linux/mm/slab.h
<<
>>
Prefs
   1#ifndef MM_SLAB_H
   2#define MM_SLAB_H
   3/*
   4 * Internal slab definitions
   5 */
   6
   7#ifdef CONFIG_SLOB
   8/*
   9 * Common fields provided in kmem_cache by all slab allocators
  10 * This struct is either used directly by the allocator (SLOB)
  11 * or the allocator must include definitions for all fields
  12 * provided in kmem_cache_common in their definition of kmem_cache.
  13 *
  14 * Once we can do anonymous structs (C11 standard) we could put a
  15 * anonymous struct definition in these allocators so that the
  16 * separate allocations in the kmem_cache structure of SLAB and
  17 * SLUB is no longer needed.
  18 */
  19struct kmem_cache {
  20        unsigned int object_size;/* The original size of the object */
  21        unsigned int size;      /* The aligned/padded/added on size  */
  22        unsigned int align;     /* Alignment as calculated */
  23        unsigned long flags;    /* Active flags on the slab */
  24        const char *name;       /* Slab name for sysfs */
  25        int refcount;           /* Use counter */
  26        void (*ctor)(void *);   /* Called on object slot creation */
  27        struct list_head list;  /* List of all slab caches on the system */
  28};
  29
  30#endif /* CONFIG_SLOB */
  31
  32#ifdef CONFIG_SLAB
  33#include <linux/slab_def.h>
  34#endif
  35
  36#ifdef CONFIG_SLUB
  37#include <linux/slub_def.h>
  38#endif
  39
  40#include <linux/memcontrol.h>
  41#include <linux/fault-inject.h>
  42#include <linux/kmemcheck.h>
  43#include <linux/kasan.h>
  44#include <linux/kmemleak.h>
  45#include <linux/random.h>
  46
  47/*
  48 * State of the slab allocator.
  49 *
  50 * This is used to describe the states of the allocator during bootup.
  51 * Allocators use this to gradually bootstrap themselves. Most allocators
  52 * have the problem that the structures used for managing slab caches are
  53 * allocated from slab caches themselves.
  54 */
  55enum slab_state {
  56        DOWN,                   /* No slab functionality yet */
  57        PARTIAL,                /* SLUB: kmem_cache_node available */
  58        PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
  59        UP,                     /* Slab caches usable but not all extras yet */
  60        FULL                    /* Everything is working */
  61};
  62
  63extern enum slab_state slab_state;
  64
  65/* The slab cache mutex protects the management structures during changes */
  66extern struct mutex slab_mutex;
  67
  68/* The list of all slab caches on the system */
  69extern struct list_head slab_caches;
  70
  71/* The slab cache that manages slab cache information */
  72extern struct kmem_cache *kmem_cache;
  73
  74/* A table of kmalloc cache names and sizes */
  75extern const struct kmalloc_info_struct {
  76        const char *name;
  77        unsigned long size;
  78} kmalloc_info[];
  79
  80unsigned long calculate_alignment(unsigned long flags,
  81                unsigned long align, unsigned long size);
  82
  83#ifndef CONFIG_SLOB
  84/* Kmalloc array related functions */
  85void setup_kmalloc_cache_index_table(void);
  86void create_kmalloc_caches(unsigned long);
  87
  88/* Find the kmalloc slab corresponding for a certain size */
  89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  90#endif
  91
  92
  93/* Functions provided by the slab allocators */
  94extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  95
  96extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  97                        unsigned long flags);
  98extern void create_boot_cache(struct kmem_cache *, const char *name,
  99                        size_t size, unsigned long flags);
 100
 101int slab_unmergeable(struct kmem_cache *s);
 102struct kmem_cache *find_mergeable(size_t size, size_t align,
 103                unsigned long flags, const char *name, void (*ctor)(void *));
 104#ifndef CONFIG_SLOB
 105struct kmem_cache *
 106__kmem_cache_alias(const char *name, size_t size, size_t align,
 107                   unsigned long flags, void (*ctor)(void *));
 108
 109unsigned long kmem_cache_flags(unsigned long object_size,
 110        unsigned long flags, const char *name,
 111        void (*ctor)(void *));
 112#else
 113static inline struct kmem_cache *
 114__kmem_cache_alias(const char *name, size_t size, size_t align,
 115                   unsigned long flags, void (*ctor)(void *))
 116{ return NULL; }
 117
 118static inline unsigned long kmem_cache_flags(unsigned long object_size,
 119        unsigned long flags, const char *name,
 120        void (*ctor)(void *))
 121{
 122        return flags;
 123}
 124#endif
 125
 126
 127/* Legal flag mask for kmem_cache_create(), for various configurations */
 128#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
 129                         SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
 130
 131#if defined(CONFIG_DEBUG_SLAB)
 132#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 133#elif defined(CONFIG_SLUB_DEBUG)
 134#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 135                          SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
 136#else
 137#define SLAB_DEBUG_FLAGS (0)
 138#endif
 139
 140#if defined(CONFIG_SLAB)
 141#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
 142                          SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
 143                          SLAB_NOTRACK | SLAB_ACCOUNT)
 144#elif defined(CONFIG_SLUB)
 145#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
 146                          SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
 147#else
 148#define SLAB_CACHE_FLAGS (0)
 149#endif
 150
 151/* Common flags available with current configuration */
 152#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
 153
 154/* Common flags permitted for kmem_cache_create */
 155#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
 156                              SLAB_RED_ZONE | \
 157                              SLAB_POISON | \
 158                              SLAB_STORE_USER | \
 159                              SLAB_TRACE | \
 160                              SLAB_CONSISTENCY_CHECKS | \
 161                              SLAB_MEM_SPREAD | \
 162                              SLAB_NOLEAKTRACE | \
 163                              SLAB_RECLAIM_ACCOUNT | \
 164                              SLAB_TEMPORARY | \
 165                              SLAB_NOTRACK | \
 166                              SLAB_ACCOUNT)
 167
 168int __kmem_cache_shutdown(struct kmem_cache *);
 169void __kmem_cache_release(struct kmem_cache *);
 170int __kmem_cache_shrink(struct kmem_cache *);
 171void __kmemcg_cache_deactivate(struct kmem_cache *s);
 172void slab_kmem_cache_release(struct kmem_cache *);
 173
 174struct seq_file;
 175struct file;
 176
 177struct slabinfo {
 178        unsigned long active_objs;
 179        unsigned long num_objs;
 180        unsigned long active_slabs;
 181        unsigned long num_slabs;
 182        unsigned long shared_avail;
 183        unsigned int limit;
 184        unsigned int batchcount;
 185        unsigned int shared;
 186        unsigned int objects_per_slab;
 187        unsigned int cache_order;
 188};
 189
 190void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
 191void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
 192ssize_t slabinfo_write(struct file *file, const char __user *buffer,
 193                       size_t count, loff_t *ppos);
 194
 195/*
 196 * Generic implementation of bulk operations
 197 * These are useful for situations in which the allocator cannot
 198 * perform optimizations. In that case segments of the object listed
 199 * may be allocated or freed using these operations.
 200 */
 201void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
 202int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
 203
 204#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 205
 206/* List of all root caches. */
 207extern struct list_head         slab_root_caches;
 208#define root_caches_node        memcg_params.__root_caches_node
 209
 210/*
 211 * Iterate over all memcg caches of the given root cache. The caller must hold
 212 * slab_mutex.
 213 */
 214#define for_each_memcg_cache(iter, root) \
 215        list_for_each_entry(iter, &(root)->memcg_params.children, \
 216                            memcg_params.children_node)
 217
 218static inline bool is_root_cache(struct kmem_cache *s)
 219{
 220        return !s->memcg_params.root_cache;
 221}
 222
 223static inline bool slab_equal_or_root(struct kmem_cache *s,
 224                                      struct kmem_cache *p)
 225{
 226        return p == s || p == s->memcg_params.root_cache;
 227}
 228
 229/*
 230 * We use suffixes to the name in memcg because we can't have caches
 231 * created in the system with the same name. But when we print them
 232 * locally, better refer to them with the base name
 233 */
 234static inline const char *cache_name(struct kmem_cache *s)
 235{
 236        if (!is_root_cache(s))
 237                s = s->memcg_params.root_cache;
 238        return s->name;
 239}
 240
 241/*
 242 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
 243 * That said the caller must assure the memcg's cache won't go away by either
 244 * taking a css reference to the owner cgroup, or holding the slab_mutex.
 245 */
 246static inline struct kmem_cache *
 247cache_from_memcg_idx(struct kmem_cache *s, int idx)
 248{
 249        struct kmem_cache *cachep;
 250        struct memcg_cache_array *arr;
 251
 252        rcu_read_lock();
 253        arr = rcu_dereference(s->memcg_params.memcg_caches);
 254
 255        /*
 256         * Make sure we will access the up-to-date value. The code updating
 257         * memcg_caches issues a write barrier to match this (see
 258         * memcg_create_kmem_cache()).
 259         */
 260        cachep = lockless_dereference(arr->entries[idx]);
 261        rcu_read_unlock();
 262
 263        return cachep;
 264}
 265
 266static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 267{
 268        if (is_root_cache(s))
 269                return s;
 270        return s->memcg_params.root_cache;
 271}
 272
 273static __always_inline int memcg_charge_slab(struct page *page,
 274                                             gfp_t gfp, int order,
 275                                             struct kmem_cache *s)
 276{
 277        int ret;
 278
 279        if (!memcg_kmem_enabled())
 280                return 0;
 281        if (is_root_cache(s))
 282                return 0;
 283
 284        ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
 285        if (ret)
 286                return ret;
 287
 288        memcg_kmem_update_page_stat(page,
 289                        (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 290                        MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
 291                        1 << order);
 292        return 0;
 293}
 294
 295static __always_inline void memcg_uncharge_slab(struct page *page, int order,
 296                                                struct kmem_cache *s)
 297{
 298        if (!memcg_kmem_enabled())
 299                return;
 300
 301        memcg_kmem_update_page_stat(page,
 302                        (s->flags & SLAB_RECLAIM_ACCOUNT) ?
 303                        MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
 304                        -(1 << order));
 305        memcg_kmem_uncharge(page, order);
 306}
 307
 308extern void slab_init_memcg_params(struct kmem_cache *);
 309extern void memcg_link_cache(struct kmem_cache *s);
 310extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
 311                                void (*deact_fn)(struct kmem_cache *));
 312
 313#else /* CONFIG_MEMCG && !CONFIG_SLOB */
 314
 315/* If !memcg, all caches are root. */
 316#define slab_root_caches        slab_caches
 317#define root_caches_node        list
 318
 319#define for_each_memcg_cache(iter, root) \
 320        for ((void)(iter), (void)(root); 0; )
 321
 322static inline bool is_root_cache(struct kmem_cache *s)
 323{
 324        return true;
 325}
 326
 327static inline bool slab_equal_or_root(struct kmem_cache *s,
 328                                      struct kmem_cache *p)
 329{
 330        return true;
 331}
 332
 333static inline const char *cache_name(struct kmem_cache *s)
 334{
 335        return s->name;
 336}
 337
 338static inline struct kmem_cache *
 339cache_from_memcg_idx(struct kmem_cache *s, int idx)
 340{
 341        return NULL;
 342}
 343
 344static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 345{
 346        return s;
 347}
 348
 349static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
 350                                    struct kmem_cache *s)
 351{
 352        return 0;
 353}
 354
 355static inline void memcg_uncharge_slab(struct page *page, int order,
 356                                       struct kmem_cache *s)
 357{
 358}
 359
 360static inline void slab_init_memcg_params(struct kmem_cache *s)
 361{
 362}
 363
 364static inline void memcg_link_cache(struct kmem_cache *s)
 365{
 366}
 367
 368#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 369
 370static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
 371{
 372        struct kmem_cache *cachep;
 373        struct page *page;
 374
 375        /*
 376         * When kmemcg is not being used, both assignments should return the
 377         * same value. but we don't want to pay the assignment price in that
 378         * case. If it is not compiled in, the compiler should be smart enough
 379         * to not do even the assignment. In that case, slab_equal_or_root
 380         * will also be a constant.
 381         */
 382        if (!memcg_kmem_enabled() &&
 383            !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
 384                return s;
 385
 386        page = virt_to_head_page(x);
 387        cachep = page->slab_cache;
 388        if (slab_equal_or_root(cachep, s))
 389                return cachep;
 390
 391        pr_err("%s: Wrong slab cache. %s but object is from %s\n",
 392               __func__, s->name, cachep->name);
 393        WARN_ON_ONCE(1);
 394        return s;
 395}
 396
 397static inline size_t slab_ksize(const struct kmem_cache *s)
 398{
 399#ifndef CONFIG_SLUB
 400        return s->object_size;
 401
 402#else /* CONFIG_SLUB */
 403# ifdef CONFIG_SLUB_DEBUG
 404        /*
 405         * Debugging requires use of the padding between object
 406         * and whatever may come after it.
 407         */
 408        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 409                return s->object_size;
 410# endif
 411        if (s->flags & SLAB_KASAN)
 412                return s->object_size;
 413        /*
 414         * If we have the need to store the freelist pointer
 415         * back there or track user information then we can
 416         * only use the space before that information.
 417         */
 418        if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
 419                return s->inuse;
 420        /*
 421         * Else we can use all the padding etc for the allocation
 422         */
 423        return s->size;
 424#endif
 425}
 426
 427static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
 428                                                     gfp_t flags)
 429{
 430        flags &= gfp_allowed_mask;
 431        lockdep_trace_alloc(flags);
 432        might_sleep_if(gfpflags_allow_blocking(flags));
 433
 434        if (should_failslab(s, flags))
 435                return NULL;
 436
 437        if (memcg_kmem_enabled() &&
 438            ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
 439                return memcg_kmem_get_cache(s);
 440
 441        return s;
 442}
 443
 444static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
 445                                        size_t size, void **p)
 446{
 447        size_t i;
 448
 449        flags &= gfp_allowed_mask;
 450        for (i = 0; i < size; i++) {
 451                void *object = p[i];
 452
 453                kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
 454                kmemleak_alloc_recursive(object, s->object_size, 1,
 455                                         s->flags, flags);
 456                kasan_slab_alloc(s, object, flags);
 457        }
 458
 459        if (memcg_kmem_enabled())
 460                memcg_kmem_put_cache(s);
 461}
 462
 463#ifndef CONFIG_SLOB
 464/*
 465 * The slab lists for all objects.
 466 */
 467struct kmem_cache_node {
 468        spinlock_t list_lock;
 469
 470#ifdef CONFIG_SLAB
 471        struct list_head slabs_partial; /* partial list first, better asm code */
 472        struct list_head slabs_full;
 473        struct list_head slabs_free;
 474        unsigned long total_slabs;      /* length of all slab lists */
 475        unsigned long free_slabs;       /* length of free slab list only */
 476        unsigned long free_objects;
 477        unsigned int free_limit;
 478        unsigned int colour_next;       /* Per-node cache coloring */
 479        struct array_cache *shared;     /* shared per node */
 480        struct alien_cache **alien;     /* on other nodes */
 481        unsigned long next_reap;        /* updated without locking */
 482        int free_touched;               /* updated without locking */
 483#endif
 484
 485#ifdef CONFIG_SLUB
 486        unsigned long nr_partial;
 487        struct list_head partial;
 488#ifdef CONFIG_SLUB_DEBUG
 489        atomic_long_t nr_slabs;
 490        atomic_long_t total_objects;
 491        struct list_head full;
 492#endif
 493#endif
 494
 495};
 496
 497static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 498{
 499        return s->node[node];
 500}
 501
 502/*
 503 * Iterator over all nodes. The body will be executed for each node that has
 504 * a kmem_cache_node structure allocated (which is true for all online nodes)
 505 */
 506#define for_each_kmem_cache_node(__s, __node, __n) \
 507        for (__node = 0; __node < nr_node_ids; __node++) \
 508                 if ((__n = get_node(__s, __node)))
 509
 510#endif
 511
 512void *slab_start(struct seq_file *m, loff_t *pos);
 513void *slab_next(struct seq_file *m, void *p, loff_t *pos);
 514void slab_stop(struct seq_file *m, void *p);
 515void *memcg_slab_start(struct seq_file *m, loff_t *pos);
 516void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
 517void memcg_slab_stop(struct seq_file *m, void *p);
 518int memcg_slab_show(struct seq_file *m, void *p);
 519
 520void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
 521
 522#ifdef CONFIG_SLAB_FREELIST_RANDOM
 523int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
 524                        gfp_t gfp);
 525void cache_random_seq_destroy(struct kmem_cache *cachep);
 526#else
 527static inline int cache_random_seq_create(struct kmem_cache *cachep,
 528                                        unsigned int count, gfp_t gfp)
 529{
 530        return 0;
 531}
 532static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
 533#endif /* CONFIG_SLAB_FREELIST_RANDOM */
 534
 535#endif /* MM_SLAB_H */
 536