linux/mm/vmscan.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/mm.h>
  17#include <linux/sched/mm.h>
  18#include <linux/module.h>
  19#include <linux/gfp.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/swap.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/highmem.h>
  25#include <linux/vmpressure.h>
  26#include <linux/vmstat.h>
  27#include <linux/file.h>
  28#include <linux/writeback.h>
  29#include <linux/blkdev.h>
  30#include <linux/buffer_head.h>  /* for try_to_release_page(),
  31                                        buffer_heads_over_limit */
  32#include <linux/mm_inline.h>
  33#include <linux/backing-dev.h>
  34#include <linux/rmap.h>
  35#include <linux/topology.h>
  36#include <linux/cpu.h>
  37#include <linux/cpuset.h>
  38#include <linux/compaction.h>
  39#include <linux/notifier.h>
  40#include <linux/rwsem.h>
  41#include <linux/delay.h>
  42#include <linux/kthread.h>
  43#include <linux/freezer.h>
  44#include <linux/memcontrol.h>
  45#include <linux/delayacct.h>
  46#include <linux/sysctl.h>
  47#include <linux/oom.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51
  52#include <asm/tlbflush.h>
  53#include <asm/div64.h>
  54
  55#include <linux/swapops.h>
  56#include <linux/balloon_compaction.h>
  57
  58#include "internal.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/vmscan.h>
  62
  63struct scan_control {
  64        /* How many pages shrink_list() should reclaim */
  65        unsigned long nr_to_reclaim;
  66
  67        /* This context's GFP mask */
  68        gfp_t gfp_mask;
  69
  70        /* Allocation order */
  71        int order;
  72
  73        /*
  74         * Nodemask of nodes allowed by the caller. If NULL, all nodes
  75         * are scanned.
  76         */
  77        nodemask_t      *nodemask;
  78
  79        /*
  80         * The memory cgroup that hit its limit and as a result is the
  81         * primary target of this reclaim invocation.
  82         */
  83        struct mem_cgroup *target_mem_cgroup;
  84
  85        /* Scan (total_size >> priority) pages at once */
  86        int priority;
  87
  88        /* The highest zone to isolate pages for reclaim from */
  89        enum zone_type reclaim_idx;
  90
  91        /* Writepage batching in laptop mode; RECLAIM_WRITE */
  92        unsigned int may_writepage:1;
  93
  94        /* Can mapped pages be reclaimed? */
  95        unsigned int may_unmap:1;
  96
  97        /* Can pages be swapped as part of reclaim? */
  98        unsigned int may_swap:1;
  99
 100        /*
 101         * Cgroups are not reclaimed below their configured memory.low,
 102         * unless we threaten to OOM. If any cgroups are skipped due to
 103         * memory.low and nothing was reclaimed, go back for memory.low.
 104         */
 105        unsigned int memcg_low_reclaim:1;
 106        unsigned int memcg_low_skipped:1;
 107
 108        unsigned int hibernation_mode:1;
 109
 110        /* One of the zones is ready for compaction */
 111        unsigned int compaction_ready:1;
 112
 113        /* Incremented by the number of inactive pages that were scanned */
 114        unsigned long nr_scanned;
 115
 116        /* Number of pages freed so far during a call to shrink_zones() */
 117        unsigned long nr_reclaimed;
 118};
 119
 120#ifdef ARCH_HAS_PREFETCH
 121#define prefetch_prev_lru_page(_page, _base, _field)                    \
 122        do {                                                            \
 123                if ((_page)->lru.prev != _base) {                       \
 124                        struct page *prev;                              \
 125                                                                        \
 126                        prev = lru_to_page(&(_page->lru));              \
 127                        prefetch(&prev->_field);                        \
 128                }                                                       \
 129        } while (0)
 130#else
 131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 132#endif
 133
 134#ifdef ARCH_HAS_PREFETCHW
 135#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 136        do {                                                            \
 137                if ((_page)->lru.prev != _base) {                       \
 138                        struct page *prev;                              \
 139                                                                        \
 140                        prev = lru_to_page(&(_page->lru));              \
 141                        prefetchw(&prev->_field);                       \
 142                }                                                       \
 143        } while (0)
 144#else
 145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 146#endif
 147
 148/*
 149 * From 0 .. 100.  Higher means more swappy.
 150 */
 151int vm_swappiness = 60;
 152/*
 153 * The total number of pages which are beyond the high watermark within all
 154 * zones.
 155 */
 156unsigned long vm_total_pages;
 157
 158static LIST_HEAD(shrinker_list);
 159static DECLARE_RWSEM(shrinker_rwsem);
 160
 161#ifdef CONFIG_MEMCG
 162static bool global_reclaim(struct scan_control *sc)
 163{
 164        return !sc->target_mem_cgroup;
 165}
 166
 167/**
 168 * sane_reclaim - is the usual dirty throttling mechanism operational?
 169 * @sc: scan_control in question
 170 *
 171 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 172 * completely broken with the legacy memcg and direct stalling in
 173 * shrink_page_list() is used for throttling instead, which lacks all the
 174 * niceties such as fairness, adaptive pausing, bandwidth proportional
 175 * allocation and configurability.
 176 *
 177 * This function tests whether the vmscan currently in progress can assume
 178 * that the normal dirty throttling mechanism is operational.
 179 */
 180static bool sane_reclaim(struct scan_control *sc)
 181{
 182        struct mem_cgroup *memcg = sc->target_mem_cgroup;
 183
 184        if (!memcg)
 185                return true;
 186#ifdef CONFIG_CGROUP_WRITEBACK
 187        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 188                return true;
 189#endif
 190        return false;
 191}
 192#else
 193static bool global_reclaim(struct scan_control *sc)
 194{
 195        return true;
 196}
 197
 198static bool sane_reclaim(struct scan_control *sc)
 199{
 200        return true;
 201}
 202#endif
 203
 204/*
 205 * This misses isolated pages which are not accounted for to save counters.
 206 * As the data only determines if reclaim or compaction continues, it is
 207 * not expected that isolated pages will be a dominating factor.
 208 */
 209unsigned long zone_reclaimable_pages(struct zone *zone)
 210{
 211        unsigned long nr;
 212
 213        nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 214                zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 215        if (get_nr_swap_pages() > 0)
 216                nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 217                        zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 218
 219        return nr;
 220}
 221
 222unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
 223{
 224        unsigned long nr;
 225
 226        nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
 227             node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
 228             node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
 229
 230        if (get_nr_swap_pages() > 0)
 231                nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
 232                      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
 233                      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
 234
 235        return nr;
 236}
 237
 238/**
 239 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 240 * @lruvec: lru vector
 241 * @lru: lru to use
 242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 243 */
 244unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 245{
 246        unsigned long lru_size;
 247        int zid;
 248
 249        if (!mem_cgroup_disabled())
 250                lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 251        else
 252                lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 253
 254        for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 255                struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 256                unsigned long size;
 257
 258                if (!managed_zone(zone))
 259                        continue;
 260
 261                if (!mem_cgroup_disabled())
 262                        size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 263                else
 264                        size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 265                                       NR_ZONE_LRU_BASE + lru);
 266                lru_size -= min(size, lru_size);
 267        }
 268
 269        return lru_size;
 270
 271}
 272
 273/*
 274 * Add a shrinker callback to be called from the vm.
 275 */
 276int register_shrinker(struct shrinker *shrinker)
 277{
 278        size_t size = sizeof(*shrinker->nr_deferred);
 279
 280        if (shrinker->flags & SHRINKER_NUMA_AWARE)
 281                size *= nr_node_ids;
 282
 283        shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 284        if (!shrinker->nr_deferred)
 285                return -ENOMEM;
 286
 287        down_write(&shrinker_rwsem);
 288        list_add_tail(&shrinker->list, &shrinker_list);
 289        up_write(&shrinker_rwsem);
 290        return 0;
 291}
 292EXPORT_SYMBOL(register_shrinker);
 293
 294/*
 295 * Remove one
 296 */
 297void unregister_shrinker(struct shrinker *shrinker)
 298{
 299        down_write(&shrinker_rwsem);
 300        list_del(&shrinker->list);
 301        up_write(&shrinker_rwsem);
 302        kfree(shrinker->nr_deferred);
 303}
 304EXPORT_SYMBOL(unregister_shrinker);
 305
 306#define SHRINK_BATCH 128
 307
 308static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 309                                    struct shrinker *shrinker,
 310                                    unsigned long nr_scanned,
 311                                    unsigned long nr_eligible)
 312{
 313        unsigned long freed = 0;
 314        unsigned long long delta;
 315        long total_scan;
 316        long freeable;
 317        long nr;
 318        long new_nr;
 319        int nid = shrinkctl->nid;
 320        long batch_size = shrinker->batch ? shrinker->batch
 321                                          : SHRINK_BATCH;
 322        long scanned = 0, next_deferred;
 323
 324        freeable = shrinker->count_objects(shrinker, shrinkctl);
 325        if (freeable == 0)
 326                return 0;
 327
 328        /*
 329         * copy the current shrinker scan count into a local variable
 330         * and zero it so that other concurrent shrinker invocations
 331         * don't also do this scanning work.
 332         */
 333        nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 334
 335        total_scan = nr;
 336        delta = (4 * nr_scanned) / shrinker->seeks;
 337        delta *= freeable;
 338        do_div(delta, nr_eligible + 1);
 339        total_scan += delta;
 340        if (total_scan < 0) {
 341                pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 342                       shrinker->scan_objects, total_scan);
 343                total_scan = freeable;
 344                next_deferred = nr;
 345        } else
 346                next_deferred = total_scan;
 347
 348        /*
 349         * We need to avoid excessive windup on filesystem shrinkers
 350         * due to large numbers of GFP_NOFS allocations causing the
 351         * shrinkers to return -1 all the time. This results in a large
 352         * nr being built up so when a shrink that can do some work
 353         * comes along it empties the entire cache due to nr >>>
 354         * freeable. This is bad for sustaining a working set in
 355         * memory.
 356         *
 357         * Hence only allow the shrinker to scan the entire cache when
 358         * a large delta change is calculated directly.
 359         */
 360        if (delta < freeable / 4)
 361                total_scan = min(total_scan, freeable / 2);
 362
 363        /*
 364         * Avoid risking looping forever due to too large nr value:
 365         * never try to free more than twice the estimate number of
 366         * freeable entries.
 367         */
 368        if (total_scan > freeable * 2)
 369                total_scan = freeable * 2;
 370
 371        trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 372                                   nr_scanned, nr_eligible,
 373                                   freeable, delta, total_scan);
 374
 375        /*
 376         * Normally, we should not scan less than batch_size objects in one
 377         * pass to avoid too frequent shrinker calls, but if the slab has less
 378         * than batch_size objects in total and we are really tight on memory,
 379         * we will try to reclaim all available objects, otherwise we can end
 380         * up failing allocations although there are plenty of reclaimable
 381         * objects spread over several slabs with usage less than the
 382         * batch_size.
 383         *
 384         * We detect the "tight on memory" situations by looking at the total
 385         * number of objects we want to scan (total_scan). If it is greater
 386         * than the total number of objects on slab (freeable), we must be
 387         * scanning at high prio and therefore should try to reclaim as much as
 388         * possible.
 389         */
 390        while (total_scan >= batch_size ||
 391               total_scan >= freeable) {
 392                unsigned long ret;
 393                unsigned long nr_to_scan = min(batch_size, total_scan);
 394
 395                shrinkctl->nr_to_scan = nr_to_scan;
 396                ret = shrinker->scan_objects(shrinker, shrinkctl);
 397                if (ret == SHRINK_STOP)
 398                        break;
 399                freed += ret;
 400
 401                count_vm_events(SLABS_SCANNED, nr_to_scan);
 402                total_scan -= nr_to_scan;
 403                scanned += nr_to_scan;
 404
 405                cond_resched();
 406        }
 407
 408        if (next_deferred >= scanned)
 409                next_deferred -= scanned;
 410        else
 411                next_deferred = 0;
 412        /*
 413         * move the unused scan count back into the shrinker in a
 414         * manner that handles concurrent updates. If we exhausted the
 415         * scan, there is no need to do an update.
 416         */
 417        if (next_deferred > 0)
 418                new_nr = atomic_long_add_return(next_deferred,
 419                                                &shrinker->nr_deferred[nid]);
 420        else
 421                new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 422
 423        trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 424        return freed;
 425}
 426
 427/**
 428 * shrink_slab - shrink slab caches
 429 * @gfp_mask: allocation context
 430 * @nid: node whose slab caches to target
 431 * @memcg: memory cgroup whose slab caches to target
 432 * @nr_scanned: pressure numerator
 433 * @nr_eligible: pressure denominator
 434 *
 435 * Call the shrink functions to age shrinkable caches.
 436 *
 437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 438 * unaware shrinkers will receive a node id of 0 instead.
 439 *
 440 * @memcg specifies the memory cgroup to target. If it is not NULL,
 441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 442 * objects from the memory cgroup specified. Otherwise, only unaware
 443 * shrinkers are called.
 444 *
 445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 446 * the available objects should be scanned.  Page reclaim for example
 447 * passes the number of pages scanned and the number of pages on the
 448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 449 * when it encountered mapped pages.  The ratio is further biased by
 450 * the ->seeks setting of the shrink function, which indicates the
 451 * cost to recreate an object relative to that of an LRU page.
 452 *
 453 * Returns the number of reclaimed slab objects.
 454 */
 455static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 456                                 struct mem_cgroup *memcg,
 457                                 unsigned long nr_scanned,
 458                                 unsigned long nr_eligible)
 459{
 460        struct shrinker *shrinker;
 461        unsigned long freed = 0;
 462
 463        if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 464                return 0;
 465
 466        if (nr_scanned == 0)
 467                nr_scanned = SWAP_CLUSTER_MAX;
 468
 469        if (!down_read_trylock(&shrinker_rwsem)) {
 470                /*
 471                 * If we would return 0, our callers would understand that we
 472                 * have nothing else to shrink and give up trying. By returning
 473                 * 1 we keep it going and assume we'll be able to shrink next
 474                 * time.
 475                 */
 476                freed = 1;
 477                goto out;
 478        }
 479
 480        list_for_each_entry(shrinker, &shrinker_list, list) {
 481                struct shrink_control sc = {
 482                        .gfp_mask = gfp_mask,
 483                        .nid = nid,
 484                        .memcg = memcg,
 485                };
 486
 487                /*
 488                 * If kernel memory accounting is disabled, we ignore
 489                 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 490                 * passing NULL for memcg.
 491                 */
 492                if (memcg_kmem_enabled() &&
 493                    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 494                        continue;
 495
 496                if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 497                        sc.nid = 0;
 498
 499                freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
 500        }
 501
 502        up_read(&shrinker_rwsem);
 503out:
 504        cond_resched();
 505        return freed;
 506}
 507
 508void drop_slab_node(int nid)
 509{
 510        unsigned long freed;
 511
 512        do {
 513                struct mem_cgroup *memcg = NULL;
 514
 515                freed = 0;
 516                do {
 517                        freed += shrink_slab(GFP_KERNEL, nid, memcg,
 518                                             1000, 1000);
 519                } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 520        } while (freed > 10);
 521}
 522
 523void drop_slab(void)
 524{
 525        int nid;
 526
 527        for_each_online_node(nid)
 528                drop_slab_node(nid);
 529}
 530
 531static inline int is_page_cache_freeable(struct page *page)
 532{
 533        /*
 534         * A freeable page cache page is referenced only by the caller
 535         * that isolated the page, the page cache radix tree and
 536         * optional buffer heads at page->private.
 537         */
 538        return page_count(page) - page_has_private(page) == 2;
 539}
 540
 541static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 542{
 543        if (current->flags & PF_SWAPWRITE)
 544                return 1;
 545        if (!inode_write_congested(inode))
 546                return 1;
 547        if (inode_to_bdi(inode) == current->backing_dev_info)
 548                return 1;
 549        return 0;
 550}
 551
 552/*
 553 * We detected a synchronous write error writing a page out.  Probably
 554 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 555 * fsync(), msync() or close().
 556 *
 557 * The tricky part is that after writepage we cannot touch the mapping: nothing
 558 * prevents it from being freed up.  But we have a ref on the page and once
 559 * that page is locked, the mapping is pinned.
 560 *
 561 * We're allowed to run sleeping lock_page() here because we know the caller has
 562 * __GFP_FS.
 563 */
 564static void handle_write_error(struct address_space *mapping,
 565                                struct page *page, int error)
 566{
 567        lock_page(page);
 568        if (page_mapping(page) == mapping)
 569                mapping_set_error(mapping, error);
 570        unlock_page(page);
 571}
 572
 573/* possible outcome of pageout() */
 574typedef enum {
 575        /* failed to write page out, page is locked */
 576        PAGE_KEEP,
 577        /* move page to the active list, page is locked */
 578        PAGE_ACTIVATE,
 579        /* page has been sent to the disk successfully, page is unlocked */
 580        PAGE_SUCCESS,
 581        /* page is clean and locked */
 582        PAGE_CLEAN,
 583} pageout_t;
 584
 585/*
 586 * pageout is called by shrink_page_list() for each dirty page.
 587 * Calls ->writepage().
 588 */
 589static pageout_t pageout(struct page *page, struct address_space *mapping,
 590                         struct scan_control *sc)
 591{
 592        /*
 593         * If the page is dirty, only perform writeback if that write
 594         * will be non-blocking.  To prevent this allocation from being
 595         * stalled by pagecache activity.  But note that there may be
 596         * stalls if we need to run get_block().  We could test
 597         * PagePrivate for that.
 598         *
 599         * If this process is currently in __generic_file_write_iter() against
 600         * this page's queue, we can perform writeback even if that
 601         * will block.
 602         *
 603         * If the page is swapcache, write it back even if that would
 604         * block, for some throttling. This happens by accident, because
 605         * swap_backing_dev_info is bust: it doesn't reflect the
 606         * congestion state of the swapdevs.  Easy to fix, if needed.
 607         */
 608        if (!is_page_cache_freeable(page))
 609                return PAGE_KEEP;
 610        if (!mapping) {
 611                /*
 612                 * Some data journaling orphaned pages can have
 613                 * page->mapping == NULL while being dirty with clean buffers.
 614                 */
 615                if (page_has_private(page)) {
 616                        if (try_to_free_buffers(page)) {
 617                                ClearPageDirty(page);
 618                                pr_info("%s: orphaned page\n", __func__);
 619                                return PAGE_CLEAN;
 620                        }
 621                }
 622                return PAGE_KEEP;
 623        }
 624        if (mapping->a_ops->writepage == NULL)
 625                return PAGE_ACTIVATE;
 626        if (!may_write_to_inode(mapping->host, sc))
 627                return PAGE_KEEP;
 628
 629        if (clear_page_dirty_for_io(page)) {
 630                int res;
 631                struct writeback_control wbc = {
 632                        .sync_mode = WB_SYNC_NONE,
 633                        .nr_to_write = SWAP_CLUSTER_MAX,
 634                        .range_start = 0,
 635                        .range_end = LLONG_MAX,
 636                        .for_reclaim = 1,
 637                };
 638
 639                SetPageReclaim(page);
 640                res = mapping->a_ops->writepage(page, &wbc);
 641                if (res < 0)
 642                        handle_write_error(mapping, page, res);
 643                if (res == AOP_WRITEPAGE_ACTIVATE) {
 644                        ClearPageReclaim(page);
 645                        return PAGE_ACTIVATE;
 646                }
 647
 648                if (!PageWriteback(page)) {
 649                        /* synchronous write or broken a_ops? */
 650                        ClearPageReclaim(page);
 651                }
 652                trace_mm_vmscan_writepage(page);
 653                inc_node_page_state(page, NR_VMSCAN_WRITE);
 654                return PAGE_SUCCESS;
 655        }
 656
 657        return PAGE_CLEAN;
 658}
 659
 660/*
 661 * Same as remove_mapping, but if the page is removed from the mapping, it
 662 * gets returned with a refcount of 0.
 663 */
 664static int __remove_mapping(struct address_space *mapping, struct page *page,
 665                            bool reclaimed)
 666{
 667        unsigned long flags;
 668
 669        BUG_ON(!PageLocked(page));
 670        BUG_ON(mapping != page_mapping(page));
 671
 672        spin_lock_irqsave(&mapping->tree_lock, flags);
 673        /*
 674         * The non racy check for a busy page.
 675         *
 676         * Must be careful with the order of the tests. When someone has
 677         * a ref to the page, it may be possible that they dirty it then
 678         * drop the reference. So if PageDirty is tested before page_count
 679         * here, then the following race may occur:
 680         *
 681         * get_user_pages(&page);
 682         * [user mapping goes away]
 683         * write_to(page);
 684         *                              !PageDirty(page)    [good]
 685         * SetPageDirty(page);
 686         * put_page(page);
 687         *                              !page_count(page)   [good, discard it]
 688         *
 689         * [oops, our write_to data is lost]
 690         *
 691         * Reversing the order of the tests ensures such a situation cannot
 692         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 693         * load is not satisfied before that of page->_refcount.
 694         *
 695         * Note that if SetPageDirty is always performed via set_page_dirty,
 696         * and thus under tree_lock, then this ordering is not required.
 697         */
 698        if (!page_ref_freeze(page, 2))
 699                goto cannot_free;
 700        /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 701        if (unlikely(PageDirty(page))) {
 702                page_ref_unfreeze(page, 2);
 703                goto cannot_free;
 704        }
 705
 706        if (PageSwapCache(page)) {
 707                swp_entry_t swap = { .val = page_private(page) };
 708                mem_cgroup_swapout(page, swap);
 709                __delete_from_swap_cache(page);
 710                spin_unlock_irqrestore(&mapping->tree_lock, flags);
 711                swapcache_free(swap);
 712        } else {
 713                void (*freepage)(struct page *);
 714                void *shadow = NULL;
 715
 716                freepage = mapping->a_ops->freepage;
 717                /*
 718                 * Remember a shadow entry for reclaimed file cache in
 719                 * order to detect refaults, thus thrashing, later on.
 720                 *
 721                 * But don't store shadows in an address space that is
 722                 * already exiting.  This is not just an optizimation,
 723                 * inode reclaim needs to empty out the radix tree or
 724                 * the nodes are lost.  Don't plant shadows behind its
 725                 * back.
 726                 *
 727                 * We also don't store shadows for DAX mappings because the
 728                 * only page cache pages found in these are zero pages
 729                 * covering holes, and because we don't want to mix DAX
 730                 * exceptional entries and shadow exceptional entries in the
 731                 * same page_tree.
 732                 */
 733                if (reclaimed && page_is_file_cache(page) &&
 734                    !mapping_exiting(mapping) && !dax_mapping(mapping))
 735                        shadow = workingset_eviction(mapping, page);
 736                __delete_from_page_cache(page, shadow);
 737                spin_unlock_irqrestore(&mapping->tree_lock, flags);
 738
 739                if (freepage != NULL)
 740                        freepage(page);
 741        }
 742
 743        return 1;
 744
 745cannot_free:
 746        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 747        return 0;
 748}
 749
 750/*
 751 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 752 * someone else has a ref on the page, abort and return 0.  If it was
 753 * successfully detached, return 1.  Assumes the caller has a single ref on
 754 * this page.
 755 */
 756int remove_mapping(struct address_space *mapping, struct page *page)
 757{
 758        if (__remove_mapping(mapping, page, false)) {
 759                /*
 760                 * Unfreezing the refcount with 1 rather than 2 effectively
 761                 * drops the pagecache ref for us without requiring another
 762                 * atomic operation.
 763                 */
 764                page_ref_unfreeze(page, 1);
 765                return 1;
 766        }
 767        return 0;
 768}
 769
 770/**
 771 * putback_lru_page - put previously isolated page onto appropriate LRU list
 772 * @page: page to be put back to appropriate lru list
 773 *
 774 * Add previously isolated @page to appropriate LRU list.
 775 * Page may still be unevictable for other reasons.
 776 *
 777 * lru_lock must not be held, interrupts must be enabled.
 778 */
 779void putback_lru_page(struct page *page)
 780{
 781        bool is_unevictable;
 782        int was_unevictable = PageUnevictable(page);
 783
 784        VM_BUG_ON_PAGE(PageLRU(page), page);
 785
 786redo:
 787        ClearPageUnevictable(page);
 788
 789        if (page_evictable(page)) {
 790                /*
 791                 * For evictable pages, we can use the cache.
 792                 * In event of a race, worst case is we end up with an
 793                 * unevictable page on [in]active list.
 794                 * We know how to handle that.
 795                 */
 796                is_unevictable = false;
 797                lru_cache_add(page);
 798        } else {
 799                /*
 800                 * Put unevictable pages directly on zone's unevictable
 801                 * list.
 802                 */
 803                is_unevictable = true;
 804                add_page_to_unevictable_list(page);
 805                /*
 806                 * When racing with an mlock or AS_UNEVICTABLE clearing
 807                 * (page is unlocked) make sure that if the other thread
 808                 * does not observe our setting of PG_lru and fails
 809                 * isolation/check_move_unevictable_pages,
 810                 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 811                 * the page back to the evictable list.
 812                 *
 813                 * The other side is TestClearPageMlocked() or shmem_lock().
 814                 */
 815                smp_mb();
 816        }
 817
 818        /*
 819         * page's status can change while we move it among lru. If an evictable
 820         * page is on unevictable list, it never be freed. To avoid that,
 821         * check after we added it to the list, again.
 822         */
 823        if (is_unevictable && page_evictable(page)) {
 824                if (!isolate_lru_page(page)) {
 825                        put_page(page);
 826                        goto redo;
 827                }
 828                /* This means someone else dropped this page from LRU
 829                 * So, it will be freed or putback to LRU again. There is
 830                 * nothing to do here.
 831                 */
 832        }
 833
 834        if (was_unevictable && !is_unevictable)
 835                count_vm_event(UNEVICTABLE_PGRESCUED);
 836        else if (!was_unevictable && is_unevictable)
 837                count_vm_event(UNEVICTABLE_PGCULLED);
 838
 839        put_page(page);         /* drop ref from isolate */
 840}
 841
 842enum page_references {
 843        PAGEREF_RECLAIM,
 844        PAGEREF_RECLAIM_CLEAN,
 845        PAGEREF_KEEP,
 846        PAGEREF_ACTIVATE,
 847};
 848
 849static enum page_references page_check_references(struct page *page,
 850                                                  struct scan_control *sc)
 851{
 852        int referenced_ptes, referenced_page;
 853        unsigned long vm_flags;
 854
 855        referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 856                                          &vm_flags);
 857        referenced_page = TestClearPageReferenced(page);
 858
 859        /*
 860         * Mlock lost the isolation race with us.  Let try_to_unmap()
 861         * move the page to the unevictable list.
 862         */
 863        if (vm_flags & VM_LOCKED)
 864                return PAGEREF_RECLAIM;
 865
 866        if (referenced_ptes) {
 867                if (PageSwapBacked(page))
 868                        return PAGEREF_ACTIVATE;
 869                /*
 870                 * All mapped pages start out with page table
 871                 * references from the instantiating fault, so we need
 872                 * to look twice if a mapped file page is used more
 873                 * than once.
 874                 *
 875                 * Mark it and spare it for another trip around the
 876                 * inactive list.  Another page table reference will
 877                 * lead to its activation.
 878                 *
 879                 * Note: the mark is set for activated pages as well
 880                 * so that recently deactivated but used pages are
 881                 * quickly recovered.
 882                 */
 883                SetPageReferenced(page);
 884
 885                if (referenced_page || referenced_ptes > 1)
 886                        return PAGEREF_ACTIVATE;
 887
 888                /*
 889                 * Activate file-backed executable pages after first usage.
 890                 */
 891                if (vm_flags & VM_EXEC)
 892                        return PAGEREF_ACTIVATE;
 893
 894                return PAGEREF_KEEP;
 895        }
 896
 897        /* Reclaim if clean, defer dirty pages to writeback */
 898        if (referenced_page && !PageSwapBacked(page))
 899                return PAGEREF_RECLAIM_CLEAN;
 900
 901        return PAGEREF_RECLAIM;
 902}
 903
 904/* Check if a page is dirty or under writeback */
 905static void page_check_dirty_writeback(struct page *page,
 906                                       bool *dirty, bool *writeback)
 907{
 908        struct address_space *mapping;
 909
 910        /*
 911         * Anonymous pages are not handled by flushers and must be written
 912         * from reclaim context. Do not stall reclaim based on them
 913         */
 914        if (!page_is_file_cache(page) ||
 915            (PageAnon(page) && !PageSwapBacked(page))) {
 916                *dirty = false;
 917                *writeback = false;
 918                return;
 919        }
 920
 921        /* By default assume that the page flags are accurate */
 922        *dirty = PageDirty(page);
 923        *writeback = PageWriteback(page);
 924
 925        /* Verify dirty/writeback state if the filesystem supports it */
 926        if (!page_has_private(page))
 927                return;
 928
 929        mapping = page_mapping(page);
 930        if (mapping && mapping->a_ops->is_dirty_writeback)
 931                mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 932}
 933
 934struct reclaim_stat {
 935        unsigned nr_dirty;
 936        unsigned nr_unqueued_dirty;
 937        unsigned nr_congested;
 938        unsigned nr_writeback;
 939        unsigned nr_immediate;
 940        unsigned nr_activate;
 941        unsigned nr_ref_keep;
 942        unsigned nr_unmap_fail;
 943};
 944
 945/*
 946 * shrink_page_list() returns the number of reclaimed pages
 947 */
 948static unsigned long shrink_page_list(struct list_head *page_list,
 949                                      struct pglist_data *pgdat,
 950                                      struct scan_control *sc,
 951                                      enum ttu_flags ttu_flags,
 952                                      struct reclaim_stat *stat,
 953                                      bool force_reclaim)
 954{
 955        LIST_HEAD(ret_pages);
 956        LIST_HEAD(free_pages);
 957        int pgactivate = 0;
 958        unsigned nr_unqueued_dirty = 0;
 959        unsigned nr_dirty = 0;
 960        unsigned nr_congested = 0;
 961        unsigned nr_reclaimed = 0;
 962        unsigned nr_writeback = 0;
 963        unsigned nr_immediate = 0;
 964        unsigned nr_ref_keep = 0;
 965        unsigned nr_unmap_fail = 0;
 966
 967        cond_resched();
 968
 969        while (!list_empty(page_list)) {
 970                struct address_space *mapping;
 971                struct page *page;
 972                int may_enter_fs;
 973                enum page_references references = PAGEREF_RECLAIM_CLEAN;
 974                bool dirty, writeback;
 975
 976                cond_resched();
 977
 978                page = lru_to_page(page_list);
 979                list_del(&page->lru);
 980
 981                if (!trylock_page(page))
 982                        goto keep;
 983
 984                VM_BUG_ON_PAGE(PageActive(page), page);
 985
 986                sc->nr_scanned++;
 987
 988                if (unlikely(!page_evictable(page)))
 989                        goto activate_locked;
 990
 991                if (!sc->may_unmap && page_mapped(page))
 992                        goto keep_locked;
 993
 994                /* Double the slab pressure for mapped and swapcache pages */
 995                if ((page_mapped(page) || PageSwapCache(page)) &&
 996                    !(PageAnon(page) && !PageSwapBacked(page)))
 997                        sc->nr_scanned++;
 998
 999                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1001
1002                /*
1003                 * The number of dirty pages determines if a zone is marked
1004                 * reclaim_congested which affects wait_iff_congested. kswapd
1005                 * will stall and start writing pages if the tail of the LRU
1006                 * is all dirty unqueued pages.
1007                 */
1008                page_check_dirty_writeback(page, &dirty, &writeback);
1009                if (dirty || writeback)
1010                        nr_dirty++;
1011
1012                if (dirty && !writeback)
1013                        nr_unqueued_dirty++;
1014
1015                /*
1016                 * Treat this page as congested if the underlying BDI is or if
1017                 * pages are cycling through the LRU so quickly that the
1018                 * pages marked for immediate reclaim are making it to the
1019                 * end of the LRU a second time.
1020                 */
1021                mapping = page_mapping(page);
1022                if (((dirty || writeback) && mapping &&
1023                     inode_write_congested(mapping->host)) ||
1024                    (writeback && PageReclaim(page)))
1025                        nr_congested++;
1026
1027                /*
1028                 * If a page at the tail of the LRU is under writeback, there
1029                 * are three cases to consider.
1030                 *
1031                 * 1) If reclaim is encountering an excessive number of pages
1032                 *    under writeback and this page is both under writeback and
1033                 *    PageReclaim then it indicates that pages are being queued
1034                 *    for IO but are being recycled through the LRU before the
1035                 *    IO can complete. Waiting on the page itself risks an
1036                 *    indefinite stall if it is impossible to writeback the
1037                 *    page due to IO error or disconnected storage so instead
1038                 *    note that the LRU is being scanned too quickly and the
1039                 *    caller can stall after page list has been processed.
1040                 *
1041                 * 2) Global or new memcg reclaim encounters a page that is
1042                 *    not marked for immediate reclaim, or the caller does not
1043                 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044                 *    not to fs). In this case mark the page for immediate
1045                 *    reclaim and continue scanning.
1046                 *
1047                 *    Require may_enter_fs because we would wait on fs, which
1048                 *    may not have submitted IO yet. And the loop driver might
1049                 *    enter reclaim, and deadlock if it waits on a page for
1050                 *    which it is needed to do the write (loop masks off
1051                 *    __GFP_IO|__GFP_FS for this reason); but more thought
1052                 *    would probably show more reasons.
1053                 *
1054                 * 3) Legacy memcg encounters a page that is already marked
1055                 *    PageReclaim. memcg does not have any dirty pages
1056                 *    throttling so we could easily OOM just because too many
1057                 *    pages are in writeback and there is nothing else to
1058                 *    reclaim. Wait for the writeback to complete.
1059                 *
1060                 * In cases 1) and 2) we activate the pages to get them out of
1061                 * the way while we continue scanning for clean pages on the
1062                 * inactive list and refilling from the active list. The
1063                 * observation here is that waiting for disk writes is more
1064                 * expensive than potentially causing reloads down the line.
1065                 * Since they're marked for immediate reclaim, they won't put
1066                 * memory pressure on the cache working set any longer than it
1067                 * takes to write them to disk.
1068                 */
1069                if (PageWriteback(page)) {
1070                        /* Case 1 above */
1071                        if (current_is_kswapd() &&
1072                            PageReclaim(page) &&
1073                            test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1074                                nr_immediate++;
1075                                goto activate_locked;
1076
1077                        /* Case 2 above */
1078                        } else if (sane_reclaim(sc) ||
1079                            !PageReclaim(page) || !may_enter_fs) {
1080                                /*
1081                                 * This is slightly racy - end_page_writeback()
1082                                 * might have just cleared PageReclaim, then
1083                                 * setting PageReclaim here end up interpreted
1084                                 * as PageReadahead - but that does not matter
1085                                 * enough to care.  What we do want is for this
1086                                 * page to have PageReclaim set next time memcg
1087                                 * reclaim reaches the tests above, so it will
1088                                 * then wait_on_page_writeback() to avoid OOM;
1089                                 * and it's also appropriate in global reclaim.
1090                                 */
1091                                SetPageReclaim(page);
1092                                nr_writeback++;
1093                                goto activate_locked;
1094
1095                        /* Case 3 above */
1096                        } else {
1097                                unlock_page(page);
1098                                wait_on_page_writeback(page);
1099                                /* then go back and try same page again */
1100                                list_add_tail(&page->lru, page_list);
1101                                continue;
1102                        }
1103                }
1104
1105                if (!force_reclaim)
1106                        references = page_check_references(page, sc);
1107
1108                switch (references) {
1109                case PAGEREF_ACTIVATE:
1110                        goto activate_locked;
1111                case PAGEREF_KEEP:
1112                        nr_ref_keep++;
1113                        goto keep_locked;
1114                case PAGEREF_RECLAIM:
1115                case PAGEREF_RECLAIM_CLEAN:
1116                        ; /* try to reclaim the page below */
1117                }
1118
1119                /*
1120                 * Anonymous process memory has backing store?
1121                 * Try to allocate it some swap space here.
1122                 * Lazyfree page could be freed directly
1123                 */
1124                if (PageAnon(page) && PageSwapBacked(page) &&
1125                    !PageSwapCache(page)) {
1126                        if (!(sc->gfp_mask & __GFP_IO))
1127                                goto keep_locked;
1128                        if (!add_to_swap(page, page_list))
1129                                goto activate_locked;
1130                        may_enter_fs = 1;
1131
1132                        /* Adding to swap updated mapping */
1133                        mapping = page_mapping(page);
1134                } else if (unlikely(PageTransHuge(page))) {
1135                        /* Split file THP */
1136                        if (split_huge_page_to_list(page, page_list))
1137                                goto keep_locked;
1138                }
1139
1140                VM_BUG_ON_PAGE(PageTransHuge(page), page);
1141
1142                /*
1143                 * The page is mapped into the page tables of one or more
1144                 * processes. Try to unmap it here.
1145                 */
1146                if (page_mapped(page)) {
1147                        if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1148                                nr_unmap_fail++;
1149                                goto activate_locked;
1150                        }
1151                }
1152
1153                if (PageDirty(page)) {
1154                        /*
1155                         * Only kswapd can writeback filesystem pages
1156                         * to avoid risk of stack overflow. But avoid
1157                         * injecting inefficient single-page IO into
1158                         * flusher writeback as much as possible: only
1159                         * write pages when we've encountered many
1160                         * dirty pages, and when we've already scanned
1161                         * the rest of the LRU for clean pages and see
1162                         * the same dirty pages again (PageReclaim).
1163                         */
1164                        if (page_is_file_cache(page) &&
1165                            (!current_is_kswapd() || !PageReclaim(page) ||
1166                             !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1167                                /*
1168                                 * Immediately reclaim when written back.
1169                                 * Similar in principal to deactivate_page()
1170                                 * except we already have the page isolated
1171                                 * and know it's dirty
1172                                 */
1173                                inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1174                                SetPageReclaim(page);
1175
1176                                goto activate_locked;
1177                        }
1178
1179                        if (references == PAGEREF_RECLAIM_CLEAN)
1180                                goto keep_locked;
1181                        if (!may_enter_fs)
1182                                goto keep_locked;
1183                        if (!sc->may_writepage)
1184                                goto keep_locked;
1185
1186                        /*
1187                         * Page is dirty. Flush the TLB if a writable entry
1188                         * potentially exists to avoid CPU writes after IO
1189                         * starts and then write it out here.
1190                         */
1191                        try_to_unmap_flush_dirty();
1192                        switch (pageout(page, mapping, sc)) {
1193                        case PAGE_KEEP:
1194                                goto keep_locked;
1195                        case PAGE_ACTIVATE:
1196                                goto activate_locked;
1197                        case PAGE_SUCCESS:
1198                                if (PageWriteback(page))
1199                                        goto keep;
1200                                if (PageDirty(page))
1201                                        goto keep;
1202
1203                                /*
1204                                 * A synchronous write - probably a ramdisk.  Go
1205                                 * ahead and try to reclaim the page.
1206                                 */
1207                                if (!trylock_page(page))
1208                                        goto keep;
1209                                if (PageDirty(page) || PageWriteback(page))
1210                                        goto keep_locked;
1211                                mapping = page_mapping(page);
1212                        case PAGE_CLEAN:
1213                                ; /* try to free the page below */
1214                        }
1215                }
1216
1217                /*
1218                 * If the page has buffers, try to free the buffer mappings
1219                 * associated with this page. If we succeed we try to free
1220                 * the page as well.
1221                 *
1222                 * We do this even if the page is PageDirty().
1223                 * try_to_release_page() does not perform I/O, but it is
1224                 * possible for a page to have PageDirty set, but it is actually
1225                 * clean (all its buffers are clean).  This happens if the
1226                 * buffers were written out directly, with submit_bh(). ext3
1227                 * will do this, as well as the blockdev mapping.
1228                 * try_to_release_page() will discover that cleanness and will
1229                 * drop the buffers and mark the page clean - it can be freed.
1230                 *
1231                 * Rarely, pages can have buffers and no ->mapping.  These are
1232                 * the pages which were not successfully invalidated in
1233                 * truncate_complete_page().  We try to drop those buffers here
1234                 * and if that worked, and the page is no longer mapped into
1235                 * process address space (page_count == 1) it can be freed.
1236                 * Otherwise, leave the page on the LRU so it is swappable.
1237                 */
1238                if (page_has_private(page)) {
1239                        if (!try_to_release_page(page, sc->gfp_mask))
1240                                goto activate_locked;
1241                        if (!mapping && page_count(page) == 1) {
1242                                unlock_page(page);
1243                                if (put_page_testzero(page))
1244                                        goto free_it;
1245                                else {
1246                                        /*
1247                                         * rare race with speculative reference.
1248                                         * the speculative reference will free
1249                                         * this page shortly, so we may
1250                                         * increment nr_reclaimed here (and
1251                                         * leave it off the LRU).
1252                                         */
1253                                        nr_reclaimed++;
1254                                        continue;
1255                                }
1256                        }
1257                }
1258
1259                if (PageAnon(page) && !PageSwapBacked(page)) {
1260                        /* follow __remove_mapping for reference */
1261                        if (!page_ref_freeze(page, 1))
1262                                goto keep_locked;
1263                        if (PageDirty(page)) {
1264                                page_ref_unfreeze(page, 1);
1265                                goto keep_locked;
1266                        }
1267
1268                        count_vm_event(PGLAZYFREED);
1269                } else if (!mapping || !__remove_mapping(mapping, page, true))
1270                        goto keep_locked;
1271                /*
1272                 * At this point, we have no other references and there is
1273                 * no way to pick any more up (removed from LRU, removed
1274                 * from pagecache). Can use non-atomic bitops now (and
1275                 * we obviously don't have to worry about waking up a process
1276                 * waiting on the page lock, because there are no references.
1277                 */
1278                __ClearPageLocked(page);
1279free_it:
1280                nr_reclaimed++;
1281
1282                /*
1283                 * Is there need to periodically free_page_list? It would
1284                 * appear not as the counts should be low
1285                 */
1286                list_add(&page->lru, &free_pages);
1287                continue;
1288
1289activate_locked:
1290                /* Not a candidate for swapping, so reclaim swap space. */
1291                if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1292                                                PageMlocked(page)))
1293                        try_to_free_swap(page);
1294                VM_BUG_ON_PAGE(PageActive(page), page);
1295                if (!PageMlocked(page)) {
1296                        SetPageActive(page);
1297                        pgactivate++;
1298                }
1299keep_locked:
1300                unlock_page(page);
1301keep:
1302                list_add(&page->lru, &ret_pages);
1303                VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1304        }
1305
1306        mem_cgroup_uncharge_list(&free_pages);
1307        try_to_unmap_flush();
1308        free_hot_cold_page_list(&free_pages, true);
1309
1310        list_splice(&ret_pages, page_list);
1311        count_vm_events(PGACTIVATE, pgactivate);
1312
1313        if (stat) {
1314                stat->nr_dirty = nr_dirty;
1315                stat->nr_congested = nr_congested;
1316                stat->nr_unqueued_dirty = nr_unqueued_dirty;
1317                stat->nr_writeback = nr_writeback;
1318                stat->nr_immediate = nr_immediate;
1319                stat->nr_activate = pgactivate;
1320                stat->nr_ref_keep = nr_ref_keep;
1321                stat->nr_unmap_fail = nr_unmap_fail;
1322        }
1323        return nr_reclaimed;
1324}
1325
1326unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1327                                            struct list_head *page_list)
1328{
1329        struct scan_control sc = {
1330                .gfp_mask = GFP_KERNEL,
1331                .priority = DEF_PRIORITY,
1332                .may_unmap = 1,
1333        };
1334        unsigned long ret;
1335        struct page *page, *next;
1336        LIST_HEAD(clean_pages);
1337
1338        list_for_each_entry_safe(page, next, page_list, lru) {
1339                if (page_is_file_cache(page) && !PageDirty(page) &&
1340                    !__PageMovable(page)) {
1341                        ClearPageActive(page);
1342                        list_move(&page->lru, &clean_pages);
1343                }
1344        }
1345
1346        ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1347                        TTU_IGNORE_ACCESS, NULL, true);
1348        list_splice(&clean_pages, page_list);
1349        mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1350        return ret;
1351}
1352
1353/*
1354 * Attempt to remove the specified page from its LRU.  Only take this page
1355 * if it is of the appropriate PageActive status.  Pages which are being
1356 * freed elsewhere are also ignored.
1357 *
1358 * page:        page to consider
1359 * mode:        one of the LRU isolation modes defined above
1360 *
1361 * returns 0 on success, -ve errno on failure.
1362 */
1363int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1364{
1365        int ret = -EINVAL;
1366
1367        /* Only take pages on the LRU. */
1368        if (!PageLRU(page))
1369                return ret;
1370
1371        /* Compaction should not handle unevictable pages but CMA can do so */
1372        if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1373                return ret;
1374
1375        ret = -EBUSY;
1376
1377        /*
1378         * To minimise LRU disruption, the caller can indicate that it only
1379         * wants to isolate pages it will be able to operate on without
1380         * blocking - clean pages for the most part.
1381         *
1382         * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1383         * that it is possible to migrate without blocking
1384         */
1385        if (mode & ISOLATE_ASYNC_MIGRATE) {
1386                /* All the caller can do on PageWriteback is block */
1387                if (PageWriteback(page))
1388                        return ret;
1389
1390                if (PageDirty(page)) {
1391                        struct address_space *mapping;
1392
1393                        /*
1394                         * Only pages without mappings or that have a
1395                         * ->migratepage callback are possible to migrate
1396                         * without blocking
1397                         */
1398                        mapping = page_mapping(page);
1399                        if (mapping && !mapping->a_ops->migratepage)
1400                                return ret;
1401                }
1402        }
1403
1404        if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1405                return ret;
1406
1407        if (likely(get_page_unless_zero(page))) {
1408                /*
1409                 * Be careful not to clear PageLRU until after we're
1410                 * sure the page is not being freed elsewhere -- the
1411                 * page release code relies on it.
1412                 */
1413                ClearPageLRU(page);
1414                ret = 0;
1415        }
1416
1417        return ret;
1418}
1419
1420
1421/*
1422 * Update LRU sizes after isolating pages. The LRU size updates must
1423 * be complete before mem_cgroup_update_lru_size due to a santity check.
1424 */
1425static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1426                        enum lru_list lru, unsigned long *nr_zone_taken)
1427{
1428        int zid;
1429
1430        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1431                if (!nr_zone_taken[zid])
1432                        continue;
1433
1434                __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1435#ifdef CONFIG_MEMCG
1436                mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1437#endif
1438        }
1439
1440}
1441
1442/*
1443 * zone_lru_lock is heavily contended.  Some of the functions that
1444 * shrink the lists perform better by taking out a batch of pages
1445 * and working on them outside the LRU lock.
1446 *
1447 * For pagecache intensive workloads, this function is the hottest
1448 * spot in the kernel (apart from copy_*_user functions).
1449 *
1450 * Appropriate locks must be held before calling this function.
1451 *
1452 * @nr_to_scan: The number of eligible pages to look through on the list.
1453 * @lruvec:     The LRU vector to pull pages from.
1454 * @dst:        The temp list to put pages on to.
1455 * @nr_scanned: The number of pages that were scanned.
1456 * @sc:         The scan_control struct for this reclaim session
1457 * @mode:       One of the LRU isolation modes
1458 * @lru:        LRU list id for isolating
1459 *
1460 * returns how many pages were moved onto *@dst.
1461 */
1462static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1463                struct lruvec *lruvec, struct list_head *dst,
1464                unsigned long *nr_scanned, struct scan_control *sc,
1465                isolate_mode_t mode, enum lru_list lru)
1466{
1467        struct list_head *src = &lruvec->lists[lru];
1468        unsigned long nr_taken = 0;
1469        unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1470        unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1471        unsigned long skipped = 0;
1472        unsigned long scan, total_scan, nr_pages;
1473        LIST_HEAD(pages_skipped);
1474
1475        scan = 0;
1476        for (total_scan = 0;
1477             scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1478             total_scan++) {
1479                struct page *page;
1480
1481                page = lru_to_page(src);
1482                prefetchw_prev_lru_page(page, src, flags);
1483
1484                VM_BUG_ON_PAGE(!PageLRU(page), page);
1485
1486                if (page_zonenum(page) > sc->reclaim_idx) {
1487                        list_move(&page->lru, &pages_skipped);
1488                        nr_skipped[page_zonenum(page)]++;
1489                        continue;
1490                }
1491
1492                /*
1493                 * Do not count skipped pages because that makes the function
1494                 * return with no isolated pages if the LRU mostly contains
1495                 * ineligible pages.  This causes the VM to not reclaim any
1496                 * pages, triggering a premature OOM.
1497                 */
1498                scan++;
1499                switch (__isolate_lru_page(page, mode)) {
1500                case 0:
1501                        nr_pages = hpage_nr_pages(page);
1502                        nr_taken += nr_pages;
1503                        nr_zone_taken[page_zonenum(page)] += nr_pages;
1504                        list_move(&page->lru, dst);
1505                        break;
1506
1507                case -EBUSY:
1508                        /* else it is being freed elsewhere */
1509                        list_move(&page->lru, src);
1510                        continue;
1511
1512                default:
1513                        BUG();
1514                }
1515        }
1516
1517        /*
1518         * Splice any skipped pages to the start of the LRU list. Note that
1519         * this disrupts the LRU order when reclaiming for lower zones but
1520         * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1521         * scanning would soon rescan the same pages to skip and put the
1522         * system at risk of premature OOM.
1523         */
1524        if (!list_empty(&pages_skipped)) {
1525                int zid;
1526
1527                list_splice(&pages_skipped, src);
1528                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1529                        if (!nr_skipped[zid])
1530                                continue;
1531
1532                        __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1533                        skipped += nr_skipped[zid];
1534                }
1535        }
1536        *nr_scanned = total_scan;
1537        trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1538                                    total_scan, skipped, nr_taken, mode, lru);
1539        update_lru_sizes(lruvec, lru, nr_zone_taken);
1540        return nr_taken;
1541}
1542
1543/**
1544 * isolate_lru_page - tries to isolate a page from its LRU list
1545 * @page: page to isolate from its LRU list
1546 *
1547 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1548 * vmstat statistic corresponding to whatever LRU list the page was on.
1549 *
1550 * Returns 0 if the page was removed from an LRU list.
1551 * Returns -EBUSY if the page was not on an LRU list.
1552 *
1553 * The returned page will have PageLRU() cleared.  If it was found on
1554 * the active list, it will have PageActive set.  If it was found on
1555 * the unevictable list, it will have the PageUnevictable bit set. That flag
1556 * may need to be cleared by the caller before letting the page go.
1557 *
1558 * The vmstat statistic corresponding to the list on which the page was
1559 * found will be decremented.
1560 *
1561 * Restrictions:
1562 * (1) Must be called with an elevated refcount on the page. This is a
1563 *     fundamentnal difference from isolate_lru_pages (which is called
1564 *     without a stable reference).
1565 * (2) the lru_lock must not be held.
1566 * (3) interrupts must be enabled.
1567 */
1568int isolate_lru_page(struct page *page)
1569{
1570        int ret = -EBUSY;
1571
1572        VM_BUG_ON_PAGE(!page_count(page), page);
1573        WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1574
1575        if (PageLRU(page)) {
1576                struct zone *zone = page_zone(page);
1577                struct lruvec *lruvec;
1578
1579                spin_lock_irq(zone_lru_lock(zone));
1580                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1581                if (PageLRU(page)) {
1582                        int lru = page_lru(page);
1583                        get_page(page);
1584                        ClearPageLRU(page);
1585                        del_page_from_lru_list(page, lruvec, lru);
1586                        ret = 0;
1587                }
1588                spin_unlock_irq(zone_lru_lock(zone));
1589        }
1590        return ret;
1591}
1592
1593/*
1594 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1595 * then get resheduled. When there are massive number of tasks doing page
1596 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1597 * the LRU list will go small and be scanned faster than necessary, leading to
1598 * unnecessary swapping, thrashing and OOM.
1599 */
1600static int too_many_isolated(struct pglist_data *pgdat, int file,
1601                struct scan_control *sc)
1602{
1603        unsigned long inactive, isolated;
1604
1605        if (current_is_kswapd())
1606                return 0;
1607
1608        if (!sane_reclaim(sc))
1609                return 0;
1610
1611        if (file) {
1612                inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1613                isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1614        } else {
1615                inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1616                isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1617        }
1618
1619        /*
1620         * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1621         * won't get blocked by normal direct-reclaimers, forming a circular
1622         * deadlock.
1623         */
1624        if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1625                inactive >>= 3;
1626
1627        return isolated > inactive;
1628}
1629
1630static noinline_for_stack void
1631putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1632{
1633        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1634        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1635        LIST_HEAD(pages_to_free);
1636
1637        /*
1638         * Put back any unfreeable pages.
1639         */
1640        while (!list_empty(page_list)) {
1641                struct page *page = lru_to_page(page_list);
1642                int lru;
1643
1644                VM_BUG_ON_PAGE(PageLRU(page), page);
1645                list_del(&page->lru);
1646                if (unlikely(!page_evictable(page))) {
1647                        spin_unlock_irq(&pgdat->lru_lock);
1648                        putback_lru_page(page);
1649                        spin_lock_irq(&pgdat->lru_lock);
1650                        continue;
1651                }
1652
1653                lruvec = mem_cgroup_page_lruvec(page, pgdat);
1654
1655                SetPageLRU(page);
1656                lru = page_lru(page);
1657                add_page_to_lru_list(page, lruvec, lru);
1658
1659                if (is_active_lru(lru)) {
1660                        int file = is_file_lru(lru);
1661                        int numpages = hpage_nr_pages(page);
1662                        reclaim_stat->recent_rotated[file] += numpages;
1663                }
1664                if (put_page_testzero(page)) {
1665                        __ClearPageLRU(page);
1666                        __ClearPageActive(page);
1667                        del_page_from_lru_list(page, lruvec, lru);
1668
1669                        if (unlikely(PageCompound(page))) {
1670                                spin_unlock_irq(&pgdat->lru_lock);
1671                                mem_cgroup_uncharge(page);
1672                                (*get_compound_page_dtor(page))(page);
1673                                spin_lock_irq(&pgdat->lru_lock);
1674                        } else
1675                                list_add(&page->lru, &pages_to_free);
1676                }
1677        }
1678
1679        /*
1680         * To save our caller's stack, now use input list for pages to free.
1681         */
1682        list_splice(&pages_to_free, page_list);
1683}
1684
1685/*
1686 * If a kernel thread (such as nfsd for loop-back mounts) services
1687 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1688 * In that case we should only throttle if the backing device it is
1689 * writing to is congested.  In other cases it is safe to throttle.
1690 */
1691static int current_may_throttle(void)
1692{
1693        return !(current->flags & PF_LESS_THROTTLE) ||
1694                current->backing_dev_info == NULL ||
1695                bdi_write_congested(current->backing_dev_info);
1696}
1697
1698/*
1699 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1700 * of reclaimed pages
1701 */
1702static noinline_for_stack unsigned long
1703shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1704                     struct scan_control *sc, enum lru_list lru)
1705{
1706        LIST_HEAD(page_list);
1707        unsigned long nr_scanned;
1708        unsigned long nr_reclaimed = 0;
1709        unsigned long nr_taken;
1710        struct reclaim_stat stat = {};
1711        isolate_mode_t isolate_mode = 0;
1712        int file = is_file_lru(lru);
1713        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1714        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1715
1716        while (unlikely(too_many_isolated(pgdat, file, sc))) {
1717                congestion_wait(BLK_RW_ASYNC, HZ/10);
1718
1719                /* We are about to die and free our memory. Return now. */
1720                if (fatal_signal_pending(current))
1721                        return SWAP_CLUSTER_MAX;
1722        }
1723
1724        lru_add_drain();
1725
1726        if (!sc->may_unmap)
1727                isolate_mode |= ISOLATE_UNMAPPED;
1728
1729        spin_lock_irq(&pgdat->lru_lock);
1730
1731        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1732                                     &nr_scanned, sc, isolate_mode, lru);
1733
1734        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1735        reclaim_stat->recent_scanned[file] += nr_taken;
1736
1737        if (global_reclaim(sc)) {
1738                if (current_is_kswapd())
1739                        __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1740                else
1741                        __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1742        }
1743        spin_unlock_irq(&pgdat->lru_lock);
1744
1745        if (nr_taken == 0)
1746                return 0;
1747
1748        nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1749                                &stat, false);
1750
1751        spin_lock_irq(&pgdat->lru_lock);
1752
1753        if (global_reclaim(sc)) {
1754                if (current_is_kswapd())
1755                        __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1756                else
1757                        __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1758        }
1759
1760        putback_inactive_pages(lruvec, &page_list);
1761
1762        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1763
1764        spin_unlock_irq(&pgdat->lru_lock);
1765
1766        mem_cgroup_uncharge_list(&page_list);
1767        free_hot_cold_page_list(&page_list, true);
1768
1769        /*
1770         * If reclaim is isolating dirty pages under writeback, it implies
1771         * that the long-lived page allocation rate is exceeding the page
1772         * laundering rate. Either the global limits are not being effective
1773         * at throttling processes due to the page distribution throughout
1774         * zones or there is heavy usage of a slow backing device. The
1775         * only option is to throttle from reclaim context which is not ideal
1776         * as there is no guarantee the dirtying process is throttled in the
1777         * same way balance_dirty_pages() manages.
1778         *
1779         * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1780         * of pages under pages flagged for immediate reclaim and stall if any
1781         * are encountered in the nr_immediate check below.
1782         */
1783        if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1784                set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1785
1786        /*
1787         * Legacy memcg will stall in page writeback so avoid forcibly
1788         * stalling here.
1789         */
1790        if (sane_reclaim(sc)) {
1791                /*
1792                 * Tag a zone as congested if all the dirty pages scanned were
1793                 * backed by a congested BDI and wait_iff_congested will stall.
1794                 */
1795                if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1796                        set_bit(PGDAT_CONGESTED, &pgdat->flags);
1797
1798                /*
1799                 * If dirty pages are scanned that are not queued for IO, it
1800                 * implies that flushers are not doing their job. This can
1801                 * happen when memory pressure pushes dirty pages to the end of
1802                 * the LRU before the dirty limits are breached and the dirty
1803                 * data has expired. It can also happen when the proportion of
1804                 * dirty pages grows not through writes but through memory
1805                 * pressure reclaiming all the clean cache. And in some cases,
1806                 * the flushers simply cannot keep up with the allocation
1807                 * rate. Nudge the flusher threads in case they are asleep, but
1808                 * also allow kswapd to start writing pages during reclaim.
1809                 */
1810                if (stat.nr_unqueued_dirty == nr_taken) {
1811                        wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1812                        set_bit(PGDAT_DIRTY, &pgdat->flags);
1813                }
1814
1815                /*
1816                 * If kswapd scans pages marked marked for immediate
1817                 * reclaim and under writeback (nr_immediate), it implies
1818                 * that pages are cycling through the LRU faster than
1819                 * they are written so also forcibly stall.
1820                 */
1821                if (stat.nr_immediate && current_may_throttle())
1822                        congestion_wait(BLK_RW_ASYNC, HZ/10);
1823        }
1824
1825        /*
1826         * Stall direct reclaim for IO completions if underlying BDIs or zone
1827         * is congested. Allow kswapd to continue until it starts encountering
1828         * unqueued dirty pages or cycling through the LRU too quickly.
1829         */
1830        if (!sc->hibernation_mode && !current_is_kswapd() &&
1831            current_may_throttle())
1832                wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1833
1834        trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1835                        nr_scanned, nr_reclaimed,
1836                        stat.nr_dirty,  stat.nr_writeback,
1837                        stat.nr_congested, stat.nr_immediate,
1838                        stat.nr_activate, stat.nr_ref_keep,
1839                        stat.nr_unmap_fail,
1840                        sc->priority, file);
1841        return nr_reclaimed;
1842}
1843
1844/*
1845 * This moves pages from the active list to the inactive list.
1846 *
1847 * We move them the other way if the page is referenced by one or more
1848 * processes, from rmap.
1849 *
1850 * If the pages are mostly unmapped, the processing is fast and it is
1851 * appropriate to hold zone_lru_lock across the whole operation.  But if
1852 * the pages are mapped, the processing is slow (page_referenced()) so we
1853 * should drop zone_lru_lock around each page.  It's impossible to balance
1854 * this, so instead we remove the pages from the LRU while processing them.
1855 * It is safe to rely on PG_active against the non-LRU pages in here because
1856 * nobody will play with that bit on a non-LRU page.
1857 *
1858 * The downside is that we have to touch page->_refcount against each page.
1859 * But we had to alter page->flags anyway.
1860 *
1861 * Returns the number of pages moved to the given lru.
1862 */
1863
1864static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1865                                     struct list_head *list,
1866                                     struct list_head *pages_to_free,
1867                                     enum lru_list lru)
1868{
1869        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1870        struct page *page;
1871        int nr_pages;
1872        int nr_moved = 0;
1873
1874        while (!list_empty(list)) {
1875                page = lru_to_page(list);
1876                lruvec = mem_cgroup_page_lruvec(page, pgdat);
1877
1878                VM_BUG_ON_PAGE(PageLRU(page), page);
1879                SetPageLRU(page);
1880
1881                nr_pages = hpage_nr_pages(page);
1882                update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1883                list_move(&page->lru, &lruvec->lists[lru]);
1884
1885                if (put_page_testzero(page)) {
1886                        __ClearPageLRU(page);
1887                        __ClearPageActive(page);
1888                        del_page_from_lru_list(page, lruvec, lru);
1889
1890                        if (unlikely(PageCompound(page))) {
1891                                spin_unlock_irq(&pgdat->lru_lock);
1892                                mem_cgroup_uncharge(page);
1893                                (*get_compound_page_dtor(page))(page);
1894                                spin_lock_irq(&pgdat->lru_lock);
1895                        } else
1896                                list_add(&page->lru, pages_to_free);
1897                } else {
1898                        nr_moved += nr_pages;
1899                }
1900        }
1901
1902        if (!is_active_lru(lru))
1903                __count_vm_events(PGDEACTIVATE, nr_moved);
1904
1905        return nr_moved;
1906}
1907
1908static void shrink_active_list(unsigned long nr_to_scan,
1909                               struct lruvec *lruvec,
1910                               struct scan_control *sc,
1911                               enum lru_list lru)
1912{
1913        unsigned long nr_taken;
1914        unsigned long nr_scanned;
1915        unsigned long vm_flags;
1916        LIST_HEAD(l_hold);      /* The pages which were snipped off */
1917        LIST_HEAD(l_active);
1918        LIST_HEAD(l_inactive);
1919        struct page *page;
1920        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1921        unsigned nr_deactivate, nr_activate;
1922        unsigned nr_rotated = 0;
1923        isolate_mode_t isolate_mode = 0;
1924        int file = is_file_lru(lru);
1925        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1926
1927        lru_add_drain();
1928
1929        if (!sc->may_unmap)
1930                isolate_mode |= ISOLATE_UNMAPPED;
1931
1932        spin_lock_irq(&pgdat->lru_lock);
1933
1934        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1935                                     &nr_scanned, sc, isolate_mode, lru);
1936
1937        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1938        reclaim_stat->recent_scanned[file] += nr_taken;
1939
1940        __count_vm_events(PGREFILL, nr_scanned);
1941
1942        spin_unlock_irq(&pgdat->lru_lock);
1943
1944        while (!list_empty(&l_hold)) {
1945                cond_resched();
1946                page = lru_to_page(&l_hold);
1947                list_del(&page->lru);
1948
1949                if (unlikely(!page_evictable(page))) {
1950                        putback_lru_page(page);
1951                        continue;
1952                }
1953
1954                if (unlikely(buffer_heads_over_limit)) {
1955                        if (page_has_private(page) && trylock_page(page)) {
1956                                if (page_has_private(page))
1957                                        try_to_release_page(page, 0);
1958                                unlock_page(page);
1959                        }
1960                }
1961
1962                if (page_referenced(page, 0, sc->target_mem_cgroup,
1963                                    &vm_flags)) {
1964                        nr_rotated += hpage_nr_pages(page);
1965                        /*
1966                         * Identify referenced, file-backed active pages and
1967                         * give them one more trip around the active list. So
1968                         * that executable code get better chances to stay in
1969                         * memory under moderate memory pressure.  Anon pages
1970                         * are not likely to be evicted by use-once streaming
1971                         * IO, plus JVM can create lots of anon VM_EXEC pages,
1972                         * so we ignore them here.
1973                         */
1974                        if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1975                                list_add(&page->lru, &l_active);
1976                                continue;
1977                        }
1978                }
1979
1980                ClearPageActive(page);  /* we are de-activating */
1981                list_add(&page->lru, &l_inactive);
1982        }
1983
1984        /*
1985         * Move pages back to the lru list.
1986         */
1987        spin_lock_irq(&pgdat->lru_lock);
1988        /*
1989         * Count referenced pages from currently used mappings as rotated,
1990         * even though only some of them are actually re-activated.  This
1991         * helps balance scan pressure between file and anonymous pages in
1992         * get_scan_count.
1993         */
1994        reclaim_stat->recent_rotated[file] += nr_rotated;
1995
1996        nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1997        nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1998        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1999        spin_unlock_irq(&pgdat->lru_lock);
2000
2001        mem_cgroup_uncharge_list(&l_hold);
2002        free_hot_cold_page_list(&l_hold, true);
2003        trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2004                        nr_deactivate, nr_rotated, sc->priority, file);
2005}
2006
2007/*
2008 * The inactive anon list should be small enough that the VM never has
2009 * to do too much work.
2010 *
2011 * The inactive file list should be small enough to leave most memory
2012 * to the established workingset on the scan-resistant active list,
2013 * but large enough to avoid thrashing the aggregate readahead window.
2014 *
2015 * Both inactive lists should also be large enough that each inactive
2016 * page has a chance to be referenced again before it is reclaimed.
2017 *
2018 * If that fails and refaulting is observed, the inactive list grows.
2019 *
2020 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2021 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2022 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2023 *
2024 * total     target    max
2025 * memory    ratio     inactive
2026 * -------------------------------------
2027 *   10MB       1         5MB
2028 *  100MB       1        50MB
2029 *    1GB       3       250MB
2030 *   10GB      10       0.9GB
2031 *  100GB      31         3GB
2032 *    1TB     101        10GB
2033 *   10TB     320        32GB
2034 */
2035static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2036                                 struct mem_cgroup *memcg,
2037                                 struct scan_control *sc, bool actual_reclaim)
2038{
2039        enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2040        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2041        enum lru_list inactive_lru = file * LRU_FILE;
2042        unsigned long inactive, active;
2043        unsigned long inactive_ratio;
2044        unsigned long refaults;
2045        unsigned long gb;
2046
2047        /*
2048         * If we don't have swap space, anonymous page deactivation
2049         * is pointless.
2050         */
2051        if (!file && !total_swap_pages)
2052                return false;
2053
2054        inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2055        active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2056
2057        if (memcg)
2058                refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2059        else
2060                refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2061
2062        /*
2063         * When refaults are being observed, it means a new workingset
2064         * is being established. Disable active list protection to get
2065         * rid of the stale workingset quickly.
2066         */
2067        if (file && actual_reclaim && lruvec->refaults != refaults) {
2068                inactive_ratio = 0;
2069        } else {
2070                gb = (inactive + active) >> (30 - PAGE_SHIFT);
2071                if (gb)
2072                        inactive_ratio = int_sqrt(10 * gb);
2073                else
2074                        inactive_ratio = 1;
2075        }
2076
2077        if (actual_reclaim)
2078                trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2079                        lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2080                        lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2081                        inactive_ratio, file);
2082
2083        return inactive * inactive_ratio < active;
2084}
2085
2086static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087                                 struct lruvec *lruvec, struct mem_cgroup *memcg,
2088                                 struct scan_control *sc)
2089{
2090        if (is_active_lru(lru)) {
2091                if (inactive_list_is_low(lruvec, is_file_lru(lru),
2092                                         memcg, sc, true))
2093                        shrink_active_list(nr_to_scan, lruvec, sc, lru);
2094                return 0;
2095        }
2096
2097        return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2098}
2099
2100enum scan_balance {
2101        SCAN_EQUAL,
2102        SCAN_FRACT,
2103        SCAN_ANON,
2104        SCAN_FILE,
2105};
2106
2107/*
2108 * Determine how aggressively the anon and file LRU lists should be
2109 * scanned.  The relative value of each set of LRU lists is determined
2110 * by looking at the fraction of the pages scanned we did rotate back
2111 * onto the active list instead of evict.
2112 *
2113 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2114 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2115 */
2116static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2117                           struct scan_control *sc, unsigned long *nr,
2118                           unsigned long *lru_pages)
2119{
2120        int swappiness = mem_cgroup_swappiness(memcg);
2121        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2122        u64 fraction[2];
2123        u64 denominator = 0;    /* gcc */
2124        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125        unsigned long anon_prio, file_prio;
2126        enum scan_balance scan_balance;
2127        unsigned long anon, file;
2128        unsigned long ap, fp;
2129        enum lru_list lru;
2130
2131        /* If we have no swap space, do not bother scanning anon pages. */
2132        if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2133                scan_balance = SCAN_FILE;
2134                goto out;
2135        }
2136
2137        /*
2138         * Global reclaim will swap to prevent OOM even with no
2139         * swappiness, but memcg users want to use this knob to
2140         * disable swapping for individual groups completely when
2141         * using the memory controller's swap limit feature would be
2142         * too expensive.
2143         */
2144        if (!global_reclaim(sc) && !swappiness) {
2145                scan_balance = SCAN_FILE;
2146                goto out;
2147        }
2148
2149        /*
2150         * Do not apply any pressure balancing cleverness when the
2151         * system is close to OOM, scan both anon and file equally
2152         * (unless the swappiness setting disagrees with swapping).
2153         */
2154        if (!sc->priority && swappiness) {
2155                scan_balance = SCAN_EQUAL;
2156                goto out;
2157        }
2158
2159        /*
2160         * Prevent the reclaimer from falling into the cache trap: as
2161         * cache pages start out inactive, every cache fault will tip
2162         * the scan balance towards the file LRU.  And as the file LRU
2163         * shrinks, so does the window for rotation from references.
2164         * This means we have a runaway feedback loop where a tiny
2165         * thrashing file LRU becomes infinitely more attractive than
2166         * anon pages.  Try to detect this based on file LRU size.
2167         */
2168        if (global_reclaim(sc)) {
2169                unsigned long pgdatfile;
2170                unsigned long pgdatfree;
2171                int z;
2172                unsigned long total_high_wmark = 0;
2173
2174                pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2175                pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2176                           node_page_state(pgdat, NR_INACTIVE_FILE);
2177
2178                for (z = 0; z < MAX_NR_ZONES; z++) {
2179                        struct zone *zone = &pgdat->node_zones[z];
2180                        if (!managed_zone(zone))
2181                                continue;
2182
2183                        total_high_wmark += high_wmark_pages(zone);
2184                }
2185
2186                if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2187                        scan_balance = SCAN_ANON;
2188                        goto out;
2189                }
2190        }
2191
2192        /*
2193         * If there is enough inactive page cache, i.e. if the size of the
2194         * inactive list is greater than that of the active list *and* the
2195         * inactive list actually has some pages to scan on this priority, we
2196         * do not reclaim anything from the anonymous working set right now.
2197         * Without the second condition we could end up never scanning an
2198         * lruvec even if it has plenty of old anonymous pages unless the
2199         * system is under heavy pressure.
2200         */
2201        if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2202            lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2203                scan_balance = SCAN_FILE;
2204                goto out;
2205        }
2206
2207        scan_balance = SCAN_FRACT;
2208
2209        /*
2210         * With swappiness at 100, anonymous and file have the same priority.
2211         * This scanning priority is essentially the inverse of IO cost.
2212         */
2213        anon_prio = swappiness;
2214        file_prio = 200 - anon_prio;
2215
2216        /*
2217         * OK, so we have swap space and a fair amount of page cache
2218         * pages.  We use the recently rotated / recently scanned
2219         * ratios to determine how valuable each cache is.
2220         *
2221         * Because workloads change over time (and to avoid overflow)
2222         * we keep these statistics as a floating average, which ends
2223         * up weighing recent references more than old ones.
2224         *
2225         * anon in [0], file in [1]
2226         */
2227
2228        anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2229                lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2230        file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2231                lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2232
2233        spin_lock_irq(&pgdat->lru_lock);
2234        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2235                reclaim_stat->recent_scanned[0] /= 2;
2236                reclaim_stat->recent_rotated[0] /= 2;
2237        }
2238
2239        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2240                reclaim_stat->recent_scanned[1] /= 2;
2241                reclaim_stat->recent_rotated[1] /= 2;
2242        }
2243
2244        /*
2245         * The amount of pressure on anon vs file pages is inversely
2246         * proportional to the fraction of recently scanned pages on
2247         * each list that were recently referenced and in active use.
2248         */
2249        ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2250        ap /= reclaim_stat->recent_rotated[0] + 1;
2251
2252        fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2253        fp /= reclaim_stat->recent_rotated[1] + 1;
2254        spin_unlock_irq(&pgdat->lru_lock);
2255
2256        fraction[0] = ap;
2257        fraction[1] = fp;
2258        denominator = ap + fp + 1;
2259out:
2260        *lru_pages = 0;
2261        for_each_evictable_lru(lru) {
2262                int file = is_file_lru(lru);
2263                unsigned long size;
2264                unsigned long scan;
2265
2266                size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2267                scan = size >> sc->priority;
2268                /*
2269                 * If the cgroup's already been deleted, make sure to
2270                 * scrape out the remaining cache.
2271                 */
2272                if (!scan && !mem_cgroup_online(memcg))
2273                        scan = min(size, SWAP_CLUSTER_MAX);
2274
2275                switch (scan_balance) {
2276                case SCAN_EQUAL:
2277                        /* Scan lists relative to size */
2278                        break;
2279                case SCAN_FRACT:
2280                        /*
2281                         * Scan types proportional to swappiness and
2282                         * their relative recent reclaim efficiency.
2283                         */
2284                        scan = div64_u64(scan * fraction[file],
2285                                         denominator);
2286                        break;
2287                case SCAN_FILE:
2288                case SCAN_ANON:
2289                        /* Scan one type exclusively */
2290                        if ((scan_balance == SCAN_FILE) != file) {
2291                                size = 0;
2292                                scan = 0;
2293                        }
2294                        break;
2295                default:
2296                        /* Look ma, no brain */
2297                        BUG();
2298                }
2299
2300                *lru_pages += size;
2301                nr[lru] = scan;
2302        }
2303}
2304
2305/*
2306 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2307 */
2308static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2309                              struct scan_control *sc, unsigned long *lru_pages)
2310{
2311        struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2312        unsigned long nr[NR_LRU_LISTS];
2313        unsigned long targets[NR_LRU_LISTS];
2314        unsigned long nr_to_scan;
2315        enum lru_list lru;
2316        unsigned long nr_reclaimed = 0;
2317        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2318        struct blk_plug plug;
2319        bool scan_adjusted;
2320
2321        get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2322
2323        /* Record the original scan target for proportional adjustments later */
2324        memcpy(targets, nr, sizeof(nr));
2325
2326        /*
2327         * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2328         * event that can occur when there is little memory pressure e.g.
2329         * multiple streaming readers/writers. Hence, we do not abort scanning
2330         * when the requested number of pages are reclaimed when scanning at
2331         * DEF_PRIORITY on the assumption that the fact we are direct
2332         * reclaiming implies that kswapd is not keeping up and it is best to
2333         * do a batch of work at once. For memcg reclaim one check is made to
2334         * abort proportional reclaim if either the file or anon lru has already
2335         * dropped to zero at the first pass.
2336         */
2337        scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2338                         sc->priority == DEF_PRIORITY);
2339
2340        blk_start_plug(&plug);
2341        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2342                                        nr[LRU_INACTIVE_FILE]) {
2343                unsigned long nr_anon, nr_file, percentage;
2344                unsigned long nr_scanned;
2345
2346                for_each_evictable_lru(lru) {
2347                        if (nr[lru]) {
2348                                nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2349                                nr[lru] -= nr_to_scan;
2350
2351                                nr_reclaimed += shrink_list(lru, nr_to_scan,
2352                                                            lruvec, memcg, sc);
2353                        }
2354                }
2355
2356                cond_resched();
2357
2358                if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2359                        continue;
2360
2361                /*
2362                 * For kswapd and memcg, reclaim at least the number of pages
2363                 * requested. Ensure that the anon and file LRUs are scanned
2364                 * proportionally what was requested by get_scan_count(). We
2365                 * stop reclaiming one LRU and reduce the amount scanning
2366                 * proportional to the original scan target.
2367                 */
2368                nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2369                nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2370
2371                /*
2372                 * It's just vindictive to attack the larger once the smaller
2373                 * has gone to zero.  And given the way we stop scanning the
2374                 * smaller below, this makes sure that we only make one nudge
2375                 * towards proportionality once we've got nr_to_reclaim.
2376                 */
2377                if (!nr_file || !nr_anon)
2378                        break;
2379
2380                if (nr_file > nr_anon) {
2381                        unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2382                                                targets[LRU_ACTIVE_ANON] + 1;
2383                        lru = LRU_BASE;
2384                        percentage = nr_anon * 100 / scan_target;
2385                } else {
2386                        unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2387                                                targets[LRU_ACTIVE_FILE] + 1;
2388                        lru = LRU_FILE;
2389                        percentage = nr_file * 100 / scan_target;
2390                }
2391
2392                /* Stop scanning the smaller of the LRU */
2393                nr[lru] = 0;
2394                nr[lru + LRU_ACTIVE] = 0;
2395
2396                /*
2397                 * Recalculate the other LRU scan count based on its original
2398                 * scan target and the percentage scanning already complete
2399                 */
2400                lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2401                nr_scanned = targets[lru] - nr[lru];
2402                nr[lru] = targets[lru] * (100 - percentage) / 100;
2403                nr[lru] -= min(nr[lru], nr_scanned);
2404
2405                lru += LRU_ACTIVE;
2406                nr_scanned = targets[lru] - nr[lru];
2407                nr[lru] = targets[lru] * (100 - percentage) / 100;
2408                nr[lru] -= min(nr[lru], nr_scanned);
2409
2410                scan_adjusted = true;
2411        }
2412        blk_finish_plug(&plug);
2413        sc->nr_reclaimed += nr_reclaimed;
2414
2415        /*
2416         * Even if we did not try to evict anon pages at all, we want to
2417         * rebalance the anon lru active/inactive ratio.
2418         */
2419        if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2420                shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2421                                   sc, LRU_ACTIVE_ANON);
2422}
2423
2424/* Use reclaim/compaction for costly allocs or under memory pressure */
2425static bool in_reclaim_compaction(struct scan_control *sc)
2426{
2427        if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2428                        (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2429                         sc->priority < DEF_PRIORITY - 2))
2430                return true;
2431
2432        return false;
2433}
2434
2435/*
2436 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2437 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2438 * true if more pages should be reclaimed such that when the page allocator
2439 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2440 * It will give up earlier than that if there is difficulty reclaiming pages.
2441 */
2442static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2443                                        unsigned long nr_reclaimed,
2444                                        unsigned long nr_scanned,
2445                                        struct scan_control *sc)
2446{
2447        unsigned long pages_for_compaction;
2448        unsigned long inactive_lru_pages;
2449        int z;
2450
2451        /* If not in reclaim/compaction mode, stop */
2452        if (!in_reclaim_compaction(sc))
2453                return false;
2454
2455        /* Consider stopping depending on scan and reclaim activity */
2456        if (sc->gfp_mask & __GFP_REPEAT) {
2457                /*
2458                 * For __GFP_REPEAT allocations, stop reclaiming if the
2459                 * full LRU list has been scanned and we are still failing
2460                 * to reclaim pages. This full LRU scan is potentially
2461                 * expensive but a __GFP_REPEAT caller really wants to succeed
2462                 */
2463                if (!nr_reclaimed && !nr_scanned)
2464                        return false;
2465        } else {
2466                /*
2467                 * For non-__GFP_REPEAT allocations which can presumably
2468                 * fail without consequence, stop if we failed to reclaim
2469                 * any pages from the last SWAP_CLUSTER_MAX number of
2470                 * pages that were scanned. This will return to the
2471                 * caller faster at the risk reclaim/compaction and
2472                 * the resulting allocation attempt fails
2473                 */
2474                if (!nr_reclaimed)
2475                        return false;
2476        }
2477
2478        /*
2479         * If we have not reclaimed enough pages for compaction and the
2480         * inactive lists are large enough, continue reclaiming
2481         */
2482        pages_for_compaction = compact_gap(sc->order);
2483        inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2484        if (get_nr_swap_pages() > 0)
2485                inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2486        if (sc->nr_reclaimed < pages_for_compaction &&
2487                        inactive_lru_pages > pages_for_compaction)
2488                return true;
2489
2490        /* If compaction would go ahead or the allocation would succeed, stop */
2491        for (z = 0; z <= sc->reclaim_idx; z++) {
2492                struct zone *zone = &pgdat->node_zones[z];
2493                if (!managed_zone(zone))
2494                        continue;
2495
2496                switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2497                case COMPACT_SUCCESS:
2498                case COMPACT_CONTINUE:
2499                        return false;
2500                default:
2501                        /* check next zone */
2502                        ;
2503                }
2504        }
2505        return true;
2506}
2507
2508static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2509{
2510        struct reclaim_state *reclaim_state = current->reclaim_state;
2511        unsigned long nr_reclaimed, nr_scanned;
2512        bool reclaimable = false;
2513
2514        do {
2515                struct mem_cgroup *root = sc->target_mem_cgroup;
2516                struct mem_cgroup_reclaim_cookie reclaim = {
2517                        .pgdat = pgdat,
2518                        .priority = sc->priority,
2519                };
2520                unsigned long node_lru_pages = 0;
2521                struct mem_cgroup *memcg;
2522
2523                nr_reclaimed = sc->nr_reclaimed;
2524                nr_scanned = sc->nr_scanned;
2525
2526                memcg = mem_cgroup_iter(root, NULL, &reclaim);
2527                do {
2528                        unsigned long lru_pages;
2529                        unsigned long reclaimed;
2530                        unsigned long scanned;
2531
2532                        if (mem_cgroup_low(root, memcg)) {
2533                                if (!sc->memcg_low_reclaim) {
2534                                        sc->memcg_low_skipped = 1;
2535                                        continue;
2536                                }
2537                                mem_cgroup_event(memcg, MEMCG_LOW);
2538                        }
2539
2540                        reclaimed = sc->nr_reclaimed;
2541                        scanned = sc->nr_scanned;
2542
2543                        shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2544                        node_lru_pages += lru_pages;
2545
2546                        if (memcg)
2547                                shrink_slab(sc->gfp_mask, pgdat->node_id,
2548                                            memcg, sc->nr_scanned - scanned,
2549                                            lru_pages);
2550
2551                        /* Record the group's reclaim efficiency */
2552                        vmpressure(sc->gfp_mask, memcg, false,
2553                                   sc->nr_scanned - scanned,
2554                                   sc->nr_reclaimed - reclaimed);
2555
2556                        /*
2557                         * Direct reclaim and kswapd have to scan all memory
2558                         * cgroups to fulfill the overall scan target for the
2559                         * node.
2560                         *
2561                         * Limit reclaim, on the other hand, only cares about
2562                         * nr_to_reclaim pages to be reclaimed and it will
2563                         * retry with decreasing priority if one round over the
2564                         * whole hierarchy is not sufficient.
2565                         */
2566                        if (!global_reclaim(sc) &&
2567                                        sc->nr_reclaimed >= sc->nr_to_reclaim) {
2568                                mem_cgroup_iter_break(root, memcg);
2569                                break;
2570                        }
2571                } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2572
2573                /*
2574                 * Shrink the slab caches in the same proportion that
2575                 * the eligible LRU pages were scanned.
2576                 */
2577                if (global_reclaim(sc))
2578                        shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2579                                    sc->nr_scanned - nr_scanned,
2580                                    node_lru_pages);
2581
2582                if (reclaim_state) {
2583                        sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2584                        reclaim_state->reclaimed_slab = 0;
2585                }
2586
2587                /* Record the subtree's reclaim efficiency */
2588                vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2589                           sc->nr_scanned - nr_scanned,
2590                           sc->nr_reclaimed - nr_reclaimed);
2591
2592                if (sc->nr_reclaimed - nr_reclaimed)
2593                        reclaimable = true;
2594
2595        } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2596                                         sc->nr_scanned - nr_scanned, sc));
2597
2598        /*
2599         * Kswapd gives up on balancing particular nodes after too
2600         * many failures to reclaim anything from them and goes to
2601         * sleep. On reclaim progress, reset the failure counter. A
2602         * successful direct reclaim run will revive a dormant kswapd.
2603         */
2604        if (reclaimable)
2605                pgdat->kswapd_failures = 0;
2606
2607        return reclaimable;
2608}
2609
2610/*
2611 * Returns true if compaction should go ahead for a costly-order request, or
2612 * the allocation would already succeed without compaction. Return false if we
2613 * should reclaim first.
2614 */
2615static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2616{
2617        unsigned long watermark;
2618        enum compact_result suitable;
2619
2620        suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2621        if (suitable == COMPACT_SUCCESS)
2622                /* Allocation should succeed already. Don't reclaim. */
2623                return true;
2624        if (suitable == COMPACT_SKIPPED)
2625                /* Compaction cannot yet proceed. Do reclaim. */
2626                return false;
2627
2628        /*
2629         * Compaction is already possible, but it takes time to run and there
2630         * are potentially other callers using the pages just freed. So proceed
2631         * with reclaim to make a buffer of free pages available to give
2632         * compaction a reasonable chance of completing and allocating the page.
2633         * Note that we won't actually reclaim the whole buffer in one attempt
2634         * as the target watermark in should_continue_reclaim() is lower. But if
2635         * we are already above the high+gap watermark, don't reclaim at all.
2636         */
2637        watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2638
2639        return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2640}
2641
2642/*
2643 * This is the direct reclaim path, for page-allocating processes.  We only
2644 * try to reclaim pages from zones which will satisfy the caller's allocation
2645 * request.
2646 *
2647 * If a zone is deemed to be full of pinned pages then just give it a light
2648 * scan then give up on it.
2649 */
2650static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2651{
2652        struct zoneref *z;
2653        struct zone *zone;
2654        unsigned long nr_soft_reclaimed;
2655        unsigned long nr_soft_scanned;
2656        gfp_t orig_mask;
2657        pg_data_t *last_pgdat = NULL;
2658
2659        /*
2660         * If the number of buffer_heads in the machine exceeds the maximum
2661         * allowed level, force direct reclaim to scan the highmem zone as
2662         * highmem pages could be pinning lowmem pages storing buffer_heads
2663         */
2664        orig_mask = sc->gfp_mask;
2665        if (buffer_heads_over_limit) {
2666                sc->gfp_mask |= __GFP_HIGHMEM;
2667                sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2668        }
2669
2670        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2671                                        sc->reclaim_idx, sc->nodemask) {
2672                /*
2673                 * Take care memory controller reclaiming has small influence
2674                 * to global LRU.
2675                 */
2676                if (global_reclaim(sc)) {
2677                        if (!cpuset_zone_allowed(zone,
2678                                                 GFP_KERNEL | __GFP_HARDWALL))
2679                                continue;
2680
2681                        /*
2682                         * If we already have plenty of memory free for
2683                         * compaction in this zone, don't free any more.
2684                         * Even though compaction is invoked for any
2685                         * non-zero order, only frequent costly order
2686                         * reclamation is disruptive enough to become a
2687                         * noticeable problem, like transparent huge
2688                         * page allocations.
2689                         */
2690                        if (IS_ENABLED(CONFIG_COMPACTION) &&
2691                            sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2692                            compaction_ready(zone, sc)) {
2693                                sc->compaction_ready = true;
2694                                continue;
2695                        }
2696
2697                        /*
2698                         * Shrink each node in the zonelist once. If the
2699                         * zonelist is ordered by zone (not the default) then a
2700                         * node may be shrunk multiple times but in that case
2701                         * the user prefers lower zones being preserved.
2702                         */
2703                        if (zone->zone_pgdat == last_pgdat)
2704                                continue;
2705
2706                        /*
2707                         * This steals pages from memory cgroups over softlimit
2708                         * and returns the number of reclaimed pages and
2709                         * scanned pages. This works for global memory pressure
2710                         * and balancing, not for a memcg's limit.
2711                         */
2712                        nr_soft_scanned = 0;
2713                        nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2714                                                sc->order, sc->gfp_mask,
2715                                                &nr_soft_scanned);
2716                        sc->nr_reclaimed += nr_soft_reclaimed;
2717                        sc->nr_scanned += nr_soft_scanned;
2718                        /* need some check for avoid more shrink_zone() */
2719                }
2720
2721                /* See comment about same check for global reclaim above */
2722                if (zone->zone_pgdat == last_pgdat)
2723                        continue;
2724                last_pgdat = zone->zone_pgdat;
2725                shrink_node(zone->zone_pgdat, sc);
2726        }
2727
2728        /*
2729         * Restore to original mask to avoid the impact on the caller if we
2730         * promoted it to __GFP_HIGHMEM.
2731         */
2732        sc->gfp_mask = orig_mask;
2733}
2734
2735static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2736{
2737        struct mem_cgroup *memcg;
2738
2739        memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2740        do {
2741                unsigned long refaults;
2742                struct lruvec *lruvec;
2743
2744                if (memcg)
2745                        refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2746                else
2747                        refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2748
2749                lruvec = mem_cgroup_lruvec(pgdat, memcg);
2750                lruvec->refaults = refaults;
2751        } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2752}
2753
2754/*
2755 * This is the main entry point to direct page reclaim.
2756 *
2757 * If a full scan of the inactive list fails to free enough memory then we
2758 * are "out of memory" and something needs to be killed.
2759 *
2760 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2761 * high - the zone may be full of dirty or under-writeback pages, which this
2762 * caller can't do much about.  We kick the writeback threads and take explicit
2763 * naps in the hope that some of these pages can be written.  But if the
2764 * allocating task holds filesystem locks which prevent writeout this might not
2765 * work, and the allocation attempt will fail.
2766 *
2767 * returns:     0, if no pages reclaimed
2768 *              else, the number of pages reclaimed
2769 */
2770static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2771                                          struct scan_control *sc)
2772{
2773        int initial_priority = sc->priority;
2774        pg_data_t *last_pgdat;
2775        struct zoneref *z;
2776        struct zone *zone;
2777retry:
2778        delayacct_freepages_start();
2779
2780        if (global_reclaim(sc))
2781                __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2782
2783        do {
2784                vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2785                                sc->priority);
2786                sc->nr_scanned = 0;
2787                shrink_zones(zonelist, sc);
2788
2789                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2790                        break;
2791
2792                if (sc->compaction_ready)
2793                        break;
2794
2795                /*
2796                 * If we're getting trouble reclaiming, start doing
2797                 * writepage even in laptop mode.
2798                 */
2799                if (sc->priority < DEF_PRIORITY - 2)
2800                        sc->may_writepage = 1;
2801        } while (--sc->priority >= 0);
2802
2803        last_pgdat = NULL;
2804        for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2805                                        sc->nodemask) {
2806                if (zone->zone_pgdat == last_pgdat)
2807                        continue;
2808                last_pgdat = zone->zone_pgdat;
2809                snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2810        }
2811
2812        delayacct_freepages_end();
2813
2814        if (sc->nr_reclaimed)
2815                return sc->nr_reclaimed;
2816
2817        /* Aborted reclaim to try compaction? don't OOM, then */
2818        if (sc->compaction_ready)
2819                return 1;
2820
2821        /* Untapped cgroup reserves?  Don't OOM, retry. */
2822        if (sc->memcg_low_skipped) {
2823                sc->priority = initial_priority;
2824                sc->memcg_low_reclaim = 1;
2825                sc->memcg_low_skipped = 0;
2826                goto retry;
2827        }
2828
2829        return 0;
2830}
2831
2832static bool allow_direct_reclaim(pg_data_t *pgdat)
2833{
2834        struct zone *zone;
2835        unsigned long pfmemalloc_reserve = 0;
2836        unsigned long free_pages = 0;
2837        int i;
2838        bool wmark_ok;
2839
2840        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2841                return true;
2842
2843        for (i = 0; i <= ZONE_NORMAL; i++) {
2844                zone = &pgdat->node_zones[i];
2845                if (!managed_zone(zone))
2846                        continue;
2847
2848                if (!zone_reclaimable_pages(zone))
2849                        continue;
2850
2851                pfmemalloc_reserve += min_wmark_pages(zone);
2852                free_pages += zone_page_state(zone, NR_FREE_PAGES);
2853        }
2854
2855        /* If there are no reserves (unexpected config) then do not throttle */
2856        if (!pfmemalloc_reserve)
2857                return true;
2858
2859        wmark_ok = free_pages > pfmemalloc_reserve / 2;
2860
2861        /* kswapd must be awake if processes are being throttled */
2862        if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2863                pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2864                                                (enum zone_type)ZONE_NORMAL);
2865                wake_up_interruptible(&pgdat->kswapd_wait);
2866        }
2867
2868        return wmark_ok;
2869}
2870
2871/*
2872 * Throttle direct reclaimers if backing storage is backed by the network
2873 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2874 * depleted. kswapd will continue to make progress and wake the processes
2875 * when the low watermark is reached.
2876 *
2877 * Returns true if a fatal signal was delivered during throttling. If this
2878 * happens, the page allocator should not consider triggering the OOM killer.
2879 */
2880static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2881                                        nodemask_t *nodemask)
2882{
2883        struct zoneref *z;
2884        struct zone *zone;
2885        pg_data_t *pgdat = NULL;
2886
2887        /*
2888         * Kernel threads should not be throttled as they may be indirectly
2889         * responsible for cleaning pages necessary for reclaim to make forward
2890         * progress. kjournald for example may enter direct reclaim while
2891         * committing a transaction where throttling it could forcing other
2892         * processes to block on log_wait_commit().
2893         */
2894        if (current->flags & PF_KTHREAD)
2895                goto out;
2896
2897        /*
2898         * If a fatal signal is pending, this process should not throttle.
2899         * It should return quickly so it can exit and free its memory
2900         */
2901        if (fatal_signal_pending(current))
2902                goto out;
2903
2904        /*
2905         * Check if the pfmemalloc reserves are ok by finding the first node
2906         * with a usable ZONE_NORMAL or lower zone. The expectation is that
2907         * GFP_KERNEL will be required for allocating network buffers when
2908         * swapping over the network so ZONE_HIGHMEM is unusable.
2909         *
2910         * Throttling is based on the first usable node and throttled processes
2911         * wait on a queue until kswapd makes progress and wakes them. There
2912         * is an affinity then between processes waking up and where reclaim
2913         * progress has been made assuming the process wakes on the same node.
2914         * More importantly, processes running on remote nodes will not compete
2915         * for remote pfmemalloc reserves and processes on different nodes
2916         * should make reasonable progress.
2917         */
2918        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2919                                        gfp_zone(gfp_mask), nodemask) {
2920                if (zone_idx(zone) > ZONE_NORMAL)
2921                        continue;
2922
2923                /* Throttle based on the first usable node */
2924                pgdat = zone->zone_pgdat;
2925                if (allow_direct_reclaim(pgdat))
2926                        goto out;
2927                break;
2928        }
2929
2930        /* If no zone was usable by the allocation flags then do not throttle */
2931        if (!pgdat)
2932                goto out;
2933
2934        /* Account for the throttling */
2935        count_vm_event(PGSCAN_DIRECT_THROTTLE);
2936
2937        /*
2938         * If the caller cannot enter the filesystem, it's possible that it
2939         * is due to the caller holding an FS lock or performing a journal
2940         * transaction in the case of a filesystem like ext[3|4]. In this case,
2941         * it is not safe to block on pfmemalloc_wait as kswapd could be
2942         * blocked waiting on the same lock. Instead, throttle for up to a
2943         * second before continuing.
2944         */
2945        if (!(gfp_mask & __GFP_FS)) {
2946                wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2947                        allow_direct_reclaim(pgdat), HZ);
2948
2949                goto check_pending;
2950        }
2951
2952        /* Throttle until kswapd wakes the process */
2953        wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2954                allow_direct_reclaim(pgdat));
2955
2956check_pending:
2957        if (fatal_signal_pending(current))
2958                return true;
2959
2960out:
2961        return false;
2962}
2963
2964unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2965                                gfp_t gfp_mask, nodemask_t *nodemask)
2966{
2967        unsigned long nr_reclaimed;
2968        struct scan_control sc = {
2969                .nr_to_reclaim = SWAP_CLUSTER_MAX,
2970                .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
2971                .reclaim_idx = gfp_zone(gfp_mask),
2972                .order = order,
2973                .nodemask = nodemask,
2974                .priority = DEF_PRIORITY,
2975                .may_writepage = !laptop_mode,
2976                .may_unmap = 1,
2977                .may_swap = 1,
2978        };
2979
2980        /*
2981         * Do not enter reclaim if fatal signal was delivered while throttled.
2982         * 1 is returned so that the page allocator does not OOM kill at this
2983         * point.
2984         */
2985        if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2986                return 1;
2987
2988        trace_mm_vmscan_direct_reclaim_begin(order,
2989                                sc.may_writepage,
2990                                gfp_mask,
2991                                sc.reclaim_idx);
2992
2993        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2994
2995        trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2996
2997        return nr_reclaimed;
2998}
2999
3000#ifdef CONFIG_MEMCG
3001
3002unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3003                                                gfp_t gfp_mask, bool noswap,
3004                                                pg_data_t *pgdat,
3005                                                unsigned long *nr_scanned)
3006{
3007        struct scan_control sc = {
3008                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3009                .target_mem_cgroup = memcg,
3010                .may_writepage = !laptop_mode,
3011                .may_unmap = 1,
3012                .reclaim_idx = MAX_NR_ZONES - 1,
3013                .may_swap = !noswap,
3014        };
3015        unsigned long lru_pages;
3016
3017        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3018                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3019
3020        trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3021                                                      sc.may_writepage,
3022                                                      sc.gfp_mask,
3023                                                      sc.reclaim_idx);
3024
3025        /*
3026         * NOTE: Although we can get the priority field, using it
3027         * here is not a good idea, since it limits the pages we can scan.
3028         * if we don't reclaim here, the shrink_node from balance_pgdat
3029         * will pick up pages from other mem cgroup's as well. We hack
3030         * the priority and make it zero.
3031         */
3032        shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3033
3034        trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3035
3036        *nr_scanned = sc.nr_scanned;
3037        return sc.nr_reclaimed;
3038}
3039
3040unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3041                                           unsigned long nr_pages,
3042                                           gfp_t gfp_mask,
3043                                           bool may_swap)
3044{
3045        struct zonelist *zonelist;
3046        unsigned long nr_reclaimed;
3047        int nid;
3048        unsigned int noreclaim_flag;
3049        struct scan_control sc = {
3050                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3051                .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3052                                (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3053                .reclaim_idx = MAX_NR_ZONES - 1,
3054                .target_mem_cgroup = memcg,
3055                .priority = DEF_PRIORITY,
3056                .may_writepage = !laptop_mode,
3057                .may_unmap = 1,
3058                .may_swap = may_swap,
3059        };
3060
3061        /*
3062         * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3063         * take care of from where we get pages. So the node where we start the
3064         * scan does not need to be the current node.
3065         */
3066        nid = mem_cgroup_select_victim_node(memcg);
3067
3068        zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3069
3070        trace_mm_vmscan_memcg_reclaim_begin(0,
3071                                            sc.may_writepage,
3072                                            sc.gfp_mask,
3073                                            sc.reclaim_idx);
3074
3075        noreclaim_flag = memalloc_noreclaim_save();
3076        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3077        memalloc_noreclaim_restore(noreclaim_flag);
3078
3079        trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3080
3081        return nr_reclaimed;
3082}
3083#endif
3084
3085static void age_active_anon(struct pglist_data *pgdat,
3086                                struct scan_control *sc)
3087{
3088        struct mem_cgroup *memcg;
3089
3090        if (!total_swap_pages)
3091                return;
3092
3093        memcg = mem_cgroup_iter(NULL, NULL, NULL);
3094        do {
3095                struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3096
3097                if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3098                        shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3099                                           sc, LRU_ACTIVE_ANON);
3100
3101                memcg = mem_cgroup_iter(NULL, memcg, NULL);
3102        } while (memcg);
3103}
3104
3105/*
3106 * Returns true if there is an eligible zone balanced for the request order
3107 * and classzone_idx
3108 */
3109static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3110{
3111        int i;
3112        unsigned long mark = -1;
3113        struct zone *zone;
3114
3115        for (i = 0; i <= classzone_idx; i++) {
3116                zone = pgdat->node_zones + i;
3117
3118                if (!managed_zone(zone))
3119                        continue;
3120
3121                mark = high_wmark_pages(zone);
3122                if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3123                        return true;
3124        }
3125
3126        /*
3127         * If a node has no populated zone within classzone_idx, it does not
3128         * need balancing by definition. This can happen if a zone-restricted
3129         * allocation tries to wake a remote kswapd.
3130         */
3131        if (mark == -1)
3132                return true;
3133
3134        return false;
3135}
3136
3137/* Clear pgdat state for congested, dirty or under writeback. */
3138static void clear_pgdat_congested(pg_data_t *pgdat)
3139{
3140        clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3141        clear_bit(PGDAT_DIRTY, &pgdat->flags);
3142        clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3143}
3144
3145/*
3146 * Prepare kswapd for sleeping. This verifies that there are no processes
3147 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3148 *
3149 * Returns true if kswapd is ready to sleep
3150 */
3151static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3152{
3153        /*
3154         * The throttled processes are normally woken up in balance_pgdat() as
3155         * soon as allow_direct_reclaim() is true. But there is a potential
3156         * race between when kswapd checks the watermarks and a process gets
3157         * throttled. There is also a potential race if processes get
3158         * throttled, kswapd wakes, a large process exits thereby balancing the
3159         * zones, which causes kswapd to exit balance_pgdat() before reaching
3160         * the wake up checks. If kswapd is going to sleep, no process should
3161         * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3162         * the wake up is premature, processes will wake kswapd and get
3163         * throttled again. The difference from wake ups in balance_pgdat() is
3164         * that here we are under prepare_to_wait().
3165         */
3166        if (waitqueue_active(&pgdat->pfmemalloc_wait))
3167                wake_up_all(&pgdat->pfmemalloc_wait);
3168
3169        /* Hopeless node, leave it to direct reclaim */
3170        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3171                return true;
3172
3173        if (pgdat_balanced(pgdat, order, classzone_idx)) {
3174                clear_pgdat_congested(pgdat);
3175                return true;
3176        }
3177
3178        return false;
3179}
3180
3181/*
3182 * kswapd shrinks a node of pages that are at or below the highest usable
3183 * zone that is currently unbalanced.
3184 *
3185 * Returns true if kswapd scanned at least the requested number of pages to
3186 * reclaim or if the lack of progress was due to pages under writeback.
3187 * This is used to determine if the scanning priority needs to be raised.
3188 */
3189static bool kswapd_shrink_node(pg_data_t *pgdat,
3190                               struct scan_control *sc)
3191{
3192        struct zone *zone;
3193        int z;
3194
3195        /* Reclaim a number of pages proportional to the number of zones */
3196        sc->nr_to_reclaim = 0;
3197        for (z = 0; z <= sc->reclaim_idx; z++) {
3198                zone = pgdat->node_zones + z;
3199                if (!managed_zone(zone))
3200                        continue;
3201
3202                sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3203        }
3204
3205        /*
3206         * Historically care was taken to put equal pressure on all zones but
3207         * now pressure is applied based on node LRU order.
3208         */
3209        shrink_node(pgdat, sc);
3210
3211        /*
3212         * Fragmentation may mean that the system cannot be rebalanced for
3213         * high-order allocations. If twice the allocation size has been
3214         * reclaimed then recheck watermarks only at order-0 to prevent
3215         * excessive reclaim. Assume that a process requested a high-order
3216         * can direct reclaim/compact.
3217         */
3218        if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3219                sc->order = 0;
3220
3221        return sc->nr_scanned >= sc->nr_to_reclaim;
3222}
3223
3224/*
3225 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3226 * that are eligible for use by the caller until at least one zone is
3227 * balanced.
3228 *
3229 * Returns the order kswapd finished reclaiming at.
3230 *
3231 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3232 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3233 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3234 * or lower is eligible for reclaim until at least one usable zone is
3235 * balanced.
3236 */
3237static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3238{
3239        int i;
3240        unsigned long nr_soft_reclaimed;
3241        unsigned long nr_soft_scanned;
3242        struct zone *zone;
3243        struct scan_control sc = {
3244                .gfp_mask = GFP_KERNEL,
3245                .order = order,
3246                .priority = DEF_PRIORITY,
3247                .may_writepage = !laptop_mode,
3248                .may_unmap = 1,
3249                .may_swap = 1,
3250        };
3251        count_vm_event(PAGEOUTRUN);
3252
3253        do {
3254                unsigned long nr_reclaimed = sc.nr_reclaimed;
3255                bool raise_priority = true;
3256
3257                sc.reclaim_idx = classzone_idx;
3258
3259                /*
3260                 * If the number of buffer_heads exceeds the maximum allowed
3261                 * then consider reclaiming from all zones. This has a dual
3262                 * purpose -- on 64-bit systems it is expected that
3263                 * buffer_heads are stripped during active rotation. On 32-bit
3264                 * systems, highmem pages can pin lowmem memory and shrinking
3265                 * buffers can relieve lowmem pressure. Reclaim may still not
3266                 * go ahead if all eligible zones for the original allocation
3267                 * request are balanced to avoid excessive reclaim from kswapd.
3268                 */
3269                if (buffer_heads_over_limit) {
3270                        for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3271                                zone = pgdat->node_zones + i;
3272                                if (!managed_zone(zone))
3273                                        continue;
3274
3275                                sc.reclaim_idx = i;
3276                                break;
3277                        }
3278                }
3279
3280                /*
3281                 * Only reclaim if there are no eligible zones. Note that
3282                 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3283                 * have adjusted it.
3284                 */
3285                if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3286                        goto out;
3287
3288                /*
3289                 * Do some background aging of the anon list, to give
3290                 * pages a chance to be referenced before reclaiming. All
3291                 * pages are rotated regardless of classzone as this is
3292                 * about consistent aging.
3293                 */
3294                age_active_anon(pgdat, &sc);
3295
3296                /*
3297                 * If we're getting trouble reclaiming, start doing writepage
3298                 * even in laptop mode.
3299                 */
3300                if (sc.priority < DEF_PRIORITY - 2)
3301                        sc.may_writepage = 1;
3302
3303                /* Call soft limit reclaim before calling shrink_node. */
3304                sc.nr_scanned = 0;
3305                nr_soft_scanned = 0;
3306                nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3307                                                sc.gfp_mask, &nr_soft_scanned);
3308                sc.nr_reclaimed += nr_soft_reclaimed;
3309
3310                /*
3311                 * There should be no need to raise the scanning priority if
3312                 * enough pages are already being scanned that that high
3313                 * watermark would be met at 100% efficiency.
3314                 */
3315                if (kswapd_shrink_node(pgdat, &sc))
3316                        raise_priority = false;
3317
3318                /*
3319                 * If the low watermark is met there is no need for processes
3320                 * to be throttled on pfmemalloc_wait as they should not be
3321                 * able to safely make forward progress. Wake them
3322                 */
3323                if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3324                                allow_direct_reclaim(pgdat))
3325                        wake_up_all(&pgdat->pfmemalloc_wait);
3326
3327                /* Check if kswapd should be suspending */
3328                if (try_to_freeze() || kthread_should_stop())
3329                        break;
3330
3331                /*
3332                 * Raise priority if scanning rate is too low or there was no
3333                 * progress in reclaiming pages
3334                 */
3335                nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3336                if (raise_priority || !nr_reclaimed)
3337                        sc.priority--;
3338        } while (sc.priority >= 1);
3339
3340        if (!sc.nr_reclaimed)
3341                pgdat->kswapd_failures++;
3342
3343out:
3344        snapshot_refaults(NULL, pgdat);
3345        /*
3346         * Return the order kswapd stopped reclaiming at as
3347         * prepare_kswapd_sleep() takes it into account. If another caller
3348         * entered the allocator slow path while kswapd was awake, order will
3349         * remain at the higher level.
3350         */
3351        return sc.order;
3352}
3353
3354/*
3355 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3356 * allocation request woke kswapd for. When kswapd has not woken recently,
3357 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3358 * given classzone and returns it or the highest classzone index kswapd
3359 * was recently woke for.
3360 */
3361static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3362                                           enum zone_type classzone_idx)
3363{
3364        if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3365                return classzone_idx;
3366
3367        return max(pgdat->kswapd_classzone_idx, classzone_idx);
3368}
3369
3370static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3371                                unsigned int classzone_idx)
3372{
3373        long remaining = 0;
3374        DEFINE_WAIT(wait);
3375
3376        if (freezing(current) || kthread_should_stop())
3377                return;
3378
3379        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3380
3381        /*
3382         * Try to sleep for a short interval. Note that kcompactd will only be
3383         * woken if it is possible to sleep for a short interval. This is
3384         * deliberate on the assumption that if reclaim cannot keep an
3385         * eligible zone balanced that it's also unlikely that compaction will
3386         * succeed.
3387         */
3388        if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3389                /*
3390                 * Compaction records what page blocks it recently failed to
3391                 * isolate pages from and skips them in the future scanning.
3392                 * When kswapd is going to sleep, it is reasonable to assume
3393                 * that pages and compaction may succeed so reset the cache.
3394                 */
3395                reset_isolation_suitable(pgdat);
3396
3397                /*
3398                 * We have freed the memory, now we should compact it to make
3399                 * allocation of the requested order possible.
3400                 */
3401                wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3402
3403                remaining = schedule_timeout(HZ/10);
3404
3405                /*
3406                 * If woken prematurely then reset kswapd_classzone_idx and
3407                 * order. The values will either be from a wakeup request or
3408                 * the previous request that slept prematurely.
3409                 */
3410                if (remaining) {
3411                        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3412                        pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3413                }
3414
3415                finish_wait(&pgdat->kswapd_wait, &wait);
3416                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3417        }
3418
3419        /*
3420         * After a short sleep, check if it was a premature sleep. If not, then
3421         * go fully to sleep until explicitly woken up.
3422         */
3423        if (!remaining &&
3424            prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3425                trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3426
3427                /*
3428                 * vmstat counters are not perfectly accurate and the estimated
3429                 * value for counters such as NR_FREE_PAGES can deviate from the
3430                 * true value by nr_online_cpus * threshold. To avoid the zone
3431                 * watermarks being breached while under pressure, we reduce the
3432                 * per-cpu vmstat threshold while kswapd is awake and restore
3433                 * them before going back to sleep.
3434                 */
3435                set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3436
3437                if (!kthread_should_stop())
3438                        schedule();
3439
3440                set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3441        } else {
3442                if (remaining)
3443                        count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3444                else
3445                        count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3446        }
3447        finish_wait(&pgdat->kswapd_wait, &wait);
3448}
3449
3450/*
3451 * The background pageout daemon, started as a kernel thread
3452 * from the init process.
3453 *
3454 * This basically trickles out pages so that we have _some_
3455 * free memory available even if there is no other activity
3456 * that frees anything up. This is needed for things like routing
3457 * etc, where we otherwise might have all activity going on in
3458 * asynchronous contexts that cannot page things out.
3459 *
3460 * If there are applications that are active memory-allocators
3461 * (most normal use), this basically shouldn't matter.
3462 */
3463static int kswapd(void *p)
3464{
3465        unsigned int alloc_order, reclaim_order;
3466        unsigned int classzone_idx = MAX_NR_ZONES - 1;
3467        pg_data_t *pgdat = (pg_data_t*)p;
3468        struct task_struct *tsk = current;
3469
3470        struct reclaim_state reclaim_state = {
3471                .reclaimed_slab = 0,
3472        };
3473        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3474
3475        lockdep_set_current_reclaim_state(GFP_KERNEL);
3476
3477        if (!cpumask_empty(cpumask))
3478                set_cpus_allowed_ptr(tsk, cpumask);
3479        current->reclaim_state = &reclaim_state;
3480
3481        /*
3482         * Tell the memory management that we're a "memory allocator",
3483         * and that if we need more memory we should get access to it
3484         * regardless (see "__alloc_pages()"). "kswapd" should
3485         * never get caught in the normal page freeing logic.
3486         *
3487         * (Kswapd normally doesn't need memory anyway, but sometimes
3488         * you need a small amount of memory in order to be able to
3489         * page out something else, and this flag essentially protects
3490         * us from recursively trying to free more memory as we're
3491         * trying to free the first piece of memory in the first place).
3492         */
3493        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3494        set_freezable();
3495
3496        pgdat->kswapd_order = 0;
3497        pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3498        for ( ; ; ) {
3499                bool ret;
3500
3501                alloc_order = reclaim_order = pgdat->kswapd_order;
3502                classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3503
3504kswapd_try_sleep:
3505                kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3506                                        classzone_idx);
3507
3508                /* Read the new order and classzone_idx */
3509                alloc_order = reclaim_order = pgdat->kswapd_order;
3510                classzone_idx = kswapd_classzone_idx(pgdat, 0);
3511                pgdat->kswapd_order = 0;
3512                pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3513
3514                ret = try_to_freeze();
3515                if (kthread_should_stop())
3516                        break;
3517
3518                /*
3519                 * We can speed up thawing tasks if we don't call balance_pgdat
3520                 * after returning from the refrigerator
3521                 */
3522                if (ret)
3523                        continue;
3524
3525                /*
3526                 * Reclaim begins at the requested order but if a high-order
3527                 * reclaim fails then kswapd falls back to reclaiming for
3528                 * order-0. If that happens, kswapd will consider sleeping
3529                 * for the order it finished reclaiming at (reclaim_order)
3530                 * but kcompactd is woken to compact for the original
3531                 * request (alloc_order).
3532                 */
3533                trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3534                                                alloc_order);
3535                reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3536                if (reclaim_order < alloc_order)
3537                        goto kswapd_try_sleep;
3538        }
3539
3540        tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3541        current->reclaim_state = NULL;
3542        lockdep_clear_current_reclaim_state();
3543
3544        return 0;
3545}
3546
3547/*
3548 * A zone is low on free memory, so wake its kswapd task to service it.
3549 */
3550void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3551{
3552        pg_data_t *pgdat;
3553
3554        if (!managed_zone(zone))
3555                return;
3556
3557        if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3558                return;
3559        pgdat = zone->zone_pgdat;
3560        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3561                                                           classzone_idx);
3562        pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3563        if (!waitqueue_active(&pgdat->kswapd_wait))
3564                return;
3565
3566        /* Hopeless node, leave it to direct reclaim */
3567        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3568                return;
3569
3570        if (pgdat_balanced(pgdat, order, classzone_idx))
3571                return;
3572
3573        trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3574        wake_up_interruptible(&pgdat->kswapd_wait);
3575}
3576
3577#ifdef CONFIG_HIBERNATION
3578/*
3579 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3580 * freed pages.
3581 *
3582 * Rather than trying to age LRUs the aim is to preserve the overall
3583 * LRU order by reclaiming preferentially
3584 * inactive > active > active referenced > active mapped
3585 */
3586unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3587{
3588        struct reclaim_state reclaim_state;
3589        struct scan_control sc = {
3590                .nr_to_reclaim = nr_to_reclaim,
3591                .gfp_mask = GFP_HIGHUSER_MOVABLE,
3592                .reclaim_idx = MAX_NR_ZONES - 1,
3593                .priority = DEF_PRIORITY,
3594                .may_writepage = 1,
3595                .may_unmap = 1,
3596                .may_swap = 1,
3597                .hibernation_mode = 1,
3598        };
3599        struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3600        struct task_struct *p = current;
3601        unsigned long nr_reclaimed;
3602        unsigned int noreclaim_flag;
3603
3604        noreclaim_flag = memalloc_noreclaim_save();
3605        lockdep_set_current_reclaim_state(sc.gfp_mask);
3606        reclaim_state.reclaimed_slab = 0;
3607        p->reclaim_state = &reclaim_state;
3608
3609        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3610
3611        p->reclaim_state = NULL;
3612        lockdep_clear_current_reclaim_state();
3613        memalloc_noreclaim_restore(noreclaim_flag);
3614
3615        return nr_reclaimed;
3616}
3617#endif /* CONFIG_HIBERNATION */
3618
3619/* It's optimal to keep kswapds on the same CPUs as their memory, but
3620   not required for correctness.  So if the last cpu in a node goes
3621   away, we get changed to run anywhere: as the first one comes back,
3622   restore their cpu bindings. */
3623static int kswapd_cpu_online(unsigned int cpu)
3624{
3625        int nid;
3626
3627        for_each_node_state(nid, N_MEMORY) {
3628                pg_data_t *pgdat = NODE_DATA(nid);
3629                const struct cpumask *mask;
3630
3631                mask = cpumask_of_node(pgdat->node_id);
3632
3633                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3634                        /* One of our CPUs online: restore mask */
3635                        set_cpus_allowed_ptr(pgdat->kswapd, mask);
3636        }
3637        return 0;
3638}
3639
3640/*
3641 * This kswapd start function will be called by init and node-hot-add.
3642 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3643 */
3644int kswapd_run(int nid)
3645{
3646        pg_data_t *pgdat = NODE_DATA(nid);
3647        int ret = 0;
3648
3649        if (pgdat->kswapd)
3650                return 0;
3651
3652        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3653        if (IS_ERR(pgdat->kswapd)) {
3654                /* failure at boot is fatal */
3655                BUG_ON(system_state == SYSTEM_BOOTING);
3656                pr_err("Failed to start kswapd on node %d\n", nid);
3657                ret = PTR_ERR(pgdat->kswapd);
3658                pgdat->kswapd = NULL;
3659        }
3660        return ret;
3661}
3662
3663/*
3664 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3665 * hold mem_hotplug_begin/end().
3666 */
3667void kswapd_stop(int nid)
3668{
3669        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3670
3671        if (kswapd) {
3672                kthread_stop(kswapd);
3673                NODE_DATA(nid)->kswapd = NULL;
3674        }
3675}
3676
3677static int __init kswapd_init(void)
3678{
3679        int nid, ret;
3680
3681        swap_setup();
3682        for_each_node_state(nid, N_MEMORY)
3683                kswapd_run(nid);
3684        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3685                                        "mm/vmscan:online", kswapd_cpu_online,
3686                                        NULL);
3687        WARN_ON(ret < 0);
3688        return 0;
3689}
3690
3691module_init(kswapd_init)
3692
3693#ifdef CONFIG_NUMA
3694/*
3695 * Node reclaim mode
3696 *
3697 * If non-zero call node_reclaim when the number of free pages falls below
3698 * the watermarks.
3699 */
3700int node_reclaim_mode __read_mostly;
3701
3702#define RECLAIM_OFF 0
3703#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3704#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3705#define RECLAIM_UNMAP (1<<2)    /* Unmap pages during reclaim */
3706
3707/*
3708 * Priority for NODE_RECLAIM. This determines the fraction of pages
3709 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3710 * a zone.
3711 */
3712#define NODE_RECLAIM_PRIORITY 4
3713
3714/*
3715 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3716 * occur.
3717 */
3718int sysctl_min_unmapped_ratio = 1;
3719
3720/*
3721 * If the number of slab pages in a zone grows beyond this percentage then
3722 * slab reclaim needs to occur.
3723 */
3724int sysctl_min_slab_ratio = 5;
3725
3726static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3727{
3728        unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3729        unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3730                node_page_state(pgdat, NR_ACTIVE_FILE);
3731
3732        /*
3733         * It's possible for there to be more file mapped pages than
3734         * accounted for by the pages on the file LRU lists because
3735         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3736         */
3737        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3738}
3739
3740/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3741static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3742{
3743        unsigned long nr_pagecache_reclaimable;
3744        unsigned long delta = 0;
3745
3746        /*
3747         * If RECLAIM_UNMAP is set, then all file pages are considered
3748         * potentially reclaimable. Otherwise, we have to worry about
3749         * pages like swapcache and node_unmapped_file_pages() provides
3750         * a better estimate
3751         */
3752        if (node_reclaim_mode & RECLAIM_UNMAP)
3753                nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3754        else
3755                nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3756
3757        /* If we can't clean pages, remove dirty pages from consideration */
3758        if (!(node_reclaim_mode & RECLAIM_WRITE))
3759                delta += node_page_state(pgdat, NR_FILE_DIRTY);
3760
3761        /* Watch for any possible underflows due to delta */
3762        if (unlikely(delta > nr_pagecache_reclaimable))
3763                delta = nr_pagecache_reclaimable;
3764
3765        return nr_pagecache_reclaimable - delta;
3766}
3767
3768/*
3769 * Try to free up some pages from this node through reclaim.
3770 */
3771static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3772{
3773        /* Minimum pages needed in order to stay on node */
3774        const unsigned long nr_pages = 1 << order;
3775        struct task_struct *p = current;
3776        struct reclaim_state reclaim_state;
3777        int classzone_idx = gfp_zone(gfp_mask);
3778        unsigned int noreclaim_flag;
3779        struct scan_control sc = {
3780                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3781                .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
3782                .order = order,
3783                .priority = NODE_RECLAIM_PRIORITY,
3784                .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3785                .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3786                .may_swap = 1,
3787                .reclaim_idx = classzone_idx,
3788        };
3789
3790        cond_resched();
3791        /*
3792         * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3793         * and we also need to be able to write out pages for RECLAIM_WRITE
3794         * and RECLAIM_UNMAP.
3795         */
3796        noreclaim_flag = memalloc_noreclaim_save();
3797        p->flags |= PF_SWAPWRITE;
3798        lockdep_set_current_reclaim_state(gfp_mask);
3799        reclaim_state.reclaimed_slab = 0;
3800        p->reclaim_state = &reclaim_state;
3801
3802        if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3803                /*
3804                 * Free memory by calling shrink zone with increasing
3805                 * priorities until we have enough memory freed.
3806                 */
3807                do {
3808                        shrink_node(pgdat, &sc);
3809                } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3810        }
3811
3812        p->reclaim_state = NULL;
3813        current->flags &= ~PF_SWAPWRITE;
3814        memalloc_noreclaim_restore(noreclaim_flag);
3815        lockdep_clear_current_reclaim_state();
3816        return sc.nr_reclaimed >= nr_pages;
3817}
3818
3819int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3820{
3821        int ret;
3822
3823        /*
3824         * Node reclaim reclaims unmapped file backed pages and
3825         * slab pages if we are over the defined limits.
3826         *
3827         * A small portion of unmapped file backed pages is needed for
3828         * file I/O otherwise pages read by file I/O will be immediately
3829         * thrown out if the node is overallocated. So we do not reclaim
3830         * if less than a specified percentage of the node is used by
3831         * unmapped file backed pages.
3832         */
3833        if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3834            sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3835                return NODE_RECLAIM_FULL;
3836
3837        /*
3838         * Do not scan if the allocation should not be delayed.
3839         */
3840        if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3841                return NODE_RECLAIM_NOSCAN;
3842
3843        /*
3844         * Only run node reclaim on the local node or on nodes that do not
3845         * have associated processors. This will favor the local processor
3846         * over remote processors and spread off node memory allocations
3847         * as wide as possible.
3848         */
3849        if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3850                return NODE_RECLAIM_NOSCAN;
3851
3852        if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3853                return NODE_RECLAIM_NOSCAN;
3854
3855        ret = __node_reclaim(pgdat, gfp_mask, order);
3856        clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3857
3858        if (!ret)
3859                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3860
3861        return ret;
3862}
3863#endif
3864
3865/*
3866 * page_evictable - test whether a page is evictable
3867 * @page: the page to test
3868 *
3869 * Test whether page is evictable--i.e., should be placed on active/inactive
3870 * lists vs unevictable list.
3871 *
3872 * Reasons page might not be evictable:
3873 * (1) page's mapping marked unevictable
3874 * (2) page is part of an mlocked VMA
3875 *
3876 */
3877int page_evictable(struct page *page)
3878{
3879        return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3880}
3881
3882#ifdef CONFIG_SHMEM
3883/**
3884 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3885 * @pages:      array of pages to check
3886 * @nr_pages:   number of pages to check
3887 *
3888 * Checks pages for evictability and moves them to the appropriate lru list.
3889 *
3890 * This function is only used for SysV IPC SHM_UNLOCK.
3891 */
3892void check_move_unevictable_pages(struct page **pages, int nr_pages)
3893{
3894        struct lruvec *lruvec;
3895        struct pglist_data *pgdat = NULL;
3896        int pgscanned = 0;
3897        int pgrescued = 0;
3898        int i;
3899
3900        for (i = 0; i < nr_pages; i++) {
3901                struct page *page = pages[i];
3902                struct pglist_data *pagepgdat = page_pgdat(page);
3903
3904                pgscanned++;
3905                if (pagepgdat != pgdat) {
3906                        if (pgdat)
3907                                spin_unlock_irq(&pgdat->lru_lock);
3908                        pgdat = pagepgdat;
3909                        spin_lock_irq(&pgdat->lru_lock);
3910                }
3911                lruvec = mem_cgroup_page_lruvec(page, pgdat);
3912
3913                if (!PageLRU(page) || !PageUnevictable(page))
3914                        continue;
3915
3916                if (page_evictable(page)) {
3917                        enum lru_list lru = page_lru_base_type(page);
3918
3919                        VM_BUG_ON_PAGE(PageActive(page), page);
3920                        ClearPageUnevictable(page);
3921                        del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3922                        add_page_to_lru_list(page, lruvec, lru);
3923                        pgrescued++;
3924                }
3925        }
3926
3927        if (pgdat) {
3928                __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3929                __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3930                spin_unlock_irq(&pgdat->lru_lock);
3931        }
3932}
3933#endif /* CONFIG_SHMEM */
3934