC_FLAGS
 158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 159#endif
 160
 161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 162                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 163
 164#if FREELIST_BYTE_INDEX
 165typedef unsigned char freelist_idx_t;
 166#else
 167typedef unsigned short freelist_idx_t;
 168#endif
 169
 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 171
 172/*
 173 * struct array_cache
 174 *
 175 * Purpose:
 176 * - LIFO ordering, to hand out cache-warm objects from _alloc
 177 * - reduce the number of linked list operations
 178 * - reduce spinlock operations
 179 *
 180 * The limit is stored in the per-cpu structure to reduce the data cache
 181 * footprint.
 182 *
 183 */
 184struct array_cache {
 185        unsigned int avail;
 186        unsigned int limit;
 187        unsigned int batchcount;
 188        unsigned int touched;
 189        void *entry[];  /*
 190                         * Must have this definition in here for the proper
 191                         * alignment of array_cache. Also simplifies accessing
 192                         * the entries.
 193                         */
 194};
 195
 196struct alien_cache {
 197        spinlock_t lock;
 198        struct array_cache ac;
 199};
 200
 201/*
 202 * Need this for bootstrapping a per node allocator.
 203 */
 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 206#define CACHE_CACHE 0
 207#define SIZE_NODE (MAX_NUMNODES)
 208
 209static int drain_freelist(struct kmem_cache *cache,
 210                        struct kmem_cache_node *n, int tofree);
 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 212                        int node, struct list_head *list);
 213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 215static void cache_reap(struct work_struct *unused);
 216
 217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 218                                                void **list);
 219static inline void fixup_slab_list(struct kmem_cache *cachep,
 220                                struct kmem_cache_node *n, struct page *page,
 221                                void **list);
 222static int slab_early_init = 1;
 223
 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 225
 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
 227{
 228        INIT_LIST_HEAD(&parent->slabs_full);
 229        INIT_LIST_HEAD(&parent->slabs_partial);
 230        INIT_LIST_HEAD(&parent->slabs_free);
 231        parent->total_slabs = 0;
 232        parent->free_slabs = 0;
 233        parent->shared = NULL;
 234        parent->alien = NULL;
 235        parent->colour_next = 0;
 236        spin_lock_init(&parent->list_lock);
 237        parent->free_objects = 0;
 238        parent->free_touched = 0;
 239}
 240
 241#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 242        do {                                                            \
 243                INIT_LIST_HEAD(listp);                                  \
 244                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 245        } while (0)
 246
 247#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 248        do {                                                            \
 249        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 251        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 252        } while (0)
 253
 254#define CFLGS_OBJFREELIST_SLAB  (0x40000000UL)
 255#define CFLGS_OFF_SLAB          (0x80000000UL)
 256#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 257#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 258
 259#define BATCHREFILL_LIMIT       16
 260/*
 261 * Optimization question: fewer reaps means less probability for unnessary
 262 * cpucache drain/refill cycles.
 263 *
 264 * OTOH the cpuarrays can contain lots of objects,
 265 * which could lock up otherwise freeable slabs.
 266 */
 267#define REAPTIMEOUT_AC          (2*HZ)
 268#define REAPTIMEOUT_NODE        (4*HZ)
 269
 270#if STATS
 271#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 272#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 273#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 274#define STATS_INC_GROWN(x)      ((x)->grown++)
 275#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 276#define STATS_SET_HIGH(x)                                               \
 277        do {                                                            \
 278                if ((x)->num_active > (x)->high_mark)                   \
 279                        (x)->high_mark = (x)->num_active;               \
 280        } while (0)
 281#define STATS_INC_ERR(x)        ((x)->errors++)
 282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 283#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 284#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 285#define STATS_SET_FREEABLE(x, i)                                        \
 286        do {                                                            \
 287                if ((x)->max_freeable < i)                              \
 288                        (x)->max_freeable = i;                          \
 289        } while (0)
 290#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 291#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 292#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 293#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 294#else
 295#define STATS_INC_ACTIVE(x)     do { } while (0)
 296#define STATS_DEC_ACTIVE(x)     do { } while (0)
 297#define STATS_INC_ALLOCED(x)    do { } while (0)
 298#define STATS_INC_GROWN(x)      do { } while (0)
 299#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 300#define STATS_SET_HIGH(x)       do { } while (0)
 301#define STATS_INC_ERR(x)        do { } while (0)
 302#define STATS_INC_NODEALLOCS(x) do { } while (0)
 303#define STATS_INC_NODEFREES(x)  do { } while (0)
 304#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
 306#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 307#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 308#define STATS_INC_FREEHIT(x)    do { } while (0)
 309#define STATS_INC_FREEMISS(x)   do { } while (0)
 310#endif
 311
 312#if DEBUG
 313
 314/*
 315 * memory layout of objects:
 316 * 0            : objp
 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 318 *              the end of an object is aligned with the end of the real
 319 *              allocation. Catches writes behind the end of the allocation.
 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 321 *              redzone word.
 322 * cachep->obj_offset: The real object.
 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 324 * cachep->size - 1* BYTES_PER_WORD: last caller address
 325 *                                      [BYTES_PER_WORD long]
 326 */
 327static int obj_offset(struct kmem_cache *cachep)
 328{
 329        return cachep->obj_offset;
 330}
 331
 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 333{
 334        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 335        return (unsigned long long*) (objp + obj_offset(cachep) -
 336                                      sizeof(unsigned long long));
 337}
 338
 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 340{
 341        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 342        if (cachep->flags & SLAB_STORE_USER)
 343                return (unsigned long long *)(objp + cachep->size -
 344                                              sizeof(unsigned long long) -
 345                                              REDZONE_ALIGN);
 346        return (unsigned long long *) (objp + cachep->size -
 347                                       sizeof(unsigned long long));
 348}
 349
 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 351{
 352        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 353        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 354}
 355
 356#else
 357
 358#define obj_offset(x)                   0
 359#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 360#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 361#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 362
 363#endif
 364
 365#ifdef CONFIG_DEBUG_SLAB_LEAK
 366
 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
 368{
 369        return atomic_read(&cachep->store_user_clean) == 1;
 370}
 371
 372static inline void set_store_user_clean(struct kmem_cache *cachep)
 373{
 374        atomic_set(&cachep->store_user_clean, 1);
 375}
 376
 377static inline void set_store_user_dirty(struct kmem_cache *cachep)
 378{
 379        if (is_store_user_clean(cachep))
 380                atomic_set(&cachep->store_user_clean, 0);
 381}
 382
 383#else
 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 385
 386#endif
 387
 388/*
 389 * Do not go above this order unless 0 objects fit into the slab or
 390 * overridden on the command line.
 391 */
 392#define SLAB_MAX_ORDER_HI       1
 393#define SLAB_MAX_ORDER_LO       0
 394static int slab_max_order = SLAB_MAX_ORDER_LO;
 395static bool slab_max_order_set __initdata;
 396
 397static inline struct kmem_cache *virt_to_cache(const void *obj)
 398{
 399        struct page *page = virt_to_head_page(obj);
 400        return page->slab_cache;
 401}
 402
 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 404                                 unsigned int idx)
 405{
 406        return page->s_mem + cache->size * idx;
 407}
 408
 409/*
 410 * We want to avoid an expensive divide : (offset / cache->size)
 411 *   Using the fact that size is a constant for a particular cache,
 412 *   we can replace (offset / cache->size) by
 413 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 414 */
 415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 416                                        const struct page *page, void *obj)
 417{
 418        u32 offset = (obj - page->s_mem);
 419        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 420}
 421
 422#define BOOT_CPUCACHE_ENTRIES   1
 423/* internal cache of cache description objs */
 424static struct kmem_cache kmem_cache_boot = {
 425        .batchcount = 1,
 426        .limit = BOOT_CPUCACHE_ENTRIES,
 427        .shared = 1,
 428        .size = sizeof(struct kmem_cache),
 429        .name = "kmem_cache",
 430};
 431
 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 433
 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 435{
 436        return this_cpu_ptr(cachep->cpu_cache);
 437}
 438
 439/*
 440 * Calculate the number of objects and left-over bytes for a given buffer size.
 441 */
 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 443                unsigned long flags, size_t *left_over)
 444{
 445        unsigned int num;
 446        size_t slab_size = PAGE_SIZE << gfporder;
 447
 448        /*
 449         * The slab management structure can be either off the slab or
 450         * on it. For the latter case, the memory allocated for a
 451         * slab is used for:
 452         *
 453         * - @buffer_size bytes for each object
 454         * - One freelist_idx_t for each object
 455         *
 456         * We don't need to consider alignment of freelist because
 457         * freelist will be at the end of slab page. The objects will be
 458         * at the correct alignment.
 459         *
 460         * If the slab management structure is off the slab, then the
 461         * alignment will already be calculated into the size. Because
 462         * the slabs are all pages aligned, the objects will be at the
 463         * correct alignment when allocated.
 464         */
 465        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 466                num = slab_size / buffer_size;
 467                *left_over = slab_size % buffer_size;
 468        } else {
 469                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 470                *left_over = slab_size %
 471                        (buffer_size + sizeof(freelist_idx_t));
 472        }
 473
 474        return num;
 475}
 476
 477#if DEBUG
 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 479
 480static void __slab_error(const char *function, struct kmem_cache *cachep,
 481                        char *msg)
 482{
 483        pr_err("slab error in %s(): cache `%s': %s\n",
 484               function, cachep->name, msg);
 485        dump_stack();
 486        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 487}
 488#endif
 489
 490/*
 491 * By default on NUMA we use alien caches to stage the freeing of
 492 * objects allocated from other nodes. This causes massive memory
 493 * inefficiencies when using fake NUMA setup to split memory into a
 494 * large number of small nodes, so it can be disabled on the command
 495 * line
 496  */
 497
 498static int use_alien_caches __read_mostly = 1;
 499static int __init noaliencache_setup(char *s)
 500{
 501        use_alien_caches = 0;
 502        return 1;
 503}
 504__setup("noaliencache", noaliencache_setup);
 505
 506static int __init slab_max_order_setup(char *str)
 507{
 508        get_option(&str, &slab_max_order);
 509        slab_max_order = slab_max_order < 0 ? 0 :
 510                                min(slab_max_order, MAX_ORDER - 1);
 511        slab_max_order_set = true;
 512
 513        return 1;
 514}
 515__setup("slab_max_order=", slab_max_order_setup);
 516
 517#ifdef CONFIG_NUMA
 518/*
 519 * Special reaping functions for NUMA systems called from cache_reap().
 520 * These take care of doing round robin flushing of alien caches (containing
 521 * objects freed on different nodes from which they were allocated) and the
 522 * flushing of remote pcps by calling drain_node_pages.
 523 */
 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 525
 526static void init_reap_node(int cpu)
 527{
 528        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 529                                                    node_online_map);
 530}
 531
 532static void next_reap_node(void)
 533{
 534        int node = __this_cpu_read(slab_reap_node);
 535
 536        node = next_node_in(node, node_online_map);
 537        __this_cpu_write(slab_reap_node, node);
 538}
 539
 540#else
 541#define init_reap_node(cpu) do { } while (0)
 542#define next_reap_node(void) do { } while (0)
 543#endif
 544
 545/*
 546 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 547 * via the workqueue/eventd.
 548 * Add the CPU number into the expiration time to minimize the possibility of
 549 * the CPUs getting into lockstep and contending for the global cache chain
 550 * lock.
 551 */
 552static void start_cpu_timer(int cpu)
 553{
 554        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 555
 556        if (reap_work->work.func == NULL) {
 557                init_reap_node(cpu);
 558                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 559                schedule_delayed_work_on(cpu, reap_work,
 560                                        __round_jiffies_relative(HZ, cpu));
 561        }
 562}
 563
 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
 565{
 566        /*
 567         * The array_cache structures contain pointers to free object.
 568         * However, when such objects are allocated or transferred to another
 569         * cache the pointers are not cleared and they could be counted as
 570         * valid references during a kmemleak scan. Therefore, kmemleak must
 571         * not scan such objects.
 572         */
 573        kmemleak_no_scan(ac);
 574        if (ac) {
 575                ac->avail = 0;
 576                ac->limit = limit;
 577                ac->batchcount = batch;
 578                ac->touched = 0;
 579        }
 580}
 581
 582static struct array_cache *alloc_arraycache(int node, int entries,
 583                                            int batchcount, gfp_t gfp)
 584{
 585        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 586        struct array_cache *ac = NULL;
 587
 588        ac = kmalloc_node(memsize, gfp, node);
 589        init_arraycache(ac, entries, batchcount);
 590        return ac;
 591}
 592
 593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 594                                        struct page *page, void *objp)
 595{
 596        struct kmem_cache_node *n;
 597        int page_node;
 598        LIST_HEAD(list);
 599
 600        page_node = page_to_nid(page);
 601        n = get_node(cachep, page_node);
 602
 603        spin_lock(&n->list_lock);
 604        free_block(cachep, &objp, 1, page_node, &list);
 605        spin_unlock(&n->list_lock);
 606
 607        slabs_destroy(cachep, &list);
 608}
 609
 610/*
 611 * Transfer objects in one arraycache to another.
 612 * Locking must be handled by the caller.
 613 *
 614 * Return the number of entries transferred.
 615 */
 616static int transfer_objects(struct array_cache *to,
 617                struct array_cache *from, unsigned int max)
 618{
 619        /* Figure out how many entries to transfer */
 620        int nr = min3(from->avail, max, to->limit - to->avail);
 621
 622        if (!nr)
 623                return 0;
 624
 625        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 626                        sizeof(void *) *nr);
 627
 628        from->avail -= nr;
 629        to->avail += nr;
 630        return nr;
 631}
 632
 633#ifndef CONFIG_NUMA
 634
 635#define drain_alien_cache(cachep, alien) do { } while (0)
 636#define reap_alien(cachep, n) do { } while (0)
 637
 638static inline struct alien_cache **alloc_alien_cache(int node,
 639                                                int limit, gfp_t gfp)
 640{
 641        return NULL;
 642}
 643
 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
 645{
 646}
 647
 648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 649{
 650        return 0;
 651}
 652
 653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 654                gfp_t flags)
 655{
 656        return NULL;
 657}
 658
 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 660                 gfp_t flags, int nodeid)
 661{
 662        return NULL;
 663}
 664
 665static inline gfp_t gfp_exact_node(gfp_t flags)
 666{
 667        return flags & ~__GFP_NOFAIL;
 668}
 669
 670#else   /* CONFIG_NUMA */
 671
 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 674
 675static struct alien_cache *__alloc_alien_cache(int node, int entries,
 676                                                int batch, gfp_t gfp)
 677{
 678        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 679        struct alien_cache *alc = NULL;
 680
 681        alc = kmalloc_node(memsize, gfp, node);
 682        init_arraycache(&alc->ac, entries, batch);
 683        spin_lock_init(&alc->lock);
 684        return alc;
 685}
 686
 687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 688{
 689        struct alien_cache **alc_ptr;
 690        size_t memsize = sizeof(void *) * nr_node_ids;
 691        int i;
 692
 693        if (limit > 1)
 694                limit = 12;
 695        alc_ptr = kzalloc_node(memsize, gfp, node);
 696        if (!alc_ptr)
 697                return NULL;
 698
 699        for_each_node(i) {
 700                if (i == node || !node_online(i))
 701                        continue;
 702                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 703                if (!alc_ptr[i]) {
 704                        for (i--; i >= 0; i--)
 705                                kfree(alc_ptr[i]);
 706                        kfree(alc_ptr);
 707                        return NULL;
 708                }
 709        }
 710        return alc_ptr;
 711}
 712
 713static void free_alien_cache(struct alien_cache **alc_ptr)
 714{
 715        int i;
 716
 717        if (!alc_ptr)
 718                return;
 719        for_each_node(i)
 720            kfree(alc_ptr[i]);
 721        kfree(alc_ptr);
 722}
 723
 724static void __drain_alien_cache(struct kmem_cache *cachep,
 725                                struct array_cache *ac, int node,
 726                                struct list_head *list)
 727{
 728        struct kmem_cache_node *n = get_node(cachep, node);
 729
 730        if (ac->avail) {
 731                spin_lock(&n->list_lock);
 732                /*
 733                 * Stuff objects into the remote nodes shared array first.
 734                 * That way we could avoid the overhead of putting the objects
 735                 * into the free lists and getting them back later.
 736                 */
 737                if (n->shared)
 738                        transfer_objects(n->shared, ac, ac->limit);
 739
 740                free_block(cachep, ac->entry, ac->avail, node, list);
 741                ac->avail = 0;
 742                spin_unlock(&n->list_lock);
 743        }
 744}
 745
 746/*
 747 * Called from cache_reap() to regularly drain alien caches round robin.
 748 */
 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 750{
 751        int node = __this_cpu_read(slab_reap_node);
 752
 753        if (n->alien) {
 754                struct alien_cache *alc = n->alien[node];
 755                struct array_cache *ac;
 756
 757                if (alc) {
 758                        ac = &alc->ac;
 759                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 760                                LIST_HEAD(list);
 761
 762                                __drain_alien_cache(cachep, ac, node, &list);
 763                                spin_unlock_irq(&alc->lock);
 764                                slabs_destroy(cachep, &list);
 765                        }
 766                }
 767        }
 768}
 769
 770static void drain_alien_cache(struct kmem_cache *cachep,
 771                                struct alien_cache **alien)
 772{
 773        int i = 0;
 774        struct alien_cache *alc;
 775        struct array_cache *ac;
 776        unsigned long flags;
 777
 778        for_each_online_node(i) {
 779                alc = alien[i];
 780                if (alc) {
 781                        LIST_HEAD(list);
 782
 783                        ac = &alc->ac;
 784                        spin_lock_irqsave(&alc->lock, flags);
 785                        __drain_alien_cache(cachep, ac, i, &list);
 786                        spin_unlock_irqrestore(&alc->lock, flags);
 787                        slabs_destroy(cachep, &list);
 788                }
 789        }
 790}
 791
 792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 793                                int node, int page_node)
 794{
 795        struct kmem_cache_node *n;
 796        struct alien_cache *alien = NULL;
 797        struct array_cache *ac;
 798        LIST_HEAD(list);
 799
 800        n = get_node(cachep, node);
 801        STATS_INC_NODEFREES(cachep);
 802        if (n->alien && n->alien[page_node]) {
 803                alien = n->alien[page_node];
 804                ac = &alien->ac;
 805                spin_lock(&alien->lock);
 806                if (unlikely(ac->avail == ac->limit)) {
 807                        STATS_INC_ACOVERFLOW(cachep);
 808                        __drain_alien_cache(cachep, ac, page_node, &list);
 809                }
 810                ac->entry[ac->avail++] = objp;
 811                spin_unlock(&alien->lock);
 812                slabs_destroy(cachep, &list);
 813        } else {
 814                n = get_node(cachep, page_node);
 815                spin_lock(&n->list_lock);
 816                free_block(cachep, &objp, 1, page_node, &list);
 817                spin_unlock(&n->list_lock);
 818                slabs_destroy(cachep, &list);
 819        }
 820        return 1;
 821}
 822
 823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 824{
 825        int page_node = page_to_nid(virt_to_page(objp));
 826        int node = numa_mem_id();
 827        /*
 828         * Make sure we are not freeing a object from another node to the array
 829         * cache on this cpu.
 830         */
 831        if (likely(node == page_node))
 832                return 0;
 833
 834        return __cache_free_alien(cachep, objp, node, page_node);
 835}
 836
 837/*
 838 * Construct gfp mask to allocate from a specific node but do not reclaim or
 839 * warn about failures.
 840 */
 841static inline gfp_t gfp_exact_node(gfp_t flags)
 842{
 843        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 844}
 845#endif
 846
 847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 848{
 849        struct kmem_cache_node *n;
 850
 851        /*
 852         * Set up the kmem_cache_node for cpu before we can
 853         * begin anything. Make sure some other cpu on this
 854         * node has not already allocated this
 855         */
 856        n = get_node(cachep, node);
 857        if (n) {
 858                spin_lock_irq(&n->list_lock);
 859                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 860                                cachep->num;
 861                spin_unlock_irq(&n->list_lock);
 862
 863                return 0;
 864        }
 865
 866        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 867        if (!n)
 868                return -ENOMEM;
 869
 870        kmem_cache_node_init(n);
 871        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 872                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 873
 874        n->free_limit =
 875                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 876
 877        /*
 878         * The kmem_cache_nodes don't come and go as CPUs
 879         * come and go.  slab_mutex is sufficient
 880         * protection here.
 881         */
 882        cachep->node[node] = n;
 883
 884        return 0;
 885}
 886
 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 888/*
 889 * Allocates and initializes node for a node on each slab cache, used for
 890 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 891 * will be allocated off-node since memory is not yet online for the new node.
 892 * When hotplugging memory or a cpu, existing node are not replaced if
 893 * already in use.
 894 *
 895 * Must hold slab_mutex.
 896 */
 897static int init_cache_node_node(int node)
 898{
 899        int ret;
 900        struct kmem_cache *cachep;
 901
 902        list_for_each_entry(cachep, &slab_caches, list) {
 903                ret = init_cache_node(cachep, node, GFP_KERNEL);
 904                if (ret)
 905                        return ret;
 906        }
 907
 908        return 0;
 909}
 910#endif
 911
 912static int setup_kmem_cache_node(struct kmem_cache *cachep,
 913                                int node, gfp_t gfp, bool force_change)
 914{
 915        int ret = -ENOMEM;
 916        struct kmem_cache_node *n;
 917        struct array_cache *old_shared = NULL;
 918        struct array_cache *new_shared = NULL;
 919        struct alien_cache **new_alien = NULL;
 920        LIST_HEAD(list);
 921
 922        if (use_alien_caches) {
 923                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 924                if (!new_alien)
 925                        goto fail;
 926        }
 927
 928        if (cachep->shared) {
 929                new_shared = alloc_arraycache(node,
 930                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 931                if (!new_shared)
 932                        goto fail;
 933        }
 934
 935        ret = init_cache_node(cachep, node, gfp);
 936        if (ret)
 937                goto fail;
 938
 939        n = get_node(cachep, node);
 940        spin_lock_irq(&n->list_lock);
 941        if (n->shared && force_change) {
 942                free_block(cachep, n->shared->entry,
 943                                n->shared->avail, node, &list);
 944                n->shared->avail = 0;
 945        }
 946
 947        if (!n->shared || force_change) {
 948                old_shared = n->shared;
 949                n->shared = new_shared;
 950                new_shared = NULL;
 951        }
 952
 953        if (!n->alien) {
 954                n->alien = new_alien;
 955                new_alien = NULL;
 956        }
 957
 958        spin_unlock_irq(&n->list_lock);
 959        slabs_destroy(cachep, &list);
 960
 961        /*
 962         * To protect lockless access to n->shared during irq disabled context.
 963         * If n->shared isn't NULL in irq disabled context, accessing to it is
 964         * guaranteed to be valid until irq is re-enabled, because it will be
 965         * freed after synchronize_sched().
 966         */
 967        if (old_shared && force_change)
 968                synchronize_sched();
 969
 970fail:
 971        kfree(old_shared);
 972        kfree(new_shared);
 973        free_alien_cache(new_alien);
 974
 975        return ret;
 976}
 977
 978#ifdef CONFIG_SMP
 979
 980static void cpuup_canceled(long cpu)
 981{
 982        struct kmem_cache *cachep;
 983        struct kmem_cache_node *n = NULL;
 984        int node = cpu_to_mem(cpu);
 985        const struct cpumask *mask = cpumask_of_node(node);
 986
 987        list_for_each_entry(cachep, &slab_caches, list) {
 988                struct array_cache *nc;
 989                struct array_cache *shared;
 990                struct alien_cache **alien;
 991                LIST_HEAD(list);
 992
 993                n = get_node(cachep, node);
 994                if (!n)
 995                        continue;
 996
 997                spin_lock_irq(&n->list_lock);
 998
 999                /* Free limit for this kmem_cache_node */
1000                n->free_limit -= cachep->batchcount;
1001
1002                /* cpu is dead; no one can alloc from it. */
1003                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004                if (nc) {
1005                        free_block(cachep, nc->entry, nc->avail, node, &list);
1006                        nc->avail = 0;
1007                }
1008
1009                if (!cpumask_empty(mask)) {
1010                        spin_unlock_irq(&n->list_lock);
1011                        goto free_slab;
1012                }
1013
1014                shared = n->shared;
1015                if (shared) {
1016                        free_block(cachep, shared->entry,
1017                                   shared->avail, node, &list);
1018                        n->shared = NULL;
1019                }
1020
1021                alien = n->alien;
1022                n->alien = NULL;
1023
1024                spin_unlock_irq(&n->list_lock);
1025
1026                kfree(shared);
1027                if (alien) {
1028                        drain_alien_cache(cachep, alien);
1029                        free_alien_cache(alien);
1030                }
1031
1032free_slab:
1033                slabs_destroy(cachep, &list);
1034        }
1035        /*
1036         * In the previous loop, all the objects were freed to
1037         * the respective cache's slabs,  now we can go ahead and
1038         * shrink each nodelist to its limit.
1039         */
1040        list_for_each_entry(cachep, &slab_caches, list) {
1041                n = get_node(cachep, node);
1042                if (!n)
1043                        continue;
1044                drain_freelist(cachep, n, INT_MAX);
1045        }
1046}
1047
1048static int cpuup_prepare(long cpu)
1049{
1050        struct kmem_cache *cachep;
1051        int node = cpu_to_mem(cpu);
1052        int err;
1053
1054        /*
1055         * We need to do this right in the beginning since
1056         * alloc_arraycache's are going to use this list.
1057         * kmalloc_node allows us to add the slab to the right
1058         * kmem_cache_node and not this cpu's kmem_cache_node
1059         */
1060        err = init_cache_node_node(node);
1061        if (err < 0)
1062                goto bad;
1063
1064        /*
1065         * Now we can go ahead with allocating the shared arrays and
1066         * array caches
1067         */
1068        list_for_each_entry(cachep, &slab_caches, list) {
1069                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070                if (err)
1071                        goto bad;
1072        }
1073
1074        return 0;
1075bad:
1076        cpuup_canceled(cpu);
1077        return -ENOMEM;
1078}
1079
1080int slab_prepare_cpu(unsigned int cpu)
1081{
1082        int err;
1083
1084        mutex_lock(&slab_mutex);
1085        err = cpuup_prepare(cpu);
1086        mutex_unlock(&slab_mutex);
1087        return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down.  The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102        mutex_lock(&slab_mutex);
1103        cpuup_canceled(cpu);
1104        mutex_unlock(&slab_mutex);
1105        return 0;
1106}
1107#endif
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111        start_cpu_timer(cpu);
1112        return 0;
1113}
1114
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117        /*
1118         * Shutdown cache reaper. Note that the slab_mutex is held so
1119         * that if cache_reap() is invoked it cannot do anything
1120         * expensive but will only modify reap_work and reschedule the
1121         * timer.
1122         */
1123        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124        /* Now the cache_reaper is guaranteed to be not running. */
1125        per_cpu(slab_reap_work, cpu).work.func = NULL;
1126        return 0;
1127}
1128
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137static int __meminit drain_cache_node_node(int node)
1138{
1139        struct kmem_cache *cachep;
1140        int ret = 0;
1141
1142        list_for_each_entry(cachep, &slab_caches, list) {
1143                struct kmem_cache_node *n;
1144
1145                n = get_node(cachep, node);
1146                if (!n)
1147                        continue;
1148
1149                drain_freelist(cachep, n, INT_MAX);
1150
1151                if (!list_empty(&n->slabs_full) ||
1152                    !list_empty(&n->slabs_partial)) {
1153                        ret = -EBUSY;
1154                        break;
1155                }
1156        }
1157        return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161                                        unsigned long action, void *arg)
1162{
1163        struct memory_notify *mnb = arg;
1164        int ret = 0;
1165        int nid;
1166
1167        nid = mnb->status_change_nid;
1168        if (nid < 0)
1169                goto out;
1170
1171        switch (action) {
1172        case MEM_GOING_ONLINE:
1173                mutex_lock(&slab_mutex);
1174                ret = init_cache_node_node(nid);
1175                mutex_unlock(&slab_mutex);
1176                break;
1177        case MEM_GOING_OFFLINE:
1178                mutex_lock(&slab_mutex);
1179                ret = drain_cache_node_node(nid);
1180                mutex_unlock(&slab_mutex);
1181                break;
1182        case MEM_ONLINE:
1183        case MEM_OFFLINE:
1184        case MEM_CANCEL_ONLINE:
1185        case MEM_CANCEL_OFFLINE:
1186                break;
1187        }
1188out:
1189        return notifier_from_errno(ret);
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193/*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197                                int nodeid)
1198{
1199        struct kmem_cache_node *ptr;
1200
1201        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202        BUG_ON(!ptr);
1203
1204        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205        /*
1206         * Do not assume that spinlocks can be initialized via memcpy:
1207         */
1208        spin_lock_init(&ptr->list_lock);
1209
1210        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211        cachep->node[nodeid] = ptr;
1212}
1213
1214/*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218static void __init set_up_node(struct kmem_cache *cachep, int index)
1219{
1220        int node;
1221
1222        for_each_online_node(node) {
1223                cachep->node[node] = &init_kmem_cache_node[index + node];
1224                cachep->node[node]->next_reap = jiffies +
1225                    REAPTIMEOUT_NODE +
1226                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227        }
1228}
1229
1230/*
1231 * Initialisation.  Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234void __init kmem_cache_init(void)
1235{
1236        int i;
1237
1238        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239                                        sizeof(struct rcu_head));
1240        kmem_cache = &kmem_cache_boot;
1241
1242        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243                use_alien_caches = 0;
1244
1245        for (i = 0; i < NUM_INIT_LISTS; i++)
1246                kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248        /*
1249         * Fragmentation resistance on low memory - only use bigger
1250         * page orders on machines with more than 32MB of memory if
1251         * not overridden on the command line.
1252         */
1253        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254                slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256        /* Bootstrap is tricky, because several objects are allocated
1257         * from caches that do not exist yet:
1258         * 1) initialize the kmem_cache cache: it contains the struct
1259         *    kmem_cache structures of all caches, except kmem_cache itself:
1260         *    kmem_cache is statically allocated.
1261         *    Initially an __init data area is used for the head array and the
1262         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263         *    array at the end of the bootstrap.
1264         * 2) Create the first kmalloc cache.
1265         *    The struct kmem_cache for the new cache is allocated normally.
1266         *    An __init data area is used for the head array.
1267         * 3) Create the remaining kmalloc caches, with minimally sized
1268         *    head arrays.
1269         * 4) Replace the __init data head arrays for kmem_cache and the first
1270         *    kmalloc cache with kmalloc allocated arrays.
1271         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272         *    the other cache's with kmalloc allocated memory.
1273         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274         */
1275
1276        /* 1) create the kmem_cache */
1277
1278        /*
1279         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280         */
1281        create_boot_cache(kmem_cache, "kmem_cache",
1282                offsetof(struct kmem_cache, node) +
1283                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1284                                  SLAB_HWCACHE_ALIGN);
1285        list_add(&kmem_cache->list, &slab_caches);
1286        slab_state = PARTIAL;
1287
1288        /*
1289         * Initialize the caches that provide memory for the  kmem_cache_node
1290         * structures first.  Without this, further allocations will bug.
1291         */
1292        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293                                kmalloc_info[INDEX_NODE].name,
1294                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295        slab_state = PARTIAL_NODE;
1296        setup_kmalloc_cache_index_table();
1297
1298        slab_early_init = 0;
1299
1300        /* 5) Replace the bootstrap kmem_cache_node */
1301        {
1302                int nid;
1303
1304                for_each_online_node(nid) {
1305                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306
1307                        init_list(kmalloc_caches[INDEX_NODE],
1308                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309                }
1310        }
1311
1312        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313}
1314
1315void __init kmem_cache_init_late(void)
1316{
1317        struct kmem_cache *cachep;
1318
1319        slab_state = UP;
1320
1321        /* 6) resize the head arrays to their final sizes */
1322        mutex_lock(&slab_mutex);
1323        list_for_each_entry(cachep, &slab_caches, list)
1324                if (enable_cpucache(cachep, GFP_NOWAIT))
1325                        BUG();
1326        mutex_unlock(&slab_mutex);
1327
1328        /* Done! */
1329        slab_state = FULL;
1330
1331#ifdef CONFIG_NUMA
1332        /*
1333         * Register a memory hotplug callback that initializes and frees
1334         * node.
1335         */
1336        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
1339        /*
1340         * The reap timers are started later, with a module init call: That part
1341         * of the kernel is not yet operational.
1342         */
1343}
1344
1345static int __init cpucache_init(void)
1346{
1347        int ret;
1348
1349        /*
1350         * Register the timers that return unneeded pages to the page allocator
1351         */
1352        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353                                slab_online_cpu, slab_offline_cpu);
1354        WARN_ON(ret < 0);
1355
1356        /* Done! */
1357        slab_state = FULL;
1358        return 0;
1359}
1360__initcall(cpucache_init);
1361
1362static noinline void
1363slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364{
1365#if DEBUG
1366        struct kmem_cache_node *n;
1367        unsigned long flags;
1368        int node;
1369        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370                                      DEFAULT_RATELIMIT_BURST);
1371
1372        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373                return;
1374
1375        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376                nodeid, gfpflags, &gfpflags);
1377        pr_warn("  cache: %s, object size: %d, order: %d\n",
1378                cachep->name, cachep->size, cachep->gfporder);
1379
1380        for_each_kmem_cache_node(cachep, node, n) {
1381                unsigned long total_slabs, free_slabs, free_objs;
1382
1383                spin_lock_irqsave(&n->list_lock, flags);
1384                total_slabs = n->total_slabs;
1385                free_slabs = n->free_slabs;
1386                free_objs = n->free_objects;
1387                spin_unlock_irqrestore(&n->list_lock, flags);
1388
1389                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390                        node, total_slabs - free_slabs, total_slabs,
1391                        (total_slabs * cachep->num) - free_objs,
1392                        total_slabs * cachep->num);
1393        }
1394#endif
1395}
1396
1397/*
1398 * Interface to system's page allocator. No need to hold the
1399 * kmem_cache_node ->list_lock.
1400 *
1401 * If we requested dmaable memory, we will get it. Even if we
1402 * did not request dmaable memory, we might get it, but that
1403 * would be relatively rare and ignorable.
1404 */
1405static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406                                                                int nodeid)
1407{
1408        struct page *page;
1409        int nr_pages;
1410
1411        flags |= cachep->allocflags;
1412        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1413                flags |= __GFP_RECLAIMABLE;
1414
1415        page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1416        if (!page) {
1417                slab_out_of_memory(cachep, flags, nodeid);
1418                return NULL;
1419        }
1420
1421        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1422                __free_pages(page, cachep->gfporder);
1423                return NULL;
1424        }
1425
1426        nr_pages = (1 << cachep->gfporder);
1427        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1428                add_zone_page_state(page_zone(page),
1429                        NR_SLAB_RECLAIMABLE, nr_pages);
1430        else
1431                add_zone_page_state(page_zone(page),
1432                        NR_SLAB_UNRECLAIMABLE, nr_pages);
1433
1434        __SetPageSlab(page);
1435        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1436        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1437                SetPageSlabPfmemalloc(page);
1438
1439        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1440                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1441
1442                if (cachep->ctor)
1443                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1444                else
1445                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1446        }
1447
1448        return page;
1449}
1450
1451/*
1452 * Interface to system's page release.
1453 */
1454static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1455{
1456        int order = cachep->gfporder;
1457        unsigned long nr_freed = (1 << order);
1458
1459        kmemcheck_free_shadow(page, order);
1460
1461        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1462                sub_zone_page_state(page_zone(page),
1463                                NR_SLAB_RECLAIMABLE, nr_freed);
1464        else
1465                sub_zone_page_state(page_zone(page),
1466                                NR_SLAB_UNRECLAIMABLE, nr_freed);
1467
1468        BUG_ON(!PageSlab(page));
1469        __ClearPageSlabPfmemalloc(page);
1470        __ClearPageSlab(page);
1471        page_mapcount_reset(page);
1472        page->mapping = NULL;
1473
1474        if (current->reclaim_state)
1475                current->reclaim_state->reclaimed_slab += nr_freed;
1476        memcg_uncharge_slab(page, order, cachep);
1477        __free_pages(page, order);
1478}
1479
1480static void kmem_rcu_free(struct rcu_head *head)
1481{
1482        struct kmem_cache *cachep;
1483        struct page *page;
1484
1485        page = container_of(head, struct page, rcu_head);
1486        cachep = page->slab_cache;
1487
1488        kmem_freepages(cachep, page);
1489}
1490
1491#if DEBUG
1492static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1493{
1494        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1495                (cachep->size % PAGE_SIZE) == 0)
1496                return true;
1497
1498        return false;
1499}
1500
1501#ifdef CONFIG_DEBUG_PAGEALLOC
1502static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1503                            unsigned long caller)
1504{
1505        int size = cachep->object_size;
1506
1507        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1508
1509        if (size < 5 * sizeof(unsigned long))
1510                return;
1511
1512        *addr++ = 0x12345678;
1513        *addr++ = caller;
1514        *addr++ = smp_processor_id();
1515        size -= 3 * sizeof(unsigned long);
1516        {
1517                unsigned long *sptr = &caller;
1518                unsigned long svalue;
1519
1520                while (!kstack_end(sptr)) {
1521                        svalue = *sptr++;
1522                        if (kernel_text_address(svalue)) {
1523                                *addr++ = svalue;
1524                                size -= sizeof(unsigned long);
1525                                if (size <= sizeof(unsigned long))
1526                                        break;
1527                        }
1528                }
1529
1530        }
1531        *addr++ = 0x87654321;
1532}
1533
1534static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1535                                int map, unsigned long caller)
1536{
1537        if (!is_debug_pagealloc_cache(cachep))
1538                return;
1539
1540        if (caller)
1541                store_stackinfo(cachep, objp, caller);
1542
1543        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1544}
1545
1546#else
1547static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1548                                int map, unsigned long caller) {}
1549
1550#endif
1551
1552static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1553{
1554        int size = cachep->object_size;
1555        addr = &((char *)addr)[obj_offset(cachep)];
1556
1557        memset(addr, val, size);
1558        *(unsigned char *)(addr + size - 1) = POISON_END;
1559}
1560
1561static void dump_line(char *data, int offset, int limit)
1562{
1563        int i;
1564        unsigned char error = 0;
1565        int bad_count = 0;
1566
1567        pr_err("%03x: ", offset);
1568        for (i = 0; i < limit; i++) {
1569                if (data[offset + i] != POISON_FREE) {
1570                        error = data[offset + i];
1571                        bad_count++;
1572                }
1573        }
1574        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1575                        &data[offset], limit, 1);
1576
1577        if (bad_count == 1) {
1578                error ^= POISON_FREE;
1579                if (!(error & (error - 1))) {
1580                        pr_err("Single bit error detected. Probably bad RAM.\n");
1581#ifdef CONFIG_X86
1582                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1583#else
1584                        pr_err("Run a memory test tool.\n");
1585#endif
1586                }
1587        }
1588}
1589#endif
1590
1591#if DEBUG
1592
1593static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1594{
1595        int i, size;
1596        char *realobj;
1597
1598        if (cachep->flags & SLAB_RED_ZONE) {
1599                pr_err("Redzone: 0x%llx/0x%llx\n",
1600                       *dbg_redzone1(cachep, objp),
1601                       *dbg_redzone2(cachep, objp));
1602        }
1603
1604        if (cachep->flags & SLAB_STORE_USER) {
1605                pr_err("Last user: [<%p>](%pSR)\n",
1606                       *dbg_userword(cachep, objp),
1607                       *dbg_userword(cachep, objp));
1608        }
1609        realobj = (char *)objp + obj_offset(cachep);
1610        size = cachep->object_size;
1611        for (i = 0; i < size && lines; i += 16, lines--) {
1612                int limit;
1613                limit = 16;
1614                if (i + limit > size)
1615                        limit = size - i;
1616                dump_line(realobj, i, limit);
1617        }
1618}
1619
1620static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1621{
1622        char *realobj;
1623        int size, i;
1624        int lines = 0;
1625
1626        if (is_debug_pagealloc_cache(cachep))
1627                return;
1628
1629        realobj = (char *)objp + obj_offset(cachep);
1630        size = cachep->object_size;
1631
1632        for (i = 0; i < size; i++) {
1633                char exp = POISON_FREE;
1634                if (i == size - 1)
1635                        exp = POISON_END;
1636                if (realobj[i] != exp) {
1637                        int limit;
1638                        /* Mismatch ! */
1639                        /* Print header */
1640                        if (lines == 0) {
1641                                pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1642                                       print_tainted(), cachep->name,
1643                                       realobj, size);
1644                                print_objinfo(cachep, objp, 0);
1645                        }
1646                        /* Hexdump the affected line */
1647                        i = (i / 16) * 16;
1648                        limit = 16;
1649                        if (i + limit > size)
1650                                limit = size - i;
1651                        dump_line(realobj, i, limit);
1652                        i += 16;
1653                        lines++;
1654                        /* Limit to 5 lines */
1655                        if (lines > 5)
1656                                break;
1657                }
1658        }
1659        if (lines != 0) {
1660                /* Print some data about the neighboring objects, if they
1661                 * exist:
1662                 */
1663                struct page *page = virt_to_head_page(objp);
1664                unsigned int objnr;
1665
1666                objnr = obj_to_index(cachep, page, objp);
1667                if (objnr) {
1668                        objp = index_to_obj(cachep, page, objnr - 1);
1669                        realobj = (char *)objp + obj_offset(cachep);
1670                        pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1671                        print_objinfo(cachep, objp, 2);
1672                }
1673                if (objnr + 1 < cachep->num) {
1674                        objp = index_to_obj(cachep, page, objnr + 1);
1675                        realobj = (char *)objp + obj_offset(cachep);
1676                        pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1677                        print_objinfo(cachep, objp, 2);
1678                }
1679        }
1680}
1681#endif
1682
1683#if DEBUG
1684static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1685                                                struct page *page)
1686{
1687        int i;
1688
1689        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1690                poison_obj(cachep, page->freelist - obj_offset(cachep),
1691                        POISON_FREE);
1692        }
1693
1694        for (i = 0; i < cachep->num; i++) {
1695                void *objp = index_to_obj(cachep, page, i);
1696
1697                if (cachep->flags & SLAB_POISON) {
1698                        check_poison_obj(cachep, objp);
1699                        slab_kernel_map(cachep, objp, 1, 0);
1700                }
1701                if (cachep->flags & SLAB_RED_ZONE) {
1702                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1703                                slab_error(cachep, "start of a freed object was overwritten");
1704                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1705                                slab_error(cachep, "end of a freed object was overwritten");
1706                }
1707        }
1708}
1709#else
1710static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1711                                                struct page *page)
1712{
1713}
1714#endif
1715
1716/**
1717 * slab_destroy - destroy and release all objects in a slab
1718 * @cachep: cache pointer being destroyed
1719 * @page: page pointer being destroyed
1720 *
1721 * Destroy all the objs in a slab page, and release the mem back to the system.
1722 * Before calling the slab page must have been unlinked from the cache. The
1723 * kmem_cache_node ->list_lock is not held/needed.
1724 */
1725static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1726{
1727        void *freelist;
1728
1729        freelist = page->freelist;
1730        slab_destroy_debugcheck(cachep, page);
1731        if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1732                call_rcu(&page->rcu_head, kmem_rcu_free);
1733        else
1734                kmem_freepages(cachep, page);
1735
1736        /*
1737         * From now on, we don't use freelist
1738         * although actual page can be freed in rcu context
1739         */
1740        if (OFF_SLAB(cachep))
1741                kmem_cache_free(cachep->freelist_cache, freelist);
1742}
1743
1744static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1745{
1746        struct page *page, *n;
1747
1748        list_for_each_entry_safe(page, n, list, lru) {
1749                list_del(&page->lru);
1750                slab_destroy(cachep, page);
1751        }
1752}
1753
1754/**
1755 * calculate_slab_order - calculate size (page order) of slabs
1756 * @cachep: pointer to the cache that is being created
1757 * @size: size of objects to be created in this cache.
1758 * @flags: slab allocation flags
1759 *
1760 * Also calculates the number of objects per slab.
1761 *
1762 * This could be made much more intelligent.  For now, try to avoid using
1763 * high order pages for slabs.  When the gfp() functions are more friendly
1764 * towards high-order requests, this should be changed.
1765 */
1766static size_t calculate_slab_order(struct kmem_cache *cachep,
1767                                size_t size, unsigned long flags)
1768{
1769        size_t left_over = 0;
1770        int gfporder;
1771
1772        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1773                unsigned int num;
1774                size_t remainder;
1775
1776                num = cache_estimate(gfporder, size, flags, &remainder);
1777                if (!num)
1778                        continue;
1779
1780                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1781                if (num > SLAB_OBJ_MAX_NUM)
1782                        break;
1783
1784                if (flags & CFLGS_OFF_SLAB) {
1785                        struct kmem_cache *freelist_cache;
1786                        size_t freelist_size;
1787
1788                        freelist_size = num * sizeof(freelist_idx_t);
1789                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1790                        if (!freelist_cache)
1791                                continue;
1792
1793                        /*
1794                         * Needed to avoid possible looping condition
1795                         * in cache_grow_begin()
1796                         */
1797                        if (OFF_SLAB(freelist_cache))
1798                                continue;
1799
1800                        /* check if off slab has enough benefit */
1801                        if (freelist_cache->size > cachep->size / 2)
1802                                continue;
1803                }
1804
1805                /* Found something acceptable - save it away */
1806                cachep->num = num;
1807                cachep->gfporder = gfporder;
1808                left_over = remainder;
1809
1810                /*
1811                 * A VFS-reclaimable slab tends to have most allocations
1812                 * as GFP_NOFS and we really don't want to have to be allocating
1813                 * higher-order pages when we are unable to shrink dcache.
1814                 */
1815                if (flags & SLAB_RECLAIM_ACCOUNT)
1816                        break;
1817
1818                /*
1819                 * Large number of objects is good, but very large slabs are
1820                 * currently bad for the gfp()s.
1821                 */
1822                if (gfporder >= slab_max_order)
1823                        break;
1824
1825                /*
1826                 * Acceptable internal fragmentation?
1827                 */
1828                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1829                        break;
1830        }
1831        return left_over;
1832}
1833
1834static struct array_cache __percpu *alloc_kmem_cache_cpus(
1835                struct kmem_cache *cachep, int entries, int batchcount)
1836{
1837        int cpu;
1838        size_t size;
1839        struct array_cache __percpu *cpu_cache;
1840
1841        size = sizeof(void *) * entries + sizeof(struct array_cache);
1842        cpu_cache = __alloc_percpu(size, sizeof(void *));
1843
1844        if (!cpu_cache)
1845                return NULL;
1846
1847        for_each_possible_cpu(cpu) {
1848                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1849                                entries, batchcount);
1850        }
1851
1852        return cpu_cache;
1853}
1854
1855static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1856{
1857        if (slab_state >= FULL)
1858                return enable_cpucache(cachep, gfp);
1859
1860        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1861        if (!cachep->cpu_cache)
1862                return 1;
1863
1864        if (slab_state == DOWN) {
1865                /* Creation of first cache (kmem_cache). */
1866                set_up_node(kmem_cache, CACHE_CACHE);
1867        } else if (slab_state == PARTIAL) {
1868                /* For kmem_cache_node */
1869                set_up_node(cachep, SIZE_NODE);
1870        } else {
1871                int node;
1872
1873                for_each_online_node(node) {
1874                        cachep->node[node] = kmalloc_node(
1875                                sizeof(struct kmem_cache_node), gfp, node);
1876                        BUG_ON(!cachep->node[node]);
1877                        kmem_cache_node_init(cachep->node[node]);
1878                }
1879        }
1880
1881        cachep->node[numa_mem_id()]->next_reap =
1882                        jiffies + REAPTIMEOUT_NODE +
1883                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1884
1885        cpu_cache_get(cachep)->avail = 0;
1886        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1887        cpu_cache_get(cachep)->batchcount = 1;
1888        cpu_cache_get(cachep)->touched = 0;
1889        cachep->batchcount = 1;
1890        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1891        return 0;
1892}
1893
1894unsigned long kmem_cache_flags(unsigned long object_size,
1895        unsigned long flags, const char *name,
1896        void (*ctor)(void *))
1897{
1898        return flags;
1899}
1900
1901struct kmem_cache *
1902__kmem_cache_alias(const char *name, size_t size, size_t align,
1903                   unsigned long flags, void (*ctor)(void *))
1904{
1905        struct kmem_cache *cachep;
1906
1907        cachep = find_mergeable(size, align, flags, name, ctor);
1908        if (cachep) {
1909                cachep->refcount++;
1910
1911                /*
1912                 * Adjust the object sizes so that we clear
1913                 * the complete object on kzalloc.
1914                 */
1915                cachep->object_size = max_t(int, cachep->object_size, size);
1916        }
1917        return cachep;
1918}
1919
1920static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1921                        size_t size, unsigned long flags)
1922{
1923        size_t left;
1924
1925        cachep->num = 0;
1926
1927        if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1928                return false;
1929
1930        left = calculate_slab_order(cachep, size,
1931                        flags | CFLGS_OBJFREELIST_SLAB);
1932        if (!cachep->num)
1933                return false;
1934
1935        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1936                return false;
1937
1938        cachep->colour = left / cachep->colour_off;
1939
1940        return true;
1941}
1942
1943static bool set_off_slab_cache(struct kmem_cache *cachep,
1944                        size_t size, unsigned long flags)
1945{
1946        size_t left;
1947
1948        cachep->num = 0;
1949
1950        /*
1951         * Always use on-slab management when SLAB_NOLEAKTRACE
1952         * to avoid recursive calls into kmemleak.
1953         */
1954        if (flags & SLAB_NOLEAKTRACE)
1955                return false;
1956
1957        /*
1958         * Size is large, assume best to place the slab management obj
1959         * off-slab (should allow better packing of objs).
1960         */
1961        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1962        if (!cachep->num)
1963                return false;
1964
1965        /*
1966         * If the slab has been placed off-slab, and we have enough space then
1967         * move it on-slab. This is at the expense of any extra colouring.
1968         */
1969        if (left >= cachep->num * sizeof(freelist_idx_t))
1970                return false;
1971
1972        cachep->colour = left / cachep->colour_off;
1973
1974        return true;
1975}
1976
1977static bool set_on_slab_cache(struct kmem_cache *cachep,
1978                        size_t size, unsigned long flags)
1979{
1980        size_t left;
1981
1982        cachep->num = 0;
1983
1984        left = calculate_slab_order(cachep, size, flags);
1985        if (!cachep->num)
1986                return false;
1987
1988        cachep->colour = left / cachep->colour_off;
1989
1990        return true;
1991}
1992
1993/**
1994 * __kmem_cache_create - Create a cache.
1995 * @cachep: cache management descriptor
1996 * @flags: SLAB flags
1997 *
1998 * Returns a ptr to the cache on success, NULL on failure.
1999 * Cannot be called within a int, but can be interrupted.
2000 * The @ctor is run when new pages are allocated by the cache.
2001 *
2002 * The flags are
2003 *
2004 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2005 * to catch references to uninitialised memory.
2006 *
2007 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2008 * for buffer overruns.
2009 *
2010 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2011 * cacheline.  This can be beneficial if you're counting cycles as closely
2012 * as davem.
2013 */
2014int
2015__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2016{
2017        size_t ralign = BYTES_PER_WORD;
2018        gfp_t gfp;
2019        int err;
2020        size_t size = cachep->size;
2021
2022#if DEBUG
2023#if FORCED_DEBUG
2024        /*
2025         * Enable redzoning and last user accounting, except for caches with
2026         * large objects, if the increased size would increase the object size
2027         * above the next power of two: caches with object sizes just above a
2028         * power of two have a significant amount of internal fragmentation.
2029         */
2030        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2031                                                2 * sizeof(unsigned long long)))
2032                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2033        if (!(flags & SLAB_TYPESAFE_BY_RCU))
2034                flags |= SLAB_POISON;
2035#endif
2036#endif
2037
2038        /*
2039         * Check that size is in terms of words.  This is needed to avoid
2040         * unaligned accesses for some archs when redzoning is used, and makes
2041         * sure any on-slab bufctl's are also correctly aligned.
2042         */
2043        if (size & (BYTES_PER_WORD - 1)) {
2044                size += (BYTES_PER_WORD - 1);
2045                size &= ~(BYTES_PER_WORD - 1);
2046        }
2047
2048        if (flags & SLAB_RED_ZONE) {
2049                ralign = REDZONE_ALIGN;
2050                /* If redzoning, ensure that the second redzone is suitably
2051                 * aligned, by adjusting the object size accordingly. */
2052                size += REDZONE_ALIGN - 1;
2053                size &= ~(REDZONE_ALIGN - 1);
2054        }
2055
2056        /* 3) caller mandated alignment */
2057        if (ralign < cachep->align) {
2058                ralign = cachep->align;
2059        }
2060        /* disable debug if necessary */
2061        if (ralign > __alignof__(unsigned long long))
2062                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063        /*
2064         * 4) Store it.
2065         */
2066        cachep->align = ralign;
2067        cachep->colour_off = cache_line_size();
2068        /* Offset must be a multiple of the alignment. */
2069        if (cachep->colour_off < cachep->align)
2070                cachep->colour_off = cachep->align;
2071
2072        if (slab_is_available())
2073                gfp = GFP_KERNEL;
2074        else
2075                gfp = GFP_NOWAIT;
2076
2077#if DEBUG
2078
2079        /*
2080         * Both debugging options require word-alignment which is calculated
2081         * into align above.
2082         */
2083        if (flags & SLAB_RED_ZONE) {
2084                /* add space for red zone words */
2085                cachep->obj_offset += sizeof(unsigned long long);
2086                size += 2 * sizeof(unsigned long long);
2087        }
2088        if (flags & SLAB_STORE_USER) {
2089                /* user store requires one word storage behind the end of
2090                 * the real object. But if the second red zone needs to be
2091                 * aligned to 64 bits, we must allow that much space.
2092                 */
2093                if (flags & SLAB_RED_ZONE)
2094                        size += REDZONE_ALIGN;
2095                else
2096                        size += BYTES_PER_WORD;
2097        }
2098#endif
2099
2100        kasan_cache_create(cachep, &size, &flags);
2101
2102        size = ALIGN(size, cachep->align);
2103        /*
2104         * We should restrict the number of objects in a slab to implement
2105         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2106         */
2107        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2108                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2109
2110#if DEBUG
2111        /*
2112         * To activate debug pagealloc, off-slab management is necessary
2113         * requirement. In early phase of initialization, small sized slab
2114         * doesn't get initialized so it would not be possible. So, we need
2115         * to check size >= 256. It guarantees that all necessary small
2116         * sized slab is initialized in current slab initialization sequence.
2117         */
2118        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2119                size >= 256 && cachep->object_size > cache_line_size()) {
2120                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2121                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2122
2123                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2124                                flags |= CFLGS_OFF_SLAB;
2125                                cachep->obj_offset += tmp_size - size;
2126                                size = tmp_size;
2127                                goto done;
2128                        }
2129                }
2130        }
2131#endif
2132
2133        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2134                flags |= CFLGS_OBJFREELIST_SLAB;
2135                goto done;
2136        }
2137
2138        if (set_off_slab_cache(cachep, size, flags)) {
2139                flags |= CFLGS_OFF_SLAB;
2140                goto done;
2141        }
2142
2143        if (set_on_slab_cache(cachep, size, flags))
2144                goto done;
2145
2146        return -E2BIG;
2147
2148done:
2149        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2150        cachep->flags = flags;
2151        cachep->allocflags = __GFP_COMP;
2152        if (flags & SLAB_CACHE_DMA)
2153                cachep->allocflags |= GFP_DMA;
2154        cachep->size = size;
2155        cachep->reciprocal_buffer_size = reciprocal_value(size);
2156
2157#if DEBUG
2158        /*
2159         * If we're going to use the generic kernel_map_pages()
2160         * poisoning, then it's going to smash the contents of
2161         * the redzone and userword anyhow, so switch them off.
2162         */
2163        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2164                (cachep->flags & SLAB_POISON) &&
2165                is_debug_pagealloc_cache(cachep))
2166                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2167#endif
2168
2169        if (OFF_SLAB(cachep)) {
2170                cachep->freelist_cache =
2171                        kmalloc_slab(cachep->freelist_size, 0u);
2172        }
2173
2174        err = setup_cpu_cache(cachep, gfp);
2175        if (err) {
2176                __kmem_cache_release(cachep);
2177                return err;
2178        }
2179
2180        return 0;
2181}
2182
2183#if DEBUG
2184static void check_irq_off(void)
2185{
2186        BUG_ON(!irqs_disabled());
2187}
2188
2189static void check_irq_on(void)
2190{
2191        BUG_ON(irqs_disabled());
2192}
2193
2194static void check_mutex_acquired(void)
2195{
2196        BUG_ON(!mutex_is_locked(&slab_mutex));
2197}
2198
2199static void check_spinlock_acquired(struct kmem_cache *cachep)
2200{
2201#ifdef CONFIG_SMP
2202        check_irq_off();
2203        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2204#endif
2205}
2206
2207static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2208{
2209#ifdef CONFIG_SMP
2210        check_irq_off();
2211        assert_spin_locked(&get_node(cachep, node)->list_lock);
2212#endif
2213}
2214
2215#else
2216#define check_irq_off() do { } while(0)
2217#define check_irq_on()  do { } while(0)
2218#define check_mutex_acquired()  do { } while(0)
2219#define check_spinlock_acquired(x) do { } while(0)
2220#define check_spinlock_acquired_node(x, y) do { } while(0)
2221#endif
2222
2223static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2224                                int node, bool free_all, struct list_head *list)
2225{
2226        int tofree;
2227
2228        if (!ac || !ac->avail)
2229                return;
2230
2231        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2232        if (tofree > ac->avail)
2233                tofree = (ac->avail + 1) / 2;
2234
2235        free_block(cachep, ac->entry, tofree, node, list);
2236        ac->avail -= tofree;
2237        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2238}
2239
2240static void do_drain(void *arg)
2241{
2242        struct kmem_cache *cachep = arg;
2243        struct array_cache *ac;
2244        int node = numa_mem_id();
2245        struct kmem_cache_node *n;
2246        LIST_HEAD(list);
2247
2248        check_irq_off();
2249        ac = cpu_cache_get(cachep);
2250        n = get_node(cachep, node);
2251        spin_lock(&n->list_lock);
2252        free_block(cachep, ac->entry, ac->avail, node, &list);
2253        spin_unlock(&n->list_lock);
2254        slabs_destroy(cachep, &list);
2255        ac->avail = 0;
2256}
2257
2258static void drain_cpu_caches(struct kmem_cache *cachep)
2259{
2260        struct kmem_cache_node *n;
2261        int node;
2262        LIST_HEAD(list);
2263
2264        on_each_cpu(do_drain, cachep, 1);
2265        check_irq_on();
2266        for_each_kmem_cache_node(cachep, node, n)
2267                if (n->alien)
2268                        drain_alien_cache(cachep, n->alien);
2269
2270        for_each_kmem_cache_node(cachep, node, n) {
2271                spin_lock_irq(&n->list_lock);
2272                drain_array_locked(cachep, n->shared, node, true, &list);
2273                spin_unlock_irq(&n->list_lock);
2274
2275                slabs_destroy(cachep, &list);
2276        }
2277}
2278
2279/*
2280 * Remove slabs from the list of free slabs.
2281 * Specify the number of slabs to drain in tofree.
2282 *
2283 * Returns the actual number of slabs released.
2284 */
2285static int drain_freelist(struct kmem_cache *cache,
2286                        struct kmem_cache_node *n, int tofree)
2287{
2288        struct list_head *p;
2289        int nr_freed;
2290        struct page *page;
2291
2292        nr_freed = 0;
2293        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2294
2295                spin_lock_irq(&n->list_lock);
2296                p = n->slabs_free.prev;
2297                if (p == &n->slabs_free) {
2298                        spin_unlock_irq(&n->list_lock);
2299                        goto out;
2300                }
2301
2302                page = list_entry(p, struct page, lru);
2303                list_del(&page->lru);
2304                n->free_slabs--;
2305                n->total_slabs--;
2306                /*
2307                 * Safe to drop the lock. The slab is no longer linked
2308                 * to the cache.
2309                 */
2310                n->free_objects -= cache->num;
2311                spin_unlock_irq(&n->list_lock);
2312                slab_destroy(cache, page);
2313                nr_freed++;
2314        }
2315out:
2316        return nr_freed;
2317}
2318
2319int __kmem_cache_shrink(struct kmem_cache *cachep)
2320{
2321        int ret = 0;
2322        int node;
2323        struct kmem_cache_node *n;
2324
2325        drain_cpu_caches(cachep);
2326
2327        check_irq_on();
2328        for_each_kmem_cache_node(cachep, node, n) {
2329                drain_freelist(cachep, n, INT_MAX);
2330
2331                ret += !list_empty(&n->slabs_full) ||
2332                        !list_empty(&n->slabs_partial);
2333        }
2334        return (ret ? 1 : 0);
2335}
2336
2337#ifdef CONFIG_MEMCG
2338void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2339{
2340        __kmem_cache_shrink(cachep);
2341}
2342#endif
2343
2344int __kmem_cache_shutdown(struct kmem_cache *cachep)
2345{
2346        return __kmem_cache_shrink(cachep);
2347}
2348
2349void __kmem_cache_release(struct kmem_cache *cachep)
2350{
2351        int i;
2352        struct kmem_cache_node *n;
2353
2354        cache_random_seq_destroy(cachep);
2355
2356        free_percpu(cachep->cpu_cache);
2357
2358        /* NUMA: free the node structures */
2359        for_each_kmem_cache_node(cachep, i, n) {
2360                kfree(n->shared);
2361                free_alien_cache(n->alien);
2362                kfree(n);
2363                cachep->node[i] = NULL;
2364        }
2365}
2366
2367/*
2368 * Get the memory for a slab management obj.
2369 *
2370 * For a slab cache when the slab descriptor is off-slab, the
2371 * slab descriptor can't come from the same cache which is being created,
2372 * Because if it is the case, that means we defer the creation of
2373 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2374 * And we eventually call down to __kmem_cache_create(), which
2375 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2376 * This is a "chicken-and-egg" problem.
2377 *
2378 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2379 * which are all initialized during kmem_cache_init().
2380 */
2381static void *alloc_slabmgmt(struct kmem_cache *cachep,
2382                                   struct page *page, int colour_off,
2383                                   gfp_t local_flags, int nodeid)
2384{
2385        void *freelist;
2386        void *addr = page_address(page);
2387
2388        page->s_mem = addr + colour_off;
2389        page->active = 0;
2390
2391        if (OBJFREELIST_SLAB(cachep))
2392                freelist = NULL;
2393        else if (OFF_SLAB(cachep)) {
2394                /* Slab management obj is off-slab. */
2395                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2396                                              local_flags, nodeid);
2397                if (!freelist)
2398                        return NULL;
2399        } else {
2400                /* We will use last bytes at the slab for freelist */
2401                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2402                                cachep->freelist_size;
2403        }
2404
2405        return freelist;
2406}
2407
2408static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2409{
2410        return ((freelist_idx_t *)page->freelist)[idx];
2411}
2412
2413static inline void set_free_obj(struct page *page,
2414                                        unsigned int idx, freelist_idx_t val)
2415{
2416        ((freelist_idx_t *)(page->freelist))[idx] = val;
2417}
2418
2419static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2420{
2421#if DEBUG
2422        int i;
2423
2424        for (i = 0; i < cachep->num; i++) {
2425                void *objp = index_to_obj(cachep, page, i);
2426
2427                if (cachep->flags & SLAB_STORE_USER)
2428                        *dbg_userword(cachep, objp) = NULL;
2429
2430                if (cachep->flags & SLAB_RED_ZONE) {
2431                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2432                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2433                }
2434                /*
2435                 * Constructors are not allowed to allocate memory from the same
2436                 * cache which they are a constructor for.  Otherwise, deadlock.
2437                 * They must also be threaded.
2438                 */
2439                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2440                        kasan_unpoison_object_data(cachep,
2441                                                   objp + obj_offset(cachep));
2442                        cachep->ctor(objp + obj_offset(cachep));
2443                        kasan_poison_object_data(
2444                                cachep, objp + obj_offset(cachep));
2445                }
2446
2447                if (cachep->flags & SLAB_RED_ZONE) {
2448                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2449                                slab_error(cachep, "constructor overwrote the end of an object");
2450                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2451                                slab_error(cachep, "constructor overwrote the start of an object");
2452                }
2453                /* need to poison the objs? */
2454                if (cachep->flags & SLAB_POISON) {
2455                        poison_obj(cachep, objp, POISON_FREE);
2456                        slab_kernel_map(cachep, objp, 0, 0);
2457                }
2458        }
2459#endif
2460}
2461
2462#ifdef CONFIG_SLAB_FREELIST_RANDOM
2463/* Hold information during a freelist initialization */
2464union freelist_init_state {
2465        struct {
2466                unsigned int pos;
2467                unsigned int *list;
2468                unsigned int count;
2469        };
2470        struct rnd_state rnd_state;
2471};
2472
2473/*
2474 * Initialize the state based on the randomization methode available.
2475 * return true if the pre-computed list is available, false otherwize.
2476 */
2477static bool freelist_state_initialize(union freelist_init_state *state,
2478                                struct kmem_cache *cachep,
2479                                unsigned int count)
2480{
2481        bool ret;
2482        unsigned int rand;
2483
2484        /* Use best entropy available to define a random shift */
2485        rand = get_random_int();
2486
2487        /* Use a random state if the pre-computed list is not available */
2488        if (!cachep->random_seq) {
2489                prandom_seed_state(&state->rnd_state, rand);
2490                ret = false;
2491        } else {
2492                state->list = cachep->random_seq;
2493                state->count = count;
2494                state->pos = rand % count;
2495                ret = true;
2496        }
2497        return ret;
2498}
2499
2500/* Get the next entry on the list and randomize it using a random shift */
2501static freelist_idx_t next_random_slot(union freelist_init_state *state)
2502{
2503        if (state->pos >= state->count)
2504                state->pos = 0;
2505        return state->list[state->pos++];
2506}
2507
2508/* Swap two freelist entries */
2509static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2510{
2511        swap(((freelist_idx_t *)page->freelist)[a],
2512                ((freelist_idx_t *)page->freelist)[b]);
2513}
2514
2515/*
2516 * Shuffle the freelist initialization state based on pre-computed lists.
2517 * return true if the list was successfully shuffled, false otherwise.
2518 */
2519static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2520{
2521        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2522        union freelist_init_state state;
2523        bool precomputed;
2524
2525        if (count < 2)
2526                return false;
2527
2528        precomputed = freelist_state_initialize(&state, cachep, count);
2529
2530        /* Take a random entry as the objfreelist */
2531        if (OBJFREELIST_SLAB(cachep)) {
2532                if (!precomputed)
2533                        objfreelist = count - 1;
2534                else
2535                        objfreelist = next_random_slot(&state);
2536                page->freelist = index_to_obj(cachep, page, objfreelist) +
2537                                                obj_offset(cachep);
2538                count--;
2539        }
2540
2541        /*
2542         * On early boot, generate the list dynamically.
2543         * Later use a pre-computed list for speed.
2544         */
2545        if (!precomputed) {
2546                for (i = 0; i < count; i++)
2547                        set_free_obj(page, i, i);
2548
2549                /* Fisher-Yates shuffle */
2550                for (i = count - 1; i > 0; i--) {
2551                        rand = prandom_u32_state(&state.rnd_state);
2552                        rand %= (i + 1);
2553                        swap_free_obj(page, i, rand);
2554                }
2555        } else {
2556                for (i = 0; i < count; i++)
2557                        set_free_obj(page, i, next_random_slot(&state));
2558        }
2559
2560        if (OBJFREELIST_SLAB(cachep))
2561                set_free_obj(page, cachep->num - 1, objfreelist);
2562
2563        return true;
2564}
2565#else
2566static inline bool shuffle_freelist(struct kmem_cache *cachep,
2567                                struct page *page)
2568{
2569        return false;
2570}
2571#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2572
2573static void cache_init_objs(struct kmem_cache *cachep,
2574                            struct page *page)
2575{
2576        int i;
2577        void *objp;
2578        bool shuffled;
2579
2580        cache_init_objs_debug(cachep, page);
2581
2582        /* Try to randomize the freelist if enabled */
2583        shuffled = shuffle_freelist(cachep, page);
2584
2585        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2586                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2587                                                obj_offset(cachep);
2588        }
2589
2590        for (i = 0; i < cachep->num; i++) {
2591                objp = index_to_obj(cachep, page, i);
2592                kasan_init_slab_obj(cachep, objp);
2593
2594                /* constructor could break poison info */
2595                if (DEBUG == 0 && cachep->ctor) {
2596                        kasan_unpoison_object_data(cachep, objp);
2597                        cachep->ctor(objp);
2598                        kasan_poison_object_data(cachep, objp);
2599                }
2600
2601                if (!shuffled)
2602                        set_free_obj(page, i, i);
2603        }
2604}
2605
2606static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2607{
2608        void *objp;
2609
2610        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2611        page->active++;
2612
2613#if DEBUG
2614        if (cachep->flags & SLAB_STORE_USER)
2615                set_store_user_dirty(cachep);
2616#endif
2617
2618        return objp;
2619}
2620
2621static void slab_put_obj(struct kmem_cache *cachep,
2622                        struct page *page, void *objp)
2623{
2624        unsigned int objnr = obj_to_index(cachep, page, objp);
2625#if DEBUG
2626        unsigned int i;
2627
2628        /* Verify double free bug */
2629        for (i = page->active; i < cachep->num; i++) {
2630                if (get_free_obj(page, i) == objnr) {
2631                        pr_err("slab: double free detected in cache '%s', objp %p\n",
2632                               cachep->name, objp);
2633                        BUG();
2634                }
2635        }
2636#endif
2637        page->active--;
2638        if (!page->freelist)
2639                page->freelist = objp + obj_offset(cachep);
2640
2641        set_free_obj(page, page->active, objnr);
2642}
2643
2644/*
2645 * Map pages beginning at addr to the given cache and slab. This is required
2646 * for the slab allocator to be able to lookup the cache and slab of a
2647 * virtual address for kfree, ksize, and slab debugging.
2648 */
2649static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2650                           void *freelist)
2651{
2652        page->slab_cache = cache;
2653        page->freelist = freelist;
2654}
2655
2656/*
2657 * Grow (by 1) the number of slabs within a cache.  This is called by
2658 * kmem_cache_alloc() when there are no active objs left in a cache.
2659 */
2660static struct page *cache_grow_begin(struct kmem_cache *cachep,
2661                                gfp_t flags, int nodeid)
2662{
2663        void *freelist;
2664        size_t offset;
2665        gfp_t local_flags;
2666        int page_node;
2667        struct kmem_cache_node *n;
2668        struct page *page;
2669
2670        /*
2671         * Be lazy and only check for valid flags here,  keeping it out of the
2672         * critical path in kmem_cache_alloc().
2673         */
2674        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2675                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2676                flags &= ~GFP_SLAB_BUG_MASK;
2677                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2678                                invalid_mask, &invalid_mask, flags, &flags);
2679                dump_stack();
2680        }
2681        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2682
2683        check_irq_off();
2684        if (gfpflags_allow_blocking(local_flags))
2685                local_irq_enable();
2686
2687        /*
2688         * Get mem for the objs.  Attempt to allocate a physical page from
2689         * 'nodeid'.
2690         */
2691        page = kmem_getpages(cachep, local_flags, nodeid);
2692        if (!page)
2693                goto failed;
2694
2695        page_node = page_to_nid(page);
2696        n = get_node(cachep, page_node);
2697
2698        /* Get colour for the slab, and cal the next value. */
2699        n->colour_next++;
2700        if (n->colour_next >= cachep->colour)
2701                n->colour_next = 0;
2702
2703        offset = n->colour_next;
2704        if (offset >= cachep->colour)
2705                offset = 0;
2706
2707        offset *= cachep->colour_off;
2708
2709        /* Get slab management. */
2710        freelist = alloc_slabmgmt(cachep, page, offset,
2711                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2712        if (OFF_SLAB(cachep) && !freelist)
2713                goto opps1;
2714
2715        slab_map_pages(cachep, page, freelist);
2716
2717        kasan_poison_slab(page);
2718        cache_init_objs(cachep, page);
2719
2720        if (gfpflags_allow_blocking(local_flags))
2721                local_irq_disable();
2722
2723        return page;
2724
2725opps1:
2726        kmem_freepages(cachep, page);
2727failed:
2728        if (gfpflags_allow_blocking(local_flags))
2729                local_irq_disable();
2730        return NULL;
2731}
2732
2733static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2734{
2735        struct kmem_cache_node *n;
2736        void *list = NULL;
2737
2738        check_irq_off();
2739
2740        if (!page)
2741                return;
2742
2743        INIT_LIST_HEAD(&page->lru);
2744        n = get_node(cachep, page_to_nid(page));
2745
2746        spin_lock(&n->list_lock);
2747        n->total_slabs++;
2748        if (!page->active) {
2749                list_add_tail(&page->lru, &(n->slabs_free));
2750                n->free_slabs++;
2751        } else
2752                fixup_slab_list(cachep, n, page, &list);
2753
2754        STATS_INC_GROWN(cachep);
2755        n->free_objects += cachep->num - page->active;
2756        spin_unlock(&n->list_lock);
2757
2758        fixup_objfreelist_debug(cachep, &list);
2759}
2760
2761#if DEBUG
2762
2763/*
2764 * Perform extra freeing checks:
2765 * - detect bad pointers.
2766 * - POISON/RED_ZONE checking
2767 */
2768static void kfree_debugcheck(const void *objp)
2769{
2770        if (!virt_addr_valid(objp)) {
2771                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2772                       (unsigned long)objp);
2773                BUG();
2774        }
2775}
2776
2777static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2778{
2779        unsigned long long redzone1, redzone2;
2780
2781        redzone1 = *dbg_redzone1(cache, obj);
2782        redzone2 = *dbg_redzone2(cache, obj);
2783
2784        /*
2785         * Redzone is ok.
2786         */
2787        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2788                return;
2789
2790        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2791                slab_error(cache, "double free detected");
2792        else
2793                slab_error(cache, "memory outside object was overwritten");
2794
2795        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2796               obj, redzone1, redzone2);
2797}
2798
2799static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2800                                   unsigned long caller)
2801{
2802        unsigned int objnr;
2803        struct page *page;
2804
2805        BUG_ON(virt_to_cache(objp) != cachep);
2806
2807        objp -= obj_offset(cachep);
2808        kfree_debugcheck(objp);
2809        page = virt_to_head_page(objp);
2810
2811        if (cachep->flags & SLAB_RED_ZONE) {
2812                verify_redzone_free(cachep, objp);
2813                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2814                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2815        }
2816        if (cachep->flags & SLAB_STORE_USER) {
2817                set_store_user_dirty(cachep);
2818                *dbg_userword(cachep, objp) = (void *)caller;
2819        }
2820
2821        objnr = obj_to_index(cachep, page, objp);
2822
2823        BUG_ON(objnr >= cachep->num);
2824        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2825
2826        if (cachep->flags & SLAB_POISON) {
2827                poison_obj(cachep, objp, POISON_FREE);
2828                slab_kernel_map(cachep, objp, 0, caller);
2829        }
2830        return objp;
2831}
2832
2833#else
2834#define kfree_debugcheck(x) do { } while(0)
2835#define cache_free_debugcheck(x,objp,z) (objp)
2836#endif
2837
2838static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2839                                                void **list)
2840{
2841#if DEBUG
2842        void *next = *list;
2843        void *objp;
2844
2845        while (next) {
2846                objp = next - obj_offset(cachep);
2847                next = *(void **)next;
2848                poison_obj(cachep, objp, POISON_FREE);
2849        }
2850#endif
2851}
2852
2853static inline void fixup_slab_list(struct kmem_cache *cachep,
2854                                struct kmem_cache_node *n, struct page *page,
2855                                void **list)
2856{
2857        /* move slabp to correct slabp list: */
2858        list_del(&page->lru);
2859        if (page->active == cachep->num) {
2860                list_add(&page->lru, &n->slabs_full);
2861                if (OBJFREELIST_SLAB(cachep)) {
2862#if DEBUG
2863                        /* Poisoning will be done without holding the lock */
2864                        if (cachep->flags & SLAB_POISON) {
2865                                void **objp = page->freelist;
2866
2867                                *objp = *list;
2868                                *list = objp;
2869                        }
2870#endif
2871                        page->freelist = NULL;
2872                }
2873        } else
2874                list_add(&page->lru, &n->slabs_partial);
2875}
2876
2877/* Try to find non-pfmemalloc slab if needed */
2878static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2879                                        struct page *page, bool pfmemalloc)
2880{
2881        if (!page)
2882                return NULL;
2883
2884        if (pfmemalloc)
2885                return page;
2886
2887        if (!PageSlabPfmemalloc(page))
2888                return page;
2889
2890        /* No need to keep pfmemalloc slab if we have enough free objects */
2891        if (n->free_objects > n->free_limit) {
2892                ClearPageSlabPfmemalloc(page);
2893                return page;
2894        }
2895
2896        /* Move pfmemalloc slab to the end of list to speed up next search */
2897        list_del(&page->lru);
2898        if (!page->active) {
2899                list_add_tail(&page->lru, &n->slabs_free);
2900                n->free_slabs++;
2901        } else
2902                list_add_tail(&page->lru, &n->slabs_partial);
2903
2904        list_for_each_entry(page, &n->slabs_partial, lru) {
2905                if (!PageSlabPfmemalloc(page))
2906                        return page;
2907        }
2908
2909        n->free_touched = 1;
2910        list_for_each_entry(page, &n->slabs_free, lru) {
2911                if (!PageSlabPfmemalloc(page)) {
2912                        n->free_slabs--;
2913                        return page;
2914                }
2915        }
2916
2917        return NULL;
2918}
2919
2920static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2921{
2922        struct page *page;
2923
2924        assert_spin_locked(&n->list_lock);
2925        page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2926        if (!page) {
2927                n->free_touched = 1;
2928                page = list_first_entry_or_null(&n->slabs_free, struct page,
2929                                                lru);
2930                if (page)
2931                        n->free_slabs--;
2932        }
2933
2934        if (sk_memalloc_socks())
2935                page = get_valid_first_slab(n, page, pfmemalloc);
2936
2937        return page;
2938}
2939
2940static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2941                                struct kmem_cache_node *n, gfp_t flags)
2942{
2943        struct page *page;
2944        void *obj;
2945        void *list = NULL;
2946
2947        if (!gfp_pfmemalloc_allowed(flags))
2948                return NULL;
2949
2950        spin_lock(&n->list_lock);
2951        page = get_first_slab(n, true);
2952        if (!page) {
2953                spin_unlock(&n->list_lock);
2954                return NULL;
2955        }
2956
2957        obj = slab_get_obj(cachep, page);
2958        n->free_objects--;
2959
2960        fixup_slab_list(cachep, n, page, &list);
2961
2962        spin_unlock(&n->list_lock);
2963        fixup_objfreelist_debug(cachep, &list);
2964
2965        return obj;
2966}
2967
2968/*
2969 * Slab list should be fixed up by fixup_slab_list() for existing slab
2970 * or cache_grow_end() for new slab
2971 */
2972static __always_inline int alloc_block(struct kmem_cache *cachep,
2973                struct array_cache *ac, struct page *page, int batchcount)
2974{
2975        /*
2976         * There must be at least one object available for
2977         * allocation.
2978         */
2979        BUG_ON(page->active >= cachep->num);
2980
2981        while (page->active < cachep->num && batchcount--) {
2982                STATS_INC_ALLOCED(cachep);
2983                STATS_INC_ACTIVE(cachep);
2984                STATS_SET_HIGH(cachep);
2985
2986                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2987        }
2988
2989        return batchcount;
2990}
2991
2992static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2993{
2994        int batchcount;
2995        struct kmem_cache_node *n;
2996        struct array_cache *ac, *shared;
2997        int node;
2998        void *list = NULL;
2999        struct page *page;
3000
3001        check_irq_off();
3002        node = numa_mem_id();
3003
3004        ac = cpu_cache_get(cachep);
3005        batchcount = ac->batchcount;
3006        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3007                /*
3008                 * If there was little recent activity on this cache, then
3009                 * perform only a partial refill.  Otherwise we could generate
3010                 * refill bouncing.
3011                 */
3012                batchcount = BATCHREFILL_LIMIT;
3013        }
3014        n = get_node(cachep, node);
3015
3016        BUG_ON(ac->avail > 0 || !n);
3017        shared = READ_ONCE(n->shared);
3018        if (!n->free_objects && (!shared || !shared->avail))
3019                goto direct_grow;
3020
3021        spin_lock(&n->list_lock);
3022        shared = READ_ONCE(n->shared);
3023
3024        /* See if we can refill from the shared array */
3025        if (shared && transfer_objects(ac, shared, batchcount)) {
3026                shared->touched = 1;
3027                goto alloc_done;
3028        }
3029
3030        while (batchcount > 0) {
3031                /* Get slab alloc is to come from. */
3032                page = get_first_slab(n, false);
3033                if (!page)
3034                        goto must_grow;
3035
3036                check_spinlock_acquired(cachep);
3037
3038                batchcount = alloc_block(cachep, ac, page, batchcount);
3039                fixup_slab_list(cachep, n, page, &list);
3040        }
3041
3042must_grow:
3043        n->free_objects -= ac->avail;
3044alloc_done:
3045        spin_unlock(&n->list_lock);
3046        fixup_objfreelist_debug(cachep, &list);
3047
3048direct_grow:
3049        if (unlikely(!ac->avail)) {
3050                /* Check if we can use obj in pfmemalloc slab */
3051                if (sk_memalloc_socks()) {
3052                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3053
3054                        if (obj)
3055                                return obj;
3056                }
3057
3058                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3059
3060                /*
3061                 * cache_grow_begin() can reenable interrupts,
3062                 * then ac could change.
3063                 */
3064                ac = cpu_cache_get(cachep);
3065                if (!ac->avail && page)
3066                        alloc_block(cachep, ac, page, batchcount);
3067                cache_grow_end(cachep, page);
3068
3069                if (!ac->avail)
3070                        return NULL;
3071        }
3072        ac->touched = 1;
3073
3074        return ac->entry[--ac->avail];
3075}
3076
3077static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3078                                                gfp_t flags)
3079{
3080        might_sleep_if(gfpflags_allow_blocking(flags));
3081}
3082
3083#if DEBUG
3084static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3085                                gfp_t flags, void *objp, unsigned long caller)
3086{
3087        if (!objp)
3088                return objp;
3089        if (cachep->flags & SLAB_POISON) {
3090                check_poison_obj(cachep, objp);
3091                slab_kernel_map(cachep, objp, 1, 0);
3092                poison_obj(cachep, objp, POISON_INUSE);
3093        }
3094        if (cachep->flags & SLAB_STORE_USER)
3095                *dbg_userword(cachep, objp) = (void *)caller;
3096
3097        if (cachep->flags & SLAB_RED_ZONE) {
3098                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3099                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3100                        slab_error(cachep, "double free, or memory outside object was overwritten");
3101                        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3102                               objp, *dbg_redzone1(cachep, objp),
3103                               *dbg_redzone2(cachep, objp));
3104                }
3105                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3106                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3107        }
3108
3109        objp += obj_offset(cachep);
3110        if (cachep->ctor && cachep->flags & SLAB_POISON)
3111                cachep->ctor(objp);
3112        if (ARCH_SLAB_MINALIGN &&
3113            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3114                pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3115                       objp, (int)ARCH_SLAB_MINALIGN);
3116        }
3117        return objp;
3118}
3119#else
3120#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3121#endif
3122
3123static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3124{
3125        void *objp;
3126        struct array_cache *ac;
3127
3128        check_irq_off();
3129
3130        ac = cpu_cache_get(cachep);
3131        if (likely(ac->avail)) {
3132                ac->touched = 1;
3133                objp = ac->entry[--ac->avail];
3134
3135                STATS_INC_ALLOCHIT(cachep);
3136                goto out;
3137        }
3138
3139        STATS_INC_ALLOCMISS(cachep);
3140        objp = cache_alloc_refill(cachep, flags);
3141        /*
3142         * the 'ac' may be updated by cache_alloc_refill(),
3143         * and kmemleak_erase() requires its correct value.
3144         */
3145        ac = cpu_cache_get(cachep);
3146
3147out:
3148        /*
3149         * To avoid a false negative, if an object that is in one of the
3150         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3151         * treat the array pointers as a reference to the object.
3152         */
3153        if (objp)
3154                kmemleak_erase(&ac->entry[ac->avail]);
3155        return objp;
3156}
3157
3158#ifdef CONFIG_NUMA
3159/*
3160 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3161 *
3162 * If we are in_interrupt, then process context, including cpusets and
3163 * mempolicy, may not apply and should not be used for allocation policy.
3164 */
3165static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3166{
3167        int nid_alloc, nid_here;
3168
3169        if (in_interrupt() || (flags & __GFP_THISNODE))
3170                return NULL;
3171        nid_alloc = nid_here = numa_mem_id();
3172        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3173                nid_alloc = cpuset_slab_spread_node();
3174        else if (current->mempolicy)
3175                nid_alloc = mempolicy_slab_node();
3176        if (nid_alloc != nid_here)
3177                return ____cache_alloc_node(cachep, flags, nid_alloc);
3178        return NULL;
3179}
3180
3181/*
3182 * Fallback function if there was no memory available and no objects on a
3183 * certain node and fall back is permitted. First we scan all the
3184 * available node for available objects. If that fails then we
3185 * perform an allocation without specifying a node. This allows the page
3186 * allocator to do its reclaim / fallback magic. We then insert the
3187 * slab into the proper nodelist and then allocate from it.
3188 */
3189static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3190{
3191        struct zonelist *zonelist;
3192        struct zoneref *z;
3193        struct zone *zone;
3194        enum zone_type high_zoneidx = gfp_zone(flags);
3195        void *obj = NULL;
3196        struct page *page;
3197        int nid;
3198        unsigned int cpuset_mems_cookie;
3199
3200        if (flags & __GFP_THISNODE)
3201                return NULL;
3202
3203retry_cpuset:
3204        cpuset_mems_cookie = read_mems_allowed_begin();
3205        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3206
3207retry:
3208        /*
3209         * Look through allowed nodes for objects available
3210         * from existing per node queues.
3211         */
3212        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3213                nid = zone_to_nid(zone);
3214
3215                if (cpuset_zone_allowed(zone, flags) &&
3216                        get_node(cache, nid) &&
3217                        get_node(cache, nid)->free_objects) {
3218                                obj = ____cache_alloc_node(cache,
3219                                        gfp_exact_node(flags), nid);
3220                                if (obj)
3221                                        break;
3222                }
3223        }
3224
3225        if (!obj) {
3226                /*
3227                 * This allocation will be performed within the constraints
3228                 * of the current cpuset / memory policy requirements.
3229                 * We may trigger various forms of reclaim on the allowed
3230                 * set and go into memory reserves if necessary.
3231                 */
3232                page = cache_grow_begin(cache, flags, numa_mem_id());
3233                cache_grow_end(cache, page);
3234                if (page) {
3235                        nid = page_to_nid(page);
3236                        obj = ____cache_alloc_node(cache,
3237                                gfp_exact_node(flags), nid);
3238
3239                        /*
3240                         * Another processor may allocate the objects in
3241                         * the slab since we are not holding any locks.
3242                         */
3243                        if (!obj)
3244                                goto retry;
3245                }
3246        }
3247
3248        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3249                goto retry_cpuset;
3250        return obj;
3251}
3252
3253/*
3254 * A interface to enable slab creation on nodeid
3255 */
3256static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3257                                int nodeid)
3258{
3259        struct page *page;
3260        struct kmem_cache_node *n;
3261        void *obj = NULL;
3262        void *list = NULL;
3263
3264        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3265        n = get_node(cachep, nodeid);
3266        BUG_ON(!n);
3267
3268        check_irq_off();
3269        spin_lock(&n->list_lock);
3270        page = get_first_slab(n, false);
3271        if (!page)
3272                goto must_grow;
3273
3274        check_spinlock_acquired_node(cachep, nodeid);
3275
3276        STATS_INC_NODEALLOCS(cachep);
3277        STATS_INC_ACTIVE(cachep);
3278        STATS_SET_HIGH(cachep);
3279
3280        BUG_ON(page->active == cachep->num);
3281
3282        obj = slab_get_obj(cachep, page);
3283        n->free_objects--;
3284
3285        fixup_slab_list(cachep, n, page, &list);
3286
3287        spin_unlock(&n->list_lock);
3288        fixup_objfreelist_debug(cachep, &list);
3289        return obj;
3290
3291must_grow:
3292        spin_unlock(&n->list_lock);
3293        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3294        if (page) {
3295                /* This slab isn't counted yet so don't update free_objects */
3296                obj = slab_get_obj(cachep, page);
3297        }
3298        cache_grow_end(cachep, page);
3299
3300        return obj ? obj : fallback_alloc(cachep, flags);
3301}
3302
3303static __always_inline void *
3304slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3305                   unsigned long caller)
3306{
3307        unsigned long save_flags;
3308        void *ptr;
3309        int slab_node = numa_mem_id();
3310
3311        flags &= gfp_allowed_mask;
3312        cachep = slab_pre_alloc_hook(cachep, flags);
3313        if (unlikely(!cachep))
3314                return NULL;
3315
3316        cache_alloc_debugcheck_before(cachep, flags);
3317        local_irq_save(save_flags);
3318
3319        if (nodeid == NUMA_NO_NODE)
3320                nodeid = slab_node;
3321
3322        if (unlikely(!get_node(cachep, nodeid))) {
3323                /* Node not bootstrapped yet */
3324                ptr = fallback_alloc(cachep, flags);
3325                goto out;
3326        }
3327
3328        if (nodeid == slab_node) {
3329                /*
3330                 * Use the locally cached objects if possible.
3331                 * However ____cache_alloc does not allow fallback
3332                 * to other nodes. It may fail while we still have
3333                 * objects on other nodes available.
3334                 */
3335                ptr = ____cache_alloc(cachep, flags);
3336                if (ptr)
3337                        goto out;
3338        }
3339        /* ___cache_alloc_node can fall back to other nodes */
3340        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3341  out:
3342        local_irq_restore(save_flags);
3343        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3344
3345        if (unlikely(flags & __GFP_ZERO) && ptr)
3346                memset(ptr, 0, cachep->object_size);
3347
3348        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3349        return ptr;
3350}
3351
3352static __always_inline void *
3353__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3354{
3355        void *objp;
3356
3357        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3358                objp = alternate_node_alloc(cache, flags);
3359                if (objp)
3360                        goto out;
3361        }
3362        objp = ____cache_alloc(cache, flags);
3363
3364        /*
3365         * We may just have run out of memory on the local node.
3366         * ____cache_alloc_node() knows how to locate memory on other nodes
3367         */
3368        if (!objp)
3369                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3370
3371  out:
3372        return objp;
3373}
3374#else
3375
3376static __always_inline void *
3377__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3378{
3379        return ____cache_alloc(cachep, flags);
3380}
3381
3382#endif /* CONFIG_NUMA */
3383
3384static __always_inline void *
3385slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3386{
3387        unsigned long save_flags;
3388        void *objp;
3389
3390        flags &= gfp_allowed_mask;
3391        cachep = slab_pre_alloc_hook(cachep, flags);
3392        if (unlikely(!cachep))
3393                return NULL;
3394
3395        cache_alloc_debugcheck_before(cachep, flags);
3396        local_irq_save(save_flags);
3397        objp = __do_cache_alloc(cachep, flags);
3398        local_irq_restore(save_flags);
3399        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3400        prefetchw(objp);
3401
3402        if (unlikely(flags & __GFP_ZERO) && objp)
3403                memset(objp, 0, cachep->object_size);
3404
3405        slab_post_alloc_hook(cachep, flags, 1, &objp);
3406        return objp;
3407}
3408
3409/*
3410 * Caller needs to acquire correct kmem_cache_node's list_lock
3411 * @list: List of detached free slabs should be freed by caller
3412 */
3413static void free_block(struct kmem_cache *cachep, void **objpp,
3414                        int nr_objects, int node, struct list_head *list)
3415{
3416        int i;
3417        struct kmem_cache_node *n = get_node(cachep, node);
3418        struct page *page;
3419
3420        n->free_objects += nr_objects;
3421
3422        for (i = 0; i < nr_objects; i++) {
3423                void *objp;
3424                struct page *page;
3425
3426                objp = objpp[i];
3427
3428                page = virt_to_head_page(objp);
3429                list_del(&page->lru);
3430                check_spinlock_acquired_node(cachep, node);
3431                slab_put_obj(cachep, page, objp);
3432                STATS_DEC_ACTIVE(cachep);
3433
3434                /* fixup slab chains */
3435                if (page->active == 0) {
3436                        list_add(&page->lru, &n->slabs_free);
3437                        n->free_slabs++;
3438                } else {
3439                        /* Unconditionally move a slab to the end of the
3440                         * partial list on free - maximum time for the
3441                         * other objects to be freed, too.
3442                         */
3443                        list_add_tail(&page->lru, &n->slabs_partial);
3444                }
3445        }
3446
3447        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3448                n->free_objects -= cachep->num;
3449
3450                page = list_last_entry(&n->slabs_free, struct page, lru);
3451                list_move(&page->lru, list);
3452                n->free_slabs--;
3453                n->total_slabs--;
3454        }
3455}
3456
3457static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3458{
3459        int batchcount;
3460        struct kmem_cache_node *n;
3461        int node = numa_mem_id();
3462        LIST_HEAD(list);
3463
3464        batchcount = ac->batchcount;
3465
3466        check_irq_off();
3467        n = get_node(cachep, node);
3468        spin_lock(&n->list_lock);
3469        if (n->shared) {
3470                struct array_cache *shared_array = n->shared;
3471                int max = shared_array->limit - shared_array->avail;
3472                if (max) {
3473                        if (batchcount > max)
3474                                batchcount = max;
3475                        memcpy(&(shared_array->entry[shared_array->avail]),
3476                               ac->entry, sizeof(void *) * batchcount);
3477                        shared_array->avail += batchcount;
3478                        goto free_done;
3479                }
3480        }
3481
3482        free_block(cachep, ac->entry, batchcount, node, &list);
3483free_done:
3484#if STATS
3485        {
3486                int i = 0;
3487                struct page *page;
3488
3489                list_for_each_entry(page, &n->slabs_free, lru) {
3490                        BUG_ON(page->active);
3491
3492                        i++;
3493                }
3494                STATS_SET_FREEABLE(cachep, i);
3495        }
3496#endif
3497        spin_unlock(&n->list_lock);
3498        slabs_destroy(cachep, &list);
3499        ac->avail -= batchcount;
3500        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3501}
3502
3503/*
3504 * Release an obj back to its cache. If the obj has a constructed state, it must
3505 * be in this state _before_ it is released.  Called with disabled ints.
3506 */
3507static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3508                                unsigned long caller)
3509{
3510        /* Put the object into the quarantine, don't touch it for now. */
3511        if (kasan_slab_free(cachep, objp))
3512                return;
3513
3514        ___cache_free(cachep, objp, caller);
3515}
3516
3517void ___cache_free(struct kmem_cache *cachep, void *objp,
3518                unsigned long caller)
3519{
3520        struct array_cache *ac = cpu_cache_get(cachep);
3521
3522        check_irq_off();
3523        kmemleak_free_recursive(objp, cachep->flags);
3524        objp = cache_free_debugcheck(cachep, objp, caller);
3525
3526        kmemcheck_slab_free(cachep, objp, cachep->object_size);
3527
3528        /*
3529         * Skip calling cache_free_alien() when the platform is not numa.
3530         * This will avoid cache misses that happen while accessing slabp (which
3531         * is per page memory  reference) to get nodeid. Instead use a global
3532         * variable to skip the call, which is mostly likely to be present in
3533         * the cache.
3534         */
3535        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3536                return;
3537
3538        if (ac->avail < ac->limit) {
3539                STATS_INC_FREEHIT(cachep);
3540        } else {
3541                STATS_INC_FREEMISS(cachep);
3542                cache_flusharray(cachep, ac);
3543        }
3544
3545        if (sk_memalloc_socks()) {
3546                struct page *page = virt_to_head_page(objp);
3547
3548                if (unlikely(PageSlabPfmemalloc(page))) {
3549                        cache_free_pfmemalloc(cachep, page, objp);
3550                        return;
3551                }
3552        }
3553
3554        ac->entry[ac->avail++] = objp;
3555}
3556
3557/**
3558 * kmem_cache_alloc - Allocate an object
3559 * @cachep: The cache to allocate from.
3560 * @flags: See kmalloc().
3561 *
3562 * Allocate an object from this cache.  The flags are only relevant
3563 * if the cache has no available objects.
3564 */
3565void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3566{
3567        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3568
3569        kasan_slab_alloc(cachep, ret, flags);
3570        trace_kmem_cache_alloc(_RET_IP_, ret,
3571                               cachep->object_size, cachep->size, flags);
3572
3573        return ret;
3574}
3575EXPORT_SYMBOL(kmem_cache_alloc);
3576
3577static __always_inline void
3578cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3579                                  size_t size, void **p, unsigned long caller)
3580{
3581        size_t i;
3582
3583        for (i = 0; i < size; i++)
3584                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3585}
3586
3587int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3588                          void **p)
3589{
3590        size_t i;
3591
3592        s = slab_pre_alloc_hook(s, flags);
3593        if (!s)
3594                return 0;
3595
3596        cache_alloc_debugcheck_before(s, flags);
3597
3598        local_irq_disable();
3599        for (i = 0; i < size; i++) {
3600                void *objp = __do_cache_alloc(s, flags);
3601
3602                if (unlikely(!objp))
3603                        goto error;
3604                p[i] = objp;
3605        }
3606        local_irq_enable();
3607
3608        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3609
3610        /* Clear memory outside IRQ disabled section */
3611        if (unlikely(flags & __GFP_ZERO))
3612                for (i = 0; i < size; i++)
3613                        memset(p[i], 0, s->object_size);
3614
3615        slab_post_alloc_hook(s, flags, size, p);
3616        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3617        return size;
3618error:
3619        local_irq_enable();
3620        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3621        slab_post_alloc_hook(s, flags, i, p);
3622        __kmem_cache_free_bulk(s, i, p);
3623        return 0;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3626
3627#ifdef CONFIG_TRACING
3628void *
3629kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3630{
3631        void *ret;
3632
3633        ret = slab_alloc(cachep, flags, _RET_IP_);
3634
3635        kasan_kmalloc(cachep, ret, size, flags);
3636        trace_kmalloc(_RET_IP_, ret,
3637                      size, cachep->size, flags);
3638        return ret;
3639}
3640EXPORT_SYMBOL(kmem_cache_alloc_trace);
3641#endif
3642
3643#ifdef CONFIG_NUMA
3644/**
3645 * kmem_cache_alloc_node - Allocate an object on the specified node
3646 * @cachep: The cache to allocate from.
3647 * @flags: See kmalloc().
3648 * @nodeid: node number of the target node.
3649 *
3650 * Identical to kmem_cache_alloc but it will allocate memory on the given
3651 * node, which can improve the performance for cpu bound structures.
3652 *
3653 * Fallback to other node is possible if __GFP_THISNODE is not set.
3654 */
3655void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3656{
3657        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3658
3659        kasan_slab_alloc(cachep, ret, flags);
3660        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3661                                    cachep->object_size, cachep->size,
3662                                    flags, nodeid);
3663
3664        return ret;
3665}
3666EXPORT_SYMBOL(kmem_cache_alloc_node);
3667
3668#ifdef CONFIG_TRACING
3669void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3670                                  gfp_t flags,
3671                                  int nodeid,
3672                                  size_t size)
3673{
3674        void *ret;
3675
3676        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3677
3678        kasan_kmalloc(cachep, ret, size, flags);
3679        trace_kmalloc_node(_RET_IP_, ret,
3680                           size, cachep->size,
3681                           flags, nodeid);
3682        return ret;
3683}
3684EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3685#endif
3686
3687static __always_inline void *
3688__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3689{
3690        struct kmem_cache *cachep;
3691        void *ret;
3692
3693        cachep = kmalloc_slab(size, flags);
3694        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3695                return cachep;
3696        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3697        kasan_kmalloc(cachep, ret, size, flags);
3698
3699        return ret;
3700}
3701
3702void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703{
3704        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3705}
3706EXPORT_SYMBOL(__kmalloc_node);
3707
3708void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709                int node, unsigned long caller)
3710{
3711        return __do_kmalloc_node(size, flags, node, caller);
3712}
3713EXPORT_SYMBOL(__kmalloc_node_track_caller);
3714#endif /* CONFIG_NUMA */
3715
3716/**
3717 * __do_kmalloc - allocate memory
3718 * @size: how many bytes of memory are required.
3719 * @flags: the type of memory to allocate (see kmalloc).
3720 * @caller: function caller for debug tracking of the caller
3721 */
3722static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723                                          unsigned long caller)
3724{
3725        struct kmem_cache *cachep;
3726        void *ret;
3727
3728        cachep = kmalloc_slab(size, flags);
3729        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3730                return cachep;
3731        ret = slab_alloc(cachep, flags, caller);
3732
3733        kasan_kmalloc(cachep, ret, size, flags);
3734        trace_kmalloc(caller, ret,
3735                      size, cachep->size, flags);
3736
3737        return ret;
3738}
3739
3740void *__kmalloc(size_t size, gfp_t flags)
3741{
3742        return __do_kmalloc(size, flags, _RET_IP_);
3743}
3744EXPORT_SYMBOL(__kmalloc);
3745
3746void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747{
3748        return __do_kmalloc(size, flags, caller);
3749}
3750EXPORT_SYMBOL(__kmalloc_track_caller);
3751
3752/**
3753 * kmem_cache_free - Deallocate an object
3754 * @cachep: The cache the allocation was from.
3755 * @objp: The previously allocated object.
3756 *
3757 * Free an object which was previously allocated from this
3758 * cache.
3759 */
3760void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3761{
3762        unsigned long flags;
3763        cachep = cache_from_obj(cachep, objp);
3764        if (!cachep)
3765                return;
3766
3767        local_irq_save(flags);
3768        debug_check_no_locks_freed(objp, cachep->object_size);
3769        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3770                debug_check_no_obj_freed(objp, cachep->object_size);
3771        __cache_free(cachep, objp, _RET_IP_);
3772        local_irq_restore(flags);
3773
3774        trace_kmem_cache_free(_RET_IP_, objp);
3775}
3776EXPORT_SYMBOL(kmem_cache_free);
3777
3778void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3779{
3780        struct kmem_cache *s;
3781        size_t i;
3782
3783        local_irq_disable();
3784        for (i = 0; i < size; i++) {
3785                void *objp = p[i];
3786
3787                if (!orig_s) /* called via kfree_bulk */
3788                        s = virt_to_cache(objp);
3789                else
3790                        s = cache_from_obj(orig_s, objp);
3791
3792                debug_check_no_locks_freed(objp, s->object_size);
3793                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3794                        debug_check_no_obj_freed(objp, s->object_size);
3795
3796                __cache_free(s, objp, _RET_IP_);
3797        }
3798        local_irq_enable();
3799
3800        /* FIXME: add tracing */
3801}
3802EXPORT_SYMBOL(kmem_cache_free_bulk);
3803
3804/**
3805 * kfree - free previously allocated memory
3806 * @objp: pointer returned by kmalloc.
3807 *
3808 * If @objp is NULL, no operation is performed.
3809 *
3810 * Don't free memory not originally allocated by kmalloc()
3811 * or you will run into trouble.
3812 */
3813void kfree(const void *objp)
3814{
3815        struct kmem_cache *c;
3816        unsigned long flags;
3817
3818        trace_kfree(_RET_IP_, objp);
3819
3820        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3821                return;
3822        local_irq_save(flags);
3823        kfree_debugcheck(objp);
3824        c = virt_to_cache(objp);
3825        debug_check_no_locks_freed(objp, c->object_size);
3826
3827        debug_check_no_obj_freed(objp, c->object_size);
3828        __cache_free(c, (void *)objp, _RET_IP_);
3829        local_irq_restore(flags);
3830}
3831EXPORT_SYMBOL(kfree);
3832
3833/*
3834 * This initializes kmem_cache_node or resizes various caches for all nodes.
3835 */
3836static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3837{
3838        int ret;
3839        int node;
3840        struct kmem_cache_node *n;
3841
3842        for_each_online_node(node) {
3843                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3844                if (ret)
3845                        goto fail;
3846
3847        }
3848
3849        return 0;
3850
3851fail:
3852        if (!cachep->list.next) {
3853                /* Cache is not active yet. Roll back what we did */
3854                node--;
3855                while (node >= 0) {
3856                        n = get_node(cachep, node);
3857                        if (n) {
3858                                kfree(n->shared);
3859                                free_alien_cache(n->alien);
3860                                kfree(n);
3861                                cachep->node[node] = NULL;
3862                        }
3863                        node--;
3864                }
3865        }
3866        return -ENOMEM;
3867}
3868
3869/* Always called with the slab_mutex held */
3870static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3871                                int batchcount, int shared, gfp_t gfp)
3872{
3873        struct array_cache __percpu *cpu_cache, *prev;
3874        int cpu;
3875
3876        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3877        if (!cpu_cache)
3878                return -ENOMEM;
3879
3880        prev = cachep->cpu_cache;
3881        cachep->cpu_cache = cpu_cache;
3882        /*
3883         * Without a previous cpu_cache there's no need to synchronize remote
3884         * cpus, so skip the IPIs.
3885         */
3886        if (prev)
3887                kick_all_cpus_sync();
3888
3889        check_irq_on();
3890        cachep->batchcount = batchcount;
3891        cachep->limit = limit;
3892        cachep->shared = shared;
3893
3894        if (!prev)
3895                goto setup_node;
3896
3897        for_each_online_cpu(cpu) {
3898                LIST_HEAD(list);
3899                int node;
3900                struct kmem_cache_node *n;
3901                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3902
3903                node = cpu_to_mem(cpu);
3904                n = get_node(cachep, node);
3905                spin_lock_irq(&n->list_lock);
3906                free_block(cachep, ac->entry, ac->avail, node, &list);
3907                spin_unlock_irq(&n->list_lock);
3908                slabs_destroy(cachep, &list);
3909        }
3910        free_percpu(prev);
3911
3912setup_node:
3913        return setup_kmem_cache_nodes(cachep, gfp);
3914}
3915
3916static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3917                                int batchcount, int shared, gfp_t gfp)
3918{
3919        int ret;
3920        struct kmem_cache *c;
3921
3922        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3923
3924        if (slab_state < FULL)
3925                return ret;
3926
3927        if ((ret < 0) || !is_root_cache(cachep))
3928                return ret;
3929
3930        lockdep_assert_held(&slab_mutex);
3931        for_each_memcg_cache(c, cachep) {
3932                /* return value determined by the root cache only */
3933                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3934        }
3935
3936        return ret;
3937}
3938
3939/* Called with slab_mutex held always */
3940static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3941{
3942        int err;
3943        int limit = 0;
3944        int shared = 0;
3945        int batchcount = 0;
3946
3947        err = cache_random_seq_create(cachep, cachep->num, gfp);
3948        if (err)
3949                goto end;
3950
3951        if (!is_root_cache(cachep)) {
3952                struct kmem_cache *root = memcg_root_cache(cachep);
3953                limit = root->limit;
3954                shared = root->shared;
3955                batchcount = root->batchcount;
3956        }
3957
3958        if (limit && shared && batchcount)
3959                goto skip_setup;
3960        /*
3961         * The head array serves three purposes:
3962         * - create a LIFO ordering, i.e. return objects that are cache-warm
3963         * - reduce the number of spinlock operations.
3964         * - reduce the number of linked list operations on the slab and
3965         *   bufctl chains: array operations are cheaper.
3966         * The numbers are guessed, we should auto-tune as described by
3967         * Bonwick.
3968         */
3969        if (cachep->size > 131072)
3970                limit = 1;
3971        else if (cachep->size > PAGE_SIZE)
3972                limit = 8;
3973        else if (cachep->size > 1024)
3974                limit = 24;
3975        else if (cachep->size > 256)
3976                limit = 54;
3977        else
3978                limit = 120;
3979
3980        /*
3981         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3982         * allocation behaviour: Most allocs on one cpu, most free operations
3983         * on another cpu. For these cases, an efficient object passing between
3984         * cpus is necessary. This is provided by a shared array. The array
3985         * replaces Bonwick's magazine layer.
3986         * On uniprocessor, it's functionally equivalent (but less efficient)
3987         * to a larger limit. Thus disabled by default.
3988         */
3989        shared = 0;
3990        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3991                shared = 8;
3992
3993#if DEBUG
3994        /*
3995         * With debugging enabled, large batchcount lead to excessively long
3996         * periods with disabled local interrupts. Limit the batchcount
3997         */
3998        if (limit > 32)
3999                limit = 32;
4000#endif
4001        batchcount = (limit + 1) / 2;
4002skip_setup:
4003        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4004end:
4005        if (err)
4006                pr_err("enable_cpucache failed for %s, error %d\n",
4007                       cachep->name, -err);
4008        return err;
4009}
4010
4011/*
4012 * Drain an array if it contains any elements taking the node lock only if
4013 * necessary. Note that the node listlock also protects the array_cache
4014 * if drain_array() is used on the shared array.
4015 */
4016static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4017                         struct array_cache *ac, int node)
4018{
4019        LIST_HEAD(list);
4020
4021        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4022        check_mutex_acquired();
4023
4024        if (!ac || !ac->avail)
4025                return;
4026
4027        if (ac->touched) {
4028                ac->touched = 0;
4029                return;
4030        }
4031
4032        spin_lock_irq(&n->list_lock);
4033        drain_array_locked(cachep, ac, node, false, &list);
4034        spin_unlock_irq(&n->list_lock);
4035
4036        slabs_destroy(cachep, &list);
4037}
4038
4039/**
4040 * cache_reap - Reclaim memory from caches.
4041 * @w: work descriptor
4042 *
4043 * Called from workqueue/eventd every few seconds.
4044 * Purpose:
4045 * - clear the per-cpu caches for this CPU.
4046 * - return freeable pages to the main free memory pool.
4047 *
4048 * If we cannot acquire the cache chain mutex then just give up - we'll try
4049 * again on the next iteration.
4050 */
4051static void cache_reap(struct work_struct *w)
4052{
4053        struct kmem_cache *searchp;
4054        struct kmem_cache_node *n;
4055        int node = numa_mem_id();
4056        struct delayed_work *work = to_delayed_work(w);
4057
4058        if (!mutex_trylock(&slab_mutex))
4059                /* Give up. Setup the next iteration. */
4060                goto out;
4061
4062        list_for_each_entry(searchp, &slab_caches, list) {
4063                check_irq_on();
4064
4065                /*
4066                 * We only take the node lock if absolutely necessary and we
4067                 * have established with reasonable certainty that
4068                 * we can do some work if the lock was obtained.
4069                 */
4070                n = get_node(searchp, node);
4071
4072                reap_alien(searchp, n);
4073
4074                drain_array(searchp, n, cpu_cache_get(searchp), node);
4075
4076                /*
4077                 * These are racy checks but it does not matter
4078                 * if we skip one check or scan twice.
4079                 */
4080                if (time_after(n->next_reap, jiffies))
4081                        goto next;
4082
4083                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4084
4085                drain_array(searchp, n, n->shared, node);
4086
4087                if (n->free_touched)
4088                        n->free_touched = 0;
4089                else {
4090                        int freed;
4091
4092                        freed = drain_freelist(searchp, n, (n->free_limit +
4093                                5 * searchp->num - 1) / (5 * searchp->num));
4094                        STATS_ADD_REAPED(searchp, freed);
4095                }
4096next:
4097                cond_resched();
4098        }
4099        check_irq_on();
4100        mutex_unlock(&slab_mutex);
4101        next_reap_node();
4102out:
4103        /* Set up the next iteration */
4104        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4105}
4106
4107#ifdef CONFIG_SLABINFO
4108void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4109{
4110        unsigned long active_objs, num_objs, active_slabs;
4111        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4112        unsigned long free_slabs = 0;
4113        int node;
4114        struct kmem_cache_node *n;
4115
4116        for_each_kmem_cache_node(cachep, node, n) {
4117                check_irq_on();
4118                spin_lock_irq(&n->list_lock);
4119
4120                total_slabs += n->total_slabs;
4121                free_slabs += n->free_slabs;
4122                free_objs += n->free_objects;
4123
4124                if (n->shared)
4125                        shared_avail += n->shared->avail;
4126
4127                spin_unlock_irq(&n->list_lock);
4128        }
4129        num_objs = total_slabs * cachep->num;
4130        active_slabs = total_slabs - free_slabs;
4131        active_objs = num_objs - free_objs;
4132
4133        sinfo->active_objs = active_objs;
4134        sinfo->num_objs = num_objs;
4135        sinfo->active_slabs = active_slabs;
4136        sinfo->num_slabs = total_slabs;
4137        sinfo->shared_avail = shared_avail;
4138        sinfo->limit = cachep->limit;
4139        sinfo->batchcount = cachep->batchcount;
4140        sinfo->shared = cachep->shared;
4141        sinfo->objects_per_slab = cachep->num;
4142        sinfo->cache_order = cachep->gfporder;
4143}
4144
4145void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4146{
4147#if STATS
4148        {                       /* node stats */
4149                unsigned long high = cachep->high_mark;
4150                unsigned long allocs = cachep->num_allocations;
4151                unsigned long grown = cachep->grown;
4152                unsigned long reaped = cachep->reaped;
4153                unsigned long errors = cachep->errors;
4154                unsigned long max_freeable = cachep->max_freeable;
4155                unsigned long node_allocs = cachep->node_allocs;
4156                unsigned long node_frees = cachep->node_frees;
4157                unsigned long overflows = cachep->node_overflow;
4158
4159                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4160                           allocs, high, grown,
4161                           reaped, errors, max_freeable, node_allocs,
4162                           node_frees, overflows);
4163        }
4164        /* cpu stats */
4165        {
4166                unsigned long allochit = atomic_read(&cachep->allochit);
4167                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4168                unsigned long freehit = atomic_read(&cachep->freehit);
4169                unsigned long freemiss = atomic_read(&cachep->freemiss);
4170
4171                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4172                           allochit, allocmiss, freehit, freemiss);
4173        }
4174#endif
4175}
4176
4177#define MAX_SLABINFO_WRITE 128
4178/**
4179 * slabinfo_write - Tuning for the slab allocator
4180 * @file: unused
4181 * @buffer: user buffer
4182 * @count: data length
4183 * @ppos: unused
4184 */
4185ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4186                       size_t count, loff_t *ppos)
4187{
4188        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4189        int limit, batchcount, shared, res;
4190        struct kmem_cache *cachep;
4191
4192        if (count > MAX_SLABINFO_WRITE)
4193                return -EINVAL;
4194        if (copy_from_user(&kbuf, buffer, count))
4195                return -EFAULT;
4196        kbuf[MAX_SLABINFO_WRITE] = '\0';
4197
4198        tmp = strchr(kbuf, ' ');
4199        if (!tmp)
4200                return -EINVAL;
4201        *tmp = '\0';
4202        tmp++;
4203        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4204                return -EINVAL;
4205
4206        /* Find the cache in the chain of caches. */
4207        mutex_lock(&slab_mutex);
4208        res = -EINVAL;
4209        list_for_each_entry(cachep, &slab_caches, list) {
4210                if (!strcmp(cachep->name, kbuf)) {
4211                        if (limit < 1 || batchcount < 1 ||
4212                                        batchcount > limit || shared < 0) {
4213                                res = 0;
4214                        } else {
4215                                res = do_tune_cpucache(cachep, limit,
4216                                                       batchcount, shared,
4217                                                       GFP_KERNEL);
4218                        }
4219                        break;
4220                }
4221        }
4222        mutex_unlock(&slab_mutex);
4223        if (res >= 0)
4224                res = count;
4225        return res;
4226}
4227
4228#ifdef CONFIG_DEBUG_SLAB_LEAK
4229
4230static inline int add_caller(unsigned long *n, unsigned long v)
4231{
4232        unsigned long *p;
4233        int l;
4234        if (!v)
4235                return 1;
4236        l = n[1];
4237        p = n + 2;
4238        while (l) {
4239                int i = l/2;
4240                unsigned long *q = p + 2 * i;
4241                if (*q == v) {
4242                        q[1]++;
4243                        return 1;
4244                }
4245                if (*q > v) {
4246                        l = i;
4247                } else {
4248                        p = q + 2;
4249                        l -= i + 1;
4250                }
4251        }
4252        if (++n[1] == n[0])
4253                return 0;
4254        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4255        p[0] = v;
4256        p[1] = 1;
4257        return 1;
4258}
4259
4260static void handle_slab(unsigned long *n, struct kmem_cache *c,
4261                                                struct page *page)
4262{
4263        void *p;
4264        int i, j;
4265        unsigned long v;
4266
4267        if (n[0] == n[1])
4268                return;
4269        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4270                bool active = true;
4271
4272                for (j = page->active; j < c->num; j++) {
4273                        if (get_free_obj(page, j) == i) {
4274                                active = false;
4275                                break;
4276                        }
4277                }
4278
4279                if (!active)
4280                        continue;
4281
4282                /*
4283                 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4284                 * mapping is established when actual object allocation and
4285                 * we could mistakenly access the unmapped object in the cpu
4286                 * cache.
4287                 */
4288                if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4289                        continue;
4290
4291                if (!add_caller(n, v))
4292                        return;
4293        }
4294}
4295
4296static void show_symbol(struct seq_file *m, unsigned long address)
4297{
4298#ifdef CONFIG_KALLSYMS
4299        unsigned long offset, size;
4300        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4301
4302        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4303                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4304                if (modname[0])
4305                        seq_printf(m, " [%s]", modname);
4306                return;
4307        }
4308#endif
4309        seq_printf(m, "%p", (void *)address);
4310}
4311
4312static int leaks_show(struct seq_file *m, void *p)
4313{
4314        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4315        struct page *page;
4316        struct kmem_cache_node *n;
4317        const char *name;
4318        unsigned long *x = m->private;
4319        int node;
4320        int i;
4321
4322        if (!(cachep->flags & SLAB_STORE_USER))
4323                return 0;
4324        if (!(cachep->flags & SLAB_RED_ZONE))
4325                return 0;
4326
4327        /*
4328         * Set store_user_clean and start to grab stored user information
4329         * for all objects on this cache. If some alloc/free requests comes
4330         * during the processing, information would be wrong so restart
4331         * whole processing.
4332         */
4333        do {
4334                set_store_user_clean(cachep);
4335                drain_cpu_caches(cachep);
4336
4337                x[1] = 0;
4338
4339                for_each_kmem_cache_node(cachep, node, n) {
4340
4341                        check_irq_on();
4342                        spin_lock_irq(&n->list_lock);
4343
4344                        list_for_each_entry(page, &n->slabs_full, lru)
4345                                handle_slab(x, cachep, page);
4346                        list_for_each_entry(page, &n->slabs_partial, lru)
4347                                handle_slab(x, cachep, page);
4348                        spin_unlock_irq(&n->list_lock);
4349                }
4350        } while (!is_store_user_clean(cachep));
4351
4352        name = cachep->name;
4353        if (x[0] == x[1]) {
4354                /* Increase the buffer size */
4355                mutex_unlock(&slab_mutex);
4356                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4357                if (!m->private) {
4358                        /* Too bad, we are really out */
4359                        m->private = x;
4360                        mutex_lock(&slab_mutex);
4361                        return -ENOMEM;
4362                }
4363                *(unsigned long *)m->private = x[0] * 2;
4364                kfree(x);
4365                mutex_lock(&slab_mutex);
4366                /* Now make sure this entry will be retried */
4367                m->count = m->size;
4368                return 0;
4369        }
4370        for (i = 0; i < x[1]; i++) {
4371                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4372                show_symbol(m, x[2*i+2]);
4373                seq_putc(m, '\n');
4374        }
4375
4376        return 0;
4377}
4378
4379static const struct seq_operations slabstats_op = {
4380        .start = slab_start,
4381        .next = slab_next,
4382        .stop = slab_stop,
4383        .show = leaks_show,
4384};
4385
4386static int slabstats_open(struct inode *inode, struct file *file)
4387{
4388        unsigned long *n;
4389
4390        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4391        if (!n)
4392                return -ENOMEM;
4393
4394        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4395
4396        return 0;
4397}
4398
4399static const struct file_operations proc_slabstats_operations = {
4400        .open           = slabstats_open,
4401        .read           = seq_read,
4402        .llseek         = seq_lseek,
4403        .release        = seq_release_private,
4404};
4405#endif
4406
4407static int __init slab_proc_init(void)
4408{
4409#ifdef CONFIG_DEBUG_SLAB_LEAK
4410        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4411#endif
4412        return 0;
4413}
4414module_init(slab_proc_init);
4415#endif
4416
4417#ifdef CONFIG_HARDENED_USERCOPY
4418/*
4419 * Rejects objects that are incorrectly sized.
4420 *
4421 * Returns NULL if check passes, otherwise const char * to name of cache
4422 * to indicate an error.
4423 */
4424const char *__check_heap_object(const void *ptr, unsigned long n,
4425                                struct page *page)
4426{
4427        struct kmem_cache *cachep;
4428        unsigned int objnr;
4429        unsigned long offset;
4430
4431        /* Find and validate object. */
4432        cachep = page->slab_cache;
4433        objnr = obj_to_index(cachep, page, (void *)ptr);
4434        BUG_ON(objnr >= cachep->num);
4435
4436        /* Find offset within object. */
4437        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4438
4439        /* Allow address range falling entirely within object size. */
4440        if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4441                return NULL;
4442
4443        return cachep->name;
4444}
4445#endif /* CONFIG_HARDENED_USERCOPY */
4446
4447/**
4448 * ksize - get the actual amount of memory allocated for a given object
4449 * @objp: Pointer to the object
4450 *
4451 * kmalloc may internally round up allocations and return more memory
4452 * than requested. ksize() can be used to determine the actual amount of
4453 * memory allocated. The caller may use this additional memory, even though
4454 * a smaller amount of memory was initially specified with the kmalloc call.
4455 * The caller must guarantee that objp points to a valid object previously
4456 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4457 * must not be freed during the duration of the call.
4458 */
4459size_t ksize(const void *objp)
4460{
4461        size_t size;
4462
4463        BUG_ON(!objp);
4464        if (unlikely(objp == ZERO_SIZE_PTR))
4465                return 0;
4466
4467        size = virt_to_cache(objp)->object_size;
4468        /* We assume that ksize callers could use the whole allocated area,
4469         * so we need to unpoison this area.
4470         */
4471        kasan_unpoison_shadow(objp, size);
4472
4473        return size;
4474}
4475EXPORT_SYMBOL(ksize);
4476