linux/mm/truncate.c
<<
>>
Prefs
   1/*
   2 * mm/truncate.c - code for taking down pages from address_spaces
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 10Sep2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/backing-dev.h>
  12#include <linux/dax.h>
  13#include <linux/gfp.h>
  14#include <linux/mm.h>
  15#include <linux/swap.h>
  16#include <linux/export.h>
  17#include <linux/pagemap.h>
  18#include <linux/highmem.h>
  19#include <linux/pagevec.h>
  20#include <linux/task_io_accounting_ops.h>
  21#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  22                                   do_invalidatepage */
  23#include <linux/shmem_fs.h>
  24#include <linux/cleancache.h>
  25#include <linux/rmap.h>
  26#include "internal.h"
  27
  28static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
  29                               void *entry)
  30{
  31        struct radix_tree_node *node;
  32        void **slot;
  33
  34        spin_lock_irq(&mapping->tree_lock);
  35        /*
  36         * Regular page slots are stabilized by the page lock even
  37         * without the tree itself locked.  These unlocked entries
  38         * need verification under the tree lock.
  39         */
  40        if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
  41                goto unlock;
  42        if (*slot != entry)
  43                goto unlock;
  44        __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
  45                             workingset_update_node, mapping);
  46        mapping->nrexceptional--;
  47unlock:
  48        spin_unlock_irq(&mapping->tree_lock);
  49}
  50
  51/*
  52 * Unconditionally remove exceptional entry. Usually called from truncate path.
  53 */
  54static void truncate_exceptional_entry(struct address_space *mapping,
  55                                       pgoff_t index, void *entry)
  56{
  57        /* Handled by shmem itself */
  58        if (shmem_mapping(mapping))
  59                return;
  60
  61        if (dax_mapping(mapping)) {
  62                dax_delete_mapping_entry(mapping, index);
  63                return;
  64        }
  65        clear_shadow_entry(mapping, index, entry);
  66}
  67
  68/*
  69 * Invalidate exceptional entry if easily possible. This handles exceptional
  70 * entries for invalidate_inode_pages().
  71 */
  72static int invalidate_exceptional_entry(struct address_space *mapping,
  73                                        pgoff_t index, void *entry)
  74{
  75        /* Handled by shmem itself, or for DAX we do nothing. */
  76        if (shmem_mapping(mapping) || dax_mapping(mapping))
  77                return 1;
  78        clear_shadow_entry(mapping, index, entry);
  79        return 1;
  80}
  81
  82/*
  83 * Invalidate exceptional entry if clean. This handles exceptional entries for
  84 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
  85 */
  86static int invalidate_exceptional_entry2(struct address_space *mapping,
  87                                         pgoff_t index, void *entry)
  88{
  89        /* Handled by shmem itself */
  90        if (shmem_mapping(mapping))
  91                return 1;
  92        if (dax_mapping(mapping))
  93                return dax_invalidate_mapping_entry_sync(mapping, index);
  94        clear_shadow_entry(mapping, index, entry);
  95        return 1;
  96}
  97
  98/**
  99 * do_invalidatepage - invalidate part or all of a page
 100 * @page: the page which is affected
 101 * @offset: start of the range to invalidate
 102 * @length: length of the range to invalidate
 103 *
 104 * do_invalidatepage() is called when all or part of the page has become
 105 * invalidated by a truncate operation.
 106 *
 107 * do_invalidatepage() does not have to release all buffers, but it must
 108 * ensure that no dirty buffer is left outside @offset and that no I/O
 109 * is underway against any of the blocks which are outside the truncation
 110 * point.  Because the caller is about to free (and possibly reuse) those
 111 * blocks on-disk.
 112 */
 113void do_invalidatepage(struct page *page, unsigned int offset,
 114                       unsigned int length)
 115{
 116        void (*invalidatepage)(struct page *, unsigned int, unsigned int);
 117
 118        invalidatepage = page->mapping->a_ops->invalidatepage;
 119#ifdef CONFIG_BLOCK
 120        if (!invalidatepage)
 121                invalidatepage = block_invalidatepage;
 122#endif
 123        if (invalidatepage)
 124                (*invalidatepage)(page, offset, length);
 125}
 126
 127/*
 128 * If truncate cannot remove the fs-private metadata from the page, the page
 129 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 130 * user pagetables if we're racing with filemap_fault().
 131 *
 132 * We need to bale out if page->mapping is no longer equal to the original
 133 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 134 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 135 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 136 */
 137static int
 138truncate_complete_page(struct address_space *mapping, struct page *page)
 139{
 140        if (page->mapping != mapping)
 141                return -EIO;
 142
 143        if (page_has_private(page))
 144                do_invalidatepage(page, 0, PAGE_SIZE);
 145
 146        /*
 147         * Some filesystems seem to re-dirty the page even after
 148         * the VM has canceled the dirty bit (eg ext3 journaling).
 149         * Hence dirty accounting check is placed after invalidation.
 150         */
 151        cancel_dirty_page(page);
 152        ClearPageMappedToDisk(page);
 153        delete_from_page_cache(page);
 154        return 0;
 155}
 156
 157/*
 158 * This is for invalidate_mapping_pages().  That function can be called at
 159 * any time, and is not supposed to throw away dirty pages.  But pages can
 160 * be marked dirty at any time too, so use remove_mapping which safely
 161 * discards clean, unused pages.
 162 *
 163 * Returns non-zero if the page was successfully invalidated.
 164 */
 165static int
 166invalidate_complete_page(struct address_space *mapping, struct page *page)
 167{
 168        int ret;
 169
 170        if (page->mapping != mapping)
 171                return 0;
 172
 173        if (page_has_private(page) && !try_to_release_page(page, 0))
 174                return 0;
 175
 176        ret = remove_mapping(mapping, page);
 177
 178        return ret;
 179}
 180
 181int truncate_inode_page(struct address_space *mapping, struct page *page)
 182{
 183        loff_t holelen;
 184        VM_BUG_ON_PAGE(PageTail(page), page);
 185
 186        holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
 187        if (page_mapped(page)) {
 188                unmap_mapping_range(mapping,
 189                                   (loff_t)page->index << PAGE_SHIFT,
 190                                   holelen, 0);
 191        }
 192        return truncate_complete_page(mapping, page);
 193}
 194
 195/*
 196 * Used to get rid of pages on hardware memory corruption.
 197 */
 198int generic_error_remove_page(struct address_space *mapping, struct page *page)
 199{
 200        if (!mapping)
 201                return -EINVAL;
 202        /*
 203         * Only punch for normal data pages for now.
 204         * Handling other types like directories would need more auditing.
 205         */
 206        if (!S_ISREG(mapping->host->i_mode))
 207                return -EIO;
 208        return truncate_inode_page(mapping, page);
 209}
 210EXPORT_SYMBOL(generic_error_remove_page);
 211
 212/*
 213 * Safely invalidate one page from its pagecache mapping.
 214 * It only drops clean, unused pages. The page must be locked.
 215 *
 216 * Returns 1 if the page is successfully invalidated, otherwise 0.
 217 */
 218int invalidate_inode_page(struct page *page)
 219{
 220        struct address_space *mapping = page_mapping(page);
 221        if (!mapping)
 222                return 0;
 223        if (PageDirty(page) || PageWriteback(page))
 224                return 0;
 225        if (page_mapped(page))
 226                return 0;
 227        return invalidate_complete_page(mapping, page);
 228}
 229
 230/**
 231 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 232 * @mapping: mapping to truncate
 233 * @lstart: offset from which to truncate
 234 * @lend: offset to which to truncate (inclusive)
 235 *
 236 * Truncate the page cache, removing the pages that are between
 237 * specified offsets (and zeroing out partial pages
 238 * if lstart or lend + 1 is not page aligned).
 239 *
 240 * Truncate takes two passes - the first pass is nonblocking.  It will not
 241 * block on page locks and it will not block on writeback.  The second pass
 242 * will wait.  This is to prevent as much IO as possible in the affected region.
 243 * The first pass will remove most pages, so the search cost of the second pass
 244 * is low.
 245 *
 246 * We pass down the cache-hot hint to the page freeing code.  Even if the
 247 * mapping is large, it is probably the case that the final pages are the most
 248 * recently touched, and freeing happens in ascending file offset order.
 249 *
 250 * Note that since ->invalidatepage() accepts range to invalidate
 251 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 252 * page aligned properly.
 253 */
 254void truncate_inode_pages_range(struct address_space *mapping,
 255                                loff_t lstart, loff_t lend)
 256{
 257        pgoff_t         start;          /* inclusive */
 258        pgoff_t         end;            /* exclusive */
 259        unsigned int    partial_start;  /* inclusive */
 260        unsigned int    partial_end;    /* exclusive */
 261        struct pagevec  pvec;
 262        pgoff_t         indices[PAGEVEC_SIZE];
 263        pgoff_t         index;
 264        int             i;
 265
 266        if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
 267                goto out;
 268
 269        /* Offsets within partial pages */
 270        partial_start = lstart & (PAGE_SIZE - 1);
 271        partial_end = (lend + 1) & (PAGE_SIZE - 1);
 272
 273        /*
 274         * 'start' and 'end' always covers the range of pages to be fully
 275         * truncated. Partial pages are covered with 'partial_start' at the
 276         * start of the range and 'partial_end' at the end of the range.
 277         * Note that 'end' is exclusive while 'lend' is inclusive.
 278         */
 279        start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 280        if (lend == -1)
 281                /*
 282                 * lend == -1 indicates end-of-file so we have to set 'end'
 283                 * to the highest possible pgoff_t and since the type is
 284                 * unsigned we're using -1.
 285                 */
 286                end = -1;
 287        else
 288                end = (lend + 1) >> PAGE_SHIFT;
 289
 290        pagevec_init(&pvec, 0);
 291        index = start;
 292        while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
 293                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 294                        indices)) {
 295                for (i = 0; i < pagevec_count(&pvec); i++) {
 296                        struct page *page = pvec.pages[i];
 297
 298                        /* We rely upon deletion not changing page->index */
 299                        index = indices[i];
 300                        if (index >= end)
 301                                break;
 302
 303                        if (radix_tree_exceptional_entry(page)) {
 304                                truncate_exceptional_entry(mapping, index,
 305                                                           page);
 306                                continue;
 307                        }
 308
 309                        if (!trylock_page(page))
 310                                continue;
 311                        WARN_ON(page_to_index(page) != index);
 312                        if (PageWriteback(page)) {
 313                                unlock_page(page);
 314                                continue;
 315                        }
 316                        truncate_inode_page(mapping, page);
 317                        unlock_page(page);
 318                }
 319                pagevec_remove_exceptionals(&pvec);
 320                pagevec_release(&pvec);
 321                cond_resched();
 322                index++;
 323        }
 324
 325        if (partial_start) {
 326                struct page *page = find_lock_page(mapping, start - 1);
 327                if (page) {
 328                        unsigned int top = PAGE_SIZE;
 329                        if (start > end) {
 330                                /* Truncation within a single page */
 331                                top = partial_end;
 332                                partial_end = 0;
 333                        }
 334                        wait_on_page_writeback(page);
 335                        zero_user_segment(page, partial_start, top);
 336                        cleancache_invalidate_page(mapping, page);
 337                        if (page_has_private(page))
 338                                do_invalidatepage(page, partial_start,
 339                                                  top - partial_start);
 340                        unlock_page(page);
 341                        put_page(page);
 342                }
 343        }
 344        if (partial_end) {
 345                struct page *page = find_lock_page(mapping, end);
 346                if (page) {
 347                        wait_on_page_writeback(page);
 348                        zero_user_segment(page, 0, partial_end);
 349                        cleancache_invalidate_page(mapping, page);
 350                        if (page_has_private(page))
 351                                do_invalidatepage(page, 0,
 352                                                  partial_end);
 353                        unlock_page(page);
 354                        put_page(page);
 355                }
 356        }
 357        /*
 358         * If the truncation happened within a single page no pages
 359         * will be released, just zeroed, so we can bail out now.
 360         */
 361        if (start >= end)
 362                goto out;
 363
 364        index = start;
 365        for ( ; ; ) {
 366                cond_resched();
 367                if (!pagevec_lookup_entries(&pvec, mapping, index,
 368                        min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
 369                        /* If all gone from start onwards, we're done */
 370                        if (index == start)
 371                                break;
 372                        /* Otherwise restart to make sure all gone */
 373                        index = start;
 374                        continue;
 375                }
 376                if (index == start && indices[0] >= end) {
 377                        /* All gone out of hole to be punched, we're done */
 378                        pagevec_remove_exceptionals(&pvec);
 379                        pagevec_release(&pvec);
 380                        break;
 381                }
 382                for (i = 0; i < pagevec_count(&pvec); i++) {
 383                        struct page *page = pvec.pages[i];
 384
 385                        /* We rely upon deletion not changing page->index */
 386                        index = indices[i];
 387                        if (index >= end) {
 388                                /* Restart punch to make sure all gone */
 389                                index = start - 1;
 390                                break;
 391                        }
 392
 393                        if (radix_tree_exceptional_entry(page)) {
 394                                truncate_exceptional_entry(mapping, index,
 395                                                           page);
 396                                continue;
 397                        }
 398
 399                        lock_page(page);
 400                        WARN_ON(page_to_index(page) != index);
 401                        wait_on_page_writeback(page);
 402                        truncate_inode_page(mapping, page);
 403                        unlock_page(page);
 404                }
 405                pagevec_remove_exceptionals(&pvec);
 406                pagevec_release(&pvec);
 407                index++;
 408        }
 409
 410out:
 411        cleancache_invalidate_inode(mapping);
 412}
 413EXPORT_SYMBOL(truncate_inode_pages_range);
 414
 415/**
 416 * truncate_inode_pages - truncate *all* the pages from an offset
 417 * @mapping: mapping to truncate
 418 * @lstart: offset from which to truncate
 419 *
 420 * Called under (and serialised by) inode->i_mutex.
 421 *
 422 * Note: When this function returns, there can be a page in the process of
 423 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
 424 * mapping->nrpages can be non-zero when this function returns even after
 425 * truncation of the whole mapping.
 426 */
 427void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 428{
 429        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 430}
 431EXPORT_SYMBOL(truncate_inode_pages);
 432
 433/**
 434 * truncate_inode_pages_final - truncate *all* pages before inode dies
 435 * @mapping: mapping to truncate
 436 *
 437 * Called under (and serialized by) inode->i_mutex.
 438 *
 439 * Filesystems have to use this in the .evict_inode path to inform the
 440 * VM that this is the final truncate and the inode is going away.
 441 */
 442void truncate_inode_pages_final(struct address_space *mapping)
 443{
 444        unsigned long nrexceptional;
 445        unsigned long nrpages;
 446
 447        /*
 448         * Page reclaim can not participate in regular inode lifetime
 449         * management (can't call iput()) and thus can race with the
 450         * inode teardown.  Tell it when the address space is exiting,
 451         * so that it does not install eviction information after the
 452         * final truncate has begun.
 453         */
 454        mapping_set_exiting(mapping);
 455
 456        /*
 457         * When reclaim installs eviction entries, it increases
 458         * nrexceptional first, then decreases nrpages.  Make sure we see
 459         * this in the right order or we might miss an entry.
 460         */
 461        nrpages = mapping->nrpages;
 462        smp_rmb();
 463        nrexceptional = mapping->nrexceptional;
 464
 465        if (nrpages || nrexceptional) {
 466                /*
 467                 * As truncation uses a lockless tree lookup, cycle
 468                 * the tree lock to make sure any ongoing tree
 469                 * modification that does not see AS_EXITING is
 470                 * completed before starting the final truncate.
 471                 */
 472                spin_lock_irq(&mapping->tree_lock);
 473                spin_unlock_irq(&mapping->tree_lock);
 474
 475                truncate_inode_pages(mapping, 0);
 476        }
 477}
 478EXPORT_SYMBOL(truncate_inode_pages_final);
 479
 480/**
 481 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 482 * @mapping: the address_space which holds the pages to invalidate
 483 * @start: the offset 'from' which to invalidate
 484 * @end: the offset 'to' which to invalidate (inclusive)
 485 *
 486 * This function only removes the unlocked pages, if you want to
 487 * remove all the pages of one inode, you must call truncate_inode_pages.
 488 *
 489 * invalidate_mapping_pages() will not block on IO activity. It will not
 490 * invalidate pages which are dirty, locked, under writeback or mapped into
 491 * pagetables.
 492 */
 493unsigned long invalidate_mapping_pages(struct address_space *mapping,
 494                pgoff_t start, pgoff_t end)
 495{
 496        pgoff_t indices[PAGEVEC_SIZE];
 497        struct pagevec pvec;
 498        pgoff_t index = start;
 499        unsigned long ret;
 500        unsigned long count = 0;
 501        int i;
 502
 503        pagevec_init(&pvec, 0);
 504        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 505                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 506                        indices)) {
 507                for (i = 0; i < pagevec_count(&pvec); i++) {
 508                        struct page *page = pvec.pages[i];
 509
 510                        /* We rely upon deletion not changing page->index */
 511                        index = indices[i];
 512                        if (index > end)
 513                                break;
 514
 515                        if (radix_tree_exceptional_entry(page)) {
 516                                invalidate_exceptional_entry(mapping, index,
 517                                                             page);
 518                                continue;
 519                        }
 520
 521                        if (!trylock_page(page))
 522                                continue;
 523
 524                        WARN_ON(page_to_index(page) != index);
 525
 526                        /* Middle of THP: skip */
 527                        if (PageTransTail(page)) {
 528                                unlock_page(page);
 529                                continue;
 530                        } else if (PageTransHuge(page)) {
 531                                index += HPAGE_PMD_NR - 1;
 532                                i += HPAGE_PMD_NR - 1;
 533                                /* 'end' is in the middle of THP */
 534                                if (index ==  round_down(end, HPAGE_PMD_NR))
 535                                        continue;
 536                        }
 537
 538                        ret = invalidate_inode_page(page);
 539                        unlock_page(page);
 540                        /*
 541                         * Invalidation is a hint that the page is no longer
 542                         * of interest and try to speed up its reclaim.
 543                         */
 544                        if (!ret)
 545                                deactivate_file_page(page);
 546                        count += ret;
 547                }
 548                pagevec_remove_exceptionals(&pvec);
 549                pagevec_release(&pvec);
 550                cond_resched();
 551                index++;
 552        }
 553        return count;
 554}
 555EXPORT_SYMBOL(invalidate_mapping_pages);
 556
 557/*
 558 * This is like invalidate_complete_page(), except it ignores the page's
 559 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 560 * invalidation guarantees, and cannot afford to leave pages behind because
 561 * shrink_page_list() has a temp ref on them, or because they're transiently
 562 * sitting in the lru_cache_add() pagevecs.
 563 */
 564static int
 565invalidate_complete_page2(struct address_space *mapping, struct page *page)
 566{
 567        unsigned long flags;
 568
 569        if (page->mapping != mapping)
 570                return 0;
 571
 572        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 573                return 0;
 574
 575        spin_lock_irqsave(&mapping->tree_lock, flags);
 576        if (PageDirty(page))
 577                goto failed;
 578
 579        BUG_ON(page_has_private(page));
 580        __delete_from_page_cache(page, NULL);
 581        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 582
 583        if (mapping->a_ops->freepage)
 584                mapping->a_ops->freepage(page);
 585
 586        put_page(page); /* pagecache ref */
 587        return 1;
 588failed:
 589        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 590        return 0;
 591}
 592
 593static int do_launder_page(struct address_space *mapping, struct page *page)
 594{
 595        if (!PageDirty(page))
 596                return 0;
 597        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 598                return 0;
 599        return mapping->a_ops->launder_page(page);
 600}
 601
 602/**
 603 * invalidate_inode_pages2_range - remove range of pages from an address_space
 604 * @mapping: the address_space
 605 * @start: the page offset 'from' which to invalidate
 606 * @end: the page offset 'to' which to invalidate (inclusive)
 607 *
 608 * Any pages which are found to be mapped into pagetables are unmapped prior to
 609 * invalidation.
 610 *
 611 * Returns -EBUSY if any pages could not be invalidated.
 612 */
 613int invalidate_inode_pages2_range(struct address_space *mapping,
 614                                  pgoff_t start, pgoff_t end)
 615{
 616        pgoff_t indices[PAGEVEC_SIZE];
 617        struct pagevec pvec;
 618        pgoff_t index;
 619        int i;
 620        int ret = 0;
 621        int ret2 = 0;
 622        int did_range_unmap = 0;
 623
 624        if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
 625                goto out;
 626
 627        pagevec_init(&pvec, 0);
 628        index = start;
 629        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 630                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 631                        indices)) {
 632                for (i = 0; i < pagevec_count(&pvec); i++) {
 633                        struct page *page = pvec.pages[i];
 634
 635                        /* We rely upon deletion not changing page->index */
 636                        index = indices[i];
 637                        if (index > end)
 638                                break;
 639
 640                        if (radix_tree_exceptional_entry(page)) {
 641                                if (!invalidate_exceptional_entry2(mapping,
 642                                                                   index, page))
 643                                        ret = -EBUSY;
 644                                continue;
 645                        }
 646
 647                        lock_page(page);
 648                        WARN_ON(page_to_index(page) != index);
 649                        if (page->mapping != mapping) {
 650                                unlock_page(page);
 651                                continue;
 652                        }
 653                        wait_on_page_writeback(page);
 654                        if (page_mapped(page)) {
 655                                if (!did_range_unmap) {
 656                                        /*
 657                                         * Zap the rest of the file in one hit.
 658                                         */
 659                                        unmap_mapping_range(mapping,
 660                                           (loff_t)index << PAGE_SHIFT,
 661                                           (loff_t)(1 + end - index)
 662                                                         << PAGE_SHIFT,
 663                                                         0);
 664                                        did_range_unmap = 1;
 665                                } else {
 666                                        /*
 667                                         * Just zap this page
 668                                         */
 669                                        unmap_mapping_range(mapping,
 670                                           (loff_t)index << PAGE_SHIFT,
 671                                           PAGE_SIZE, 0);
 672                                }
 673                        }
 674                        BUG_ON(page_mapped(page));
 675                        ret2 = do_launder_page(mapping, page);
 676                        if (ret2 == 0) {
 677                                if (!invalidate_complete_page2(mapping, page))
 678                                        ret2 = -EBUSY;
 679                        }
 680                        if (ret2 < 0)
 681                                ret = ret2;
 682                        unlock_page(page);
 683                }
 684                pagevec_remove_exceptionals(&pvec);
 685                pagevec_release(&pvec);
 686                cond_resched();
 687                index++;
 688        }
 689        /*
 690         * For DAX we invalidate page tables after invalidating radix tree.  We
 691         * could invalidate page tables while invalidating each entry however
 692         * that would be expensive. And doing range unmapping before doesn't
 693         * work as we have no cheap way to find whether radix tree entry didn't
 694         * get remapped later.
 695         */
 696        if (dax_mapping(mapping)) {
 697                unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
 698                                    (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
 699        }
 700out:
 701        cleancache_invalidate_inode(mapping);
 702        return ret;
 703}
 704EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 705
 706/**
 707 * invalidate_inode_pages2 - remove all pages from an address_space
 708 * @mapping: the address_space
 709 *
 710 * Any pages which are found to be mapped into pagetables are unmapped prior to
 711 * invalidation.
 712 *
 713 * Returns -EBUSY if any pages could not be invalidated.
 714 */
 715int invalidate_inode_pages2(struct address_space *mapping)
 716{
 717        return invalidate_inode_pages2_range(mapping, 0, -1);
 718}
 719EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 720
 721/**
 722 * truncate_pagecache - unmap and remove pagecache that has been truncated
 723 * @inode: inode
 724 * @newsize: new file size
 725 *
 726 * inode's new i_size must already be written before truncate_pagecache
 727 * is called.
 728 *
 729 * This function should typically be called before the filesystem
 730 * releases resources associated with the freed range (eg. deallocates
 731 * blocks). This way, pagecache will always stay logically coherent
 732 * with on-disk format, and the filesystem would not have to deal with
 733 * situations such as writepage being called for a page that has already
 734 * had its underlying blocks deallocated.
 735 */
 736void truncate_pagecache(struct inode *inode, loff_t newsize)
 737{
 738        struct address_space *mapping = inode->i_mapping;
 739        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 740
 741        /*
 742         * unmap_mapping_range is called twice, first simply for
 743         * efficiency so that truncate_inode_pages does fewer
 744         * single-page unmaps.  However after this first call, and
 745         * before truncate_inode_pages finishes, it is possible for
 746         * private pages to be COWed, which remain after
 747         * truncate_inode_pages finishes, hence the second
 748         * unmap_mapping_range call must be made for correctness.
 749         */
 750        unmap_mapping_range(mapping, holebegin, 0, 1);
 751        truncate_inode_pages(mapping, newsize);
 752        unmap_mapping_range(mapping, holebegin, 0, 1);
 753}
 754EXPORT_SYMBOL(truncate_pagecache);
 755
 756/**
 757 * truncate_setsize - update inode and pagecache for a new file size
 758 * @inode: inode
 759 * @newsize: new file size
 760 *
 761 * truncate_setsize updates i_size and performs pagecache truncation (if
 762 * necessary) to @newsize. It will be typically be called from the filesystem's
 763 * setattr function when ATTR_SIZE is passed in.
 764 *
 765 * Must be called with a lock serializing truncates and writes (generally
 766 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
 767 * specific block truncation has been performed.
 768 */
 769void truncate_setsize(struct inode *inode, loff_t newsize)
 770{
 771        loff_t oldsize = inode->i_size;
 772
 773        i_size_write(inode, newsize);
 774        if (newsize > oldsize)
 775                pagecache_isize_extended(inode, oldsize, newsize);
 776        truncate_pagecache(inode, newsize);
 777}
 778EXPORT_SYMBOL(truncate_setsize);
 779
 780/**
 781 * pagecache_isize_extended - update pagecache after extension of i_size
 782 * @inode:      inode for which i_size was extended
 783 * @from:       original inode size
 784 * @to:         new inode size
 785 *
 786 * Handle extension of inode size either caused by extending truncate or by
 787 * write starting after current i_size. We mark the page straddling current
 788 * i_size RO so that page_mkwrite() is called on the nearest write access to
 789 * the page.  This way filesystem can be sure that page_mkwrite() is called on
 790 * the page before user writes to the page via mmap after the i_size has been
 791 * changed.
 792 *
 793 * The function must be called after i_size is updated so that page fault
 794 * coming after we unlock the page will already see the new i_size.
 795 * The function must be called while we still hold i_mutex - this not only
 796 * makes sure i_size is stable but also that userspace cannot observe new
 797 * i_size value before we are prepared to store mmap writes at new inode size.
 798 */
 799void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
 800{
 801        int bsize = i_blocksize(inode);
 802        loff_t rounded_from;
 803        struct page *page;
 804        pgoff_t index;
 805
 806        WARN_ON(to > inode->i_size);
 807
 808        if (from >= to || bsize == PAGE_SIZE)
 809                return;
 810        /* Page straddling @from will not have any hole block created? */
 811        rounded_from = round_up(from, bsize);
 812        if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
 813                return;
 814
 815        index = from >> PAGE_SHIFT;
 816        page = find_lock_page(inode->i_mapping, index);
 817        /* Page not cached? Nothing to do */
 818        if (!page)
 819                return;
 820        /*
 821         * See clear_page_dirty_for_io() for details why set_page_dirty()
 822         * is needed.
 823         */
 824        if (page_mkclean(page))
 825                set_page_dirty(page);
 826        unlock_page(page);
 827        put_page(page);
 828}
 829EXPORT_SYMBOL(pagecache_isize_extended);
 830
 831/**
 832 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 833 * @inode: inode
 834 * @lstart: offset of beginning of hole
 835 * @lend: offset of last byte of hole
 836 *
 837 * This function should typically be called before the filesystem
 838 * releases resources associated with the freed range (eg. deallocates
 839 * blocks). This way, pagecache will always stay logically coherent
 840 * with on-disk format, and the filesystem would not have to deal with
 841 * situations such as writepage being called for a page that has already
 842 * had its underlying blocks deallocated.
 843 */
 844void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 845{
 846        struct address_space *mapping = inode->i_mapping;
 847        loff_t unmap_start = round_up(lstart, PAGE_SIZE);
 848        loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 849        /*
 850         * This rounding is currently just for example: unmap_mapping_range
 851         * expands its hole outwards, whereas we want it to contract the hole
 852         * inwards.  However, existing callers of truncate_pagecache_range are
 853         * doing their own page rounding first.  Note that unmap_mapping_range
 854         * allows holelen 0 for all, and we allow lend -1 for end of file.
 855         */
 856
 857        /*
 858         * Unlike in truncate_pagecache, unmap_mapping_range is called only
 859         * once (before truncating pagecache), and without "even_cows" flag:
 860         * hole-punching should not remove private COWed pages from the hole.
 861         */
 862        if ((u64)unmap_end > (u64)unmap_start)
 863                unmap_mapping_range(mapping, unmap_start,
 864                                    1 + unmap_end - unmap_start, 0);
 865        truncate_inode_pages_range(mapping, lstart, lend);
 866}
 867EXPORT_SYMBOL(truncate_pagecache_range);
 868