linux/net/core/dev.c
<<
>>
Prefs
   1/*
   2 *      NET3    Protocol independent device support routines.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 *      Derived from the non IP parts of dev.c 1.0.19
  10 *              Authors:        Ross Biro
  11 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *      Additional Authors:
  15 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *              David Hinds <dahinds@users.sourceforge.net>
  18 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *              Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *      Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *                                      to 2 if register_netdev gets called
  25 *                                      before net_dev_init & also removed a
  26 *                                      few lines of code in the process.
  27 *              Alan Cox        :       device private ioctl copies fields back.
  28 *              Alan Cox        :       Transmit queue code does relevant
  29 *                                      stunts to keep the queue safe.
  30 *              Alan Cox        :       Fixed double lock.
  31 *              Alan Cox        :       Fixed promisc NULL pointer trap
  32 *              ????????        :       Support the full private ioctl range
  33 *              Alan Cox        :       Moved ioctl permission check into
  34 *                                      drivers
  35 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  36 *              Alan Cox        :       100 backlog just doesn't cut it when
  37 *                                      you start doing multicast video 8)
  38 *              Alan Cox        :       Rewrote net_bh and list manager.
  39 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  40 *              Alan Cox        :       Took out transmit every packet pass
  41 *                                      Saved a few bytes in the ioctl handler
  42 *              Alan Cox        :       Network driver sets packet type before
  43 *                                      calling netif_rx. Saves a function
  44 *                                      call a packet.
  45 *              Alan Cox        :       Hashed net_bh()
  46 *              Richard Kooijman:       Timestamp fixes.
  47 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  48 *              Alan Cox        :       Device lock protection.
  49 *              Alan Cox        :       Fixed nasty side effect of device close
  50 *                                      changes.
  51 *              Rudi Cilibrasi  :       Pass the right thing to
  52 *                                      set_mac_address()
  53 *              Dave Miller     :       32bit quantity for the device lock to
  54 *                                      make it work out on a Sparc.
  55 *              Bjorn Ekwall    :       Added KERNELD hack.
  56 *              Alan Cox        :       Cleaned up the backlog initialise.
  57 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  58 *                                      1 device.
  59 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  60 *                                      is no device open function.
  61 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  62 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  63 *              Cyrus Durgin    :       Cleaned for KMOD
  64 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  65 *                                      A network device unload needs to purge
  66 *                                      the backlog queue.
  67 *      Paul Rusty Russell      :       SIOCSIFNAME
  68 *              Pekka Riikonen  :       Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *                                      indefinitely on dev->refcnt
  71 *              J Hadi Salim    :       - Backlog queue sampling
  72 *                                      - netif_rx() feedback
  73 */
  74
  75#include <linux/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
  84#include <linux/sched/mm.h>
  85#include <linux/mutex.h>
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/notifier.h>
  97#include <linux/skbuff.h>
  98#include <linux/bpf.h>
  99#include <linux/bpf_trace.h>
 100#include <net/net_namespace.h>
 101#include <net/sock.h>
 102#include <net/busy_poll.h>
 103#include <linux/rtnetlink.h>
 104#include <linux/stat.h>
 105#include <net/dst.h>
 106#include <net/dst_metadata.h>
 107#include <net/pkt_sched.h>
 108#include <net/checksum.h>
 109#include <net/xfrm.h>
 110#include <linux/highmem.h>
 111#include <linux/init.h>
 112#include <linux/module.h>
 113#include <linux/netpoll.h>
 114#include <linux/rcupdate.h>
 115#include <linux/delay.h>
 116#include <net/iw_handler.h>
 117#include <asm/current.h>
 118#include <linux/audit.h>
 119#include <linux/dmaengine.h>
 120#include <linux/err.h>
 121#include <linux/ctype.h>
 122#include <linux/if_arp.h>
 123#include <linux/if_vlan.h>
 124#include <linux/ip.h>
 125#include <net/ip.h>
 126#include <net/mpls.h>
 127#include <linux/ipv6.h>
 128#include <linux/in.h>
 129#include <linux/jhash.h>
 130#include <linux/random.h>
 131#include <trace/events/napi.h>
 132#include <trace/events/net.h>
 133#include <trace/events/skb.h>
 134#include <linux/pci.h>
 135#include <linux/inetdevice.h>
 136#include <linux/cpu_rmap.h>
 137#include <linux/static_key.h>
 138#include <linux/hashtable.h>
 139#include <linux/vmalloc.h>
 140#include <linux/if_macvlan.h>
 141#include <linux/errqueue.h>
 142#include <linux/hrtimer.h>
 143#include <linux/netfilter_ingress.h>
 144#include <linux/crash_dump.h>
 145
 146#include "net-sysfs.h"
 147
 148/* Instead of increasing this, you should create a hash table. */
 149#define MAX_GRO_SKBS 8
 150
 151/* This should be increased if a protocol with a bigger head is added. */
 152#define GRO_MAX_HEAD (MAX_HEADER + 128)
 153
 154static DEFINE_SPINLOCK(ptype_lock);
 155static DEFINE_SPINLOCK(offload_lock);
 156struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 157struct list_head ptype_all __read_mostly;       /* Taps */
 158static struct list_head offload_base __read_mostly;
 159
 160static int netif_rx_internal(struct sk_buff *skb);
 161static int call_netdevice_notifiers_info(unsigned long val,
 162                                         struct net_device *dev,
 163                                         struct netdev_notifier_info *info);
 164
 165/*
 166 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 167 * semaphore.
 168 *
 169 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 170 *
 171 * Writers must hold the rtnl semaphore while they loop through the
 172 * dev_base_head list, and hold dev_base_lock for writing when they do the
 173 * actual updates.  This allows pure readers to access the list even
 174 * while a writer is preparing to update it.
 175 *
 176 * To put it another way, dev_base_lock is held for writing only to
 177 * protect against pure readers; the rtnl semaphore provides the
 178 * protection against other writers.
 179 *
 180 * See, for example usages, register_netdevice() and
 181 * unregister_netdevice(), which must be called with the rtnl
 182 * semaphore held.
 183 */
 184DEFINE_RWLOCK(dev_base_lock);
 185EXPORT_SYMBOL(dev_base_lock);
 186
 187/* protects napi_hash addition/deletion and napi_gen_id */
 188static DEFINE_SPINLOCK(napi_hash_lock);
 189
 190static unsigned int napi_gen_id = NR_CPUS;
 191static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 192
 193static seqcount_t devnet_rename_seq;
 194
 195static inline void dev_base_seq_inc(struct net *net)
 196{
 197        while (++net->dev_base_seq == 0)
 198                ;
 199}
 200
 201static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 202{
 203        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 204
 205        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 206}
 207
 208static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 209{
 210        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 211}
 212
 213static inline void rps_lock(struct softnet_data *sd)
 214{
 215#ifdef CONFIG_RPS
 216        spin_lock(&sd->input_pkt_queue.lock);
 217#endif
 218}
 219
 220static inline void rps_unlock(struct softnet_data *sd)
 221{
 222#ifdef CONFIG_RPS
 223        spin_unlock(&sd->input_pkt_queue.lock);
 224#endif
 225}
 226
 227/* Device list insertion */
 228static void list_netdevice(struct net_device *dev)
 229{
 230        struct net *net = dev_net(dev);
 231
 232        ASSERT_RTNL();
 233
 234        write_lock_bh(&dev_base_lock);
 235        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 236        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 237        hlist_add_head_rcu(&dev->index_hlist,
 238                           dev_index_hash(net, dev->ifindex));
 239        write_unlock_bh(&dev_base_lock);
 240
 241        dev_base_seq_inc(net);
 242}
 243
 244/* Device list removal
 245 * caller must respect a RCU grace period before freeing/reusing dev
 246 */
 247static void unlist_netdevice(struct net_device *dev)
 248{
 249        ASSERT_RTNL();
 250
 251        /* Unlink dev from the device chain */
 252        write_lock_bh(&dev_base_lock);
 253        list_del_rcu(&dev->dev_list);
 254        hlist_del_rcu(&dev->name_hlist);
 255        hlist_del_rcu(&dev->index_hlist);
 256        write_unlock_bh(&dev_base_lock);
 257
 258        dev_base_seq_inc(dev_net(dev));
 259}
 260
 261/*
 262 *      Our notifier list
 263 */
 264
 265static RAW_NOTIFIER_HEAD(netdev_chain);
 266
 267/*
 268 *      Device drivers call our routines to queue packets here. We empty the
 269 *      queue in the local softnet handler.
 270 */
 271
 272DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 273EXPORT_PER_CPU_SYMBOL(softnet_data);
 274
 275#ifdef CONFIG_LOCKDEP
 276/*
 277 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 278 * according to dev->type
 279 */
 280static const unsigned short netdev_lock_type[] = {
 281         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 282         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 283         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 284         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 285         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 286         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 287         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 288         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 289         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 290         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 291         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 292         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 293         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 294         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 295         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 296
 297static const char *const netdev_lock_name[] = {
 298        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 299        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 300        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 301        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 302        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 303        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 304        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 305        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 306        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 307        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 308        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 309        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 310        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 311        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 312        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 313
 314static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 315static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 316
 317static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 318{
 319        int i;
 320
 321        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 322                if (netdev_lock_type[i] == dev_type)
 323                        return i;
 324        /* the last key is used by default */
 325        return ARRAY_SIZE(netdev_lock_type) - 1;
 326}
 327
 328static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 329                                                 unsigned short dev_type)
 330{
 331        int i;
 332
 333        i = netdev_lock_pos(dev_type);
 334        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 335                                   netdev_lock_name[i]);
 336}
 337
 338static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 339{
 340        int i;
 341
 342        i = netdev_lock_pos(dev->type);
 343        lockdep_set_class_and_name(&dev->addr_list_lock,
 344                                   &netdev_addr_lock_key[i],
 345                                   netdev_lock_name[i]);
 346}
 347#else
 348static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 349                                                 unsigned short dev_type)
 350{
 351}
 352static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 353{
 354}
 355#endif
 356
 357/*******************************************************************************
 358 *
 359 *              Protocol management and registration routines
 360 *
 361 *******************************************************************************/
 362
 363
 364/*
 365 *      Add a protocol ID to the list. Now that the input handler is
 366 *      smarter we can dispense with all the messy stuff that used to be
 367 *      here.
 368 *
 369 *      BEWARE!!! Protocol handlers, mangling input packets,
 370 *      MUST BE last in hash buckets and checking protocol handlers
 371 *      MUST start from promiscuous ptype_all chain in net_bh.
 372 *      It is true now, do not change it.
 373 *      Explanation follows: if protocol handler, mangling packet, will
 374 *      be the first on list, it is not able to sense, that packet
 375 *      is cloned and should be copied-on-write, so that it will
 376 *      change it and subsequent readers will get broken packet.
 377 *                                                      --ANK (980803)
 378 */
 379
 380static inline struct list_head *ptype_head(const struct packet_type *pt)
 381{
 382        if (pt->type == htons(ETH_P_ALL))
 383                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 384        else
 385                return pt->dev ? &pt->dev->ptype_specific :
 386                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 387}
 388
 389/**
 390 *      dev_add_pack - add packet handler
 391 *      @pt: packet type declaration
 392 *
 393 *      Add a protocol handler to the networking stack. The passed &packet_type
 394 *      is linked into kernel lists and may not be freed until it has been
 395 *      removed from the kernel lists.
 396 *
 397 *      This call does not sleep therefore it can not
 398 *      guarantee all CPU's that are in middle of receiving packets
 399 *      will see the new packet type (until the next received packet).
 400 */
 401
 402void dev_add_pack(struct packet_type *pt)
 403{
 404        struct list_head *head = ptype_head(pt);
 405
 406        spin_lock(&ptype_lock);
 407        list_add_rcu(&pt->list, head);
 408        spin_unlock(&ptype_lock);
 409}
 410EXPORT_SYMBOL(dev_add_pack);
 411
 412/**
 413 *      __dev_remove_pack        - remove packet handler
 414 *      @pt: packet type declaration
 415 *
 416 *      Remove a protocol handler that was previously added to the kernel
 417 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 418 *      from the kernel lists and can be freed or reused once this function
 419 *      returns.
 420 *
 421 *      The packet type might still be in use by receivers
 422 *      and must not be freed until after all the CPU's have gone
 423 *      through a quiescent state.
 424 */
 425void __dev_remove_pack(struct packet_type *pt)
 426{
 427        struct list_head *head = ptype_head(pt);
 428        struct packet_type *pt1;
 429
 430        spin_lock(&ptype_lock);
 431
 432        list_for_each_entry(pt1, head, list) {
 433                if (pt == pt1) {
 434                        list_del_rcu(&pt->list);
 435                        goto out;
 436                }
 437        }
 438
 439        pr_warn("dev_remove_pack: %p not found\n", pt);
 440out:
 441        spin_unlock(&ptype_lock);
 442}
 443EXPORT_SYMBOL(__dev_remove_pack);
 444
 445/**
 446 *      dev_remove_pack  - remove packet handler
 447 *      @pt: packet type declaration
 448 *
 449 *      Remove a protocol handler that was previously added to the kernel
 450 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 451 *      from the kernel lists and can be freed or reused once this function
 452 *      returns.
 453 *
 454 *      This call sleeps to guarantee that no CPU is looking at the packet
 455 *      type after return.
 456 */
 457void dev_remove_pack(struct packet_type *pt)
 458{
 459        __dev_remove_pack(pt);
 460
 461        synchronize_net();
 462}
 463EXPORT_SYMBOL(dev_remove_pack);
 464
 465
 466/**
 467 *      dev_add_offload - register offload handlers
 468 *      @po: protocol offload declaration
 469 *
 470 *      Add protocol offload handlers to the networking stack. The passed
 471 *      &proto_offload is linked into kernel lists and may not be freed until
 472 *      it has been removed from the kernel lists.
 473 *
 474 *      This call does not sleep therefore it can not
 475 *      guarantee all CPU's that are in middle of receiving packets
 476 *      will see the new offload handlers (until the next received packet).
 477 */
 478void dev_add_offload(struct packet_offload *po)
 479{
 480        struct packet_offload *elem;
 481
 482        spin_lock(&offload_lock);
 483        list_for_each_entry(elem, &offload_base, list) {
 484                if (po->priority < elem->priority)
 485                        break;
 486        }
 487        list_add_rcu(&po->list, elem->list.prev);
 488        spin_unlock(&offload_lock);
 489}
 490EXPORT_SYMBOL(dev_add_offload);
 491
 492/**
 493 *      __dev_remove_offload     - remove offload handler
 494 *      @po: packet offload declaration
 495 *
 496 *      Remove a protocol offload handler that was previously added to the
 497 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 498 *      is removed from the kernel lists and can be freed or reused once this
 499 *      function returns.
 500 *
 501 *      The packet type might still be in use by receivers
 502 *      and must not be freed until after all the CPU's have gone
 503 *      through a quiescent state.
 504 */
 505static void __dev_remove_offload(struct packet_offload *po)
 506{
 507        struct list_head *head = &offload_base;
 508        struct packet_offload *po1;
 509
 510        spin_lock(&offload_lock);
 511
 512        list_for_each_entry(po1, head, list) {
 513                if (po == po1) {
 514                        list_del_rcu(&po->list);
 515                        goto out;
 516                }
 517        }
 518
 519        pr_warn("dev_remove_offload: %p not found\n", po);
 520out:
 521        spin_unlock(&offload_lock);
 522}
 523
 524/**
 525 *      dev_remove_offload       - remove packet offload handler
 526 *      @po: packet offload declaration
 527 *
 528 *      Remove a packet offload handler that was previously added to the kernel
 529 *      offload handlers by dev_add_offload(). The passed &offload_type is
 530 *      removed from the kernel lists and can be freed or reused once this
 531 *      function returns.
 532 *
 533 *      This call sleeps to guarantee that no CPU is looking at the packet
 534 *      type after return.
 535 */
 536void dev_remove_offload(struct packet_offload *po)
 537{
 538        __dev_remove_offload(po);
 539
 540        synchronize_net();
 541}
 542EXPORT_SYMBOL(dev_remove_offload);
 543
 544/******************************************************************************
 545 *
 546 *                    Device Boot-time Settings Routines
 547 *
 548 ******************************************************************************/
 549
 550/* Boot time configuration table */
 551static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 552
 553/**
 554 *      netdev_boot_setup_add   - add new setup entry
 555 *      @name: name of the device
 556 *      @map: configured settings for the device
 557 *
 558 *      Adds new setup entry to the dev_boot_setup list.  The function
 559 *      returns 0 on error and 1 on success.  This is a generic routine to
 560 *      all netdevices.
 561 */
 562static int netdev_boot_setup_add(char *name, struct ifmap *map)
 563{
 564        struct netdev_boot_setup *s;
 565        int i;
 566
 567        s = dev_boot_setup;
 568        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 569                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 570                        memset(s[i].name, 0, sizeof(s[i].name));
 571                        strlcpy(s[i].name, name, IFNAMSIZ);
 572                        memcpy(&s[i].map, map, sizeof(s[i].map));
 573                        break;
 574                }
 575        }
 576
 577        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 578}
 579
 580/**
 581 * netdev_boot_setup_check      - check boot time settings
 582 * @dev: the netdevice
 583 *
 584 * Check boot time settings for the device.
 585 * The found settings are set for the device to be used
 586 * later in the device probing.
 587 * Returns 0 if no settings found, 1 if they are.
 588 */
 589int netdev_boot_setup_check(struct net_device *dev)
 590{
 591        struct netdev_boot_setup *s = dev_boot_setup;
 592        int i;
 593
 594        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 595                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 596                    !strcmp(dev->name, s[i].name)) {
 597                        dev->irq = s[i].map.irq;
 598                        dev->base_addr = s[i].map.base_addr;
 599                        dev->mem_start = s[i].map.mem_start;
 600                        dev->mem_end = s[i].map.mem_end;
 601                        return 1;
 602                }
 603        }
 604        return 0;
 605}
 606EXPORT_SYMBOL(netdev_boot_setup_check);
 607
 608
 609/**
 610 * netdev_boot_base     - get address from boot time settings
 611 * @prefix: prefix for network device
 612 * @unit: id for network device
 613 *
 614 * Check boot time settings for the base address of device.
 615 * The found settings are set for the device to be used
 616 * later in the device probing.
 617 * Returns 0 if no settings found.
 618 */
 619unsigned long netdev_boot_base(const char *prefix, int unit)
 620{
 621        const struct netdev_boot_setup *s = dev_boot_setup;
 622        char name[IFNAMSIZ];
 623        int i;
 624
 625        sprintf(name, "%s%d", prefix, unit);
 626
 627        /*
 628         * If device already registered then return base of 1
 629         * to indicate not to probe for this interface
 630         */
 631        if (__dev_get_by_name(&init_net, name))
 632                return 1;
 633
 634        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 635                if (!strcmp(name, s[i].name))
 636                        return s[i].map.base_addr;
 637        return 0;
 638}
 639
 640/*
 641 * Saves at boot time configured settings for any netdevice.
 642 */
 643int __init netdev_boot_setup(char *str)
 644{
 645        int ints[5];
 646        struct ifmap map;
 647
 648        str = get_options(str, ARRAY_SIZE(ints), ints);
 649        if (!str || !*str)
 650                return 0;
 651
 652        /* Save settings */
 653        memset(&map, 0, sizeof(map));
 654        if (ints[0] > 0)
 655                map.irq = ints[1];
 656        if (ints[0] > 1)
 657                map.base_addr = ints[2];
 658        if (ints[0] > 2)
 659                map.mem_start = ints[3];
 660        if (ints[0] > 3)
 661                map.mem_end = ints[4];
 662
 663        /* Add new entry to the list */
 664        return netdev_boot_setup_add(str, &map);
 665}
 666
 667__setup("netdev=", netdev_boot_setup);
 668
 669/*******************************************************************************
 670 *
 671 *                          Device Interface Subroutines
 672 *
 673 *******************************************************************************/
 674
 675/**
 676 *      dev_get_iflink  - get 'iflink' value of a interface
 677 *      @dev: targeted interface
 678 *
 679 *      Indicates the ifindex the interface is linked to.
 680 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 681 */
 682
 683int dev_get_iflink(const struct net_device *dev)
 684{
 685        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 686                return dev->netdev_ops->ndo_get_iflink(dev);
 687
 688        return dev->ifindex;
 689}
 690EXPORT_SYMBOL(dev_get_iflink);
 691
 692/**
 693 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 694 *      @dev: targeted interface
 695 *      @skb: The packet.
 696 *
 697 *      For better visibility of tunnel traffic OVS needs to retrieve
 698 *      egress tunnel information for a packet. Following API allows
 699 *      user to get this info.
 700 */
 701int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 702{
 703        struct ip_tunnel_info *info;
 704
 705        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 706                return -EINVAL;
 707
 708        info = skb_tunnel_info_unclone(skb);
 709        if (!info)
 710                return -ENOMEM;
 711        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 712                return -EINVAL;
 713
 714        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 715}
 716EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 717
 718/**
 719 *      __dev_get_by_name       - find a device by its name
 720 *      @net: the applicable net namespace
 721 *      @name: name to find
 722 *
 723 *      Find an interface by name. Must be called under RTNL semaphore
 724 *      or @dev_base_lock. If the name is found a pointer to the device
 725 *      is returned. If the name is not found then %NULL is returned. The
 726 *      reference counters are not incremented so the caller must be
 727 *      careful with locks.
 728 */
 729
 730struct net_device *__dev_get_by_name(struct net *net, const char *name)
 731{
 732        struct net_device *dev;
 733        struct hlist_head *head = dev_name_hash(net, name);
 734
 735        hlist_for_each_entry(dev, head, name_hlist)
 736                if (!strncmp(dev->name, name, IFNAMSIZ))
 737                        return dev;
 738
 739        return NULL;
 740}
 741EXPORT_SYMBOL(__dev_get_by_name);
 742
 743/**
 744 * dev_get_by_name_rcu  - find a device by its name
 745 * @net: the applicable net namespace
 746 * @name: name to find
 747 *
 748 * Find an interface by name.
 749 * If the name is found a pointer to the device is returned.
 750 * If the name is not found then %NULL is returned.
 751 * The reference counters are not incremented so the caller must be
 752 * careful with locks. The caller must hold RCU lock.
 753 */
 754
 755struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 756{
 757        struct net_device *dev;
 758        struct hlist_head *head = dev_name_hash(net, name);
 759
 760        hlist_for_each_entry_rcu(dev, head, name_hlist)
 761                if (!strncmp(dev->name, name, IFNAMSIZ))
 762                        return dev;
 763
 764        return NULL;
 765}
 766EXPORT_SYMBOL(dev_get_by_name_rcu);
 767
 768/**
 769 *      dev_get_by_name         - find a device by its name
 770 *      @net: the applicable net namespace
 771 *      @name: name to find
 772 *
 773 *      Find an interface by name. This can be called from any
 774 *      context and does its own locking. The returned handle has
 775 *      the usage count incremented and the caller must use dev_put() to
 776 *      release it when it is no longer needed. %NULL is returned if no
 777 *      matching device is found.
 778 */
 779
 780struct net_device *dev_get_by_name(struct net *net, const char *name)
 781{
 782        struct net_device *dev;
 783
 784        rcu_read_lock();
 785        dev = dev_get_by_name_rcu(net, name);
 786        if (dev)
 787                dev_hold(dev);
 788        rcu_read_unlock();
 789        return dev;
 790}
 791EXPORT_SYMBOL(dev_get_by_name);
 792
 793/**
 794 *      __dev_get_by_index - find a device by its ifindex
 795 *      @net: the applicable net namespace
 796 *      @ifindex: index of device
 797 *
 798 *      Search for an interface by index. Returns %NULL if the device
 799 *      is not found or a pointer to the device. The device has not
 800 *      had its reference counter increased so the caller must be careful
 801 *      about locking. The caller must hold either the RTNL semaphore
 802 *      or @dev_base_lock.
 803 */
 804
 805struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 806{
 807        struct net_device *dev;
 808        struct hlist_head *head = dev_index_hash(net, ifindex);
 809
 810        hlist_for_each_entry(dev, head, index_hlist)
 811                if (dev->ifindex == ifindex)
 812                        return dev;
 813
 814        return NULL;
 815}
 816EXPORT_SYMBOL(__dev_get_by_index);
 817
 818/**
 819 *      dev_get_by_index_rcu - find a device by its ifindex
 820 *      @net: the applicable net namespace
 821 *      @ifindex: index of device
 822 *
 823 *      Search for an interface by index. Returns %NULL if the device
 824 *      is not found or a pointer to the device. The device has not
 825 *      had its reference counter increased so the caller must be careful
 826 *      about locking. The caller must hold RCU lock.
 827 */
 828
 829struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 830{
 831        struct net_device *dev;
 832        struct hlist_head *head = dev_index_hash(net, ifindex);
 833
 834        hlist_for_each_entry_rcu(dev, head, index_hlist)
 835                if (dev->ifindex == ifindex)
 836                        return dev;
 837
 838        return NULL;
 839}
 840EXPORT_SYMBOL(dev_get_by_index_rcu);
 841
 842
 843/**
 844 *      dev_get_by_index - find a device by its ifindex
 845 *      @net: the applicable net namespace
 846 *      @ifindex: index of device
 847 *
 848 *      Search for an interface by index. Returns NULL if the device
 849 *      is not found or a pointer to the device. The device returned has
 850 *      had a reference added and the pointer is safe until the user calls
 851 *      dev_put to indicate they have finished with it.
 852 */
 853
 854struct net_device *dev_get_by_index(struct net *net, int ifindex)
 855{
 856        struct net_device *dev;
 857
 858        rcu_read_lock();
 859        dev = dev_get_by_index_rcu(net, ifindex);
 860        if (dev)
 861                dev_hold(dev);
 862        rcu_read_unlock();
 863        return dev;
 864}
 865EXPORT_SYMBOL(dev_get_by_index);
 866
 867/**
 868 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 869 *      @net: network namespace
 870 *      @name: a pointer to the buffer where the name will be stored.
 871 *      @ifindex: the ifindex of the interface to get the name from.
 872 *
 873 *      The use of raw_seqcount_begin() and cond_resched() before
 874 *      retrying is required as we want to give the writers a chance
 875 *      to complete when CONFIG_PREEMPT is not set.
 876 */
 877int netdev_get_name(struct net *net, char *name, int ifindex)
 878{
 879        struct net_device *dev;
 880        unsigned int seq;
 881
 882retry:
 883        seq = raw_seqcount_begin(&devnet_rename_seq);
 884        rcu_read_lock();
 885        dev = dev_get_by_index_rcu(net, ifindex);
 886        if (!dev) {
 887                rcu_read_unlock();
 888                return -ENODEV;
 889        }
 890
 891        strcpy(name, dev->name);
 892        rcu_read_unlock();
 893        if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 894                cond_resched();
 895                goto retry;
 896        }
 897
 898        return 0;
 899}
 900
 901/**
 902 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 903 *      @net: the applicable net namespace
 904 *      @type: media type of device
 905 *      @ha: hardware address
 906 *
 907 *      Search for an interface by MAC address. Returns NULL if the device
 908 *      is not found or a pointer to the device.
 909 *      The caller must hold RCU or RTNL.
 910 *      The returned device has not had its ref count increased
 911 *      and the caller must therefore be careful about locking
 912 *
 913 */
 914
 915struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 916                                       const char *ha)
 917{
 918        struct net_device *dev;
 919
 920        for_each_netdev_rcu(net, dev)
 921                if (dev->type == type &&
 922                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 923                        return dev;
 924
 925        return NULL;
 926}
 927EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 928
 929struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 930{
 931        struct net_device *dev;
 932
 933        ASSERT_RTNL();
 934        for_each_netdev(net, dev)
 935                if (dev->type == type)
 936                        return dev;
 937
 938        return NULL;
 939}
 940EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 941
 942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 943{
 944        struct net_device *dev, *ret = NULL;
 945
 946        rcu_read_lock();
 947        for_each_netdev_rcu(net, dev)
 948                if (dev->type == type) {
 949                        dev_hold(dev);
 950                        ret = dev;
 951                        break;
 952                }
 953        rcu_read_unlock();
 954        return ret;
 955}
 956EXPORT_SYMBOL(dev_getfirstbyhwtype);
 957
 958/**
 959 *      __dev_get_by_flags - find any device with given flags
 960 *      @net: the applicable net namespace
 961 *      @if_flags: IFF_* values
 962 *      @mask: bitmask of bits in if_flags to check
 963 *
 964 *      Search for any interface with the given flags. Returns NULL if a device
 965 *      is not found or a pointer to the device. Must be called inside
 966 *      rtnl_lock(), and result refcount is unchanged.
 967 */
 968
 969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 970                                      unsigned short mask)
 971{
 972        struct net_device *dev, *ret;
 973
 974        ASSERT_RTNL();
 975
 976        ret = NULL;
 977        for_each_netdev(net, dev) {
 978                if (((dev->flags ^ if_flags) & mask) == 0) {
 979                        ret = dev;
 980                        break;
 981                }
 982        }
 983        return ret;
 984}
 985EXPORT_SYMBOL(__dev_get_by_flags);
 986
 987/**
 988 *      dev_valid_name - check if name is okay for network device
 989 *      @name: name string
 990 *
 991 *      Network device names need to be valid file names to
 992 *      to allow sysfs to work.  We also disallow any kind of
 993 *      whitespace.
 994 */
 995bool dev_valid_name(const char *name)
 996{
 997        if (*name == '\0')
 998                return false;
 999        if (strlen(name) >= IFNAMSIZ)
1000                return false;
1001        if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                return false;
1003
1004        while (*name) {
1005                if (*name == '/' || *name == ':' || isspace(*name))
1006                        return false;
1007                name++;
1008        }
1009        return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 *      __dev_alloc_name - allocate a name for a device
1015 *      @net: network namespace to allocate the device name in
1016 *      @name: name format string
1017 *      @buf:  scratch buffer and result name string
1018 *
1019 *      Passed a format string - eg "lt%d" it will try and find a suitable
1020 *      id. It scans list of devices to build up a free map, then chooses
1021 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022 *      while allocating the name and adding the device in order to avoid
1023 *      duplicates.
1024 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 *      Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030        int i = 0;
1031        const char *p;
1032        const int max_netdevices = 8*PAGE_SIZE;
1033        unsigned long *inuse;
1034        struct net_device *d;
1035
1036        p = strnchr(name, IFNAMSIZ-1, '%');
1037        if (p) {
1038                /*
1039                 * Verify the string as this thing may have come from
1040                 * the user.  There must be either one "%d" and no other "%"
1041                 * characters.
1042                 */
1043                if (p[1] != 'd' || strchr(p + 2, '%'))
1044                        return -EINVAL;
1045
1046                /* Use one page as a bit array of possible slots */
1047                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048                if (!inuse)
1049                        return -ENOMEM;
1050
1051                for_each_netdev(net, d) {
1052                        if (!sscanf(d->name, name, &i))
1053                                continue;
1054                        if (i < 0 || i >= max_netdevices)
1055                                continue;
1056
1057                        /*  avoid cases where sscanf is not exact inverse of printf */
1058                        snprintf(buf, IFNAMSIZ, name, i);
1059                        if (!strncmp(buf, d->name, IFNAMSIZ))
1060                                set_bit(i, inuse);
1061                }
1062
1063                i = find_first_zero_bit(inuse, max_netdevices);
1064                free_page((unsigned long) inuse);
1065        }
1066
1067        if (buf != name)
1068                snprintf(buf, IFNAMSIZ, name, i);
1069        if (!__dev_get_by_name(net, buf))
1070                return i;
1071
1072        /* It is possible to run out of possible slots
1073         * when the name is long and there isn't enough space left
1074         * for the digits, or if all bits are used.
1075         */
1076        return -ENFILE;
1077}
1078
1079/**
1080 *      dev_alloc_name - allocate a name for a device
1081 *      @dev: device
1082 *      @name: name format string
1083 *
1084 *      Passed a format string - eg "lt%d" it will try and find a suitable
1085 *      id. It scans list of devices to build up a free map, then chooses
1086 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1087 *      while allocating the name and adding the device in order to avoid
1088 *      duplicates.
1089 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090 *      Returns the number of the unit assigned or a negative errno code.
1091 */
1092
1093int dev_alloc_name(struct net_device *dev, const char *name)
1094{
1095        char buf[IFNAMSIZ];
1096        struct net *net;
1097        int ret;
1098
1099        BUG_ON(!dev_net(dev));
1100        net = dev_net(dev);
1101        ret = __dev_alloc_name(net, name, buf);
1102        if (ret >= 0)
1103                strlcpy(dev->name, buf, IFNAMSIZ);
1104        return ret;
1105}
1106EXPORT_SYMBOL(dev_alloc_name);
1107
1108static int dev_alloc_name_ns(struct net *net,
1109                             struct net_device *dev,
1110                             const char *name)
1111{
1112        char buf[IFNAMSIZ];
1113        int ret;
1114
1115        ret = __dev_alloc_name(net, name, buf);
1116        if (ret >= 0)
1117                strlcpy(dev->name, buf, IFNAMSIZ);
1118        return ret;
1119}
1120
1121static int dev_get_valid_name(struct net *net,
1122                              struct net_device *dev,
1123                              const char *name)
1124{
1125        BUG_ON(!net);
1126
1127        if (!dev_valid_name(name))
1128                return -EINVAL;
1129
1130        if (strchr(name, '%'))
1131                return dev_alloc_name_ns(net, dev, name);
1132        else if (__dev_get_by_name(net, name))
1133                return -EEXIST;
1134        else if (dev->name != name)
1135                strlcpy(dev->name, name, IFNAMSIZ);
1136
1137        return 0;
1138}
1139
1140/**
1141 *      dev_change_name - change name of a device
1142 *      @dev: device
1143 *      @newname: name (or format string) must be at least IFNAMSIZ
1144 *
1145 *      Change name of a device, can pass format strings "eth%d".
1146 *      for wildcarding.
1147 */
1148int dev_change_name(struct net_device *dev, const char *newname)
1149{
1150        unsigned char old_assign_type;
1151        char oldname[IFNAMSIZ];
1152        int err = 0;
1153        int ret;
1154        struct net *net;
1155
1156        ASSERT_RTNL();
1157        BUG_ON(!dev_net(dev));
1158
1159        net = dev_net(dev);
1160        if (dev->flags & IFF_UP)
1161                return -EBUSY;
1162
1163        write_seqcount_begin(&devnet_rename_seq);
1164
1165        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166                write_seqcount_end(&devnet_rename_seq);
1167                return 0;
1168        }
1169
1170        memcpy(oldname, dev->name, IFNAMSIZ);
1171
1172        err = dev_get_valid_name(net, dev, newname);
1173        if (err < 0) {
1174                write_seqcount_end(&devnet_rename_seq);
1175                return err;
1176        }
1177
1178        if (oldname[0] && !strchr(oldname, '%'))
1179                netdev_info(dev, "renamed from %s\n", oldname);
1180
1181        old_assign_type = dev->name_assign_type;
1182        dev->name_assign_type = NET_NAME_RENAMED;
1183
1184rollback:
1185        ret = device_rename(&dev->dev, dev->name);
1186        if (ret) {
1187                memcpy(dev->name, oldname, IFNAMSIZ);
1188                dev->name_assign_type = old_assign_type;
1189                write_seqcount_end(&devnet_rename_seq);
1190                return ret;
1191        }
1192
1193        write_seqcount_end(&devnet_rename_seq);
1194
1195        netdev_adjacent_rename_links(dev, oldname);
1196
1197        write_lock_bh(&dev_base_lock);
1198        hlist_del_rcu(&dev->name_hlist);
1199        write_unlock_bh(&dev_base_lock);
1200
1201        synchronize_rcu();
1202
1203        write_lock_bh(&dev_base_lock);
1204        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205        write_unlock_bh(&dev_base_lock);
1206
1207        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208        ret = notifier_to_errno(ret);
1209
1210        if (ret) {
1211                /* err >= 0 after dev_alloc_name() or stores the first errno */
1212                if (err >= 0) {
1213                        err = ret;
1214                        write_seqcount_begin(&devnet_rename_seq);
1215                        memcpy(dev->name, oldname, IFNAMSIZ);
1216                        memcpy(oldname, newname, IFNAMSIZ);
1217                        dev->name_assign_type = old_assign_type;
1218                        old_assign_type = NET_NAME_RENAMED;
1219                        goto rollback;
1220                } else {
1221                        pr_err("%s: name change rollback failed: %d\n",
1222                               dev->name, ret);
1223                }
1224        }
1225
1226        return err;
1227}
1228
1229/**
1230 *      dev_set_alias - change ifalias of a device
1231 *      @dev: device
1232 *      @alias: name up to IFALIASZ
1233 *      @len: limit of bytes to copy from info
1234 *
1235 *      Set ifalias for a device,
1236 */
1237int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238{
1239        char *new_ifalias;
1240
1241        ASSERT_RTNL();
1242
1243        if (len >= IFALIASZ)
1244                return -EINVAL;
1245
1246        if (!len) {
1247                kfree(dev->ifalias);
1248                dev->ifalias = NULL;
1249                return 0;
1250        }
1251
1252        new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253        if (!new_ifalias)
1254                return -ENOMEM;
1255        dev->ifalias = new_ifalias;
1256        memcpy(dev->ifalias, alias, len);
1257        dev->ifalias[len] = 0;
1258
1259        return len;
1260}
1261
1262
1263/**
1264 *      netdev_features_change - device changes features
1265 *      @dev: device to cause notification
1266 *
1267 *      Called to indicate a device has changed features.
1268 */
1269void netdev_features_change(struct net_device *dev)
1270{
1271        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1272}
1273EXPORT_SYMBOL(netdev_features_change);
1274
1275/**
1276 *      netdev_state_change - device changes state
1277 *      @dev: device to cause notification
1278 *
1279 *      Called to indicate a device has changed state. This function calls
1280 *      the notifier chains for netdev_chain and sends a NEWLINK message
1281 *      to the routing socket.
1282 */
1283void netdev_state_change(struct net_device *dev)
1284{
1285        if (dev->flags & IFF_UP) {
1286                struct netdev_notifier_change_info change_info;
1287
1288                change_info.flags_changed = 0;
1289                call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1290                                              &change_info.info);
1291                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1292        }
1293}
1294EXPORT_SYMBOL(netdev_state_change);
1295
1296/**
1297 * netdev_notify_peers - notify network peers about existence of @dev
1298 * @dev: network device
1299 *
1300 * Generate traffic such that interested network peers are aware of
1301 * @dev, such as by generating a gratuitous ARP. This may be used when
1302 * a device wants to inform the rest of the network about some sort of
1303 * reconfiguration such as a failover event or virtual machine
1304 * migration.
1305 */
1306void netdev_notify_peers(struct net_device *dev)
1307{
1308        rtnl_lock();
1309        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1310        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1311        rtnl_unlock();
1312}
1313EXPORT_SYMBOL(netdev_notify_peers);
1314
1315static int __dev_open(struct net_device *dev)
1316{
1317        const struct net_device_ops *ops = dev->netdev_ops;
1318        int ret;
1319
1320        ASSERT_RTNL();
1321
1322        if (!netif_device_present(dev))
1323                return -ENODEV;
1324
1325        /* Block netpoll from trying to do any rx path servicing.
1326         * If we don't do this there is a chance ndo_poll_controller
1327         * or ndo_poll may be running while we open the device
1328         */
1329        netpoll_poll_disable(dev);
1330
1331        ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1332        ret = notifier_to_errno(ret);
1333        if (ret)
1334                return ret;
1335
1336        set_bit(__LINK_STATE_START, &dev->state);
1337
1338        if (ops->ndo_validate_addr)
1339                ret = ops->ndo_validate_addr(dev);
1340
1341        if (!ret && ops->ndo_open)
1342                ret = ops->ndo_open(dev);
1343
1344        netpoll_poll_enable(dev);
1345
1346        if (ret)
1347                clear_bit(__LINK_STATE_START, &dev->state);
1348        else {
1349                dev->flags |= IFF_UP;
1350                dev_set_rx_mode(dev);
1351                dev_activate(dev);
1352                add_device_randomness(dev->dev_addr, dev->addr_len);
1353        }
1354
1355        return ret;
1356}
1357
1358/**
1359 *      dev_open        - prepare an interface for use.
1360 *      @dev:   device to open
1361 *
1362 *      Takes a device from down to up state. The device's private open
1363 *      function is invoked and then the multicast lists are loaded. Finally
1364 *      the device is moved into the up state and a %NETDEV_UP message is
1365 *      sent to the netdev notifier chain.
1366 *
1367 *      Calling this function on an active interface is a nop. On a failure
1368 *      a negative errno code is returned.
1369 */
1370int dev_open(struct net_device *dev)
1371{
1372        int ret;
1373
1374        if (dev->flags & IFF_UP)
1375                return 0;
1376
1377        ret = __dev_open(dev);
1378        if (ret < 0)
1379                return ret;
1380
1381        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1382        call_netdevice_notifiers(NETDEV_UP, dev);
1383
1384        return ret;
1385}
1386EXPORT_SYMBOL(dev_open);
1387
1388static int __dev_close_many(struct list_head *head)
1389{
1390        struct net_device *dev;
1391
1392        ASSERT_RTNL();
1393        might_sleep();
1394
1395        list_for_each_entry(dev, head, close_list) {
1396                /* Temporarily disable netpoll until the interface is down */
1397                netpoll_poll_disable(dev);
1398
1399                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1400
1401                clear_bit(__LINK_STATE_START, &dev->state);
1402
1403                /* Synchronize to scheduled poll. We cannot touch poll list, it
1404                 * can be even on different cpu. So just clear netif_running().
1405                 *
1406                 * dev->stop() will invoke napi_disable() on all of it's
1407                 * napi_struct instances on this device.
1408                 */
1409                smp_mb__after_atomic(); /* Commit netif_running(). */
1410        }
1411
1412        dev_deactivate_many(head);
1413
1414        list_for_each_entry(dev, head, close_list) {
1415                const struct net_device_ops *ops = dev->netdev_ops;
1416
1417                /*
1418                 *      Call the device specific close. This cannot fail.
1419                 *      Only if device is UP
1420                 *
1421                 *      We allow it to be called even after a DETACH hot-plug
1422                 *      event.
1423                 */
1424                if (ops->ndo_stop)
1425                        ops->ndo_stop(dev);
1426
1427                dev->flags &= ~IFF_UP;
1428                netpoll_poll_enable(dev);
1429        }
1430
1431        return 0;
1432}
1433
1434static int __dev_close(struct net_device *dev)
1435{
1436        int retval;
1437        LIST_HEAD(single);
1438
1439        list_add(&dev->close_list, &single);
1440        retval = __dev_close_many(&single);
1441        list_del(&single);
1442
1443        return retval;
1444}
1445
1446int dev_close_many(struct list_head *head, bool unlink)
1447{
1448        struct net_device *dev, *tmp;
1449
1450        /* Remove the devices that don't need to be closed */
1451        list_for_each_entry_safe(dev, tmp, head, close_list)
1452                if (!(dev->flags & IFF_UP))
1453                        list_del_init(&dev->close_list);
1454
1455        __dev_close_many(head);
1456
1457        list_for_each_entry_safe(dev, tmp, head, close_list) {
1458                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1459                call_netdevice_notifiers(NETDEV_DOWN, dev);
1460                if (unlink)
1461                        list_del_init(&dev->close_list);
1462        }
1463
1464        return 0;
1465}
1466EXPORT_SYMBOL(dev_close_many);
1467
1468/**
1469 *      dev_close - shutdown an interface.
1470 *      @dev: device to shutdown
1471 *
1472 *      This function moves an active device into down state. A
1473 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1474 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1475 *      chain.
1476 */
1477int dev_close(struct net_device *dev)
1478{
1479        if (dev->flags & IFF_UP) {
1480                LIST_HEAD(single);
1481
1482                list_add(&dev->close_list, &single);
1483                dev_close_many(&single, true);
1484                list_del(&single);
1485        }
1486        return 0;
1487}
1488EXPORT_SYMBOL(dev_close);
1489
1490
1491/**
1492 *      dev_disable_lro - disable Large Receive Offload on a device
1493 *      @dev: device
1494 *
1495 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1496 *      called under RTNL.  This is needed if received packets may be
1497 *      forwarded to another interface.
1498 */
1499void dev_disable_lro(struct net_device *dev)
1500{
1501        struct net_device *lower_dev;
1502        struct list_head *iter;
1503
1504        dev->wanted_features &= ~NETIF_F_LRO;
1505        netdev_update_features(dev);
1506
1507        if (unlikely(dev->features & NETIF_F_LRO))
1508                netdev_WARN(dev, "failed to disable LRO!\n");
1509
1510        netdev_for_each_lower_dev(dev, lower_dev, iter)
1511                dev_disable_lro(lower_dev);
1512}
1513EXPORT_SYMBOL(dev_disable_lro);
1514
1515static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1516                                   struct net_device *dev)
1517{
1518        struct netdev_notifier_info info;
1519
1520        netdev_notifier_info_init(&info, dev);
1521        return nb->notifier_call(nb, val, &info);
1522}
1523
1524static int dev_boot_phase = 1;
1525
1526/**
1527 * register_netdevice_notifier - register a network notifier block
1528 * @nb: notifier
1529 *
1530 * Register a notifier to be called when network device events occur.
1531 * The notifier passed is linked into the kernel structures and must
1532 * not be reused until it has been unregistered. A negative errno code
1533 * is returned on a failure.
1534 *
1535 * When registered all registration and up events are replayed
1536 * to the new notifier to allow device to have a race free
1537 * view of the network device list.
1538 */
1539
1540int register_netdevice_notifier(struct notifier_block *nb)
1541{
1542        struct net_device *dev;
1543        struct net_device *last;
1544        struct net *net;
1545        int err;
1546
1547        rtnl_lock();
1548        err = raw_notifier_chain_register(&netdev_chain, nb);
1549        if (err)
1550                goto unlock;
1551        if (dev_boot_phase)
1552                goto unlock;
1553        for_each_net(net) {
1554                for_each_netdev(net, dev) {
1555                        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1556                        err = notifier_to_errno(err);
1557                        if (err)
1558                                goto rollback;
1559
1560                        if (!(dev->flags & IFF_UP))
1561                                continue;
1562
1563                        call_netdevice_notifier(nb, NETDEV_UP, dev);
1564                }
1565        }
1566
1567unlock:
1568        rtnl_unlock();
1569        return err;
1570
1571rollback:
1572        last = dev;
1573        for_each_net(net) {
1574                for_each_netdev(net, dev) {
1575                        if (dev == last)
1576                                goto outroll;
1577
1578                        if (dev->flags & IFF_UP) {
1579                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1580                                                        dev);
1581                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1582                        }
1583                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1584                }
1585        }
1586
1587outroll:
1588        raw_notifier_chain_unregister(&netdev_chain, nb);
1589        goto unlock;
1590}
1591EXPORT_SYMBOL(register_netdevice_notifier);
1592
1593/**
1594 * unregister_netdevice_notifier - unregister a network notifier block
1595 * @nb: notifier
1596 *
1597 * Unregister a notifier previously registered by
1598 * register_netdevice_notifier(). The notifier is unlinked into the
1599 * kernel structures and may then be reused. A negative errno code
1600 * is returned on a failure.
1601 *
1602 * After unregistering unregister and down device events are synthesized
1603 * for all devices on the device list to the removed notifier to remove
1604 * the need for special case cleanup code.
1605 */
1606
1607int unregister_netdevice_notifier(struct notifier_block *nb)
1608{
1609        struct net_device *dev;
1610        struct net *net;
1611        int err;
1612
1613        rtnl_lock();
1614        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1615        if (err)
1616                goto unlock;
1617
1618        for_each_net(net) {
1619                for_each_netdev(net, dev) {
1620                        if (dev->flags & IFF_UP) {
1621                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1622                                                        dev);
1623                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1624                        }
1625                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1626                }
1627        }
1628unlock:
1629        rtnl_unlock();
1630        return err;
1631}
1632EXPORT_SYMBOL(unregister_netdevice_notifier);
1633
1634/**
1635 *      call_netdevice_notifiers_info - call all network notifier blocks
1636 *      @val: value passed unmodified to notifier function
1637 *      @dev: net_device pointer passed unmodified to notifier function
1638 *      @info: notifier information data
1639 *
1640 *      Call all network notifier blocks.  Parameters and return value
1641 *      are as for raw_notifier_call_chain().
1642 */
1643
1644static int call_netdevice_notifiers_info(unsigned long val,
1645                                         struct net_device *dev,
1646                                         struct netdev_notifier_info *info)
1647{
1648        ASSERT_RTNL();
1649        netdev_notifier_info_init(info, dev);
1650        return raw_notifier_call_chain(&netdev_chain, val, info);
1651}
1652
1653/**
1654 *      call_netdevice_notifiers - call all network notifier blocks
1655 *      @val: value passed unmodified to notifier function
1656 *      @dev: net_device pointer passed unmodified to notifier function
1657 *
1658 *      Call all network notifier blocks.  Parameters and return value
1659 *      are as for raw_notifier_call_chain().
1660 */
1661
1662int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1663{
1664        struct netdev_notifier_info info;
1665
1666        return call_netdevice_notifiers_info(val, dev, &info);
1667}
1668EXPORT_SYMBOL(call_netdevice_notifiers);
1669
1670#ifdef CONFIG_NET_INGRESS
1671static struct static_key ingress_needed __read_mostly;
1672
1673void net_inc_ingress_queue(void)
1674{
1675        static_key_slow_inc(&ingress_needed);
1676}
1677EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1678
1679void net_dec_ingress_queue(void)
1680{
1681        static_key_slow_dec(&ingress_needed);
1682}
1683EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1684#endif
1685
1686#ifdef CONFIG_NET_EGRESS
1687static struct static_key egress_needed __read_mostly;
1688
1689void net_inc_egress_queue(void)
1690{
1691        static_key_slow_inc(&egress_needed);
1692}
1693EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1694
1695void net_dec_egress_queue(void)
1696{
1697        static_key_slow_dec(&egress_needed);
1698}
1699EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1700#endif
1701
1702static struct static_key netstamp_needed __read_mostly;
1703#ifdef HAVE_JUMP_LABEL
1704static atomic_t netstamp_needed_deferred;
1705static atomic_t netstamp_wanted;
1706static void netstamp_clear(struct work_struct *work)
1707{
1708        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709        int wanted;
1710
1711        wanted = atomic_add_return(deferred, &netstamp_wanted);
1712        if (wanted > 0)
1713                static_key_enable(&netstamp_needed);
1714        else
1715                static_key_disable(&netstamp_needed);
1716}
1717static DECLARE_WORK(netstamp_work, netstamp_clear);
1718#endif
1719
1720void net_enable_timestamp(void)
1721{
1722#ifdef HAVE_JUMP_LABEL
1723        int wanted;
1724
1725        while (1) {
1726                wanted = atomic_read(&netstamp_wanted);
1727                if (wanted <= 0)
1728                        break;
1729                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1730                        return;
1731        }
1732        atomic_inc(&netstamp_needed_deferred);
1733        schedule_work(&netstamp_work);
1734#else
1735        static_key_slow_inc(&netstamp_needed);
1736#endif
1737}
1738EXPORT_SYMBOL(net_enable_timestamp);
1739
1740void net_disable_timestamp(void)
1741{
1742#ifdef HAVE_JUMP_LABEL
1743        int wanted;
1744
1745        while (1) {
1746                wanted = atomic_read(&netstamp_wanted);
1747                if (wanted <= 1)
1748                        break;
1749                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1750                        return;
1751        }
1752        atomic_dec(&netstamp_needed_deferred);
1753        schedule_work(&netstamp_work);
1754#else
1755        static_key_slow_dec(&netstamp_needed);
1756#endif
1757}
1758EXPORT_SYMBOL(net_disable_timestamp);
1759
1760static inline void net_timestamp_set(struct sk_buff *skb)
1761{
1762        skb->tstamp = 0;
1763        if (static_key_false(&netstamp_needed))
1764                __net_timestamp(skb);
1765}
1766
1767#define net_timestamp_check(COND, SKB)                  \
1768        if (static_key_false(&netstamp_needed)) {               \
1769                if ((COND) && !(SKB)->tstamp)   \
1770                        __net_timestamp(SKB);           \
1771        }                                               \
1772
1773bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1774{
1775        unsigned int len;
1776
1777        if (!(dev->flags & IFF_UP))
1778                return false;
1779
1780        len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1781        if (skb->len <= len)
1782                return true;
1783
1784        /* if TSO is enabled, we don't care about the length as the packet
1785         * could be forwarded without being segmented before
1786         */
1787        if (skb_is_gso(skb))
1788                return true;
1789
1790        return false;
1791}
1792EXPORT_SYMBOL_GPL(is_skb_forwardable);
1793
1794int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795{
1796        int ret = ____dev_forward_skb(dev, skb);
1797
1798        if (likely(!ret)) {
1799                skb->protocol = eth_type_trans(skb, dev);
1800                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1801        }
1802
1803        return ret;
1804}
1805EXPORT_SYMBOL_GPL(__dev_forward_skb);
1806
1807/**
1808 * dev_forward_skb - loopback an skb to another netif
1809 *
1810 * @dev: destination network device
1811 * @skb: buffer to forward
1812 *
1813 * return values:
1814 *      NET_RX_SUCCESS  (no congestion)
1815 *      NET_RX_DROP     (packet was dropped, but freed)
1816 *
1817 * dev_forward_skb can be used for injecting an skb from the
1818 * start_xmit function of one device into the receive queue
1819 * of another device.
1820 *
1821 * The receiving device may be in another namespace, so
1822 * we have to clear all information in the skb that could
1823 * impact namespace isolation.
1824 */
1825int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826{
1827        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1828}
1829EXPORT_SYMBOL_GPL(dev_forward_skb);
1830
1831static inline int deliver_skb(struct sk_buff *skb,
1832                              struct packet_type *pt_prev,
1833                              struct net_device *orig_dev)
1834{
1835        if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1836                return -ENOMEM;
1837        atomic_inc(&skb->users);
1838        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1839}
1840
1841static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1842                                          struct packet_type **pt,
1843                                          struct net_device *orig_dev,
1844                                          __be16 type,
1845                                          struct list_head *ptype_list)
1846{
1847        struct packet_type *ptype, *pt_prev = *pt;
1848
1849        list_for_each_entry_rcu(ptype, ptype_list, list) {
1850                if (ptype->type != type)
1851                        continue;
1852                if (pt_prev)
1853                        deliver_skb(skb, pt_prev, orig_dev);
1854                pt_prev = ptype;
1855        }
1856        *pt = pt_prev;
1857}
1858
1859static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1860{
1861        if (!ptype->af_packet_priv || !skb->sk)
1862                return false;
1863
1864        if (ptype->id_match)
1865                return ptype->id_match(ptype, skb->sk);
1866        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1867                return true;
1868
1869        return false;
1870}
1871
1872/*
1873 *      Support routine. Sends outgoing frames to any network
1874 *      taps currently in use.
1875 */
1876
1877void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1878{
1879        struct packet_type *ptype;
1880        struct sk_buff *skb2 = NULL;
1881        struct packet_type *pt_prev = NULL;
1882        struct list_head *ptype_list = &ptype_all;
1883
1884        rcu_read_lock();
1885again:
1886        list_for_each_entry_rcu(ptype, ptype_list, list) {
1887                /* Never send packets back to the socket
1888                 * they originated from - MvS (miquels@drinkel.ow.org)
1889                 */
1890                if (skb_loop_sk(ptype, skb))
1891                        continue;
1892
1893                if (pt_prev) {
1894                        deliver_skb(skb2, pt_prev, skb->dev);
1895                        pt_prev = ptype;
1896                        continue;
1897                }
1898
1899                /* need to clone skb, done only once */
1900                skb2 = skb_clone(skb, GFP_ATOMIC);
1901                if (!skb2)
1902                        goto out_unlock;
1903
1904                net_timestamp_set(skb2);
1905
1906                /* skb->nh should be correctly
1907                 * set by sender, so that the second statement is
1908                 * just protection against buggy protocols.
1909                 */
1910                skb_reset_mac_header(skb2);
1911
1912                if (skb_network_header(skb2) < skb2->data ||
1913                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1914                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1915                                             ntohs(skb2->protocol),
1916                                             dev->name);
1917                        skb_reset_network_header(skb2);
1918                }
1919
1920                skb2->transport_header = skb2->network_header;
1921                skb2->pkt_type = PACKET_OUTGOING;
1922                pt_prev = ptype;
1923        }
1924
1925        if (ptype_list == &ptype_all) {
1926                ptype_list = &dev->ptype_all;
1927                goto again;
1928        }
1929out_unlock:
1930        if (pt_prev)
1931                pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1932        rcu_read_unlock();
1933}
1934EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1935
1936/**
1937 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1938 * @dev: Network device
1939 * @txq: number of queues available
1940 *
1941 * If real_num_tx_queues is changed the tc mappings may no longer be
1942 * valid. To resolve this verify the tc mapping remains valid and if
1943 * not NULL the mapping. With no priorities mapping to this
1944 * offset/count pair it will no longer be used. In the worst case TC0
1945 * is invalid nothing can be done so disable priority mappings. If is
1946 * expected that drivers will fix this mapping if they can before
1947 * calling netif_set_real_num_tx_queues.
1948 */
1949static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1950{
1951        int i;
1952        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1953
1954        /* If TC0 is invalidated disable TC mapping */
1955        if (tc->offset + tc->count > txq) {
1956                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1957                dev->num_tc = 0;
1958                return;
1959        }
1960
1961        /* Invalidated prio to tc mappings set to TC0 */
1962        for (i = 1; i < TC_BITMASK + 1; i++) {
1963                int q = netdev_get_prio_tc_map(dev, i);
1964
1965                tc = &dev->tc_to_txq[q];
1966                if (tc->offset + tc->count > txq) {
1967                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1968                                i, q);
1969                        netdev_set_prio_tc_map(dev, i, 0);
1970                }
1971        }
1972}
1973
1974int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1975{
1976        if (dev->num_tc) {
1977                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1978                int i;
1979
1980                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1981                        if ((txq - tc->offset) < tc->count)
1982                                return i;
1983                }
1984
1985                return -1;
1986        }
1987
1988        return 0;
1989}
1990
1991#ifdef CONFIG_XPS
1992static DEFINE_MUTEX(xps_map_mutex);
1993#define xmap_dereference(P)             \
1994        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1995
1996static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1997                             int tci, u16 index)
1998{
1999        struct xps_map *map = NULL;
2000        int pos;
2001
2002        if (dev_maps)
2003                map = xmap_dereference(dev_maps->cpu_map[tci]);
2004        if (!map)
2005                return false;
2006
2007        for (pos = map->len; pos--;) {
2008                if (map->queues[pos] != index)
2009                        continue;
2010
2011                if (map->len > 1) {
2012                        map->queues[pos] = map->queues[--map->len];
2013                        break;
2014                }
2015
2016                RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2017                kfree_rcu(map, rcu);
2018                return false;
2019        }
2020
2021        return true;
2022}
2023
2024static bool remove_xps_queue_cpu(struct net_device *dev,
2025                                 struct xps_dev_maps *dev_maps,
2026                                 int cpu, u16 offset, u16 count)
2027{
2028        int num_tc = dev->num_tc ? : 1;
2029        bool active = false;
2030        int tci;
2031
2032        for (tci = cpu * num_tc; num_tc--; tci++) {
2033                int i, j;
2034
2035                for (i = count, j = offset; i--; j++) {
2036                        if (!remove_xps_queue(dev_maps, cpu, j))
2037                                break;
2038                }
2039
2040                active |= i < 0;
2041        }
2042
2043        return active;
2044}
2045
2046static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2047                                   u16 count)
2048{
2049        struct xps_dev_maps *dev_maps;
2050        int cpu, i;
2051        bool active = false;
2052
2053        mutex_lock(&xps_map_mutex);
2054        dev_maps = xmap_dereference(dev->xps_maps);
2055
2056        if (!dev_maps)
2057                goto out_no_maps;
2058
2059        for_each_possible_cpu(cpu)
2060                active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2061                                               offset, count);
2062
2063        if (!active) {
2064                RCU_INIT_POINTER(dev->xps_maps, NULL);
2065                kfree_rcu(dev_maps, rcu);
2066        }
2067
2068        for (i = offset + (count - 1); count--; i--)
2069                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2070                                             NUMA_NO_NODE);
2071
2072out_no_maps:
2073        mutex_unlock(&xps_map_mutex);
2074}
2075
2076static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2077{
2078        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2079}
2080
2081static struct xps_map *expand_xps_map(struct xps_map *map,
2082                                      int cpu, u16 index)
2083{
2084        struct xps_map *new_map;
2085        int alloc_len = XPS_MIN_MAP_ALLOC;
2086        int i, pos;
2087
2088        for (pos = 0; map && pos < map->len; pos++) {
2089                if (map->queues[pos] != index)
2090                        continue;
2091                return map;
2092        }
2093
2094        /* Need to add queue to this CPU's existing map */
2095        if (map) {
2096                if (pos < map->alloc_len)
2097                        return map;
2098
2099                alloc_len = map->alloc_len * 2;
2100        }
2101
2102        /* Need to allocate new map to store queue on this CPU's map */
2103        new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2104                               cpu_to_node(cpu));
2105        if (!new_map)
2106                return NULL;
2107
2108        for (i = 0; i < pos; i++)
2109                new_map->queues[i] = map->queues[i];
2110        new_map->alloc_len = alloc_len;
2111        new_map->len = pos;
2112
2113        return new_map;
2114}
2115
2116int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2117                        u16 index)
2118{
2119        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2120        int i, cpu, tci, numa_node_id = -2;
2121        int maps_sz, num_tc = 1, tc = 0;
2122        struct xps_map *map, *new_map;
2123        bool active = false;
2124
2125        if (dev->num_tc) {
2126                num_tc = dev->num_tc;
2127                tc = netdev_txq_to_tc(dev, index);
2128                if (tc < 0)
2129                        return -EINVAL;
2130        }
2131
2132        maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2133        if (maps_sz < L1_CACHE_BYTES)
2134                maps_sz = L1_CACHE_BYTES;
2135
2136        mutex_lock(&xps_map_mutex);
2137
2138        dev_maps = xmap_dereference(dev->xps_maps);
2139
2140        /* allocate memory for queue storage */
2141        for_each_cpu_and(cpu, cpu_online_mask, mask) {
2142                if (!new_dev_maps)
2143                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2144                if (!new_dev_maps) {
2145                        mutex_unlock(&xps_map_mutex);
2146                        return -ENOMEM;
2147                }
2148
2149                tci = cpu * num_tc + tc;
2150                map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2151                                 NULL;
2152
2153                map = expand_xps_map(map, cpu, index);
2154                if (!map)
2155                        goto error;
2156
2157                RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2158        }
2159
2160        if (!new_dev_maps)
2161                goto out_no_new_maps;
2162
2163        for_each_possible_cpu(cpu) {
2164                /* copy maps belonging to foreign traffic classes */
2165                for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2166                        /* fill in the new device map from the old device map */
2167                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2168                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2169                }
2170
2171                /* We need to explicitly update tci as prevous loop
2172                 * could break out early if dev_maps is NULL.
2173                 */
2174                tci = cpu * num_tc + tc;
2175
2176                if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2177                        /* add queue to CPU maps */
2178                        int pos = 0;
2179
2180                        map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2181                        while ((pos < map->len) && (map->queues[pos] != index))
2182                                pos++;
2183
2184                        if (pos == map->len)
2185                                map->queues[map->len++] = index;
2186#ifdef CONFIG_NUMA
2187                        if (numa_node_id == -2)
2188                                numa_node_id = cpu_to_node(cpu);
2189                        else if (numa_node_id != cpu_to_node(cpu))
2190                                numa_node_id = -1;
2191#endif
2192                } else if (dev_maps) {
2193                        /* fill in the new device map from the old device map */
2194                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2195                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2196                }
2197
2198                /* copy maps belonging to foreign traffic classes */
2199                for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2200                        /* fill in the new device map from the old device map */
2201                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2202                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2203                }
2204        }
2205
2206        rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2207
2208        /* Cleanup old maps */
2209        if (!dev_maps)
2210                goto out_no_old_maps;
2211
2212        for_each_possible_cpu(cpu) {
2213                for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2214                        new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2215                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2216                        if (map && map != new_map)
2217                                kfree_rcu(map, rcu);
2218                }
2219        }
2220
2221        kfree_rcu(dev_maps, rcu);
2222
2223out_no_old_maps:
2224        dev_maps = new_dev_maps;
2225        active = true;
2226
2227out_no_new_maps:
2228        /* update Tx queue numa node */
2229        netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2230                                     (numa_node_id >= 0) ? numa_node_id :
2231                                     NUMA_NO_NODE);
2232
2233        if (!dev_maps)
2234                goto out_no_maps;
2235
2236        /* removes queue from unused CPUs */
2237        for_each_possible_cpu(cpu) {
2238                for (i = tc, tci = cpu * num_tc; i--; tci++)
2239                        active |= remove_xps_queue(dev_maps, tci, index);
2240                if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2241                        active |= remove_xps_queue(dev_maps, tci, index);
2242                for (i = num_tc - tc, tci++; --i; tci++)
2243                        active |= remove_xps_queue(dev_maps, tci, index);
2244        }
2245
2246        /* free map if not active */
2247        if (!active) {
2248                RCU_INIT_POINTER(dev->xps_maps, NULL);
2249                kfree_rcu(dev_maps, rcu);
2250        }
2251
2252out_no_maps:
2253        mutex_unlock(&xps_map_mutex);
2254
2255        return 0;
2256error:
2257        /* remove any maps that we added */
2258        for_each_possible_cpu(cpu) {
2259                for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2260                        new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2261                        map = dev_maps ?
2262                              xmap_dereference(dev_maps->cpu_map[tci]) :
2263                              NULL;
2264                        if (new_map && new_map != map)
2265                                kfree(new_map);
2266                }
2267        }
2268
2269        mutex_unlock(&xps_map_mutex);
2270
2271        kfree(new_dev_maps);
2272        return -ENOMEM;
2273}
2274EXPORT_SYMBOL(netif_set_xps_queue);
2275
2276#endif
2277void netdev_reset_tc(struct net_device *dev)
2278{
2279#ifdef CONFIG_XPS
2280        netif_reset_xps_queues_gt(dev, 0);
2281#endif
2282        dev->num_tc = 0;
2283        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2284        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2285}
2286EXPORT_SYMBOL(netdev_reset_tc);
2287
2288int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2289{
2290        if (tc >= dev->num_tc)
2291                return -EINVAL;
2292
2293#ifdef CONFIG_XPS
2294        netif_reset_xps_queues(dev, offset, count);
2295#endif
2296        dev->tc_to_txq[tc].count = count;
2297        dev->tc_to_txq[tc].offset = offset;
2298        return 0;
2299}
2300EXPORT_SYMBOL(netdev_set_tc_queue);
2301
2302int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2303{
2304        if (num_tc > TC_MAX_QUEUE)
2305                return -EINVAL;
2306
2307#ifdef CONFIG_XPS
2308        netif_reset_xps_queues_gt(dev, 0);
2309#endif
2310        dev->num_tc = num_tc;
2311        return 0;
2312}
2313EXPORT_SYMBOL(netdev_set_num_tc);
2314
2315/*
2316 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2317 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2318 */
2319int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2320{
2321        int rc;
2322
2323        if (txq < 1 || txq > dev->num_tx_queues)
2324                return -EINVAL;
2325
2326        if (dev->reg_state == NETREG_REGISTERED ||
2327            dev->reg_state == NETREG_UNREGISTERING) {
2328                ASSERT_RTNL();
2329
2330                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2331                                                  txq);
2332                if (rc)
2333                        return rc;
2334
2335                if (dev->num_tc)
2336                        netif_setup_tc(dev, txq);
2337
2338                if (txq < dev->real_num_tx_queues) {
2339                        qdisc_reset_all_tx_gt(dev, txq);
2340#ifdef CONFIG_XPS
2341                        netif_reset_xps_queues_gt(dev, txq);
2342#endif
2343                }
2344        }
2345
2346        dev->real_num_tx_queues = txq;
2347        return 0;
2348}
2349EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2350
2351#ifdef CONFIG_SYSFS
2352/**
2353 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2354 *      @dev: Network device
2355 *      @rxq: Actual number of RX queues
2356 *
2357 *      This must be called either with the rtnl_lock held or before
2358 *      registration of the net device.  Returns 0 on success, or a
2359 *      negative error code.  If called before registration, it always
2360 *      succeeds.
2361 */
2362int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2363{
2364        int rc;
2365
2366        if (rxq < 1 || rxq > dev->num_rx_queues)
2367                return -EINVAL;
2368
2369        if (dev->reg_state == NETREG_REGISTERED) {
2370                ASSERT_RTNL();
2371
2372                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2373                                                  rxq);
2374                if (rc)
2375                        return rc;
2376        }
2377
2378        dev->real_num_rx_queues = rxq;
2379        return 0;
2380}
2381EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2382#endif
2383
2384/**
2385 * netif_get_num_default_rss_queues - default number of RSS queues
2386 *
2387 * This routine should set an upper limit on the number of RSS queues
2388 * used by default by multiqueue devices.
2389 */
2390int netif_get_num_default_rss_queues(void)
2391{
2392        return is_kdump_kernel() ?
2393                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2394}
2395EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2396
2397static void __netif_reschedule(struct Qdisc *q)
2398{
2399        struct softnet_data *sd;
2400        unsigned long flags;
2401
2402        local_irq_save(flags);
2403        sd = this_cpu_ptr(&softnet_data);
2404        q->next_sched = NULL;
2405        *sd->output_queue_tailp = q;
2406        sd->output_queue_tailp = &q->next_sched;
2407        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2408        local_irq_restore(flags);
2409}
2410
2411void __netif_schedule(struct Qdisc *q)
2412{
2413        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2414                __netif_reschedule(q);
2415}
2416EXPORT_SYMBOL(__netif_schedule);
2417
2418struct dev_kfree_skb_cb {
2419        enum skb_free_reason reason;
2420};
2421
2422static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2423{
2424        return (struct dev_kfree_skb_cb *)skb->cb;
2425}
2426
2427void netif_schedule_queue(struct netdev_queue *txq)
2428{
2429        rcu_read_lock();
2430        if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2431                struct Qdisc *q = rcu_dereference(txq->qdisc);
2432
2433                __netif_schedule(q);
2434        }
2435        rcu_read_unlock();
2436}
2437EXPORT_SYMBOL(netif_schedule_queue);
2438
2439void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2440{
2441        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2442                struct Qdisc *q;
2443
2444                rcu_read_lock();
2445                q = rcu_dereference(dev_queue->qdisc);
2446                __netif_schedule(q);
2447                rcu_read_unlock();
2448        }
2449}
2450EXPORT_SYMBOL(netif_tx_wake_queue);
2451
2452void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2453{
2454        unsigned long flags;
2455
2456        if (unlikely(!skb))
2457                return;
2458
2459        if (likely(atomic_read(&skb->users) == 1)) {
2460                smp_rmb();
2461                atomic_set(&skb->users, 0);
2462        } else if (likely(!atomic_dec_and_test(&skb->users))) {
2463                return;
2464        }
2465        get_kfree_skb_cb(skb)->reason = reason;
2466        local_irq_save(flags);
2467        skb->next = __this_cpu_read(softnet_data.completion_queue);
2468        __this_cpu_write(softnet_data.completion_queue, skb);
2469        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2470        local_irq_restore(flags);
2471}
2472EXPORT_SYMBOL(__dev_kfree_skb_irq);
2473
2474void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2475{
2476        if (in_irq() || irqs_disabled())
2477                __dev_kfree_skb_irq(skb, reason);
2478        else
2479                dev_kfree_skb(skb);
2480}
2481EXPORT_SYMBOL(__dev_kfree_skb_any);
2482
2483
2484/**
2485 * netif_device_detach - mark device as removed
2486 * @dev: network device
2487 *
2488 * Mark device as removed from system and therefore no longer available.
2489 */
2490void netif_device_detach(struct net_device *dev)
2491{
2492        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2493            netif_running(dev)) {
2494                netif_tx_stop_all_queues(dev);
2495        }
2496}
2497EXPORT_SYMBOL(netif_device_detach);
2498
2499/**
2500 * netif_device_attach - mark device as attached
2501 * @dev: network device
2502 *
2503 * Mark device as attached from system and restart if needed.
2504 */
2505void netif_device_attach(struct net_device *dev)
2506{
2507        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2508            netif_running(dev)) {
2509                netif_tx_wake_all_queues(dev);
2510                __netdev_watchdog_up(dev);
2511        }
2512}
2513EXPORT_SYMBOL(netif_device_attach);
2514
2515/*
2516 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2517 * to be used as a distribution range.
2518 */
2519u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2520                  unsigned int num_tx_queues)
2521{
2522        u32 hash;
2523        u16 qoffset = 0;
2524        u16 qcount = num_tx_queues;
2525
2526        if (skb_rx_queue_recorded(skb)) {
2527                hash = skb_get_rx_queue(skb);
2528                while (unlikely(hash >= num_tx_queues))
2529                        hash -= num_tx_queues;
2530                return hash;
2531        }
2532
2533        if (dev->num_tc) {
2534                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2535
2536                qoffset = dev->tc_to_txq[tc].offset;
2537                qcount = dev->tc_to_txq[tc].count;
2538        }
2539
2540        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2541}
2542EXPORT_SYMBOL(__skb_tx_hash);
2543
2544static void skb_warn_bad_offload(const struct sk_buff *skb)
2545{
2546        static const netdev_features_t null_features;
2547        struct net_device *dev = skb->dev;
2548        const char *name = "";
2549
2550        if (!net_ratelimit())
2551                return;
2552
2553        if (dev) {
2554                if (dev->dev.parent)
2555                        name = dev_driver_string(dev->dev.parent);
2556                else
2557                        name = netdev_name(dev);
2558        }
2559        WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2560             "gso_type=%d ip_summed=%d\n",
2561             name, dev ? &dev->features : &null_features,
2562             skb->sk ? &skb->sk->sk_route_caps : &null_features,
2563             skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2564             skb_shinfo(skb)->gso_type, skb->ip_summed);
2565}
2566
2567/*
2568 * Invalidate hardware checksum when packet is to be mangled, and
2569 * complete checksum manually on outgoing path.
2570 */
2571int skb_checksum_help(struct sk_buff *skb)
2572{
2573        __wsum csum;
2574        int ret = 0, offset;
2575
2576        if (skb->ip_summed == CHECKSUM_COMPLETE)
2577                goto out_set_summed;
2578
2579        if (unlikely(skb_shinfo(skb)->gso_size)) {
2580                skb_warn_bad_offload(skb);
2581                return -EINVAL;
2582        }
2583
2584        /* Before computing a checksum, we should make sure no frag could
2585         * be modified by an external entity : checksum could be wrong.
2586         */
2587        if (skb_has_shared_frag(skb)) {
2588                ret = __skb_linearize(skb);
2589                if (ret)
2590                        goto out;
2591        }
2592
2593        offset = skb_checksum_start_offset(skb);
2594        BUG_ON(offset >= skb_headlen(skb));
2595        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2596
2597        offset += skb->csum_offset;
2598        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2599
2600        if (skb_cloned(skb) &&
2601            !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2602                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2603                if (ret)
2604                        goto out;
2605        }
2606
2607        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2608out_set_summed:
2609        skb->ip_summed = CHECKSUM_NONE;
2610out:
2611        return ret;
2612}
2613EXPORT_SYMBOL(skb_checksum_help);
2614
2615__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2616{
2617        __be16 type = skb->protocol;
2618
2619        /* Tunnel gso handlers can set protocol to ethernet. */
2620        if (type == htons(ETH_P_TEB)) {
2621                struct ethhdr *eth;
2622
2623                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2624                        return 0;
2625
2626                eth = (struct ethhdr *)skb_mac_header(skb);
2627                type = eth->h_proto;
2628        }
2629
2630        return __vlan_get_protocol(skb, type, depth);
2631}
2632
2633/**
2634 *      skb_mac_gso_segment - mac layer segmentation handler.
2635 *      @skb: buffer to segment
2636 *      @features: features for the output path (see dev->features)
2637 */
2638struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2639                                    netdev_features_t features)
2640{
2641        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2642        struct packet_offload *ptype;
2643        int vlan_depth = skb->mac_len;
2644        __be16 type = skb_network_protocol(skb, &vlan_depth);
2645
2646        if (unlikely(!type))
2647                return ERR_PTR(-EINVAL);
2648
2649        __skb_pull(skb, vlan_depth);
2650
2651        rcu_read_lock();
2652        list_for_each_entry_rcu(ptype, &offload_base, list) {
2653                if (ptype->type == type && ptype->callbacks.gso_segment) {
2654                        segs = ptype->callbacks.gso_segment(skb, features);
2655                        break;
2656                }
2657        }
2658        rcu_read_unlock();
2659
2660        __skb_push(skb, skb->data - skb_mac_header(skb));
2661
2662        return segs;
2663}
2664EXPORT_SYMBOL(skb_mac_gso_segment);
2665
2666
2667/* openvswitch calls this on rx path, so we need a different check.
2668 */
2669static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2670{
2671        if (tx_path)
2672                return skb->ip_summed != CHECKSUM_PARTIAL &&
2673                       skb->ip_summed != CHECKSUM_NONE;
2674
2675        return skb->ip_summed == CHECKSUM_NONE;
2676}
2677
2678/**
2679 *      __skb_gso_segment - Perform segmentation on skb.
2680 *      @skb: buffer to segment
2681 *      @features: features for the output path (see dev->features)
2682 *      @tx_path: whether it is called in TX path
2683 *
2684 *      This function segments the given skb and returns a list of segments.
2685 *
2686 *      It may return NULL if the skb requires no segmentation.  This is
2687 *      only possible when GSO is used for verifying header integrity.
2688 *
2689 *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2690 */
2691struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2692                                  netdev_features_t features, bool tx_path)
2693{
2694        struct sk_buff *segs;
2695
2696        if (unlikely(skb_needs_check(skb, tx_path))) {
2697                int err;
2698
2699                /* We're going to init ->check field in TCP or UDP header */
2700                err = skb_cow_head(skb, 0);
2701                if (err < 0)
2702                        return ERR_PTR(err);
2703        }
2704
2705        /* Only report GSO partial support if it will enable us to
2706         * support segmentation on this frame without needing additional
2707         * work.
2708         */
2709        if (features & NETIF_F_GSO_PARTIAL) {
2710                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2711                struct net_device *dev = skb->dev;
2712
2713                partial_features |= dev->features & dev->gso_partial_features;
2714                if (!skb_gso_ok(skb, features | partial_features))
2715                        features &= ~NETIF_F_GSO_PARTIAL;
2716        }
2717
2718        BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2719                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2720
2721        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2722        SKB_GSO_CB(skb)->encap_level = 0;
2723
2724        skb_reset_mac_header(skb);
2725        skb_reset_mac_len(skb);
2726
2727        segs = skb_mac_gso_segment(skb, features);
2728
2729        if (unlikely(skb_needs_check(skb, tx_path)))
2730                skb_warn_bad_offload(skb);
2731
2732        return segs;
2733}
2734EXPORT_SYMBOL(__skb_gso_segment);
2735
2736/* Take action when hardware reception checksum errors are detected. */
2737#ifdef CONFIG_BUG
2738void netdev_rx_csum_fault(struct net_device *dev)
2739{
2740        if (net_ratelimit()) {
2741                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2742                dump_stack();
2743        }
2744}
2745EXPORT_SYMBOL(netdev_rx_csum_fault);
2746#endif
2747
2748/* Actually, we should eliminate this check as soon as we know, that:
2749 * 1. IOMMU is present and allows to map all the memory.
2750 * 2. No high memory really exists on this machine.
2751 */
2752
2753static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2754{
2755#ifdef CONFIG_HIGHMEM
2756        int i;
2757
2758        if (!(dev->features & NETIF_F_HIGHDMA)) {
2759                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2760                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2761
2762                        if (PageHighMem(skb_frag_page(frag)))
2763                                return 1;
2764                }
2765        }
2766
2767        if (PCI_DMA_BUS_IS_PHYS) {
2768                struct device *pdev = dev->dev.parent;
2769
2770                if (!pdev)
2771                        return 0;
2772                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2773                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2774                        dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2775
2776                        if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777                                return 1;
2778                }
2779        }
2780#endif
2781        return 0;
2782}
2783
2784/* If MPLS offload request, verify we are testing hardware MPLS features
2785 * instead of standard features for the netdev.
2786 */
2787#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2788static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789                                           netdev_features_t features,
2790                                           __be16 type)
2791{
2792        if (eth_p_mpls(type))
2793                features &= skb->dev->mpls_features;
2794
2795        return features;
2796}
2797#else
2798static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799                                           netdev_features_t features,
2800                                           __be16 type)
2801{
2802        return features;
2803}
2804#endif
2805
2806static netdev_features_t harmonize_features(struct sk_buff *skb,
2807        netdev_features_t features)
2808{
2809        int tmp;
2810        __be16 type;
2811
2812        type = skb_network_protocol(skb, &tmp);
2813        features = net_mpls_features(skb, features, type);
2814
2815        if (skb->ip_summed != CHECKSUM_NONE &&
2816            !can_checksum_protocol(features, type)) {
2817                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2818        }
2819        if (illegal_highdma(skb->dev, skb))
2820                features &= ~NETIF_F_SG;
2821
2822        return features;
2823}
2824
2825netdev_features_t passthru_features_check(struct sk_buff *skb,
2826                                          struct net_device *dev,
2827                                          netdev_features_t features)
2828{
2829        return features;
2830}
2831EXPORT_SYMBOL(passthru_features_check);
2832
2833static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834                                             struct net_device *dev,
2835                                             netdev_features_t features)
2836{
2837        return vlan_features_check(skb, features);
2838}
2839
2840static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841                                            struct net_device *dev,
2842                                            netdev_features_t features)
2843{
2844        u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845
2846        if (gso_segs > dev->gso_max_segs)
2847                return features & ~NETIF_F_GSO_MASK;
2848
2849        /* Support for GSO partial features requires software
2850         * intervention before we can actually process the packets
2851         * so we need to strip support for any partial features now
2852         * and we can pull them back in after we have partially
2853         * segmented the frame.
2854         */
2855        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856                features &= ~dev->gso_partial_features;
2857
2858        /* Make sure to clear the IPv4 ID mangling feature if the
2859         * IPv4 header has the potential to be fragmented.
2860         */
2861        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862                struct iphdr *iph = skb->encapsulation ?
2863                                    inner_ip_hdr(skb) : ip_hdr(skb);
2864
2865                if (!(iph->frag_off & htons(IP_DF)))
2866                        features &= ~NETIF_F_TSO_MANGLEID;
2867        }
2868
2869        return features;
2870}
2871
2872netdev_features_t netif_skb_features(struct sk_buff *skb)
2873{
2874        struct net_device *dev = skb->dev;
2875        netdev_features_t features = dev->features;
2876
2877        if (skb_is_gso(skb))
2878                features = gso_features_check(skb, dev, features);
2879
2880        /* If encapsulation offload request, verify we are testing
2881         * hardware encapsulation features instead of standard
2882         * features for the netdev
2883         */
2884        if (skb->encapsulation)
2885                features &= dev->hw_enc_features;
2886
2887        if (skb_vlan_tagged(skb))
2888                features = netdev_intersect_features(features,
2889                                                     dev->vlan_features |
2890                                                     NETIF_F_HW_VLAN_CTAG_TX |
2891                                                     NETIF_F_HW_VLAN_STAG_TX);
2892
2893        if (dev->netdev_ops->ndo_features_check)
2894                features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895                                                                features);
2896        else
2897                features &= dflt_features_check(skb, dev, features);
2898
2899        return harmonize_features(skb, features);
2900}
2901EXPORT_SYMBOL(netif_skb_features);
2902
2903static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2904                    struct netdev_queue *txq, bool more)
2905{
2906        unsigned int len;
2907        int rc;
2908
2909        if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2910                dev_queue_xmit_nit(skb, dev);
2911
2912        len = skb->len;
2913        trace_net_dev_start_xmit(skb, dev);
2914        rc = netdev_start_xmit(skb, dev, txq, more);
2915        trace_net_dev_xmit(skb, rc, dev, len);
2916
2917        return rc;
2918}
2919
2920struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921                                    struct netdev_queue *txq, int *ret)
2922{
2923        struct sk_buff *skb = first;
2924        int rc = NETDEV_TX_OK;
2925
2926        while (skb) {
2927                struct sk_buff *next = skb->next;
2928
2929                skb->next = NULL;
2930                rc = xmit_one(skb, dev, txq, next != NULL);
2931                if (unlikely(!dev_xmit_complete(rc))) {
2932                        skb->next = next;
2933                        goto out;
2934                }
2935
2936                skb = next;
2937                if (netif_xmit_stopped(txq) && skb) {
2938                        rc = NETDEV_TX_BUSY;
2939                        break;
2940                }
2941        }
2942
2943out:
2944        *ret = rc;
2945        return skb;
2946}
2947
2948static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949                                          netdev_features_t features)
2950{
2951        if (skb_vlan_tag_present(skb) &&
2952            !vlan_hw_offload_capable(features, skb->vlan_proto))
2953                skb = __vlan_hwaccel_push_inside(skb);
2954        return skb;
2955}
2956
2957static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2958{
2959        netdev_features_t features;
2960
2961        features = netif_skb_features(skb);
2962        skb = validate_xmit_vlan(skb, features);
2963        if (unlikely(!skb))
2964                goto out_null;
2965
2966        if (netif_needs_gso(skb, features)) {
2967                struct sk_buff *segs;
2968
2969                segs = skb_gso_segment(skb, features);
2970                if (IS_ERR(segs)) {
2971                        goto out_kfree_skb;
2972                } else if (segs) {
2973                        consume_skb(skb);
2974                        skb = segs;
2975                }
2976        } else {
2977                if (skb_needs_linearize(skb, features) &&
2978                    __skb_linearize(skb))
2979                        goto out_kfree_skb;
2980
2981                if (validate_xmit_xfrm(skb, features))
2982                        goto out_kfree_skb;
2983
2984                /* If packet is not checksummed and device does not
2985                 * support checksumming for this protocol, complete
2986                 * checksumming here.
2987                 */
2988                if (skb->ip_summed == CHECKSUM_PARTIAL) {
2989                        if (skb->encapsulation)
2990                                skb_set_inner_transport_header(skb,
2991                                                               skb_checksum_start_offset(skb));
2992                        else
2993                                skb_set_transport_header(skb,
2994                                                         skb_checksum_start_offset(skb));
2995                        if (!(features & NETIF_F_CSUM_MASK) &&
2996                            skb_checksum_help(skb))
2997                                goto out_kfree_skb;
2998                }
2999        }
3000
3001        return skb;
3002
3003out_kfree_skb:
3004        kfree_skb(skb);
3005out_null:
3006        atomic_long_inc(&dev->tx_dropped);
3007        return NULL;
3008}
3009
3010struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3011{
3012        struct sk_buff *next, *head = NULL, *tail;
3013
3014        for (; skb != NULL; skb = next) {
3015                next = skb->next;
3016                skb->next = NULL;
3017
3018                /* in case skb wont be segmented, point to itself */
3019                skb->prev = skb;
3020
3021                skb = validate_xmit_skb(skb, dev);
3022                if (!skb)
3023                        continue;
3024
3025                if (!head)
3026                        head = skb;
3027                else
3028                        tail->next = skb;
3029                /* If skb was segmented, skb->prev points to
3030                 * the last segment. If not, it still contains skb.
3031                 */
3032                tail = skb->prev;
3033        }
3034        return head;
3035}
3036EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3037
3038static void qdisc_pkt_len_init(struct sk_buff *skb)
3039{
3040        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042        qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044        /* To get more precise estimation of bytes sent on wire,
3045         * we add to pkt_len the headers size of all segments
3046         */
3047        if (shinfo->gso_size)  {
3048                unsigned int hdr_len;
3049                u16 gso_segs = shinfo->gso_segs;
3050
3051                /* mac layer + network layer */
3052                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054                /* + transport layer */
3055                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056                        hdr_len += tcp_hdrlen(skb);
3057                else
3058                        hdr_len += sizeof(struct udphdr);
3059
3060                if (shinfo->gso_type & SKB_GSO_DODGY)
3061                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062                                                shinfo->gso_size);
3063
3064                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3065        }
3066}
3067
3068static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069                                 struct net_device *dev,
3070                                 struct netdev_queue *txq)
3071{
3072        spinlock_t *root_lock = qdisc_lock(q);
3073        struct sk_buff *to_free = NULL;
3074        bool contended;
3075        int rc;
3076
3077        qdisc_calculate_pkt_len(skb, q);
3078        /*
3079         * Heuristic to force contended enqueues to serialize on a
3080         * separate lock before trying to get qdisc main lock.
3081         * This permits qdisc->running owner to get the lock more
3082         * often and dequeue packets faster.
3083         */
3084        contended = qdisc_is_running(q);
3085        if (unlikely(contended))
3086                spin_lock(&q->busylock);
3087
3088        spin_lock(root_lock);
3089        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090                __qdisc_drop(skb, &to_free);
3091                rc = NET_XMIT_DROP;
3092        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093                   qdisc_run_begin(q)) {
3094                /*
3095                 * This is a work-conserving queue; there are no old skbs
3096                 * waiting to be sent out; and the qdisc is not running -
3097                 * xmit the skb directly.
3098                 */
3099
3100                qdisc_bstats_update(q, skb);
3101
3102                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103                        if (unlikely(contended)) {
3104                                spin_unlock(&q->busylock);
3105                                contended = false;
3106                        }
3107                        __qdisc_run(q);
3108                } else
3109                        qdisc_run_end(q);
3110
3111                rc = NET_XMIT_SUCCESS;
3112        } else {
3113                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114                if (qdisc_run_begin(q)) {
3115                        if (unlikely(contended)) {
3116                                spin_unlock(&q->busylock);
3117                                contended = false;
3118                        }
3119                        __qdisc_run(q);
3120                }
3121        }
3122        spin_unlock(root_lock);
3123        if (unlikely(to_free))
3124                kfree_skb_list(to_free);
3125        if (unlikely(contended))
3126                spin_unlock(&q->busylock);
3127        return rc;
3128}
3129
3130#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131static void skb_update_prio(struct sk_buff *skb)
3132{
3133        struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134
3135        if (!skb->priority && skb->sk && map) {
3136                unsigned int prioidx =
3137                        sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138
3139                if (prioidx < map->priomap_len)
3140                        skb->priority = map->priomap[prioidx];
3141        }
3142}
3143#else
3144#define skb_update_prio(skb)
3145#endif
3146
3147DEFINE_PER_CPU(int, xmit_recursion);
3148EXPORT_SYMBOL(xmit_recursion);
3149
3150/**
3151 *      dev_loopback_xmit - loop back @skb
3152 *      @net: network namespace this loopback is happening in
3153 *      @sk:  sk needed to be a netfilter okfn
3154 *      @skb: buffer to transmit
3155 */
3156int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157{
3158        skb_reset_mac_header(skb);
3159        __skb_pull(skb, skb_network_offset(skb));
3160        skb->pkt_type = PACKET_LOOPBACK;
3161        skb->ip_summed = CHECKSUM_UNNECESSARY;
3162        WARN_ON(!skb_dst(skb));
3163        skb_dst_force(skb);
3164        netif_rx_ni(skb);
3165        return 0;
3166}
3167EXPORT_SYMBOL(dev_loopback_xmit);
3168
3169#ifdef CONFIG_NET_EGRESS
3170static struct sk_buff *
3171sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172{
3173        struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174        struct tcf_result cl_res;
3175
3176        if (!cl)
3177                return skb;
3178
3179        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3180        qdisc_bstats_cpu_update(cl->q, skb);
3181
3182        switch (tc_classify(skb, cl, &cl_res, false)) {
3183        case TC_ACT_OK:
3184        case TC_ACT_RECLASSIFY:
3185                skb->tc_index = TC_H_MIN(cl_res.classid);
3186                break;
3187        case TC_ACT_SHOT:
3188                qdisc_qstats_cpu_drop(cl->q);
3189                *ret = NET_XMIT_DROP;
3190                kfree_skb(skb);
3191                return NULL;
3192        case TC_ACT_STOLEN:
3193        case TC_ACT_QUEUED:
3194                *ret = NET_XMIT_SUCCESS;
3195                consume_skb(skb);
3196                return NULL;
3197        case TC_ACT_REDIRECT:
3198                /* No need to push/pop skb's mac_header here on egress! */
3199                skb_do_redirect(skb);
3200                *ret = NET_XMIT_SUCCESS;
3201                return NULL;
3202        default:
3203                break;
3204        }
3205
3206        return skb;
3207}
3208#endif /* CONFIG_NET_EGRESS */
3209
3210static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3211{
3212#ifdef CONFIG_XPS
3213        struct xps_dev_maps *dev_maps;
3214        struct xps_map *map;
3215        int queue_index = -1;
3216
3217        rcu_read_lock();
3218        dev_maps = rcu_dereference(dev->xps_maps);
3219        if (dev_maps) {
3220                unsigned int tci = skb->sender_cpu - 1;
3221
3222                if (dev->num_tc) {
3223                        tci *= dev->num_tc;
3224                        tci += netdev_get_prio_tc_map(dev, skb->priority);
3225                }
3226
3227                map = rcu_dereference(dev_maps->cpu_map[tci]);
3228                if (map) {
3229                        if (map->len == 1)
3230                                queue_index = map->queues[0];
3231                        else
3232                                queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3233                                                                           map->len)];
3234                        if (unlikely(queue_index >= dev->real_num_tx_queues))
3235                                queue_index = -1;
3236                }
3237        }
3238        rcu_read_unlock();
3239
3240        return queue_index;
3241#else
3242        return -1;
3243#endif
3244}
3245
3246static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3247{
3248        struct sock *sk = skb->sk;
3249        int queue_index = sk_tx_queue_get(sk);
3250
3251        if (queue_index < 0 || skb->ooo_okay ||
3252            queue_index >= dev->real_num_tx_queues) {
3253                int new_index = get_xps_queue(dev, skb);
3254
3255                if (new_index < 0)
3256                        new_index = skb_tx_hash(dev, skb);
3257
3258                if (queue_index != new_index && sk &&
3259                    sk_fullsock(sk) &&
3260                    rcu_access_pointer(sk->sk_dst_cache))
3261                        sk_tx_queue_set(sk, new_index);
3262
3263                queue_index = new_index;
3264        }
3265
3266        return queue_index;
3267}
3268
3269struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3270                                    struct sk_buff *skb,
3271                                    void *accel_priv)
3272{
3273        int queue_index = 0;
3274
3275#ifdef CONFIG_XPS
3276        u32 sender_cpu = skb->sender_cpu - 1;
3277
3278        if (sender_cpu >= (u32)NR_CPUS)
3279                skb->sender_cpu = raw_smp_processor_id() + 1;
3280#endif
3281
3282        if (dev->real_num_tx_queues != 1) {
3283                const struct net_device_ops *ops = dev->netdev_ops;
3284
3285                if (ops->ndo_select_queue)
3286                        queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3287                                                            __netdev_pick_tx);
3288                else
3289                        queue_index = __netdev_pick_tx(dev, skb);
3290
3291                if (!accel_priv)
3292                        queue_index = netdev_cap_txqueue(dev, queue_index);
3293        }
3294
3295        skb_set_queue_mapping(skb, queue_index);
3296        return netdev_get_tx_queue(dev, queue_index);
3297}
3298
3299/**
3300 *      __dev_queue_xmit - transmit a buffer
3301 *      @skb: buffer to transmit
3302 *      @accel_priv: private data used for L2 forwarding offload
3303 *
3304 *      Queue a buffer for transmission to a network device. The caller must
3305 *      have set the device and priority and built the buffer before calling
3306 *      this function. The function can be called from an interrupt.
3307 *
3308 *      A negative errno code is returned on a failure. A success does not
3309 *      guarantee the frame will be transmitted as it may be dropped due
3310 *      to congestion or traffic shaping.
3311 *
3312 * -----------------------------------------------------------------------------------
3313 *      I notice this method can also return errors from the queue disciplines,
3314 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3315 *      be positive.
3316 *
3317 *      Regardless of the return value, the skb is consumed, so it is currently
3318 *      difficult to retry a send to this method.  (You can bump the ref count
3319 *      before sending to hold a reference for retry if you are careful.)
3320 *
3321 *      When calling this method, interrupts MUST be enabled.  This is because
3322 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3323 *          --BLG
3324 */
3325static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3326{
3327        struct net_device *dev = skb->dev;
3328        struct netdev_queue *txq;
3329        struct Qdisc *q;
3330        int rc = -ENOMEM;
3331
3332        skb_reset_mac_header(skb);
3333
3334        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3335                __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3336
3337        /* Disable soft irqs for various locks below. Also
3338         * stops preemption for RCU.
3339         */
3340        rcu_read_lock_bh();
3341
3342        skb_update_prio(skb);
3343
3344        qdisc_pkt_len_init(skb);
3345#ifdef CONFIG_NET_CLS_ACT
3346        skb->tc_at_ingress = 0;
3347# ifdef CONFIG_NET_EGRESS
3348        if (static_key_false(&egress_needed)) {
3349                skb = sch_handle_egress(skb, &rc, dev);
3350                if (!skb)
3351                        goto out;
3352        }
3353# endif
3354#endif
3355        /* If device/qdisc don't need skb->dst, release it right now while
3356         * its hot in this cpu cache.
3357         */
3358        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3359                skb_dst_drop(skb);
3360        else
3361                skb_dst_force(skb);
3362
3363        txq = netdev_pick_tx(dev, skb, accel_priv);
3364        q = rcu_dereference_bh(txq->qdisc);
3365
3366        trace_net_dev_queue(skb);
3367        if (q->enqueue) {
3368                rc = __dev_xmit_skb(skb, q, dev, txq);
3369                goto out;
3370        }
3371
3372        /* The device has no queue. Common case for software devices:
3373         * loopback, all the sorts of tunnels...
3374
3375         * Really, it is unlikely that netif_tx_lock protection is necessary
3376         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3377         * counters.)
3378         * However, it is possible, that they rely on protection
3379         * made by us here.
3380
3381         * Check this and shot the lock. It is not prone from deadlocks.
3382         *Either shot noqueue qdisc, it is even simpler 8)
3383         */
3384        if (dev->flags & IFF_UP) {
3385                int cpu = smp_processor_id(); /* ok because BHs are off */
3386
3387                if (txq->xmit_lock_owner != cpu) {
3388                        if (unlikely(__this_cpu_read(xmit_recursion) >
3389                                     XMIT_RECURSION_LIMIT))
3390                                goto recursion_alert;
3391
3392                        skb = validate_xmit_skb(skb, dev);
3393                        if (!skb)
3394                                goto out;
3395
3396                        HARD_TX_LOCK(dev, txq, cpu);
3397
3398                        if (!netif_xmit_stopped(txq)) {
3399                                __this_cpu_inc(xmit_recursion);
3400                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3401                                __this_cpu_dec(xmit_recursion);
3402                                if (dev_xmit_complete(rc)) {
3403                                        HARD_TX_UNLOCK(dev, txq);
3404                                        goto out;
3405                                }
3406                        }
3407                        HARD_TX_UNLOCK(dev, txq);
3408                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409                                             dev->name);
3410                } else {
3411                        /* Recursion is detected! It is possible,
3412                         * unfortunately
3413                         */
3414recursion_alert:
3415                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416                                             dev->name);
3417                }
3418        }
3419
3420        rc = -ENETDOWN;
3421        rcu_read_unlock_bh();
3422
3423        atomic_long_inc(&dev->tx_dropped);
3424        kfree_skb_list(skb);
3425        return rc;
3426out:
3427        rcu_read_unlock_bh();
3428        return rc;
3429}
3430
3431int dev_queue_xmit(struct sk_buff *skb)
3432{
3433        return __dev_queue_xmit(skb, NULL);
3434}
3435EXPORT_SYMBOL(dev_queue_xmit);
3436
3437int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438{
3439        return __dev_queue_xmit(skb, accel_priv);
3440}
3441EXPORT_SYMBOL(dev_queue_xmit_accel);
3442
3443
3444/*************************************************************************
3445 *                      Receiver routines
3446 *************************************************************************/
3447
3448int netdev_max_backlog __read_mostly = 1000;
3449EXPORT_SYMBOL(netdev_max_backlog);
3450
3451int netdev_tstamp_prequeue __read_mostly = 1;
3452int netdev_budget __read_mostly = 300;
3453unsigned int __read_mostly netdev_budget_usecs = 2000;
3454int weight_p __read_mostly = 64;           /* old backlog weight */
3455int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3456int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3457int dev_rx_weight __read_mostly = 64;
3458int dev_tx_weight __read_mostly = 64;
3459
3460/* Called with irq disabled */
3461static inline void ____napi_schedule(struct softnet_data *sd,
3462                                     struct napi_struct *napi)
3463{
3464        list_add_tail(&napi->poll_list, &sd->poll_list);
3465        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466}
3467
3468#ifdef CONFIG_RPS
3469
3470/* One global table that all flow-based protocols share. */
3471struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472EXPORT_SYMBOL(rps_sock_flow_table);
3473u32 rps_cpu_mask __read_mostly;
3474EXPORT_SYMBOL(rps_cpu_mask);
3475
3476struct static_key rps_needed __read_mostly;
3477EXPORT_SYMBOL(rps_needed);
3478struct static_key rfs_needed __read_mostly;
3479EXPORT_SYMBOL(rfs_needed);
3480
3481static struct rps_dev_flow *
3482set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483            struct rps_dev_flow *rflow, u16 next_cpu)
3484{
3485        if (next_cpu < nr_cpu_ids) {
3486#ifdef CONFIG_RFS_ACCEL
3487                struct netdev_rx_queue *rxqueue;
3488                struct rps_dev_flow_table *flow_table;
3489                struct rps_dev_flow *old_rflow;
3490                u32 flow_id;
3491                u16 rxq_index;
3492                int rc;
3493
3494                /* Should we steer this flow to a different hardware queue? */
3495                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3496                    !(dev->features & NETIF_F_NTUPLE))
3497                        goto out;
3498                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3499                if (rxq_index == skb_get_rx_queue(skb))
3500                        goto out;
3501
3502                rxqueue = dev->_rx + rxq_index;
3503                flow_table = rcu_dereference(rxqueue->rps_flow_table);
3504                if (!flow_table)
3505                        goto out;
3506                flow_id = skb_get_hash(skb) & flow_table->mask;
3507                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3508                                                        rxq_index, flow_id);
3509                if (rc < 0)
3510                        goto out;
3511                old_rflow = rflow;
3512                rflow = &flow_table->flows[flow_id];
3513                rflow->filter = rc;
3514                if (old_rflow->filter == rflow->filter)
3515                        old_rflow->filter = RPS_NO_FILTER;
3516        out:
3517#endif
3518                rflow->last_qtail =
3519                        per_cpu(softnet_data, next_cpu).input_queue_head;
3520        }
3521
3522        rflow->cpu = next_cpu;
3523        return rflow;
3524}
3525
3526/*
3527 * get_rps_cpu is called from netif_receive_skb and returns the target
3528 * CPU from the RPS map of the receiving queue for a given skb.
3529 * rcu_read_lock must be held on entry.
3530 */
3531static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3532                       struct rps_dev_flow **rflowp)
3533{
3534        const struct rps_sock_flow_table *sock_flow_table;
3535        struct netdev_rx_queue *rxqueue = dev->_rx;
3536        struct rps_dev_flow_table *flow_table;
3537        struct rps_map *map;
3538        int cpu = -1;
3539        u32 tcpu;
3540        u32 hash;
3541
3542        if (skb_rx_queue_recorded(skb)) {
3543                u16 index = skb_get_rx_queue(skb);
3544
3545                if (unlikely(index >= dev->real_num_rx_queues)) {
3546                        WARN_ONCE(dev->real_num_rx_queues > 1,
3547                                  "%s received packet on queue %u, but number "
3548                                  "of RX queues is %u\n",
3549                                  dev->name, index, dev->real_num_rx_queues);
3550                        goto done;
3551                }
3552                rxqueue += index;
3553        }
3554
3555        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3556
3557        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3558        map = rcu_dereference(rxqueue->rps_map);
3559        if (!flow_table && !map)
3560                goto done;
3561
3562        skb_reset_network_header(skb);
3563        hash = skb_get_hash(skb);
3564        if (!hash)
3565                goto done;
3566
3567        sock_flow_table = rcu_dereference(rps_sock_flow_table);
3568        if (flow_table && sock_flow_table) {
3569                struct rps_dev_flow *rflow;
3570                u32 next_cpu;
3571                u32 ident;
3572
3573                /* First check into global flow table if there is a match */
3574                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3575                if ((ident ^ hash) & ~rps_cpu_mask)
3576                        goto try_rps;
3577
3578                next_cpu = ident & rps_cpu_mask;
3579
3580                /* OK, now we know there is a match,
3581                 * we can look at the local (per receive queue) flow table
3582                 */
3583                rflow = &flow_table->flows[hash & flow_table->mask];
3584                tcpu = rflow->cpu;
3585
3586                /*
3587                 * If the desired CPU (where last recvmsg was done) is
3588                 * different from current CPU (one in the rx-queue flow
3589                 * table entry), switch if one of the following holds:
3590                 *   - Current CPU is unset (>= nr_cpu_ids).
3591                 *   - Current CPU is offline.
3592                 *   - The current CPU's queue tail has advanced beyond the
3593                 *     last packet that was enqueued using this table entry.
3594                 *     This guarantees that all previous packets for the flow
3595                 *     have been dequeued, thus preserving in order delivery.
3596                 */
3597                if (unlikely(tcpu != next_cpu) &&
3598                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3599                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3600                      rflow->last_qtail)) >= 0)) {
3601                        tcpu = next_cpu;
3602                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3603                }
3604
3605                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3606                        *rflowp = rflow;
3607                        cpu = tcpu;
3608                        goto done;
3609                }
3610        }
3611
3612try_rps:
3613
3614        if (map) {
3615                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3616                if (cpu_online(tcpu)) {
3617                        cpu = tcpu;
3618                        goto done;
3619                }
3620        }
3621
3622done:
3623        return cpu;
3624}
3625
3626#ifdef CONFIG_RFS_ACCEL
3627
3628/**
3629 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3630 * @dev: Device on which the filter was set
3631 * @rxq_index: RX queue index
3632 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3633 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3634 *
3635 * Drivers that implement ndo_rx_flow_steer() should periodically call
3636 * this function for each installed filter and remove the filters for
3637 * which it returns %true.
3638 */
3639bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3640                         u32 flow_id, u16 filter_id)
3641{
3642        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3643        struct rps_dev_flow_table *flow_table;
3644        struct rps_dev_flow *rflow;
3645        bool expire = true;
3646        unsigned int cpu;
3647
3648        rcu_read_lock();
3649        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3650        if (flow_table && flow_id <= flow_table->mask) {
3651                rflow = &flow_table->flows[flow_id];
3652                cpu = ACCESS_ONCE(rflow->cpu);
3653                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3654                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3655                           rflow->last_qtail) <
3656                     (int)(10 * flow_table->mask)))
3657                        expire = false;
3658        }
3659        rcu_read_unlock();
3660        return expire;
3661}
3662EXPORT_SYMBOL(rps_may_expire_flow);
3663
3664#endif /* CONFIG_RFS_ACCEL */
3665
3666/* Called from hardirq (IPI) context */
3667static void rps_trigger_softirq(void *data)
3668{
3669        struct softnet_data *sd = data;
3670
3671        ____napi_schedule(sd, &sd->backlog);
3672        sd->received_rps++;
3673}
3674
3675#endif /* CONFIG_RPS */
3676
3677/*
3678 * Check if this softnet_data structure is another cpu one
3679 * If yes, queue it to our IPI list and return 1
3680 * If no, return 0
3681 */
3682static int rps_ipi_queued(struct softnet_data *sd)
3683{
3684#ifdef CONFIG_RPS
3685        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3686
3687        if (sd != mysd) {
3688                sd->rps_ipi_next = mysd->rps_ipi_list;
3689                mysd->rps_ipi_list = sd;
3690
3691                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3692                return 1;
3693        }
3694#endif /* CONFIG_RPS */
3695        return 0;
3696}
3697
3698#ifdef CONFIG_NET_FLOW_LIMIT
3699int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3700#endif
3701
3702static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3703{
3704#ifdef CONFIG_NET_FLOW_LIMIT
3705        struct sd_flow_limit *fl;
3706        struct softnet_data *sd;
3707        unsigned int old_flow, new_flow;
3708
3709        if (qlen < (netdev_max_backlog >> 1))
3710                return false;
3711
3712        sd = this_cpu_ptr(&softnet_data);
3713
3714        rcu_read_lock();
3715        fl = rcu_dereference(sd->flow_limit);
3716        if (fl) {
3717                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3718                old_flow = fl->history[fl->history_head];
3719                fl->history[fl->history_head] = new_flow;
3720
3721                fl->history_head++;
3722                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3723
3724                if (likely(fl->buckets[old_flow]))
3725                        fl->buckets[old_flow]--;
3726
3727                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3728                        fl->count++;
3729                        rcu_read_unlock();
3730                        return true;
3731                }
3732        }
3733        rcu_read_unlock();
3734#endif
3735        return false;
3736}
3737
3738/*
3739 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3740 * queue (may be a remote CPU queue).
3741 */
3742static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3743                              unsigned int *qtail)
3744{
3745        struct softnet_data *sd;
3746        unsigned long flags;
3747        unsigned int qlen;
3748
3749        sd = &per_cpu(softnet_data, cpu);
3750
3751        local_irq_save(flags);
3752
3753        rps_lock(sd);
3754        if (!netif_running(skb->dev))
3755                goto drop;
3756        qlen = skb_queue_len(&sd->input_pkt_queue);
3757        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3758                if (qlen) {
3759enqueue:
3760                        __skb_queue_tail(&sd->input_pkt_queue, skb);
3761                        input_queue_tail_incr_save(sd, qtail);
3762                        rps_unlock(sd);
3763                        local_irq_restore(flags);
3764                        return NET_RX_SUCCESS;
3765                }
3766
3767                /* Schedule NAPI for backlog device
3768                 * We can use non atomic operation since we own the queue lock
3769                 */
3770                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3771                        if (!rps_ipi_queued(sd))
3772                                ____napi_schedule(sd, &sd->backlog);
3773                }
3774                goto enqueue;
3775        }
3776
3777drop:
3778        sd->dropped++;
3779        rps_unlock(sd);
3780
3781        local_irq_restore(flags);
3782
3783        atomic_long_inc(&skb->dev->rx_dropped);
3784        kfree_skb(skb);
3785        return NET_RX_DROP;
3786}
3787
3788static int netif_rx_internal(struct sk_buff *skb)
3789{
3790        int ret;
3791
3792        net_timestamp_check(netdev_tstamp_prequeue, skb);
3793
3794        trace_netif_rx(skb);
3795#ifdef CONFIG_RPS
3796        if (static_key_false(&rps_needed)) {
3797                struct rps_dev_flow voidflow, *rflow = &voidflow;
3798                int cpu;
3799
3800                preempt_disable();
3801                rcu_read_lock();
3802
3803                cpu = get_rps_cpu(skb->dev, skb, &rflow);
3804                if (cpu < 0)
3805                        cpu = smp_processor_id();
3806
3807                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808
3809                rcu_read_unlock();
3810                preempt_enable();
3811        } else
3812#endif
3813        {
3814                unsigned int qtail;
3815
3816                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3817                put_cpu();
3818        }
3819        return ret;
3820}
3821
3822/**
3823 *      netif_rx        -       post buffer to the network code
3824 *      @skb: buffer to post
3825 *
3826 *      This function receives a packet from a device driver and queues it for
3827 *      the upper (protocol) levels to process.  It always succeeds. The buffer
3828 *      may be dropped during processing for congestion control or by the
3829 *      protocol layers.
3830 *
3831 *      return values:
3832 *      NET_RX_SUCCESS  (no congestion)
3833 *      NET_RX_DROP     (packet was dropped)
3834 *
3835 */
3836
3837int netif_rx(struct sk_buff *skb)
3838{
3839        trace_netif_rx_entry(skb);
3840
3841        return netif_rx_internal(skb);
3842}
3843EXPORT_SYMBOL(netif_rx);
3844
3845int netif_rx_ni(struct sk_buff *skb)
3846{
3847        int err;
3848
3849        trace_netif_rx_ni_entry(skb);
3850
3851        preempt_disable();
3852        err = netif_rx_internal(skb);
3853        if (local_softirq_pending())
3854                do_softirq();
3855        preempt_enable();
3856
3857        return err;
3858}
3859EXPORT_SYMBOL(netif_rx_ni);
3860
3861static __latent_entropy void net_tx_action(struct softirq_action *h)
3862{
3863        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3864
3865        if (sd->completion_queue) {
3866                struct sk_buff *clist;
3867
3868                local_irq_disable();
3869                clist = sd->completion_queue;
3870                sd->completion_queue = NULL;
3871                local_irq_enable();
3872
3873                while (clist) {
3874                        struct sk_buff *skb = clist;
3875
3876                        clist = clist->next;
3877
3878                        WARN_ON(atomic_read(&skb->users));
3879                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3880                                trace_consume_skb(skb);
3881                        else
3882                                trace_kfree_skb(skb, net_tx_action);
3883
3884                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3885                                __kfree_skb(skb);
3886                        else
3887                                __kfree_skb_defer(skb);
3888                }
3889
3890                __kfree_skb_flush();
3891        }
3892
3893        if (sd->output_queue) {
3894                struct Qdisc *head;
3895
3896                local_irq_disable();
3897                head = sd->output_queue;
3898                sd->output_queue = NULL;
3899                sd->output_queue_tailp = &sd->output_queue;
3900                local_irq_enable();
3901
3902                while (head) {
3903                        struct Qdisc *q = head;
3904                        spinlock_t *root_lock;
3905
3906                        head = head->next_sched;
3907
3908                        root_lock = qdisc_lock(q);
3909                        spin_lock(root_lock);
3910                        /* We need to make sure head->next_sched is read
3911                         * before clearing __QDISC_STATE_SCHED
3912                         */
3913                        smp_mb__before_atomic();
3914                        clear_bit(__QDISC_STATE_SCHED, &q->state);
3915                        qdisc_run(q);
3916                        spin_unlock(root_lock);
3917                }
3918        }
3919}
3920
3921#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3922/* This hook is defined here for ATM LANE */
3923int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924                             unsigned char *addr) __read_mostly;
3925EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3926#endif
3927
3928static inline struct sk_buff *
3929sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930                   struct net_device *orig_dev)
3931{
3932#ifdef CONFIG_NET_CLS_ACT
3933        struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934        struct tcf_result cl_res;
3935
3936        /* If there's at least one ingress present somewhere (so
3937         * we get here via enabled static key), remaining devices
3938         * that are not configured with an ingress qdisc will bail
3939         * out here.
3940         */
3941        if (!cl)
3942                return skb;
3943        if (*pt_prev) {
3944                *ret = deliver_skb(skb, *pt_prev, orig_dev);
3945                *pt_prev = NULL;
3946        }
3947
3948        qdisc_skb_cb(skb)->pkt_len = skb->len;
3949        skb->tc_at_ingress = 1;
3950        qdisc_bstats_cpu_update(cl->q, skb);
3951
3952        switch (tc_classify(skb, cl, &cl_res, false)) {
3953        case TC_ACT_OK:
3954        case TC_ACT_RECLASSIFY:
3955                skb->tc_index = TC_H_MIN(cl_res.classid);
3956                break;
3957        case TC_ACT_SHOT:
3958                qdisc_qstats_cpu_drop(cl->q);
3959                kfree_skb(skb);
3960                return NULL;
3961        case TC_ACT_STOLEN:
3962        case TC_ACT_QUEUED:
3963                consume_skb(skb);
3964                return NULL;
3965        case TC_ACT_REDIRECT:
3966                /* skb_mac_header check was done by cls/act_bpf, so
3967                 * we can safely push the L2 header back before
3968                 * redirecting to another netdev
3969                 */
3970                __skb_push(skb, skb->mac_len);
3971                skb_do_redirect(skb);
3972                return NULL;
3973        default:
3974                break;
3975        }
3976#endif /* CONFIG_NET_CLS_ACT */
3977        return skb;
3978}
3979
3980/**
3981 *      netdev_is_rx_handler_busy - check if receive handler is registered
3982 *      @dev: device to check
3983 *
3984 *      Check if a receive handler is already registered for a given device.
3985 *      Return true if there one.
3986 *
3987 *      The caller must hold the rtnl_mutex.
3988 */
3989bool netdev_is_rx_handler_busy(struct net_device *dev)
3990{
3991        ASSERT_RTNL();
3992        return dev && rtnl_dereference(dev->rx_handler);
3993}
3994EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3995
3996/**
3997 *      netdev_rx_handler_register - register receive handler
3998 *      @dev: device to register a handler for
3999 *      @rx_handler: receive handler to register
4000 *      @rx_handler_data: data pointer that is used by rx handler
4001 *
4002 *      Register a receive handler for a device. This handler will then be
4003 *      called from __netif_receive_skb. A negative errno code is returned
4004 *      on a failure.
4005 *
4006 *      The caller must hold the rtnl_mutex.
4007 *
4008 *      For a general description of rx_handler, see enum rx_handler_result.
4009 */
4010int netdev_rx_handler_register(struct net_device *dev,
4011                               rx_handler_func_t *rx_handler,
4012                               void *rx_handler_data)
4013{
4014        if (netdev_is_rx_handler_busy(dev))
4015                return -EBUSY;
4016
4017        /* Note: rx_handler_data must be set before rx_handler */
4018        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4019        rcu_assign_pointer(dev->rx_handler, rx_handler);
4020
4021        return 0;
4022}
4023EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4024
4025/**
4026 *      netdev_rx_handler_unregister - unregister receive handler
4027 *      @dev: device to unregister a handler from
4028 *
4029 *      Unregister a receive handler from a device.
4030 *
4031 *      The caller must hold the rtnl_mutex.
4032 */
4033void netdev_rx_handler_unregister(struct net_device *dev)
4034{
4035
4036        ASSERT_RTNL();
4037        RCU_INIT_POINTER(dev->rx_handler, NULL);
4038        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4039         * section has a guarantee to see a non NULL rx_handler_data
4040         * as well.
4041         */
4042        synchronize_net();
4043        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4044}
4045EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4046
4047/*
4048 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4049 * the special handling of PFMEMALLOC skbs.
4050 */
4051static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4052{
4053        switch (skb->protocol) {
4054        case htons(ETH_P_ARP):
4055        case htons(ETH_P_IP):
4056        case htons(ETH_P_IPV6):
4057        case htons(ETH_P_8021Q):
4058        case htons(ETH_P_8021AD):
4059                return true;
4060        default:
4061                return false;
4062        }
4063}
4064
4065static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4066                             int *ret, struct net_device *orig_dev)
4067{
4068#ifdef CONFIG_NETFILTER_INGRESS
4069        if (nf_hook_ingress_active(skb)) {
4070                int ingress_retval;
4071
4072                if (*pt_prev) {
4073                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
4074                        *pt_prev = NULL;
4075                }
4076
4077                rcu_read_lock();
4078                ingress_retval = nf_hook_ingress(skb);
4079                rcu_read_unlock();
4080                return ingress_retval;
4081        }
4082#endif /* CONFIG_NETFILTER_INGRESS */
4083        return 0;
4084}
4085
4086static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4087{
4088        struct packet_type *ptype, *pt_prev;
4089        rx_handler_func_t *rx_handler;
4090        struct net_device *orig_dev;
4091        bool deliver_exact = false;
4092        int ret = NET_RX_DROP;
4093        __be16 type;
4094
4095        net_timestamp_check(!netdev_tstamp_prequeue, skb);
4096
4097        trace_netif_receive_skb(skb);
4098
4099        orig_dev = skb->dev;
4100
4101        skb_reset_network_header(skb);
4102        if (!skb_transport_header_was_set(skb))
4103                skb_reset_transport_header(skb);
4104        skb_reset_mac_len(skb);
4105
4106        pt_prev = NULL;
4107
4108another_round:
4109        skb->skb_iif = skb->dev->ifindex;
4110
4111        __this_cpu_inc(softnet_data.processed);
4112
4113        if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4114            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4115                skb = skb_vlan_untag(skb);
4116                if (unlikely(!skb))
4117                        goto out;
4118        }
4119
4120        if (skb_skip_tc_classify(skb))
4121                goto skip_classify;
4122
4123        if (pfmemalloc)
4124                goto skip_taps;
4125
4126        list_for_each_entry_rcu(ptype, &ptype_all, list) {
4127                if (pt_prev)
4128                        ret = deliver_skb(skb, pt_prev, orig_dev);
4129                pt_prev = ptype;
4130        }
4131
4132        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4133                if (pt_prev)
4134                        ret = deliver_skb(skb, pt_prev, orig_dev);
4135                pt_prev = ptype;
4136        }
4137
4138skip_taps:
4139#ifdef CONFIG_NET_INGRESS
4140        if (static_key_false(&ingress_needed)) {
4141                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4142                if (!skb)
4143                        goto out;
4144
4145                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4146                        goto out;
4147        }
4148#endif
4149        skb_reset_tc(skb);
4150skip_classify:
4151        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4152                goto drop;
4153
4154        if (skb_vlan_tag_present(skb)) {
4155                if (pt_prev) {
4156                        ret = deliver_skb(skb, pt_prev, orig_dev);
4157                        pt_prev = NULL;
4158                }
4159                if (vlan_do_receive(&skb))
4160                        goto another_round;
4161                else if (unlikely(!skb))
4162                        goto out;
4163        }
4164
4165        rx_handler = rcu_dereference(skb->dev->rx_handler);
4166        if (rx_handler) {
4167                if (pt_prev) {
4168                        ret = deliver_skb(skb, pt_prev, orig_dev);
4169                        pt_prev = NULL;
4170                }
4171                switch (rx_handler(&skb)) {
4172                case RX_HANDLER_CONSUMED:
4173                        ret = NET_RX_SUCCESS;
4174                        goto out;
4175                case RX_HANDLER_ANOTHER:
4176                        goto another_round;
4177                case RX_HANDLER_EXACT:
4178                        deliver_exact = true;
4179                case RX_HANDLER_PASS:
4180                        break;
4181                default:
4182                        BUG();
4183                }
4184        }
4185
4186        if (unlikely(skb_vlan_tag_present(skb))) {
4187                if (skb_vlan_tag_get_id(skb))
4188                        skb->pkt_type = PACKET_OTHERHOST;
4189                /* Note: we might in the future use prio bits
4190                 * and set skb->priority like in vlan_do_receive()
4191                 * For the time being, just ignore Priority Code Point
4192                 */
4193                skb->vlan_tci = 0;
4194        }
4195
4196        type = skb->protocol;
4197
4198        /* deliver only exact match when indicated */
4199        if (likely(!deliver_exact)) {
4200                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201                                       &ptype_base[ntohs(type) &
4202                                                   PTYPE_HASH_MASK]);
4203        }
4204
4205        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206                               &orig_dev->ptype_specific);
4207
4208        if (unlikely(skb->dev != orig_dev)) {
4209                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210                                       &skb->dev->ptype_specific);
4211        }
4212
4213        if (pt_prev) {
4214                if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4215                        goto drop;
4216                else
4217                        ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4218        } else {
4219drop:
4220                if (!deliver_exact)
4221                        atomic_long_inc(&skb->dev->rx_dropped);
4222                else
4223                        atomic_long_inc(&skb->dev->rx_nohandler);
4224                kfree_skb(skb);
4225                /* Jamal, now you will not able to escape explaining
4226                 * me how you were going to use this. :-)
4227                 */
4228                ret = NET_RX_DROP;
4229        }
4230
4231out:
4232        return ret;
4233}
4234
4235static int __netif_receive_skb(struct sk_buff *skb)
4236{
4237        int ret;
4238
4239        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240                unsigned int noreclaim_flag;
4241
4242                /*
4243                 * PFMEMALLOC skbs are special, they should
4244                 * - be delivered to SOCK_MEMALLOC sockets only
4245                 * - stay away from userspace
4246                 * - have bounded memory usage
4247                 *
4248                 * Use PF_MEMALLOC as this saves us from propagating the allocation
4249                 * context down to all allocation sites.
4250                 */
4251                noreclaim_flag = memalloc_noreclaim_save();
4252                ret = __netif_receive_skb_core(skb, true);
4253                memalloc_noreclaim_restore(noreclaim_flag);
4254        } else
4255                ret = __netif_receive_skb_core(skb, false);
4256
4257        return ret;
4258}
4259
4260static struct static_key generic_xdp_needed __read_mostly;
4261
4262static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4263{
4264        struct bpf_prog *new = xdp->prog;
4265        int ret = 0;
4266
4267        switch (xdp->command) {
4268        case XDP_SETUP_PROG: {
4269                struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4270
4271                rcu_assign_pointer(dev->xdp_prog, new);
4272                if (old)
4273                        bpf_prog_put(old);
4274
4275                if (old && !new) {
4276                        static_key_slow_dec(&generic_xdp_needed);
4277                } else if (new && !old) {
4278                        static_key_slow_inc(&generic_xdp_needed);
4279                        dev_disable_lro(dev);
4280                }
4281                break;
4282        }
4283
4284        case XDP_QUERY_PROG:
4285                xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4286                break;
4287
4288        default:
4289                ret = -EINVAL;
4290                break;
4291        }
4292
4293        return ret;
4294}
4295
4296static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4297                                     struct bpf_prog *xdp_prog)
4298{
4299        struct xdp_buff xdp;
4300        u32 act = XDP_DROP;
4301        void *orig_data;
4302        int hlen, off;
4303        u32 mac_len;
4304
4305        /* Reinjected packets coming from act_mirred or similar should
4306         * not get XDP generic processing.
4307         */
4308        if (skb_cloned(skb))
4309                return XDP_PASS;
4310
4311        if (skb_linearize(skb))
4312                goto do_drop;
4313
4314        /* The XDP program wants to see the packet starting at the MAC
4315         * header.
4316         */
4317        mac_len = skb->data - skb_mac_header(skb);
4318        hlen = skb_headlen(skb) + mac_len;
4319        xdp.data = skb->data - mac_len;
4320        xdp.data_end = xdp.data + hlen;
4321        xdp.data_hard_start = skb->data - skb_headroom(skb);
4322        orig_data = xdp.data;
4323
4324        act = bpf_prog_run_xdp(xdp_prog, &xdp);
4325
4326        off = xdp.data - orig_data;
4327        if (off > 0)
4328                __skb_pull(skb, off);
4329        else if (off < 0)
4330                __skb_push(skb, -off);
4331
4332        switch (act) {
4333        case XDP_TX:
4334                __skb_push(skb, mac_len);
4335                /* fall through */
4336        case XDP_PASS:
4337                break;
4338
4339        default:
4340                bpf_warn_invalid_xdp_action(act);
4341                /* fall through */
4342        case XDP_ABORTED:
4343                trace_xdp_exception(skb->dev, xdp_prog, act);
4344                /* fall through */
4345        case XDP_DROP:
4346        do_drop:
4347                kfree_skb(skb);
4348                break;
4349        }
4350
4351        return act;
4352}
4353
4354/* When doing generic XDP we have to bypass the qdisc layer and the
4355 * network taps in order to match in-driver-XDP behavior.
4356 */
4357static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4358{
4359        struct net_device *dev = skb->dev;
4360        struct netdev_queue *txq;
4361        bool free_skb = true;
4362        int cpu, rc;
4363
4364        txq = netdev_pick_tx(dev, skb, NULL);
4365        cpu = smp_processor_id();
4366        HARD_TX_LOCK(dev, txq, cpu);
4367        if (!netif_xmit_stopped(txq)) {
4368                rc = netdev_start_xmit(skb, dev, txq, 0);
4369                if (dev_xmit_complete(rc))
4370                        free_skb = false;
4371        }
4372        HARD_TX_UNLOCK(dev, txq);
4373        if (free_skb) {
4374                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4375                kfree_skb(skb);
4376        }
4377}
4378
4379static int netif_receive_skb_internal(struct sk_buff *skb)
4380{
4381        int ret;
4382
4383        net_timestamp_check(netdev_tstamp_prequeue, skb);
4384
4385        if (skb_defer_rx_timestamp(skb))
4386                return NET_RX_SUCCESS;
4387
4388        rcu_read_lock();
4389
4390        if (static_key_false(&generic_xdp_needed)) {
4391                struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4392
4393                if (xdp_prog) {
4394                        u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4395
4396                        if (act != XDP_PASS) {
4397                                rcu_read_unlock();
4398                                if (act == XDP_TX)
4399                                        generic_xdp_tx(skb, xdp_prog);
4400                                return NET_RX_DROP;
4401                        }
4402                }
4403        }
4404
4405#ifdef CONFIG_RPS
4406        if (static_key_false(&rps_needed)) {
4407                struct rps_dev_flow voidflow, *rflow = &voidflow;
4408                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4409
4410                if (cpu >= 0) {
4411                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4412                        rcu_read_unlock();
4413                        return ret;
4414                }
4415        }
4416#endif
4417        ret = __netif_receive_skb(skb);
4418        rcu_read_unlock();
4419        return ret;
4420}
4421
4422/**
4423 *      netif_receive_skb - process receive buffer from network
4424 *      @skb: buffer to process
4425 *
4426 *      netif_receive_skb() is the main receive data processing function.
4427 *      It always succeeds. The buffer may be dropped during processing
4428 *      for congestion control or by the protocol layers.
4429 *
4430 *      This function may only be called from softirq context and interrupts
4431 *      should be enabled.
4432 *
4433 *      Return values (usually ignored):
4434 *      NET_RX_SUCCESS: no congestion
4435 *      NET_RX_DROP: packet was dropped
4436 */
4437int netif_receive_skb(struct sk_buff *skb)
4438{
4439        trace_netif_receive_skb_entry(skb);
4440
4441        return netif_receive_skb_internal(skb);
4442}
4443EXPORT_SYMBOL(netif_receive_skb);
4444
4445DEFINE_PER_CPU(struct work_struct, flush_works);
4446
4447/* Network device is going away, flush any packets still pending */
4448static void flush_backlog(struct work_struct *work)
4449{
4450        struct sk_buff *skb, *tmp;
4451        struct softnet_data *sd;
4452
4453        local_bh_disable();
4454        sd = this_cpu_ptr(&softnet_data);
4455
4456        local_irq_disable();
4457        rps_lock(sd);
4458        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4459                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4460                        __skb_unlink(skb, &sd->input_pkt_queue);
4461                        kfree_skb(skb);
4462                        input_queue_head_incr(sd);
4463                }
4464        }
4465        rps_unlock(sd);
4466        local_irq_enable();
4467
4468        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4469                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4470                        __skb_unlink(skb, &sd->process_queue);
4471                        kfree_skb(skb);
4472                        input_queue_head_incr(sd);
4473                }
4474        }
4475        local_bh_enable();
4476}
4477
4478static void flush_all_backlogs(void)
4479{
4480        unsigned int cpu;
4481
4482        get_online_cpus();
4483
4484        for_each_online_cpu(cpu)
4485                queue_work_on(cpu, system_highpri_wq,
4486                              per_cpu_ptr(&flush_works, cpu));
4487
4488        for_each_online_cpu(cpu)
4489                flush_work(per_cpu_ptr(&flush_works, cpu));
4490
4491        put_online_cpus();
4492}
4493
4494static int napi_gro_complete(struct sk_buff *skb)
4495{
4496        struct packet_offload *ptype;
4497        __be16 type = skb->protocol;
4498        struct list_head *head = &offload_base;
4499        int err = -ENOENT;
4500
4501        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4502
4503        if (NAPI_GRO_CB(skb)->count == 1) {
4504                skb_shinfo(skb)->gso_size = 0;
4505                goto out;
4506        }
4507
4508        rcu_read_lock();
4509        list_for_each_entry_rcu(ptype, head, list) {
4510                if (ptype->type != type || !ptype->callbacks.gro_complete)
4511                        continue;
4512
4513                err = ptype->callbacks.gro_complete(skb, 0);
4514                break;
4515        }
4516        rcu_read_unlock();
4517
4518        if (err) {
4519                WARN_ON(&ptype->list == head);
4520                kfree_skb(skb);
4521                return NET_RX_SUCCESS;
4522        }
4523
4524out:
4525        return netif_receive_skb_internal(skb);
4526}
4527
4528/* napi->gro_list contains packets ordered by age.
4529 * youngest packets at the head of it.
4530 * Complete skbs in reverse order to reduce latencies.
4531 */
4532void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4533{
4534        struct sk_buff *skb, *prev = NULL;
4535
4536        /* scan list and build reverse chain */
4537        for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4538                skb->prev = prev;
4539                prev = skb;
4540        }
4541
4542        for (skb = prev; skb; skb = prev) {
4543                skb->next = NULL;
4544
4545                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4546                        return;
4547
4548                prev = skb->prev;
4549                napi_gro_complete(skb);
4550                napi->gro_count--;
4551        }
4552
4553        napi->gro_list = NULL;
4554}
4555EXPORT_SYMBOL(napi_gro_flush);
4556
4557static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4558{
4559        struct sk_buff *p;
4560        unsigned int maclen = skb->dev->hard_header_len;
4561        u32 hash = skb_get_hash_raw(skb);
4562
4563        for (p = napi->gro_list; p; p = p->next) {
4564                unsigned long diffs;
4565
4566                NAPI_GRO_CB(p)->flush = 0;
4567
4568                if (hash != skb_get_hash_raw(p)) {
4569                        NAPI_GRO_CB(p)->same_flow = 0;
4570                        continue;
4571                }
4572
4573                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4574                diffs |= p->vlan_tci ^ skb->vlan_tci;
4575                diffs |= skb_metadata_dst_cmp(p, skb);
4576                if (maclen == ETH_HLEN)
4577                        diffs |= compare_ether_header(skb_mac_header(p),
4578                                                      skb_mac_header(skb));
4579                else if (!diffs)
4580                        diffs = memcmp(skb_mac_header(p),
4581                                       skb_mac_header(skb),
4582                                       maclen);
4583                NAPI_GRO_CB(p)->same_flow = !diffs;
4584        }
4585}
4586
4587static void skb_gro_reset_offset(struct sk_buff *skb)
4588{
4589        const struct skb_shared_info *pinfo = skb_shinfo(skb);
4590        const skb_frag_t *frag0 = &pinfo->frags[0];
4591
4592        NAPI_GRO_CB(skb)->data_offset = 0;
4593        NAPI_GRO_CB(skb)->frag0 = NULL;
4594        NAPI_GRO_CB(skb)->frag0_len = 0;
4595
4596        if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4597            pinfo->nr_frags &&
4598            !PageHighMem(skb_frag_page(frag0))) {
4599                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4600                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4601                                                    skb_frag_size(frag0),
4602                                                    skb->end - skb->tail);
4603        }
4604}
4605
4606static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4607{
4608        struct skb_shared_info *pinfo = skb_shinfo(skb);
4609
4610        BUG_ON(skb->end - skb->tail < grow);
4611
4612        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4613
4614        skb->data_len -= grow;
4615        skb->tail += grow;
4616
4617        pinfo->frags[0].page_offset += grow;
4618        skb_frag_size_sub(&pinfo->frags[0], grow);
4619
4620        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4621                skb_frag_unref(skb, 0);
4622                memmove(pinfo->frags, pinfo->frags + 1,
4623                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4624        }
4625}
4626
4627static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4628{
4629        struct sk_buff **pp = NULL;
4630        struct packet_offload *ptype;
4631        __be16 type = skb->protocol;
4632        struct list_head *head = &offload_base;
4633        int same_flow;
4634        enum gro_result ret;
4635        int grow;
4636
4637        if (netif_elide_gro(skb->dev))
4638                goto normal;
4639
4640        if (skb->csum_bad)
4641                goto normal;
4642
4643        gro_list_prepare(napi, skb);
4644
4645        rcu_read_lock();
4646        list_for_each_entry_rcu(ptype, head, list) {
4647                if (ptype->type != type || !ptype->callbacks.gro_receive)
4648                        continue;
4649
4650                skb_set_network_header(skb, skb_gro_offset(skb));
4651                skb_reset_mac_len(skb);
4652                NAPI_GRO_CB(skb)->same_flow = 0;
4653                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4654                NAPI_GRO_CB(skb)->free = 0;
4655                NAPI_GRO_CB(skb)->encap_mark = 0;
4656                NAPI_GRO_CB(skb)->recursion_counter = 0;
4657                NAPI_GRO_CB(skb)->is_fou = 0;
4658                NAPI_GRO_CB(skb)->is_atomic = 1;
4659                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4660
4661                /* Setup for GRO checksum validation */
4662                switch (skb->ip_summed) {
4663                case CHECKSUM_COMPLETE:
4664                        NAPI_GRO_CB(skb)->csum = skb->csum;
4665                        NAPI_GRO_CB(skb)->csum_valid = 1;
4666                        NAPI_GRO_CB(skb)->csum_cnt = 0;
4667                        break;
4668                case CHECKSUM_UNNECESSARY:
4669                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4670                        NAPI_GRO_CB(skb)->csum_valid = 0;
4671                        break;
4672                default:
4673                        NAPI_GRO_CB(skb)->csum_cnt = 0;
4674                        NAPI_GRO_CB(skb)->csum_valid = 0;
4675                }
4676
4677                pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4678                break;
4679        }
4680        rcu_read_unlock();
4681
4682        if (&ptype->list == head)
4683                goto normal;
4684
4685        if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4686                ret = GRO_CONSUMED;
4687                goto ok;
4688        }
4689
4690        same_flow = NAPI_GRO_CB(skb)->same_flow;
4691        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4692
4693        if (pp) {
4694                struct sk_buff *nskb = *pp;
4695
4696                *pp = nskb->next;
4697                nskb->next = NULL;
4698                napi_gro_complete(nskb);
4699                napi->gro_count--;
4700        }
4701
4702        if (same_flow)
4703                goto ok;
4704
4705        if (NAPI_GRO_CB(skb)->flush)
4706                goto normal;
4707
4708        if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4709                struct sk_buff *nskb = napi->gro_list;
4710
4711                /* locate the end of the list to select the 'oldest' flow */
4712                while (nskb->next) {
4713                        pp = &nskb->next;
4714                        nskb = *pp;
4715                }
4716                *pp = NULL;
4717                nskb->next = NULL;
4718                napi_gro_complete(nskb);
4719        } else {
4720                napi->gro_count++;
4721        }
4722        NAPI_GRO_CB(skb)->count = 1;
4723        NAPI_GRO_CB(skb)->age = jiffies;
4724        NAPI_GRO_CB(skb)->last = skb;
4725        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4726        skb->next = napi->gro_list;
4727        napi->gro_list = skb;
4728        ret = GRO_HELD;
4729
4730pull:
4731        grow = skb_gro_offset(skb) - skb_headlen(skb);
4732        if (grow > 0)
4733                gro_pull_from_frag0(skb, grow);
4734ok:
4735        return ret;
4736
4737normal:
4738        ret = GRO_NORMAL;
4739        goto pull;
4740}
4741
4742struct packet_offload *gro_find_receive_by_type(__be16 type)
4743{
4744        struct list_head *offload_head = &offload_base;
4745        struct packet_offload *ptype;
4746
4747        list_for_each_entry_rcu(ptype, offload_head, list) {
4748                if (ptype->type != type || !ptype->callbacks.gro_receive)
4749                        continue;
4750                return ptype;
4751        }
4752        return NULL;
4753}
4754EXPORT_SYMBOL(gro_find_receive_by_type);
4755
4756struct packet_offload *gro_find_complete_by_type(__be16 type)
4757{
4758        struct list_head *offload_head = &offload_base;
4759        struct packet_offload *ptype;
4760
4761        list_for_each_entry_rcu(ptype, offload_head, list) {
4762                if (ptype->type != type || !ptype->callbacks.gro_complete)
4763                        continue;
4764                return ptype;
4765        }
4766        return NULL;
4767}
4768EXPORT_SYMBOL(gro_find_complete_by_type);
4769
4770static void napi_skb_free_stolen_head(struct sk_buff *skb)
4771{
4772        skb_dst_drop(skb);
4773        secpath_reset(skb);
4774        kmem_cache_free(skbuff_head_cache, skb);
4775}
4776
4777static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4778{
4779        switch (ret) {
4780        case GRO_NORMAL:
4781                if (netif_receive_skb_internal(skb))
4782                        ret = GRO_DROP;
4783                break;
4784
4785        case GRO_DROP:
4786                kfree_skb(skb);
4787                break;
4788
4789        case GRO_MERGED_FREE:
4790                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4791                        napi_skb_free_stolen_head(skb);
4792                else
4793                        __kfree_skb(skb);
4794                break;
4795
4796        case GRO_HELD:
4797        case GRO_MERGED:
4798        case GRO_CONSUMED:
4799                break;
4800        }
4801
4802        return ret;
4803}
4804
4805gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4806{
4807        skb_mark_napi_id(skb, napi);
4808        trace_napi_gro_receive_entry(skb);
4809
4810        skb_gro_reset_offset(skb);
4811
4812        return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4813}
4814EXPORT_SYMBOL(napi_gro_receive);
4815
4816static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4817{
4818        if (unlikely(skb->pfmemalloc)) {
4819                consume_skb(skb);
4820                return;
4821        }
4822        __skb_pull(skb, skb_headlen(skb));
4823        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4824        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4825        skb->vlan_tci = 0;
4826        skb->dev = napi->dev;
4827        skb->skb_iif = 0;
4828        skb->encapsulation = 0;
4829        skb_shinfo(skb)->gso_type = 0;
4830        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4831        secpath_reset(skb);
4832
4833        napi->skb = skb;
4834}
4835
4836struct sk_buff *napi_get_frags(struct napi_struct *napi)
4837{
4838        struct sk_buff *skb = napi->skb;
4839
4840        if (!skb) {
4841                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4842                if (skb) {
4843                        napi->skb = skb;
4844                        skb_mark_napi_id(skb, napi);
4845                }
4846        }
4847        return skb;
4848}
4849EXPORT_SYMBOL(napi_get_frags);
4850
4851static gro_result_t napi_frags_finish(struct napi_struct *napi,
4852                                      struct sk_buff *skb,
4853                                      gro_result_t ret)
4854{
4855        switch (ret) {
4856        case GRO_NORMAL:
4857        case GRO_HELD:
4858                __skb_push(skb, ETH_HLEN);
4859                skb->protocol = eth_type_trans(skb, skb->dev);
4860                if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4861                        ret = GRO_DROP;
4862                break;
4863
4864        case GRO_DROP:
4865                napi_reuse_skb(napi, skb);
4866                break;
4867
4868        case GRO_MERGED_FREE:
4869                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4870                        napi_skb_free_stolen_head(skb);
4871                else
4872                        napi_reuse_skb(napi, skb);
4873                break;
4874
4875        case GRO_MERGED:
4876        case GRO_CONSUMED:
4877                break;
4878        }
4879
4880        return ret;
4881}
4882
4883/* Upper GRO stack assumes network header starts at gro_offset=0
4884 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4885 * We copy ethernet header into skb->data to have a common layout.
4886 */
4887static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4888{
4889        struct sk_buff *skb = napi->skb;
4890        const struct ethhdr *eth;
4891        unsigned int hlen = sizeof(*eth);
4892
4893        napi->skb = NULL;
4894
4895        skb_reset_mac_header(skb);
4896        skb_gro_reset_offset(skb);
4897
4898        eth = skb_gro_header_fast(skb, 0);
4899        if (unlikely(skb_gro_header_hard(skb, hlen))) {
4900                eth = skb_gro_header_slow(skb, hlen, 0);
4901                if (unlikely(!eth)) {
4902                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4903                                             __func__, napi->dev->name);
4904                        napi_reuse_skb(napi, skb);
4905                        return NULL;
4906                }
4907        } else {
4908                gro_pull_from_frag0(skb, hlen);
4909                NAPI_GRO_CB(skb)->frag0 += hlen;
4910                NAPI_GRO_CB(skb)->frag0_len -= hlen;
4911        }
4912        __skb_pull(skb, hlen);
4913
4914        /*
4915         * This works because the only protocols we care about don't require
4916         * special handling.
4917         * We'll fix it up properly in napi_frags_finish()
4918         */
4919        skb->protocol = eth->h_proto;
4920
4921        return skb;
4922}
4923
4924gro_result_t napi_gro_frags(struct napi_struct *napi)
4925{
4926        struct sk_buff *skb = napi_frags_skb(napi);
4927
4928        if (!skb)
4929                return GRO_DROP;
4930
4931        trace_napi_gro_frags_entry(skb);
4932
4933        return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4934}
4935EXPORT_SYMBOL(napi_gro_frags);
4936
4937/* Compute the checksum from gro_offset and return the folded value
4938 * after adding in any pseudo checksum.
4939 */
4940__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4941{
4942        __wsum wsum;
4943        __sum16 sum;
4944
4945        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4946
4947        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4948        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4949        if (likely(!sum)) {
4950                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4951                    !skb->csum_complete_sw)
4952                        netdev_rx_csum_fault(skb->dev);
4953        }
4954
4955        NAPI_GRO_CB(skb)->csum = wsum;
4956        NAPI_GRO_CB(skb)->csum_valid = 1;
4957
4958        return sum;
4959}
4960EXPORT_SYMBOL(__skb_gro_checksum_complete);
4961
4962static void net_rps_send_ipi(struct softnet_data *remsd)
4963{
4964#ifdef CONFIG_RPS
4965        while (remsd) {
4966                struct softnet_data *next = remsd->rps_ipi_next;
4967
4968                if (cpu_online(remsd->cpu))
4969                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
4970                remsd = next;
4971        }
4972#endif
4973}
4974
4975/*
4976 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4977 * Note: called with local irq disabled, but exits with local irq enabled.
4978 */
4979static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4980{
4981#ifdef CONFIG_RPS
4982        struct softnet_data *remsd = sd->rps_ipi_list;
4983
4984        if (remsd) {
4985                sd->rps_ipi_list = NULL;
4986
4987                local_irq_enable();
4988
4989                /* Send pending IPI's to kick RPS processing on remote cpus. */
4990                net_rps_send_ipi(remsd);
4991        } else
4992#endif
4993                local_irq_enable();
4994}
4995
4996static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4997{
4998#ifdef CONFIG_RPS
4999        return sd->rps_ipi_list != NULL;
5000#else
5001        return false;
5002#endif
5003}
5004
5005static int process_backlog(struct napi_struct *napi, int quota)
5006{
5007        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5008        bool again = true;
5009        int work = 0;
5010
5011        /* Check if we have pending ipi, its better to send them now,
5012         * not waiting net_rx_action() end.
5013         */
5014        if (sd_has_rps_ipi_waiting(sd)) {
5015                local_irq_disable();
5016                net_rps_action_and_irq_enable(sd);
5017        }
5018
5019        napi->weight = dev_rx_weight;
5020        while (again) {
5021                struct sk_buff *skb;
5022
5023                while ((skb = __skb_dequeue(&sd->process_queue))) {
5024                        rcu_read_lock();
5025                        __netif_receive_skb(skb);
5026                        rcu_read_unlock();
5027                        input_queue_head_incr(sd);
5028                        if (++work >= quota)
5029                                return work;
5030
5031                }
5032
5033                local_irq_disable();
5034                rps_lock(sd);
5035                if (skb_queue_empty(&sd->input_pkt_queue)) {
5036                        /*
5037                         * Inline a custom version of __napi_complete().
5038                         * only current cpu owns and manipulates this napi,
5039                         * and NAPI_STATE_SCHED is the only possible flag set
5040                         * on backlog.
5041                         * We can use a plain write instead of clear_bit(),
5042                         * and we dont need an smp_mb() memory barrier.
5043                         */
5044                        napi->state = 0;
5045                        again = false;
5046                } else {
5047                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
5048                                                   &sd->process_queue);
5049                }
5050                rps_unlock(sd);
5051                local_irq_enable();
5052        }
5053
5054        return work;
5055}
5056
5057/**
5058 * __napi_schedule - schedule for receive
5059 * @n: entry to schedule
5060 *
5061 * The entry's receive function will be scheduled to run.
5062 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5063 */
5064void __napi_schedule(struct napi_struct *n)
5065{
5066        unsigned long flags;
5067
5068        local_irq_save(flags);
5069        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5070        local_irq_restore(flags);
5071}
5072EXPORT_SYMBOL(__napi_schedule);
5073
5074/**
5075 *      napi_schedule_prep - check if napi can be scheduled
5076 *      @n: napi context
5077 *
5078 * Test if NAPI routine is already running, and if not mark
5079 * it as running.  This is used as a condition variable
5080 * insure only one NAPI poll instance runs.  We also make
5081 * sure there is no pending NAPI disable.
5082 */
5083bool napi_schedule_prep(struct napi_struct *n)
5084{
5085        unsigned long val, new;
5086
5087        do {
5088                val = READ_ONCE(n->state);
5089                if (unlikely(val & NAPIF_STATE_DISABLE))
5090                        return false;
5091                new = val | NAPIF_STATE_SCHED;
5092
5093                /* Sets STATE_MISSED bit if STATE_SCHED was already set
5094                 * This was suggested by Alexander Duyck, as compiler
5095                 * emits better code than :
5096                 * if (val & NAPIF_STATE_SCHED)
5097                 *     new |= NAPIF_STATE_MISSED;
5098                 */
5099                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5100                                                   NAPIF_STATE_MISSED;
5101        } while (cmpxchg(&n->state, val, new) != val);
5102
5103        return !(val & NAPIF_STATE_SCHED);
5104}
5105EXPORT_SYMBOL(napi_schedule_prep);
5106
5107/**
5108 * __napi_schedule_irqoff - schedule for receive
5109 * @n: entry to schedule
5110 *
5111 * Variant of __napi_schedule() assuming hard irqs are masked
5112 */
5113void __napi_schedule_irqoff(struct napi_struct *n)
5114{
5115        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5116}
5117EXPORT_SYMBOL(__napi_schedule_irqoff);
5118
5119bool napi_complete_done(struct napi_struct *n, int work_done)
5120{
5121        unsigned long flags, val, new;
5122
5123        /*
5124         * 1) Don't let napi dequeue from the cpu poll list
5125         *    just in case its running on a different cpu.
5126         * 2) If we are busy polling, do nothing here, we have
5127         *    the guarantee we will be called later.
5128         */
5129        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5130                                 NAPIF_STATE_IN_BUSY_POLL)))
5131                return false;
5132
5133        if (n->gro_list) {
5134                unsigned long timeout = 0;
5135
5136                if (work_done)
5137                        timeout = n->dev->gro_flush_timeout;
5138
5139                if (timeout)
5140                        hrtimer_start(&n->timer, ns_to_ktime(timeout),
5141                                      HRTIMER_MODE_REL_PINNED);
5142                else
5143                        napi_gro_flush(n, false);
5144        }
5145        if (unlikely(!list_empty(&n->poll_list))) {
5146                /* If n->poll_list is not empty, we need to mask irqs */
5147                local_irq_save(flags);
5148                list_del_init(&n->poll_list);
5149                local_irq_restore(flags);
5150        }
5151
5152        do {
5153                val = READ_ONCE(n->state);
5154
5155                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5156
5157                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5158
5159                /* If STATE_MISSED was set, leave STATE_SCHED set,
5160                 * because we will call napi->poll() one more time.
5161                 * This C code was suggested by Alexander Duyck to help gcc.
5162                 */
5163                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5164                                                    NAPIF_STATE_SCHED;
5165        } while (cmpxchg(&n->state, val, new) != val);
5166
5167        if (unlikely(val & NAPIF_STATE_MISSED)) {
5168                __napi_schedule(n);
5169                return false;
5170        }
5171
5172        return true;
5173}
5174EXPORT_SYMBOL(napi_complete_done);
5175
5176/* must be called under rcu_read_lock(), as we dont take a reference */
5177static struct napi_struct *napi_by_id(unsigned int napi_id)
5178{
5179        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5180        struct napi_struct *napi;
5181
5182        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5183                if (napi->napi_id == napi_id)
5184                        return napi;
5185
5186        return NULL;
5187}
5188
5189#if defined(CONFIG_NET_RX_BUSY_POLL)
5190
5191#define BUSY_POLL_BUDGET 8
5192
5193static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5194{
5195        int rc;
5196
5197        /* Busy polling means there is a high chance device driver hard irq
5198         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5199         * set in napi_schedule_prep().
5200         * Since we are about to call napi->poll() once more, we can safely
5201         * clear NAPI_STATE_MISSED.
5202         *
5203         * Note: x86 could use a single "lock and ..." instruction
5204         * to perform these two clear_bit()
5205         */
5206        clear_bit(NAPI_STATE_MISSED, &napi->state);
5207        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5208
5209        local_bh_disable();
5210
5211        /* All we really want here is to re-enable device interrupts.
5212         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5213         */
5214        rc = napi->poll(napi, BUSY_POLL_BUDGET);
5215        netpoll_poll_unlock(have_poll_lock);
5216        if (rc == BUSY_POLL_BUDGET)
5217                __napi_schedule(napi);
5218        local_bh_enable();
5219}
5220
5221void napi_busy_loop(unsigned int napi_id,
5222                    bool (*loop_end)(void *, unsigned long),
5223                    void *loop_end_arg)
5224{
5225        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5226        int (*napi_poll)(struct napi_struct *napi, int budget);
5227        void *have_poll_lock = NULL;
5228        struct napi_struct *napi;
5229
5230restart:
5231        napi_poll = NULL;
5232
5233        rcu_read_lock();
5234
5235        napi = napi_by_id(napi_id);
5236        if (!napi)
5237                goto out;
5238
5239        preempt_disable();
5240        for (;;) {
5241                int work = 0;
5242
5243                local_bh_disable();
5244                if (!napi_poll) {
5245                        unsigned long val = READ_ONCE(napi->state);
5246
5247                        /* If multiple threads are competing for this napi,
5248                         * we avoid dirtying napi->state as much as we can.
5249                         */
5250                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5251                                   NAPIF_STATE_IN_BUSY_POLL))
5252                                goto count;
5253                        if (cmpxchg(&napi->state, val,
5254                                    val | NAPIF_STATE_IN_BUSY_POLL |
5255                                          NAPIF_STATE_SCHED) != val)
5256                                goto count;
5257                        have_poll_lock = netpoll_poll_lock(napi);
5258                        napi_poll = napi->poll;
5259                }
5260                work = napi_poll(napi, BUSY_POLL_BUDGET);
5261                trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5262count:
5263                if (work > 0)
5264                        __NET_ADD_STATS(dev_net(napi->dev),
5265                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
5266                local_bh_enable();
5267
5268                if (!loop_end || loop_end(loop_end_arg, start_time))
5269                        break;
5270
5271                if (unlikely(need_resched())) {
5272                        if (napi_poll)
5273                                busy_poll_stop(napi, have_poll_lock);
5274                        preempt_enable();
5275                        rcu_read_unlock();
5276                        cond_resched();
5277                        if (loop_end(loop_end_arg, start_time))
5278                                return;
5279                        goto restart;
5280                }
5281                cpu_relax();
5282        }
5283        if (napi_poll)
5284                busy_poll_stop(napi, have_poll_lock);
5285        preempt_enable();
5286out:
5287        rcu_read_unlock();
5288}
5289EXPORT_SYMBOL(napi_busy_loop);
5290
5291#endif /* CONFIG_NET_RX_BUSY_POLL */
5292
5293static void napi_hash_add(struct napi_struct *napi)
5294{
5295        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5296            test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5297                return;
5298
5299        spin_lock(&napi_hash_lock);
5300
5301        /* 0..NR_CPUS range is reserved for sender_cpu use */
5302        do {
5303                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5304                        napi_gen_id = MIN_NAPI_ID;
5305        } while (napi_by_id(napi_gen_id));
5306        napi->napi_id = napi_gen_id;
5307
5308        hlist_add_head_rcu(&napi->napi_hash_node,
5309                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5310
5311        spin_unlock(&napi_hash_lock);
5312}
5313
5314/* Warning : caller is responsible to make sure rcu grace period
5315 * is respected before freeing memory containing @napi
5316 */
5317bool napi_hash_del(struct napi_struct *napi)
5318{
5319        bool rcu_sync_needed = false;
5320
5321        spin_lock(&napi_hash_lock);
5322
5323        if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5324                rcu_sync_needed = true;
5325                hlist_del_rcu(&napi->napi_hash_node);
5326        }
5327        spin_unlock(&napi_hash_lock);
5328        return rcu_sync_needed;
5329}
5330EXPORT_SYMBOL_GPL(napi_hash_del);
5331
5332static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5333{
5334        struct napi_struct *napi;
5335
5336        napi = container_of(timer, struct napi_struct, timer);
5337
5338        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5339         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5340         */
5341        if (napi->gro_list && !napi_disable_pending(napi) &&
5342            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5343                __napi_schedule_irqoff(napi);
5344
5345        return HRTIMER_NORESTART;
5346}
5347
5348void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5349                    int (*poll)(struct napi_struct *, int), int weight)
5350{
5351        INIT_LIST_HEAD(&napi->poll_list);
5352        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5353        napi->timer.function = napi_watchdog;
5354        napi->gro_count = 0;
5355        napi->gro_list = NULL;
5356        napi->skb = NULL;
5357        napi->poll = poll;
5358        if (weight > NAPI_POLL_WEIGHT)
5359                pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5360                            weight, dev->name);
5361        napi->weight = weight;
5362        list_add(&napi->dev_list, &dev->napi_list);
5363        napi->dev = dev;
5364#ifdef CONFIG_NETPOLL
5365        napi->poll_owner = -1;
5366#endif
5367        set_bit(NAPI_STATE_SCHED, &napi->state);
5368        napi_hash_add(napi);
5369}
5370EXPORT_SYMBOL(netif_napi_add);
5371
5372void napi_disable(struct napi_struct *n)
5373{
5374        might_sleep();
5375        set_bit(NAPI_STATE_DISABLE, &n->state);
5376
5377        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5378                msleep(1);
5379        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5380                msleep(1);
5381
5382        hrtimer_cancel(&n->timer);
5383
5384        clear_bit(NAPI_STATE_DISABLE, &n->state);
5385}
5386EXPORT_SYMBOL(napi_disable);
5387
5388/* Must be called in process context */
5389void netif_napi_del(struct napi_struct *napi)
5390{
5391        might_sleep();
5392        if (napi_hash_del(napi))
5393                synchronize_net();
5394        list_del_init(&napi->dev_list);
5395        napi_free_frags(napi);
5396
5397        kfree_skb_list(napi->gro_list);
5398        napi->gro_list = NULL;
5399        napi->gro_count = 0;
5400}
5401EXPORT_SYMBOL(netif_napi_del);
5402
5403static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5404{
5405        void *have;
5406        int work, weight;
5407
5408        list_del_init(&n->poll_list);
5409
5410        have = netpoll_poll_lock(n);
5411
5412        weight = n->weight;
5413
5414        /* This NAPI_STATE_SCHED test is for avoiding a race
5415         * with netpoll's poll_napi().  Only the entity which
5416         * obtains the lock and sees NAPI_STATE_SCHED set will
5417         * actually make the ->poll() call.  Therefore we avoid
5418         * accidentally calling ->poll() when NAPI is not scheduled.
5419         */
5420        work = 0;
5421        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5422                work = n->poll(n, weight);
5423                trace_napi_poll(n, work, weight);
5424        }
5425
5426        WARN_ON_ONCE(work > weight);
5427
5428        if (likely(work < weight))
5429                goto out_unlock;
5430
5431        /* Drivers must not modify the NAPI state if they
5432         * consume the entire weight.  In such cases this code
5433         * still "owns" the NAPI instance and therefore can
5434         * move the instance around on the list at-will.
5435         */
5436        if (unlikely(napi_disable_pending(n))) {
5437                napi_complete(n);
5438                goto out_unlock;
5439        }
5440
5441        if (n->gro_list) {
5442                /* flush too old packets
5443                 * If HZ < 1000, flush all packets.
5444                 */
5445                napi_gro_flush(n, HZ >= 1000);
5446        }
5447
5448        /* Some drivers may have called napi_schedule
5449         * prior to exhausting their budget.
5450         */
5451        if (unlikely(!list_empty(&n->poll_list))) {
5452                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5453                             n->dev ? n->dev->name : "backlog");
5454                goto out_unlock;
5455        }
5456
5457        list_add_tail(&n->poll_list, repoll);
5458
5459out_unlock:
5460        netpoll_poll_unlock(have);
5461
5462        return work;
5463}
5464
5465static __latent_entropy void net_rx_action(struct softirq_action *h)
5466{
5467        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5468        unsigned long time_limit = jiffies +
5469                usecs_to_jiffies(netdev_budget_usecs);
5470        int budget = netdev_budget;
5471        LIST_HEAD(list);
5472        LIST_HEAD(repoll);
5473
5474        local_irq_disable();
5475        list_splice_init(&sd->poll_list, &list);
5476        local_irq_enable();
5477
5478        for (;;) {
5479                struct napi_struct *n;
5480
5481                if (list_empty(&list)) {
5482                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5483                                goto out;
5484                        break;
5485                }
5486
5487                n = list_first_entry(&list, struct napi_struct, poll_list);
5488                budget -= napi_poll(n, &repoll);
5489
5490                /* If softirq window is exhausted then punt.
5491                 * Allow this to run for 2 jiffies since which will allow
5492                 * an average latency of 1.5/HZ.
5493                 */
5494                if (unlikely(budget <= 0 ||
5495                             time_after_eq(jiffies, time_limit))) {
5496                        sd->time_squeeze++;
5497                        break;
5498                }
5499        }
5500
5501        local_irq_disable();
5502
5503        list_splice_tail_init(&sd->poll_list, &list);
5504        list_splice_tail(&repoll, &list);
5505        list_splice(&list, &sd->poll_list);
5506        if (!list_empty(&sd->poll_list))
5507                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5508
5509        net_rps_action_and_irq_enable(sd);
5510out:
5511        __kfree_skb_flush();
5512}
5513
5514struct netdev_adjacent {
5515        struct net_device *dev;
5516
5517        /* upper master flag, there can only be one master device per list */
5518        bool master;
5519
5520        /* counter for the number of times this device was added to us */
5521        u16 ref_nr;
5522
5523        /* private field for the users */
5524        void *private;
5525
5526        struct list_head list;
5527        struct rcu_head rcu;
5528};
5529
5530static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5531                                                 struct list_head *adj_list)
5532{
5533        struct netdev_adjacent *adj;
5534
5535        list_for_each_entry(adj, adj_list, list) {
5536                if (adj->dev == adj_dev)
5537                        return adj;
5538        }
5539        return NULL;
5540}
5541
5542static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5543{
5544        struct net_device *dev = data;
5545
5546        return upper_dev == dev;
5547}
5548
5549/**
5550 * netdev_has_upper_dev - Check if device is linked to an upper device
5551 * @dev: device
5552 * @upper_dev: upper device to check
5553 *
5554 * Find out if a device is linked to specified upper device and return true
5555 * in case it is. Note that this checks only immediate upper device,
5556 * not through a complete stack of devices. The caller must hold the RTNL lock.
5557 */
5558bool netdev_has_upper_dev(struct net_device *dev,
5559                          struct net_device *upper_dev)
5560{
5561        ASSERT_RTNL();
5562
5563        return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5564                                             upper_dev);
5565}
5566EXPORT_SYMBOL(netdev_has_upper_dev);
5567
5568/**
5569 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5570 * @dev: device
5571 * @upper_dev: upper device to check
5572 *
5573 * Find out if a device is linked to specified upper device and return true
5574 * in case it is. Note that this checks the entire upper device chain.
5575 * The caller must hold rcu lock.
5576 */
5577
5578bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5579                                  struct net_device *upper_dev)
5580{
5581        return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5582                                               upper_dev);
5583}
5584EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5585
5586/**
5587 * netdev_has_any_upper_dev - Check if device is linked to some device
5588 * @dev: device
5589 *
5590 * Find out if a device is linked to an upper device and return true in case
5591 * it is. The caller must hold the RTNL lock.
5592 */
5593static bool netdev_has_any_upper_dev(struct net_device *dev)
5594{
5595        ASSERT_RTNL();
5596
5597        return !list_empty(&dev->adj_list.upper);
5598}
5599
5600/**
5601 * netdev_master_upper_dev_get - Get master upper device
5602 * @dev: device
5603 *
5604 * Find a master upper device and return pointer to it or NULL in case
5605 * it's not there. The caller must hold the RTNL lock.
5606 */
5607struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5608{
5609        struct netdev_adjacent *upper;
5610
5611        ASSERT_RTNL();
5612
5613        if (list_empty(&dev->adj_list.upper))
5614                return NULL;
5615
5616        upper = list_first_entry(&dev->adj_list.upper,
5617                                 struct netdev_adjacent, list);
5618        if (likely(upper->master))
5619                return upper->dev;
5620        return NULL;
5621}
5622EXPORT_SYMBOL(netdev_master_upper_dev_get);
5623
5624/**
5625 * netdev_has_any_lower_dev - Check if device is linked to some device
5626 * @dev: device
5627 *
5628 * Find out if a device is linked to a lower device and return true in case
5629 * it is. The caller must hold the RTNL lock.
5630 */
5631static bool netdev_has_any_lower_dev(struct net_device *dev)
5632{
5633        ASSERT_RTNL();
5634
5635        return !list_empty(&dev->adj_list.lower);
5636}
5637
5638void *netdev_adjacent_get_private(struct list_head *adj_list)
5639{
5640        struct netdev_adjacent *adj;
5641
5642        adj = list_entry(adj_list, struct netdev_adjacent, list);
5643
5644        return adj->private;
5645}
5646EXPORT_SYMBOL(netdev_adjacent_get_private);
5647
5648/**
5649 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5650 * @dev: device
5651 * @iter: list_head ** of the current position
5652 *
5653 * Gets the next device from the dev's upper list, starting from iter
5654 * position. The caller must hold RCU read lock.
5655 */
5656struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5657                                                 struct list_head **iter)
5658{
5659        struct netdev_adjacent *upper;
5660
5661        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5662
5663        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5664
5665        if (&upper->list == &dev->adj_list.upper)
5666                return NULL;
5667
5668        *iter = &upper->list;
5669
5670        return upper->dev;
5671}
5672EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5673
5674static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5675                                                    struct list_head **iter)
5676{
5677        struct netdev_adjacent *upper;
5678
5679        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5680
5681        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5682
5683        if (&upper->list == &dev->adj_list.upper)
5684                return NULL;
5685
5686        *iter = &upper->list;
5687
5688        return upper->dev;
5689}
5690
5691int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5692                                  int (*fn)(struct net_device *dev,
5693                                            void *data),
5694                                  void *data)
5695{
5696        struct net_device *udev;
5697        struct list_head *iter;
5698        int ret;
5699
5700        for (iter = &dev->adj_list.upper,
5701             udev = netdev_next_upper_dev_rcu(dev, &iter);
5702             udev;
5703             udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5704                /* first is the upper device itself */
5705                ret = fn(udev, data);
5706                if (ret)
5707                        return ret;
5708
5709                /* then look at all of its upper devices */
5710                ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5711                if (ret)
5712                        return ret;
5713        }
5714
5715        return 0;
5716}
5717EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5718
5719/**
5720 * netdev_lower_get_next_private - Get the next ->private from the
5721 *                                 lower neighbour list
5722 * @dev: device
5723 * @iter: list_head ** of the current position
5724 *
5725 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5726 * list, starting from iter position. The caller must hold either hold the
5727 * RTNL lock or its own locking that guarantees that the neighbour lower
5728 * list will remain unchanged.
5729 */
5730void *netdev_lower_get_next_private(struct net_device *dev,
5731                                    struct list_head **iter)
5732{
5733        struct netdev_adjacent *lower;
5734
5735        lower = list_entry(*iter, struct netdev_adjacent, list);
5736
5737        if (&lower->list == &dev->adj_list.lower)
5738                return NULL;
5739
5740        *iter = lower->list.next;
5741
5742        return lower->private;
5743}
5744EXPORT_SYMBOL(netdev_lower_get_next_private);
5745
5746/**
5747 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5748 *                                     lower neighbour list, RCU
5749 *                                     variant
5750 * @dev: device
5751 * @iter: list_head ** of the current position
5752 *
5753 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5754 * list, starting from iter position. The caller must hold RCU read lock.
5755 */
5756void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5757                                        struct list_head **iter)
5758{
5759        struct netdev_adjacent *lower;
5760
5761        WARN_ON_ONCE(!rcu_read_lock_held());
5762
5763        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5764
5765        if (&lower->list == &dev->adj_list.lower)
5766                return NULL;
5767
5768        *iter = &lower->list;
5769
5770        return lower->private;
5771}
5772EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5773
5774/**
5775 * netdev_lower_get_next - Get the next device from the lower neighbour
5776 *                         list
5777 * @dev: device
5778 * @iter: list_head ** of the current position
5779 *
5780 * Gets the next netdev_adjacent from the dev's lower neighbour
5781 * list, starting from iter position. The caller must hold RTNL lock or
5782 * its own locking that guarantees that the neighbour lower
5783 * list will remain unchanged.
5784 */
5785void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5786{
5787        struct netdev_adjacent *lower;
5788
5789        lower = list_entry(*iter, struct netdev_adjacent, list);
5790
5791        if (&lower->list == &dev->adj_list.lower)
5792                return NULL;
5793
5794        *iter = lower->list.next;
5795
5796        return lower->dev;
5797}
5798EXPORT_SYMBOL(netdev_lower_get_next);
5799
5800static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5801                                                struct list_head **iter)
5802{
5803        struct netdev_adjacent *lower;
5804
5805        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5806
5807        if (&lower->list == &dev->adj_list.lower)
5808                return NULL;
5809
5810        *iter = &lower->list;
5811
5812        return lower->dev;
5813}
5814
5815int netdev_walk_all_lower_dev(struct net_device *dev,
5816                              int (*fn)(struct net_device *dev,
5817                                        void *data),
5818                              void *data)
5819{
5820        struct net_device *ldev;
5821        struct list_head *iter;
5822        int ret;
5823
5824        for (iter = &dev->adj_list.lower,
5825             ldev = netdev_next_lower_dev(dev, &iter);
5826             ldev;
5827             ldev = netdev_next_lower_dev(dev, &iter)) {
5828                /* first is the lower device itself */
5829                ret = fn(ldev, data);
5830                if (ret)
5831                        return ret;
5832
5833                /* then look at all of its lower devices */
5834                ret = netdev_walk_all_lower_dev(ldev, fn, data);
5835                if (ret)
5836                        return ret;
5837        }
5838
5839        return 0;
5840}
5841EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5842
5843static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5844                                                    struct list_head **iter)
5845{
5846        struct netdev_adjacent *lower;
5847
5848        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5849        if (&lower->list == &dev->adj_list.lower)
5850                return NULL;
5851
5852        *iter = &lower->list;
5853
5854        return lower->dev;
5855}
5856
5857int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5858                                  int (*fn)(struct net_device *dev,
5859                                            void *data),
5860                                  void *data)
5861{
5862        struct net_device *ldev;
5863        struct list_head *iter;
5864        int ret;
5865
5866        for (iter = &dev->adj_list.lower,
5867             ldev = netdev_next_lower_dev_rcu(dev, &iter);
5868             ldev;
5869             ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5870                /* first is the lower device itself */
5871                ret = fn(ldev, data);
5872                if (ret)
5873                        return ret;
5874
5875                /* then look at all of its lower devices */
5876                ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5877                if (ret)
5878                        return ret;
5879        }
5880
5881        return 0;
5882}
5883EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5884
5885/**
5886 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5887 *                                     lower neighbour list, RCU
5888 *                                     variant
5889 * @dev: device
5890 *
5891 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5892 * list. The caller must hold RCU read lock.
5893 */
5894void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5895{
5896        struct netdev_adjacent *lower;
5897
5898        lower = list_first_or_null_rcu(&dev->adj_list.lower,
5899                        struct netdev_adjacent, list);
5900        if (lower)
5901                return lower->private;
5902        return NULL;
5903}
5904EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5905
5906/**
5907 * netdev_master_upper_dev_get_rcu - Get master upper device
5908 * @dev: device
5909 *
5910 * Find a master upper device and return pointer to it or NULL in case
5911 * it's not there. The caller must hold the RCU read lock.
5912 */
5913struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5914{
5915        struct netdev_adjacent *upper;
5916
5917        upper = list_first_or_null_rcu(&dev->adj_list.upper,
5918                                       struct netdev_adjacent, list);
5919        if (upper && likely(upper->master))
5920                return upper->dev;
5921        return NULL;
5922}
5923EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5924
5925static int netdev_adjacent_sysfs_add(struct net_device *dev,
5926                              struct net_device *adj_dev,
5927                              struct list_head *dev_list)
5928{
5929        char linkname[IFNAMSIZ+7];
5930
5931        sprintf(linkname, dev_list == &dev->adj_list.upper ?
5932                "upper_%s" : "lower_%s", adj_dev->name);
5933        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5934                                 linkname);
5935}
5936static void netdev_adjacent_sysfs_del(struct net_device *dev,
5937                               char *name,
5938                               struct list_head *dev_list)
5939{
5940        char linkname[IFNAMSIZ+7];
5941
5942        sprintf(linkname, dev_list == &dev->adj_list.upper ?
5943                "upper_%s" : "lower_%s", name);
5944        sysfs_remove_link(&(dev->dev.kobj), linkname);
5945}
5946
5947static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5948                                                 struct net_device *adj_dev,
5949                                                 struct list_head *dev_list)
5950{
5951        return (dev_list == &dev->adj_list.upper ||
5952                dev_list == &dev->adj_list.lower) &&
5953                net_eq(dev_net(dev), dev_net(adj_dev));
5954}
5955
5956static int __netdev_adjacent_dev_insert(struct net_device *dev,
5957                                        struct net_device *adj_dev,
5958                                        struct list_head *dev_list,
5959                                        void *private, bool master)
5960{
5961        struct netdev_adjacent *adj;
5962        int ret;
5963
5964        adj = __netdev_find_adj(adj_dev, dev_list);
5965
5966        if (adj) {
5967                adj->ref_nr += 1;
5968                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5969                         dev->name, adj_dev->name, adj->ref_nr);
5970
5971                return 0;
5972        }
5973
5974        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5975        if (!adj)
5976                return -ENOMEM;
5977
5978        adj->dev = adj_dev;
5979        adj->master = master;
5980        adj->ref_nr = 1;
5981        adj->private = private;
5982        dev_hold(adj_dev);
5983
5984        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5985                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5986
5987        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5988                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5989                if (ret)
5990                        goto free_adj;
5991        }
5992
5993        /* Ensure that master link is always the first item in list. */
5994        if (master) {
5995                ret = sysfs_create_link(&(dev->dev.kobj),
5996                                        &(adj_dev->dev.kobj), "master");
5997                if (ret)
5998                        goto remove_symlinks;
5999
6000                list_add_rcu(&adj->list, dev_list);
6001        } else {
6002                list_add_tail_rcu(&adj->list, dev_list);
6003        }
6004
6005        return 0;
6006
6007remove_symlinks:
6008        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6009                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6010free_adj:
6011        kfree(adj);
6012        dev_put(adj_dev);
6013
6014        return ret;
6015}
6016
6017static void __netdev_adjacent_dev_remove(struct net_device *dev,
6018                                         struct net_device *adj_dev,
6019                                         u16 ref_nr,
6020                                         struct list_head *dev_list)
6021{
6022        struct netdev_adjacent *adj;
6023
6024        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6025                 dev->name, adj_dev->name, ref_nr);
6026
6027        adj = __netdev_find_adj(adj_dev, dev_list);
6028
6029        if (!adj) {
6030                pr_err("Adjacency does not exist for device %s from %s\n",
6031                       dev->name, adj_dev->name);
6032                WARN_ON(1);
6033                return;
6034        }
6035
6036        if (adj->ref_nr > ref_nr) {
6037                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6038                         dev->name, adj_dev->name, ref_nr,
6039                         adj->ref_nr - ref_nr);
6040                adj->ref_nr -= ref_nr;
6041                return;
6042        }
6043
6044        if (adj->master)
6045                sysfs_remove_link(&(dev->dev.kobj), "master");
6046
6047        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6048                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6049
6050        list_del_rcu(&adj->list);
6051        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6052                 adj_dev->name, dev->name, adj_dev->name);
6053        dev_put(adj_dev);
6054        kfree_rcu(adj, rcu);
6055}
6056
6057static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6058                                            struct net_device *upper_dev,
6059                                            struct list_head *up_list,
6060                                            struct list_head *down_list,
6061                                            void *private, bool master)
6062{
6063        int ret;
6064
6065        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6066                                           private, master);
6067        if (ret)
6068                return ret;
6069
6070        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6071                                           private, false);
6072        if (ret) {
6073                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6074                return ret;
6075        }
6076
6077        return 0;
6078}
6079
6080static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6081                                               struct net_device *upper_dev,
6082                                               u16 ref_nr,
6083                                               struct list_head *up_list,
6084                                               struct list_head *down_list)
6085{
6086        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6087        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6088}
6089
6090static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6091                                                struct net_device *upper_dev,
6092                                                void *private, bool master)
6093{
6094        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6095                                                &dev->adj_list.upper,
6096                                                &upper_dev->adj_list.lower,
6097                                                private, master);
6098}
6099
6100static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6101                                                   struct net_device *upper_dev)
6102{
6103        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6104                                           &dev->adj_list.upper,
6105                                           &upper_dev->adj_list.lower);
6106}
6107
6108static int __netdev_upper_dev_link(struct net_device *dev,
6109                                   struct net_device *upper_dev, bool master,
6110                                   void *upper_priv, void *upper_info)
6111{
6112        struct netdev_notifier_changeupper_info changeupper_info;
6113        int ret = 0;
6114
6115        ASSERT_RTNL();
6116
6117        if (dev == upper_dev)
6118                return -EBUSY;
6119
6120        /* To prevent loops, check if dev is not upper device to upper_dev. */
6121        if (netdev_has_upper_dev(upper_dev, dev))
6122                return -EBUSY;
6123
6124        if (netdev_has_upper_dev(dev, upper_dev))
6125                return -EEXIST;
6126
6127        if (master && netdev_master_upper_dev_get(dev))
6128                return -EBUSY;
6129
6130        changeupper_info.upper_dev = upper_dev;
6131        changeupper_info.master = master;
6132        changeupper_info.linking = true;
6133        changeupper_info.upper_info = upper_info;
6134
6135        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6136                                            &changeupper_info.info);
6137        ret = notifier_to_errno(ret);
6138        if (ret)
6139                return ret;
6140
6141        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6142                                                   master);
6143        if (ret)
6144                return ret;
6145
6146        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6147                                            &changeupper_info.info);
6148        ret = notifier_to_errno(ret);
6149        if (ret)
6150                goto rollback;
6151
6152        return 0;
6153
6154rollback:
6155        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6156
6157        return ret;
6158}
6159
6160/**
6161 * netdev_upper_dev_link - Add a link to the upper device
6162 * @dev: device
6163 * @upper_dev: new upper device
6164 *
6165 * Adds a link to device which is upper to this one. The caller must hold
6166 * the RTNL lock. On a failure a negative errno code is returned.
6167 * On success the reference counts are adjusted and the function
6168 * returns zero.
6169 */
6170int netdev_upper_dev_link(struct net_device *dev,
6171                          struct net_device *upper_dev)
6172{
6173        return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6174}
6175EXPORT_SYMBOL(netdev_upper_dev_link);
6176
6177/**
6178 * netdev_master_upper_dev_link - Add a master link to the upper device
6179 * @dev: device
6180 * @upper_dev: new upper device
6181 * @upper_priv: upper device private
6182 * @upper_info: upper info to be passed down via notifier
6183 *
6184 * Adds a link to device which is upper to this one. In this case, only
6185 * one master upper device can be linked, although other non-master devices
6186 * might be linked as well. The caller must hold the RTNL lock.
6187 * On a failure a negative errno code is returned. On success the reference
6188 * counts are adjusted and the function returns zero.
6189 */
6190int netdev_master_upper_dev_link(struct net_device *dev,
6191                                 struct net_device *upper_dev,
6192                                 void *upper_priv, void *upper_info)
6193{
6194        return __netdev_upper_dev_link(dev, upper_dev, true,
6195                                       upper_priv, upper_info);
6196}
6197EXPORT_SYMBOL(netdev_master_upper_dev_link);
6198
6199/**
6200 * netdev_upper_dev_unlink - Removes a link to upper device
6201 * @dev: device
6202 * @upper_dev: new upper device
6203 *
6204 * Removes a link to device which is upper to this one. The caller must hold
6205 * the RTNL lock.
6206 */
6207void netdev_upper_dev_unlink(struct net_device *dev,
6208                             struct net_device *upper_dev)
6209{
6210        struct netdev_notifier_changeupper_info changeupper_info;
6211
6212        ASSERT_RTNL();
6213
6214        changeupper_info.upper_dev = upper_dev;
6215        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6216        changeupper_info.linking = false;
6217
6218        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6219                                      &changeupper_info.info);
6220
6221        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6222
6223        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6224                                      &changeupper_info.info);
6225}
6226EXPORT_SYMBOL(netdev_upper_dev_unlink);
6227
6228/**
6229 * netdev_bonding_info_change - Dispatch event about slave change
6230 * @dev: device
6231 * @bonding_info: info to dispatch
6232 *
6233 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6234 * The caller must hold the RTNL lock.
6235 */
6236void netdev_bonding_info_change(struct net_device *dev,
6237                                struct netdev_bonding_info *bonding_info)
6238{
6239        struct netdev_notifier_bonding_info     info;
6240
6241        memcpy(&info.bonding_info, bonding_info,
6242               sizeof(struct netdev_bonding_info));
6243        call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6244                                      &info.info);
6245}
6246EXPORT_SYMBOL(netdev_bonding_info_change);
6247
6248static void netdev_adjacent_add_links(struct net_device *dev)
6249{
6250        struct netdev_adjacent *iter;
6251
6252        struct net *net = dev_net(dev);
6253
6254        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6255                if (!net_eq(net, dev_net(iter->dev)))
6256                        continue;
6257                netdev_adjacent_sysfs_add(iter->dev, dev,
6258                                          &iter->dev->adj_list.lower);
6259                netdev_adjacent_sysfs_add(dev, iter->dev,
6260                                          &dev->adj_list.upper);
6261        }
6262
6263        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6264                if (!net_eq(net, dev_net(iter->dev)))
6265                        continue;
6266                netdev_adjacent_sysfs_add(iter->dev, dev,
6267                                          &iter->dev->adj_list.upper);
6268                netdev_adjacent_sysfs_add(dev, iter->dev,
6269                                          &dev->adj_list.lower);
6270        }
6271}
6272
6273static void netdev_adjacent_del_links(struct net_device *dev)
6274{
6275        struct netdev_adjacent *iter;
6276
6277        struct net *net = dev_net(dev);
6278
6279        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6280                if (!net_eq(net, dev_net(iter->dev)))
6281                        continue;
6282                netdev_adjacent_sysfs_del(iter->dev, dev->name,
6283                                          &iter->dev->adj_list.lower);
6284                netdev_adjacent_sysfs_del(dev, iter->dev->name,
6285                                          &dev->adj_list.upper);
6286        }
6287
6288        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6289                if (!net_eq(net, dev_net(iter->dev)))
6290                        continue;
6291                netdev_adjacent_sysfs_del(iter->dev, dev->name,
6292                                          &iter->dev->adj_list.upper);
6293                netdev_adjacent_sysfs_del(dev, iter->dev->name,
6294                                          &dev->adj_list.lower);
6295        }
6296}
6297
6298void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6299{
6300        struct netdev_adjacent *iter;
6301
6302        struct net *net = dev_net(dev);
6303
6304        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6305                if (!net_eq(net, dev_net(iter->dev)))
6306                        continue;
6307                netdev_adjacent_sysfs_del(iter->dev, oldname,
6308                                          &iter->dev->adj_list.lower);
6309                netdev_adjacent_sysfs_add(iter->dev, dev,
6310                                          &iter->dev->adj_list.lower);
6311        }
6312
6313        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6314                if (!net_eq(net, dev_net(iter->dev)))
6315                        continue;
6316                netdev_adjacent_sysfs_del(iter->dev, oldname,
6317                                          &iter->dev->adj_list.upper);
6318                netdev_adjacent_sysfs_add(iter->dev, dev,
6319                                          &iter->dev->adj_list.upper);
6320        }
6321}
6322
6323void *netdev_lower_dev_get_private(struct net_device *dev,
6324                                   struct net_device *lower_dev)
6325{
6326        struct netdev_adjacent *lower;
6327
6328        if (!lower_dev)
6329                return NULL;
6330        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6331        if (!lower)
6332                return NULL;
6333
6334        return lower->private;
6335}
6336EXPORT_SYMBOL(netdev_lower_dev_get_private);
6337
6338
6339int dev_get_nest_level(struct net_device *dev)
6340{
6341        struct net_device *lower = NULL;
6342        struct list_head *iter;
6343        int max_nest = -1;
6344        int nest;
6345
6346        ASSERT_RTNL();
6347
6348        netdev_for_each_lower_dev(dev, lower, iter) {
6349                nest = dev_get_nest_level(lower);
6350                if (max_nest < nest)
6351                        max_nest = nest;
6352        }
6353
6354        return max_nest + 1;
6355}
6356EXPORT_SYMBOL(dev_get_nest_level);
6357
6358/**
6359 * netdev_lower_change - Dispatch event about lower device state change
6360 * @lower_dev: device
6361 * @lower_state_info: state to dispatch
6362 *
6363 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6364 * The caller must hold the RTNL lock.
6365 */
6366void netdev_lower_state_changed(struct net_device *lower_dev,
6367                                void *lower_state_info)
6368{
6369        struct netdev_notifier_changelowerstate_info changelowerstate_info;
6370
6371        ASSERT_RTNL();
6372        changelowerstate_info.lower_state_info = lower_state_info;
6373        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6374                                      &changelowerstate_info.info);
6375}
6376EXPORT_SYMBOL(netdev_lower_state_changed);
6377
6378static void dev_change_rx_flags(struct net_device *dev, int flags)
6379{
6380        const struct net_device_ops *ops = dev->netdev_ops;
6381
6382        if (ops->ndo_change_rx_flags)
6383                ops->ndo_change_rx_flags(dev, flags);
6384}
6385
6386static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6387{
6388        unsigned int old_flags = dev->flags;
6389        kuid_t uid;
6390        kgid_t gid;
6391
6392        ASSERT_RTNL();
6393
6394        dev->flags |= IFF_PROMISC;
6395        dev->promiscuity += inc;
6396        if (dev->promiscuity == 0) {
6397                /*
6398                 * Avoid overflow.
6399                 * If inc causes overflow, untouch promisc and return error.
6400                 */
6401                if (inc < 0)
6402                        dev->flags &= ~IFF_PROMISC;
6403                else {
6404                        dev->promiscuity -= inc;
6405                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6406                                dev->name);
6407                        return -EOVERFLOW;
6408                }
6409        }
6410        if (dev->flags != old_flags) {
6411                pr_info("device %s %s promiscuous mode\n",
6412                        dev->name,
6413                        dev->flags & IFF_PROMISC ? "entered" : "left");
6414                if (audit_enabled) {
6415                        current_uid_gid(&uid, &gid);
6416                        audit_log(current->audit_context, GFP_ATOMIC,
6417                                AUDIT_ANOM_PROMISCUOUS,
6418                                "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6419                                dev->name, (dev->flags & IFF_PROMISC),
6420                                (old_flags & IFF_PROMISC),
6421                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
6422                                from_kuid(&init_user_ns, uid),
6423                                from_kgid(&init_user_ns, gid),
6424                                audit_get_sessionid(current));
6425                }
6426
6427                dev_change_rx_flags(dev, IFF_PROMISC);
6428        }
6429        if (notify)
6430                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6431        return 0;
6432}
6433
6434/**
6435 *      dev_set_promiscuity     - update promiscuity count on a device
6436 *      @dev: device
6437 *      @inc: modifier
6438 *
6439 *      Add or remove promiscuity from a device. While the count in the device
6440 *      remains above zero the interface remains promiscuous. Once it hits zero
6441 *      the device reverts back to normal filtering operation. A negative inc
6442 *      value is used to drop promiscuity on the device.
6443 *      Return 0 if successful or a negative errno code on error.
6444 */
6445int dev_set_promiscuity(struct net_device *dev, int inc)
6446{
6447        unsigned int old_flags = dev->flags;
6448        int err;
6449
6450        err = __dev_set_promiscuity(dev, inc, true);
6451        if (err < 0)
6452                return err;
6453        if (dev->flags != old_flags)
6454                dev_set_rx_mode(dev);
6455        return err;
6456}
6457EXPORT_SYMBOL(dev_set_promiscuity);
6458
6459static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6460{
6461        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6462
6463        ASSERT_RTNL();
6464
6465        dev->flags |= IFF_ALLMULTI;
6466        dev->allmulti += inc;
6467        if (dev->allmulti == 0) {
6468                /*
6469                 * Avoid overflow.
6470                 * If inc causes overflow, untouch allmulti and return error.
6471                 */
6472                if (inc < 0)
6473                        dev->flags &= ~IFF_ALLMULTI;
6474                else {
6475                        dev->allmulti -= inc;
6476                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6477                                dev->name);
6478                        return -EOVERFLOW;
6479                }
6480        }
6481        if (dev->flags ^ old_flags) {
6482                dev_change_rx_flags(dev, IFF_ALLMULTI);
6483                dev_set_rx_mode(dev);
6484                if (notify)
6485                        __dev_notify_flags(dev, old_flags,
6486                                           dev->gflags ^ old_gflags);
6487        }
6488        return 0;
6489}
6490
6491/**
6492 *      dev_set_allmulti        - update allmulti count on a device
6493 *      @dev: device
6494 *      @inc: modifier
6495 *
6496 *      Add or remove reception of all multicast frames to a device. While the
6497 *      count in the device remains above zero the interface remains listening
6498 *      to all interfaces. Once it hits zero the device reverts back to normal
6499 *      filtering operation. A negative @inc value is used to drop the counter
6500 *      when releasing a resource needing all multicasts.
6501 *      Return 0 if successful or a negative errno code on error.
6502 */
6503
6504int dev_set_allmulti(struct net_device *dev, int inc)
6505{
6506        return __dev_set_allmulti(dev, inc, true);
6507}
6508EXPORT_SYMBOL(dev_set_allmulti);
6509
6510/*
6511 *      Upload unicast and multicast address lists to device and
6512 *      configure RX filtering. When the device doesn't support unicast
6513 *      filtering it is put in promiscuous mode while unicast addresses
6514 *      are present.
6515 */
6516void __dev_set_rx_mode(struct net_device *dev)
6517{
6518        const struct net_device_ops *ops = dev->netdev_ops;
6519
6520        /* dev_open will call this function so the list will stay sane. */
6521        if (!(dev->flags&IFF_UP))
6522                return;
6523
6524        if (!netif_device_present(dev))
6525                return;
6526
6527        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6528                /* Unicast addresses changes may only happen under the rtnl,
6529                 * therefore calling __dev_set_promiscuity here is safe.
6530                 */
6531                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6532                        __dev_set_promiscuity(dev, 1, false);
6533                        dev->uc_promisc = true;
6534                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6535                        __dev_set_promiscuity(dev, -1, false);
6536                        dev->uc_promisc = false;
6537                }
6538        }
6539
6540        if (ops->ndo_set_rx_mode)
6541                ops->ndo_set_rx_mode(dev);
6542}
6543
6544void dev_set_rx_mode(struct net_device *dev)
6545{
6546        netif_addr_lock_bh(dev);
6547        __dev_set_rx_mode(dev);
6548        netif_addr_unlock_bh(dev);
6549}
6550
6551/**
6552 *      dev_get_flags - get flags reported to userspace
6553 *      @dev: device
6554 *
6555 *      Get the combination of flag bits exported through APIs to userspace.
6556 */
6557unsigned int dev_get_flags(const struct net_device *dev)
6558{
6559        unsigned int flags;
6560
6561        flags = (dev->flags & ~(IFF_PROMISC |
6562                                IFF_ALLMULTI |
6563                                IFF_RUNNING |
6564                                IFF_LOWER_UP |
6565                                IFF_DORMANT)) |
6566                (dev->gflags & (IFF_PROMISC |
6567                                IFF_ALLMULTI));
6568
6569        if (netif_running(dev)) {
6570                if (netif_oper_up(dev))
6571                        flags |= IFF_RUNNING;
6572                if (netif_carrier_ok(dev))
6573                        flags |= IFF_LOWER_UP;
6574                if (netif_dormant(dev))
6575                        flags |= IFF_DORMANT;
6576        }
6577
6578        return flags;
6579}
6580EXPORT_SYMBOL(dev_get_flags);
6581
6582int __dev_change_flags(struct net_device *dev, unsigned int flags)
6583{
6584        unsigned int old_flags = dev->flags;
6585        int ret;
6586
6587        ASSERT_RTNL();
6588
6589        /*
6590         *      Set the flags on our device.
6591         */
6592
6593        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6594                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6595                               IFF_AUTOMEDIA)) |
6596                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6597                                    IFF_ALLMULTI));
6598
6599        /*
6600         *      Load in the correct multicast list now the flags have changed.
6601         */
6602
6603        if ((old_flags ^ flags) & IFF_MULTICAST)
6604                dev_change_rx_flags(dev, IFF_MULTICAST);
6605
6606        dev_set_rx_mode(dev);
6607
6608        /*
6609         *      Have we downed the interface. We handle IFF_UP ourselves
6610         *      according to user attempts to set it, rather than blindly
6611         *      setting it.
6612         */
6613
6614        ret = 0;
6615        if ((old_flags ^ flags) & IFF_UP)
6616                ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6617
6618        if ((flags ^ dev->gflags) & IFF_PROMISC) {
6619                int inc = (flags & IFF_PROMISC) ? 1 : -1;
6620                unsigned int old_flags = dev->flags;
6621
6622                dev->gflags ^= IFF_PROMISC;
6623
6624                if (__dev_set_promiscuity(dev, inc, false) >= 0)
6625                        if (dev->flags != old_flags)
6626                                dev_set_rx_mode(dev);
6627        }
6628
6629        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6630         * is important. Some (broken) drivers set IFF_PROMISC, when
6631         * IFF_ALLMULTI is requested not asking us and not reporting.
6632         */
6633        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6634                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6635
6636                dev->gflags ^= IFF_ALLMULTI;
6637                __dev_set_allmulti(dev, inc, false);
6638        }
6639
6640        return ret;
6641}
6642
6643void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6644                        unsigned int gchanges)
6645{
6646        unsigned int changes = dev->flags ^ old_flags;
6647
6648        if (gchanges)
6649                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6650
6651        if (changes & IFF_UP) {
6652                if (dev->flags & IFF_UP)
6653                        call_netdevice_notifiers(NETDEV_UP, dev);
6654                else
6655                        call_netdevice_notifiers(NETDEV_DOWN, dev);
6656        }
6657
6658        if (dev->flags & IFF_UP &&
6659            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6660                struct netdev_notifier_change_info change_info;
6661
6662                change_info.flags_changed = changes;
6663                call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6664                                              &change_info.info);
6665        }
6666}
6667
6668/**
6669 *      dev_change_flags - change device settings
6670 *      @dev: device
6671 *      @flags: device state flags
6672 *
6673 *      Change settings on device based state flags. The flags are
6674 *      in the userspace exported format.
6675 */
6676int dev_change_flags(struct net_device *dev, unsigned int flags)
6677{
6678        int ret;
6679        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6680
6681        ret = __dev_change_flags(dev, flags);
6682        if (ret < 0)
6683                return ret;
6684
6685        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6686        __dev_notify_flags(dev, old_flags, changes);
6687        return ret;
6688}
6689EXPORT_SYMBOL(dev_change_flags);
6690
6691static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6692{
6693        const struct net_device_ops *ops = dev->netdev_ops;
6694
6695        if (ops->ndo_change_mtu)
6696                return ops->ndo_change_mtu(dev, new_mtu);
6697
6698        dev->mtu = new_mtu;
6699        return 0;
6700}
6701
6702/**
6703 *      dev_set_mtu - Change maximum transfer unit
6704 *      @dev: device
6705 *      @new_mtu: new transfer unit
6706 *
6707 *      Change the maximum transfer size of the network device.
6708 */
6709int dev_set_mtu(struct net_device *dev, int new_mtu)
6710{
6711        int err, orig_mtu;
6712
6713        if (new_mtu == dev->mtu)
6714                return 0;
6715
6716        /* MTU must be positive, and in range */
6717        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6718                net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6719                                    dev->name, new_mtu, dev->min_mtu);
6720                return -EINVAL;
6721        }
6722
6723        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6724                net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6725                                    dev->name, new_mtu, dev->max_mtu);
6726                return -EINVAL;
6727        }
6728
6729        if (!netif_device_present(dev))
6730                return -ENODEV;
6731
6732        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6733        err = notifier_to_errno(err);
6734        if (err)
6735                return err;
6736
6737        orig_mtu = dev->mtu;
6738        err = __dev_set_mtu(dev, new_mtu);
6739
6740        if (!err) {
6741                err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6742                err = notifier_to_errno(err);
6743                if (err) {
6744                        /* setting mtu back and notifying everyone again,
6745                         * so that they have a chance to revert changes.
6746                         */
6747                        __dev_set_mtu(dev, orig_mtu);
6748                        call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6749                }
6750        }
6751        return err;
6752}
6753EXPORT_SYMBOL(dev_set_mtu);
6754
6755/**
6756 *      dev_set_group - Change group this device belongs to
6757 *      @dev: device
6758 *      @new_group: group this device should belong to
6759 */
6760void dev_set_group(struct net_device *dev, int new_group)
6761{
6762        dev->group = new_group;
6763}
6764EXPORT_SYMBOL(dev_set_group);
6765
6766/**
6767 *      dev_set_mac_address - Change Media Access Control Address
6768 *      @dev: device
6769 *      @sa: new address
6770 *
6771 *      Change the hardware (MAC) address of the device
6772 */
6773int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6774{
6775        const struct net_device_ops *ops = dev->netdev_ops;
6776        int err;
6777
6778        if (!ops->ndo_set_mac_address)
6779                return -EOPNOTSUPP;
6780        if (sa->sa_family != dev->type)
6781                return -EINVAL;
6782        if (!netif_device_present(dev))
6783                return -ENODEV;
6784        err = ops->ndo_set_mac_address(dev, sa);
6785        if (err)
6786                return err;
6787        dev->addr_assign_type = NET_ADDR_SET;
6788        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6789        add_device_randomness(dev->dev_addr, dev->addr_len);
6790        return 0;
6791}
6792EXPORT_SYMBOL(dev_set_mac_address);
6793
6794/**
6795 *      dev_change_carrier - Change device carrier
6796 *      @dev: device
6797 *      @new_carrier: new value
6798 *
6799 *      Change device carrier
6800 */
6801int dev_change_carrier(struct net_device *dev, bool new_carrier)
6802{
6803        const struct net_device_ops *ops = dev->netdev_ops;
6804
6805        if (!ops->ndo_change_carrier)
6806                return -EOPNOTSUPP;
6807        if (!netif_device_present(dev))
6808                return -ENODEV;
6809        return ops->ndo_change_carrier(dev, new_carrier);
6810}
6811EXPORT_SYMBOL(dev_change_carrier);
6812
6813/**
6814 *      dev_get_phys_port_id - Get device physical port ID
6815 *      @dev: device
6816 *      @ppid: port ID
6817 *
6818 *      Get device physical port ID
6819 */
6820int dev_get_phys_port_id(struct net_device *dev,
6821                         struct netdev_phys_item_id *ppid)
6822{
6823        const struct net_device_ops *ops = dev->netdev_ops;
6824
6825        if (!ops->ndo_get_phys_port_id)
6826                return -EOPNOTSUPP;
6827        return ops->ndo_get_phys_port_id(dev, ppid);
6828}
6829EXPORT_SYMBOL(dev_get_phys_port_id);
6830
6831/**
6832 *      dev_get_phys_port_name - Get device physical port name
6833 *      @dev: device
6834 *      @name: port name
6835 *      @len: limit of bytes to copy to name
6836 *
6837 *      Get device physical port name
6838 */
6839int dev_get_phys_port_name(struct net_device *dev,
6840                           char *name, size_t len)
6841{
6842        const struct net_device_ops *ops = dev->netdev_ops;
6843
6844        if (!ops->ndo_get_phys_port_name)
6845                return -EOPNOTSUPP;
6846        return ops->ndo_get_phys_port_name(dev, name, len);
6847}
6848EXPORT_SYMBOL(dev_get_phys_port_name);
6849
6850/**
6851 *      dev_change_proto_down - update protocol port state information
6852 *      @dev: device
6853 *      @proto_down: new value
6854 *
6855 *      This info can be used by switch drivers to set the phys state of the
6856 *      port.
6857 */
6858int dev_change_proto_down(struct net_device *dev, bool proto_down)
6859{
6860        const struct net_device_ops *ops = dev->netdev_ops;
6861
6862        if (!ops->ndo_change_proto_down)
6863                return -EOPNOTSUPP;
6864        if (!netif_device_present(dev))
6865                return -ENODEV;
6866        return ops->ndo_change_proto_down(dev, proto_down);
6867}
6868EXPORT_SYMBOL(dev_change_proto_down);
6869
6870bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6871{
6872        struct netdev_xdp xdp;
6873
6874        memset(&xdp, 0, sizeof(xdp));
6875        xdp.command = XDP_QUERY_PROG;
6876
6877        /* Query must always succeed. */
6878        WARN_ON(xdp_op(dev, &xdp) < 0);
6879        return xdp.prog_attached;
6880}
6881
6882static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6883                           struct netlink_ext_ack *extack,
6884                           struct bpf_prog *prog)
6885{
6886        struct netdev_xdp xdp;
6887
6888        memset(&xdp, 0, sizeof(xdp));
6889        xdp.command = XDP_SETUP_PROG;
6890        xdp.extack = extack;
6891        xdp.prog = prog;
6892
6893        return xdp_op(dev, &xdp);
6894}
6895
6896/**
6897 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6898 *      @dev: device
6899 *      @extack: netlink extended ack
6900 *      @fd: new program fd or negative value to clear
6901 *      @flags: xdp-related flags
6902 *
6903 *      Set or clear a bpf program for a device
6904 */
6905int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6906                      int fd, u32 flags)
6907{
6908        const struct net_device_ops *ops = dev->netdev_ops;
6909        struct bpf_prog *prog = NULL;
6910        xdp_op_t xdp_op, xdp_chk;
6911        int err;
6912
6913        ASSERT_RTNL();
6914
6915        xdp_op = xdp_chk = ops->ndo_xdp;
6916        if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6917                return -EOPNOTSUPP;
6918        if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6919                xdp_op = generic_xdp_install;
6920        if (xdp_op == xdp_chk)
6921                xdp_chk = generic_xdp_install;
6922
6923        if (fd >= 0) {
6924                if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6925                        return -EEXIST;
6926                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6927                    __dev_xdp_attached(dev, xdp_op))
6928                        return -EBUSY;
6929
6930                prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6931                if (IS_ERR(prog))
6932                        return PTR_ERR(prog);
6933        }
6934
6935        err = dev_xdp_install(dev, xdp_op, extack, prog);
6936        if (err < 0 && prog)
6937                bpf_prog_put(prog);
6938
6939        return err;
6940}
6941
6942/**
6943 *      dev_new_index   -       allocate an ifindex
6944 *      @net: the applicable net namespace
6945 *
6946 *      Returns a suitable unique value for a new device interface
6947 *      number.  The caller must hold the rtnl semaphore or the
6948 *      dev_base_lock to be sure it remains unique.
6949 */
6950static int dev_new_index(struct net *net)
6951{
6952        int ifindex = net->ifindex;
6953
6954        for (;;) {
6955                if (++ifindex <= 0)
6956                        ifindex = 1;
6957                if (!__dev_get_by_index(net, ifindex))
6958                        return net->ifindex = ifindex;
6959        }
6960}
6961
6962/* Delayed registration/unregisteration */
6963static LIST_HEAD(net_todo_list);
6964DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6965
6966static void net_set_todo(struct net_device *dev)
6967{
6968        list_add_tail(&dev->todo_list, &net_todo_list);
6969        dev_net(dev)->dev_unreg_count++;
6970}
6971
6972static void rollback_registered_many(struct list_head *head)
6973{
6974        struct net_device *dev, *tmp;
6975        LIST_HEAD(close_head);
6976
6977        BUG_ON(dev_boot_phase);
6978        ASSERT_RTNL();
6979
6980        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6981                /* Some devices call without registering
6982                 * for initialization unwind. Remove those
6983                 * devices and proceed with the remaining.
6984                 */
6985                if (dev->reg_state == NETREG_UNINITIALIZED) {
6986                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6987                                 dev->name, dev);
6988
6989                        WARN_ON(1);
6990                        list_del(&dev->unreg_list);
6991                        continue;
6992                }
6993                dev->dismantle = true;
6994                BUG_ON(dev->reg_state != NETREG_REGISTERED);
6995        }
6996
6997        /* If device is running, close it first. */
6998        list_for_each_entry(dev, head, unreg_list)
6999                list_add_tail(&dev->close_list, &close_head);
7000        dev_close_many(&close_head, true);
7001
7002        list_for_each_entry(dev, head, unreg_list) {
7003                /* And unlink it from device chain. */
7004                unlist_netdevice(dev);
7005
7006                dev->reg_state = NETREG_UNREGISTERING;
7007        }
7008        flush_all_backlogs();
7009
7010        synchronize_net();
7011
7012        list_for_each_entry(dev, head, unreg_list) {
7013                struct sk_buff *skb = NULL;
7014
7015                /* Shutdown queueing discipline. */
7016                dev_shutdown(dev);
7017
7018
7019                /* Notify protocols, that we are about to destroy
7020                 * this device. They should clean all the things.
7021                 */
7022                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7023
7024                if (!dev->rtnl_link_ops ||
7025                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7026                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7027                                                     GFP_KERNEL);
7028
7029                /*
7030                 *      Flush the unicast and multicast chains
7031                 */
7032                dev_uc_flush(dev);
7033                dev_mc_flush(dev);
7034
7035                if (dev->netdev_ops->ndo_uninit)
7036                        dev->netdev_ops->ndo_uninit(dev);
7037
7038                if (skb)
7039                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7040
7041                /* Notifier chain MUST detach us all upper devices. */
7042                WARN_ON(netdev_has_any_upper_dev(dev));
7043                WARN_ON(netdev_has_any_lower_dev(dev));
7044
7045                /* Remove entries from kobject tree */
7046                netdev_unregister_kobject(dev);
7047#ifdef CONFIG_XPS
7048                /* Remove XPS queueing entries */
7049                netif_reset_xps_queues_gt(dev, 0);
7050#endif
7051        }
7052
7053        synchronize_net();
7054
7055        list_for_each_entry(dev, head, unreg_list)
7056                dev_put(dev);
7057}
7058
7059static void rollback_registered(struct net_device *dev)
7060{
7061        LIST_HEAD(single);
7062
7063        list_add(&dev->unreg_list, &single);
7064        rollback_registered_many(&single);
7065        list_del(&single);
7066}
7067
7068static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7069        struct net_device *upper, netdev_features_t features)
7070{
7071        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7072        netdev_features_t feature;
7073        int feature_bit;
7074
7075        for_each_netdev_feature(&upper_disables, feature_bit) {
7076                feature = __NETIF_F_BIT(feature_bit);
7077                if (!(upper->wanted_features & feature)
7078                    && (features & feature)) {
7079                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7080                                   &feature, upper->name);
7081                        features &= ~feature;
7082                }
7083        }
7084
7085        return features;
7086}
7087
7088static void netdev_sync_lower_features(struct net_device *upper,
7089        struct net_device *lower, netdev_features_t features)
7090{
7091        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7092        netdev_features_t feature;
7093        int feature_bit;
7094
7095        for_each_netdev_feature(&upper_disables, feature_bit) {
7096                feature = __NETIF_F_BIT(feature_bit);
7097                if (!(features & feature) && (lower->features & feature)) {
7098                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7099                                   &feature, lower->name);
7100                        lower->wanted_features &= ~feature;
7101                        netdev_update_features(lower);
7102
7103                        if (unlikely(lower->features & feature))
7104                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7105                                            &feature, lower->name);
7106                }
7107        }
7108}
7109
7110static netdev_features_t netdev_fix_features(struct net_device *dev,
7111        netdev_features_t features)
7112{
7113        /* Fix illegal checksum combinations */
7114        if ((features & NETIF_F_HW_CSUM) &&
7115            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7116                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7117                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7118        }
7119
7120        /* TSO requires that SG is present as well. */
7121        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7122                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7123                features &= ~NETIF_F_ALL_TSO;
7124        }
7125
7126        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7127                                        !(features & NETIF_F_IP_CSUM)) {
7128                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7129                features &= ~NETIF_F_TSO;
7130                features &= ~NETIF_F_TSO_ECN;
7131        }
7132
7133        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7134                                         !(features & NETIF_F_IPV6_CSUM)) {
7135                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7136                features &= ~NETIF_F_TSO6;
7137        }
7138
7139        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7140        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7141                features &= ~NETIF_F_TSO_MANGLEID;
7142
7143        /* TSO ECN requires that TSO is present as well. */
7144        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7145                features &= ~NETIF_F_TSO_ECN;
7146
7147        /* Software GSO depends on SG. */
7148        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7149                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7150                features &= ~NETIF_F_GSO;
7151        }
7152
7153        /* UFO needs SG and checksumming */
7154        if (features & NETIF_F_UFO) {
7155                /* maybe split UFO into V4 and V6? */
7156                if (!(features & NETIF_F_HW_CSUM) &&
7157                    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7158                     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7159                        netdev_dbg(dev,
7160                                "Dropping NETIF_F_UFO since no checksum offload features.\n");
7161                        features &= ~NETIF_F_UFO;
7162                }
7163
7164                if (!(features & NETIF_F_SG)) {
7165                        netdev_dbg(dev,
7166                                "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7167                        features &= ~NETIF_F_UFO;
7168                }
7169        }
7170
7171        /* GSO partial features require GSO partial be set */
7172        if ((features & dev->gso_partial_features) &&
7173            !(features & NETIF_F_GSO_PARTIAL)) {
7174                netdev_dbg(dev,
7175                           "Dropping partially supported GSO features since no GSO partial.\n");
7176                features &= ~dev->gso_partial_features;
7177        }
7178
7179        return features;
7180}
7181
7182int __netdev_update_features(struct net_device *dev)
7183{
7184        struct net_device *upper, *lower;
7185        netdev_features_t features;
7186        struct list_head *iter;
7187        int err = -1;
7188
7189        ASSERT_RTNL();
7190
7191        features = netdev_get_wanted_features(dev);
7192
7193        if (dev->netdev_ops->ndo_fix_features)
7194                features = dev->netdev_ops->ndo_fix_features(dev, features);
7195
7196        /* driver might be less strict about feature dependencies */
7197        features = netdev_fix_features(dev, features);
7198
7199        /* some features can't be enabled if they're off an an upper device */
7200        netdev_for_each_upper_dev_rcu(dev, upper, iter)
7201                features = netdev_sync_upper_features(dev, upper, features);
7202
7203        if (dev->features == features)
7204                goto sync_lower;
7205
7206        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7207                &dev->features, &features);
7208
7209        if (dev->netdev_ops->ndo_set_features)
7210                err = dev->netdev_ops->ndo_set_features(dev, features);
7211        else
7212                err = 0;
7213
7214        if (unlikely(err < 0)) {
7215                netdev_err(dev,
7216                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
7217                        err, &features, &dev->features);
7218                /* return non-0 since some features might have changed and
7219                 * it's better to fire a spurious notification than miss it
7220                 */
7221                return -1;
7222        }
7223
7224sync_lower:
7225        /* some features must be disabled on lower devices when disabled
7226         * on an upper device (think: bonding master or bridge)
7227         */
7228        netdev_for_each_lower_dev(dev, lower, iter)
7229                netdev_sync_lower_features(dev, lower, features);
7230
7231        if (!err)
7232                dev->features = features;
7233
7234        return err < 0 ? 0 : 1;
7235}
7236
7237/**
7238 *      netdev_update_features - recalculate device features
7239 *      @dev: the device to check
7240 *
7241 *      Recalculate dev->features set and send notifications if it
7242 *      has changed. Should be called after driver or hardware dependent
7243 *      conditions might have changed that influence the features.
7244 */
7245void netdev_update_features(struct net_device *dev)
7246{
7247        if (__netdev_update_features(dev))
7248                netdev_features_change(dev);
7249}
7250EXPORT_SYMBOL(netdev_update_features);
7251
7252/**
7253 *      netdev_change_features - recalculate device features
7254 *      @dev: the device to check
7255 *
7256 *      Recalculate dev->features set and send notifications even
7257 *      if they have not changed. Should be called instead of
7258 *      netdev_update_features() if also dev->vlan_features might
7259 *      have changed to allow the changes to be propagated to stacked
7260 *      VLAN devices.
7261 */
7262void netdev_change_features(struct net_device *dev)
7263{
7264        __netdev_update_features(dev);
7265        netdev_features_change(dev);
7266}
7267EXPORT_SYMBOL(netdev_change_features);
7268
7269/**
7270 *      netif_stacked_transfer_operstate -      transfer operstate
7271 *      @rootdev: the root or lower level device to transfer state from
7272 *      @dev: the device to transfer operstate to
7273 *
7274 *      Transfer operational state from root to device. This is normally
7275 *      called when a stacking relationship exists between the root
7276 *      device and the device(a leaf device).
7277 */
7278void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7279                                        struct net_device *dev)
7280{
7281        if (rootdev->operstate == IF_OPER_DORMANT)
7282                netif_dormant_on(dev);
7283        else
7284                netif_dormant_off(dev);
7285
7286        if (netif_carrier_ok(rootdev))
7287                netif_carrier_on(dev);
7288        else
7289                netif_carrier_off(dev);
7290}
7291EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7292
7293#ifdef CONFIG_SYSFS
7294static int netif_alloc_rx_queues(struct net_device *dev)
7295{
7296        unsigned int i, count = dev->num_rx_queues;
7297        struct netdev_rx_queue *rx;
7298        size_t sz = count * sizeof(*rx);
7299
7300        BUG_ON(count < 1);
7301
7302        rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7303        if (!rx)
7304                return -ENOMEM;
7305
7306        dev->_rx = rx;
7307
7308        for (i = 0; i < count; i++)
7309                rx[i].dev = dev;
7310        return 0;
7311}
7312#endif
7313
7314static void netdev_init_one_queue(struct net_device *dev,
7315                                  struct netdev_queue *queue, void *_unused)
7316{
7317        /* Initialize queue lock */
7318        spin_lock_init(&queue->_xmit_lock);
7319        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7320        queue->xmit_lock_owner = -1;
7321        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7322        queue->dev = dev;
7323#ifdef CONFIG_BQL
7324        dql_init(&queue->dql, HZ);
7325#endif
7326}
7327
7328static void netif_free_tx_queues(struct net_device *dev)
7329{
7330        kvfree(dev->_tx);
7331}
7332
7333static int netif_alloc_netdev_queues(struct net_device *dev)
7334{
7335        unsigned int count = dev->num_tx_queues;
7336        struct netdev_queue *tx;
7337        size_t sz = count * sizeof(*tx);
7338
7339        if (count < 1 || count > 0xffff)
7340                return -EINVAL;
7341
7342        tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7343        if (!tx)
7344                return -ENOMEM;
7345
7346        dev->_tx = tx;
7347
7348        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7349        spin_lock_init(&dev->tx_global_lock);
7350
7351        return 0;
7352}
7353
7354void netif_tx_stop_all_queues(struct net_device *dev)
7355{
7356        unsigned int i;
7357
7358        for (i = 0; i < dev->num_tx_queues; i++) {
7359                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7360
7361                netif_tx_stop_queue(txq);
7362        }
7363}
7364EXPORT_SYMBOL(netif_tx_stop_all_queues);
7365
7366/**
7367 *      register_netdevice      - register a network device
7368 *      @dev: device to register
7369 *
7370 *      Take a completed network device structure and add it to the kernel
7371 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7372 *      chain. 0 is returned on success. A negative errno code is returned
7373 *      on a failure to set up the device, or if the name is a duplicate.
7374 *
7375 *      Callers must hold the rtnl semaphore. You may want
7376 *      register_netdev() instead of this.
7377 *
7378 *      BUGS:
7379 *      The locking appears insufficient to guarantee two parallel registers
7380 *      will not get the same name.
7381 */
7382
7383int register_netdevice(struct net_device *dev)
7384{
7385        int ret;
7386        struct net *net = dev_net(dev);
7387
7388        BUG_ON(dev_boot_phase);
7389        ASSERT_RTNL();
7390
7391        might_sleep();
7392
7393        /* When net_device's are persistent, this will be fatal. */
7394        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7395        BUG_ON(!net);
7396
7397        spin_lock_init(&dev->addr_list_lock);
7398        netdev_set_addr_lockdep_class(dev);
7399
7400        ret = dev_get_valid_name(net, dev, dev->name);
7401        if (ret < 0)
7402                goto out;
7403
7404        /* Init, if this function is available */
7405        if (dev->netdev_ops->ndo_init) {
7406                ret = dev->netdev_ops->ndo_init(dev);
7407                if (ret) {
7408                        if (ret > 0)
7409                                ret = -EIO;
7410                        goto out;
7411                }
7412        }
7413
7414        if (((dev->hw_features | dev->features) &
7415             NETIF_F_HW_VLAN_CTAG_FILTER) &&
7416            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7417             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7418                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7419                ret = -EINVAL;
7420                goto err_uninit;
7421        }
7422
7423        ret = -EBUSY;
7424        if (!dev->ifindex)
7425                dev->ifindex = dev_new_index(net);
7426        else if (__dev_get_by_index(net, dev->ifindex))
7427                goto err_uninit;
7428
7429        /* Transfer changeable features to wanted_features and enable
7430         * software offloads (GSO and GRO).
7431         */
7432        dev->hw_features |= NETIF_F_SOFT_FEATURES;
7433        dev->features |= NETIF_F_SOFT_FEATURES;
7434        dev->wanted_features = dev->features & dev->hw_features;
7435
7436        if (!(dev->flags & IFF_LOOPBACK))
7437                dev->hw_features |= NETIF_F_NOCACHE_COPY;
7438
7439        /* If IPv4 TCP segmentation offload is supported we should also
7440         * allow the device to enable segmenting the frame with the option
7441         * of ignoring a static IP ID value.  This doesn't enable the
7442         * feature itself but allows the user to enable it later.
7443         */
7444        if (dev->hw_features & NETIF_F_TSO)
7445                dev->hw_features |= NETIF_F_TSO_MANGLEID;
7446        if (dev->vlan_features & NETIF_F_TSO)
7447                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7448        if (dev->mpls_features & NETIF_F_TSO)
7449                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7450        if (dev->hw_enc_features & NETIF_F_TSO)
7451                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7452
7453        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7454         */
7455        dev->vlan_features |= NETIF_F_HIGHDMA;
7456
7457        /* Make NETIF_F_SG inheritable to tunnel devices.
7458         */
7459        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7460
7461        /* Make NETIF_F_SG inheritable to MPLS.
7462         */
7463        dev->mpls_features |= NETIF_F_SG;
7464
7465        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7466        ret = notifier_to_errno(ret);
7467        if (ret)
7468                goto err_uninit;
7469
7470        ret = netdev_register_kobject(dev);
7471        if (ret)
7472                goto err_uninit;
7473        dev->reg_state = NETREG_REGISTERED;
7474
7475        __netdev_update_features(dev);
7476
7477        /*
7478         *      Default initial state at registry is that the
7479         *      device is present.
7480         */
7481
7482        set_bit(__LINK_STATE_PRESENT, &dev->state);
7483
7484        linkwatch_init_dev(dev);
7485
7486        dev_init_scheduler(dev);
7487        dev_hold(dev);
7488        list_netdevice(dev);
7489        add_device_randomness(dev->dev_addr, dev->addr_len);
7490
7491        /* If the device has permanent device address, driver should
7492         * set dev_addr and also addr_assign_type should be set to
7493         * NET_ADDR_PERM (default value).
7494         */
7495        if (dev->addr_assign_type == NET_ADDR_PERM)
7496                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7497
7498        /* Notify protocols, that a new device appeared. */
7499        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7500        ret = notifier_to_errno(ret);
7501        if (ret) {
7502                rollback_registered(dev);
7503                dev->reg_state = NETREG_UNREGISTERED;
7504        }
7505        /*
7506         *      Prevent userspace races by waiting until the network
7507         *      device is fully setup before sending notifications.
7508         */
7509        if (!dev->rtnl_link_ops ||
7510            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7511                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7512
7513out:
7514        return ret;
7515
7516err_uninit:
7517        if (dev->netdev_ops->ndo_uninit)
7518                dev->netdev_ops->ndo_uninit(dev);
7519        if (dev->priv_destructor)
7520                dev->priv_destructor(dev);
7521        goto out;
7522}
7523EXPORT_SYMBOL(register_netdevice);
7524
7525/**
7526 *      init_dummy_netdev       - init a dummy network device for NAPI
7527 *      @dev: device to init
7528 *
7529 *      This takes a network device structure and initialize the minimum
7530 *      amount of fields so it can be used to schedule NAPI polls without
7531 *      registering a full blown interface. This is to be used by drivers
7532 *      that need to tie several hardware interfaces to a single NAPI
7533 *      poll scheduler due to HW limitations.
7534 */
7535int init_dummy_netdev(struct net_device *dev)
7536{
7537        /* Clear everything. Note we don't initialize spinlocks
7538         * are they aren't supposed to be taken by any of the
7539         * NAPI code and this dummy netdev is supposed to be
7540         * only ever used for NAPI polls
7541         */
7542        memset(dev, 0, sizeof(struct net_device));
7543
7544        /* make sure we BUG if trying to hit standard
7545         * register/unregister code path
7546         */
7547        dev->reg_state = NETREG_DUMMY;
7548
7549        /* NAPI wants this */
7550        INIT_LIST_HEAD(&dev->napi_list);
7551
7552        /* a dummy interface is started by default */
7553        set_bit(__LINK_STATE_PRESENT, &dev->state);
7554        set_bit(__LINK_STATE_START, &dev->state);
7555
7556        /* Note : We dont allocate pcpu_refcnt for dummy devices,
7557         * because users of this 'device' dont need to change
7558         * its refcount.
7559         */
7560
7561        return 0;
7562}
7563EXPORT_SYMBOL_GPL(init_dummy_netdev);
7564
7565
7566/**
7567 *      register_netdev - register a network device
7568 *      @dev: device to register
7569 *
7570 *      Take a completed network device structure and add it to the kernel
7571 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7572 *      chain. 0 is returned on success. A negative errno code is returned
7573 *      on a failure to set up the device, or if the name is a duplicate.
7574 *
7575 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7576 *      and expands the device name if you passed a format string to
7577 *      alloc_netdev.
7578 */
7579int register_netdev(struct net_device *dev)
7580{
7581        int err;
7582
7583        rtnl_lock();
7584        err = register_netdevice(dev);
7585        rtnl_unlock();
7586        return err;
7587}
7588EXPORT_SYMBOL(register_netdev);
7589
7590int netdev_refcnt_read(const struct net_device *dev)
7591{
7592        int i, refcnt = 0;
7593
7594        for_each_possible_cpu(i)
7595                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7596        return refcnt;
7597}
7598EXPORT_SYMBOL(netdev_refcnt_read);
7599
7600/**
7601 * netdev_wait_allrefs - wait until all references are gone.
7602 * @dev: target net_device
7603 *
7604 * This is called when unregistering network devices.
7605 *
7606 * Any protocol or device that holds a reference should register
7607 * for netdevice notification, and cleanup and put back the
7608 * reference if they receive an UNREGISTER event.
7609 * We can get stuck here if buggy protocols don't correctly
7610 * call dev_put.
7611 */
7612static void netdev_wait_allrefs(struct net_device *dev)
7613{
7614        unsigned long rebroadcast_time, warning_time;
7615        int refcnt;
7616
7617        linkwatch_forget_dev(dev);
7618
7619        rebroadcast_time = warning_time = jiffies;
7620        refcnt = netdev_refcnt_read(dev);
7621
7622        while (refcnt != 0) {
7623                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7624                        rtnl_lock();
7625
7626                        /* Rebroadcast unregister notification */
7627                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7628
7629                        __rtnl_unlock();
7630                        rcu_barrier();
7631                        rtnl_lock();
7632
7633                        call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7634                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7635                                     &dev->state)) {
7636                                /* We must not have linkwatch events
7637                                 * pending on unregister. If this
7638                                 * happens, we simply run the queue
7639                                 * unscheduled, resulting in a noop
7640                                 * for this device.
7641                                 */
7642                                linkwatch_run_queue();
7643                        }
7644
7645                        __rtnl_unlock();
7646
7647                        rebroadcast_time = jiffies;
7648                }
7649
7650                msleep(250);
7651
7652                refcnt = netdev_refcnt_read(dev);
7653
7654                if (time_after(jiffies, warning_time + 10 * HZ)) {
7655                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7656                                 dev->name, refcnt);
7657                        warning_time = jiffies;
7658                }
7659        }
7660}
7661
7662/* The sequence is:
7663 *
7664 *      rtnl_lock();
7665 *      ...
7666 *      register_netdevice(x1);
7667 *      register_netdevice(x2);
7668 *      ...
7669 *      unregister_netdevice(y1);
7670 *      unregister_netdevice(y2);
7671 *      ...
7672 *      rtnl_unlock();
7673 *      free_netdev(y1);
7674 *      free_netdev(y2);
7675 *
7676 * We are invoked by rtnl_unlock().
7677 * This allows us to deal with problems:
7678 * 1) We can delete sysfs objects which invoke hotplug
7679 *    without deadlocking with linkwatch via keventd.
7680 * 2) Since we run with the RTNL semaphore not held, we can sleep
7681 *    safely in order to wait for the netdev refcnt to drop to zero.
7682 *
7683 * We must not return until all unregister events added during
7684 * the interval the lock was held have been completed.
7685 */
7686void netdev_run_todo(void)
7687{
7688        struct list_head list;
7689
7690        /* Snapshot list, allow later requests */
7691        list_replace_init(&net_todo_list, &list);
7692
7693        __rtnl_unlock();
7694
7695
7696        /* Wait for rcu callbacks to finish before next phase */
7697        if (!list_empty(&list))
7698                rcu_barrier();
7699
7700        while (!list_empty(&list)) {
7701                struct net_device *dev
7702                        = list_first_entry(&list, struct net_device, todo_list);
7703                list_del(&dev->todo_list);
7704
7705                rtnl_lock();
7706                call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7707                __rtnl_unlock();
7708
7709                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7710                        pr_err("network todo '%s' but state %d\n",
7711                               dev->name, dev->reg_state);
7712                        dump_stack();
7713                        continue;
7714                }
7715
7716                dev->reg_state = NETREG_UNREGISTERED;
7717
7718                netdev_wait_allrefs(dev);
7719
7720                /* paranoia */
7721                BUG_ON(netdev_refcnt_read(dev));
7722                BUG_ON(!list_empty(&dev->ptype_all));
7723                BUG_ON(!list_empty(&dev->ptype_specific));
7724                WARN_ON(rcu_access_pointer(dev->ip_ptr));
7725                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7726                WARN_ON(dev->dn_ptr);
7727
7728                if (dev->priv_destructor)
7729                        dev->priv_destructor(dev);
7730                if (dev->needs_free_netdev)
7731                        free_netdev(dev);
7732
7733                /* Report a network device has been unregistered */
7734                rtnl_lock();
7735                dev_net(dev)->dev_unreg_count--;
7736                __rtnl_unlock();
7737                wake_up(&netdev_unregistering_wq);
7738
7739                /* Free network device */
7740                kobject_put(&dev->dev.kobj);
7741        }
7742}
7743
7744/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7745 * all the same fields in the same order as net_device_stats, with only
7746 * the type differing, but rtnl_link_stats64 may have additional fields
7747 * at the end for newer counters.
7748 */
7749void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7750                             const struct net_device_stats *netdev_stats)
7751{
7752#if BITS_PER_LONG == 64
7753        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7754        memcpy(stats64, netdev_stats, sizeof(*stats64));
7755        /* zero out counters that only exist in rtnl_link_stats64 */
7756        memset((char *)stats64 + sizeof(*netdev_stats), 0,
7757               sizeof(*stats64) - sizeof(*netdev_stats));
7758#else
7759        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7760        const unsigned long *src = (const unsigned long *)netdev_stats;
7761        u64 *dst = (u64 *)stats64;
7762
7763        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7764        for (i = 0; i < n; i++)
7765                dst[i] = src[i];
7766        /* zero out counters that only exist in rtnl_link_stats64 */
7767        memset((char *)stats64 + n * sizeof(u64), 0,
7768               sizeof(*stats64) - n * sizeof(u64));
7769#endif
7770}
7771EXPORT_SYMBOL(netdev_stats_to_stats64);
7772
7773/**
7774 *      dev_get_stats   - get network device statistics
7775 *      @dev: device to get statistics from
7776 *      @storage: place to store stats
7777 *
7778 *      Get network statistics from device. Return @storage.
7779 *      The device driver may provide its own method by setting
7780 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7781 *      otherwise the internal statistics structure is used.
7782 */
7783struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7784                                        struct rtnl_link_stats64 *storage)
7785{
7786        const struct net_device_ops *ops = dev->netdev_ops;
7787
7788        if (ops->ndo_get_stats64) {
7789                memset(storage, 0, sizeof(*storage));
7790                ops->ndo_get_stats64(dev, storage);
7791        } else if (ops->ndo_get_stats) {
7792                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7793        } else {
7794                netdev_stats_to_stats64(storage, &dev->stats);
7795        }
7796        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7797        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7798        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7799        return storage;
7800}
7801EXPORT_SYMBOL(dev_get_stats);
7802
7803struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7804{
7805        struct netdev_queue *queue = dev_ingress_queue(dev);
7806
7807#ifdef CONFIG_NET_CLS_ACT
7808        if (queue)
7809                return queue;
7810        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7811        if (!queue)
7812                return NULL;
7813        netdev_init_one_queue(dev, queue, NULL);
7814        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7815        queue->qdisc_sleeping = &noop_qdisc;
7816        rcu_assign_pointer(dev->ingress_queue, queue);
7817#endif
7818        return queue;
7819}
7820
7821static const struct ethtool_ops default_ethtool_ops;
7822
7823void netdev_set_default_ethtool_ops(struct net_device *dev,
7824                                    const struct ethtool_ops *ops)
7825{
7826        if (dev->ethtool_ops == &default_ethtool_ops)
7827                dev->ethtool_ops = ops;
7828}
7829EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7830
7831void netdev_freemem(struct net_device *dev)
7832{
7833        char *addr = (char *)dev - dev->padded;
7834
7835        kvfree(addr);
7836}
7837
7838/**
7839 * alloc_netdev_mqs - allocate network device
7840 * @sizeof_priv: size of private data to allocate space for
7841 * @name: device name format string
7842 * @name_assign_type: origin of device name
7843 * @setup: callback to initialize device
7844 * @txqs: the number of TX subqueues to allocate
7845 * @rxqs: the number of RX subqueues to allocate
7846 *
7847 * Allocates a struct net_device with private data area for driver use
7848 * and performs basic initialization.  Also allocates subqueue structs
7849 * for each queue on the device.
7850 */
7851struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7852                unsigned char name_assign_type,
7853                void (*setup)(struct net_device *),
7854                unsigned int txqs, unsigned int rxqs)
7855{
7856        struct net_device *dev;
7857        size_t alloc_size;
7858        struct net_device *p;
7859
7860        BUG_ON(strlen(name) >= sizeof(dev->name));
7861
7862        if (txqs < 1) {
7863                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7864                return NULL;
7865        }
7866
7867#ifdef CONFIG_SYSFS
7868        if (rxqs < 1) {
7869                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7870                return NULL;
7871        }
7872#endif
7873
7874        alloc_size = sizeof(struct net_device);
7875        if (sizeof_priv) {
7876                /* ensure 32-byte alignment of private area */
7877                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7878                alloc_size += sizeof_priv;
7879        }
7880        /* ensure 32-byte alignment of whole construct */
7881        alloc_size += NETDEV_ALIGN - 1;
7882
7883        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7884        if (!p)
7885                return NULL;
7886
7887        dev = PTR_ALIGN(p, NETDEV_ALIGN);
7888        dev->padded = (char *)dev - (char *)p;
7889
7890        dev->pcpu_refcnt = alloc_percpu(int);
7891        if (!dev->pcpu_refcnt)
7892                goto free_dev;
7893
7894        if (dev_addr_init(dev))
7895                goto free_pcpu;
7896
7897        dev_mc_init(dev);
7898        dev_uc_init(dev);
7899
7900        dev_net_set(dev, &init_net);
7901
7902        dev->gso_max_size = GSO_MAX_SIZE;
7903        dev->gso_max_segs = GSO_MAX_SEGS;
7904
7905        INIT_LIST_HEAD(&dev->napi_list);
7906        INIT_LIST_HEAD(&dev->unreg_list);
7907        INIT_LIST_HEAD(&dev->close_list);
7908        INIT_LIST_HEAD(&dev->link_watch_list);
7909        INIT_LIST_HEAD(&dev->adj_list.upper);
7910        INIT_LIST_HEAD(&dev->adj_list.lower);
7911        INIT_LIST_HEAD(&dev->ptype_all);
7912        INIT_LIST_HEAD(&dev->ptype_specific);
7913#ifdef CONFIG_NET_SCHED
7914        hash_init(dev->qdisc_hash);
7915#endif
7916        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7917        setup(dev);
7918
7919        if (!dev->tx_queue_len) {
7920                dev->priv_flags |= IFF_NO_QUEUE;
7921                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7922        }
7923
7924        dev->num_tx_queues = txqs;
7925        dev->real_num_tx_queues = txqs;
7926        if (netif_alloc_netdev_queues(dev))
7927                goto free_all;
7928
7929#ifdef CONFIG_SYSFS
7930        dev->num_rx_queues = rxqs;
7931        dev->real_num_rx_queues = rxqs;
7932        if (netif_alloc_rx_queues(dev))
7933                goto free_all;
7934#endif
7935
7936        strcpy(dev->name, name);
7937        dev->name_assign_type = name_assign_type;
7938        dev->group = INIT_NETDEV_GROUP;
7939        if (!dev->ethtool_ops)
7940                dev->ethtool_ops = &default_ethtool_ops;
7941
7942        nf_hook_ingress_init(dev);
7943
7944        return dev;
7945
7946free_all:
7947        free_netdev(dev);
7948        return NULL;
7949
7950free_pcpu:
7951        free_percpu(dev->pcpu_refcnt);
7952free_dev:
7953        netdev_freemem(dev);
7954        return NULL;
7955}
7956EXPORT_SYMBOL(alloc_netdev_mqs);
7957
7958/**
7959 * free_netdev - free network device
7960 * @dev: device
7961 *
7962 * This function does the last stage of destroying an allocated device
7963 * interface. The reference to the device object is released. If this
7964 * is the last reference then it will be freed.Must be called in process
7965 * context.
7966 */
7967void free_netdev(struct net_device *dev)
7968{
7969        struct napi_struct *p, *n;
7970        struct bpf_prog *prog;
7971
7972        might_sleep();
7973        netif_free_tx_queues(dev);
7974#ifdef CONFIG_SYSFS
7975        kvfree(dev->_rx);
7976#endif
7977
7978        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7979
7980        /* Flush device addresses */
7981        dev_addr_flush(dev);
7982
7983        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7984                netif_napi_del(p);
7985
7986        free_percpu(dev->pcpu_refcnt);
7987        dev->pcpu_refcnt = NULL;
7988
7989        prog = rcu_dereference_protected(dev->xdp_prog, 1);
7990        if (prog) {
7991                bpf_prog_put(prog);
7992                static_key_slow_dec(&generic_xdp_needed);
7993        }
7994
7995        /*  Compatibility with error handling in drivers */
7996        if (dev->reg_state == NETREG_UNINITIALIZED) {
7997                netdev_freemem(dev);
7998                return;
7999        }
8000
8001        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8002        dev->reg_state = NETREG_RELEASED;
8003
8004        /* will free via device release */
8005        put_device(&dev->dev);
8006}
8007EXPORT_SYMBOL(free_netdev);
8008
8009/**
8010 *      synchronize_net -  Synchronize with packet receive processing
8011 *
8012 *      Wait for packets currently being received to be done.
8013 *      Does not block later packets from starting.
8014 */
8015void synchronize_net(void)
8016{
8017        might_sleep();
8018        if (rtnl_is_locked())
8019                synchronize_rcu_expedited();
8020        else
8021                synchronize_rcu();
8022}
8023EXPORT_SYMBOL(synchronize_net);
8024
8025/**
8026 *      unregister_netdevice_queue - remove device from the kernel
8027 *      @dev: device
8028 *      @head: list
8029 *
8030 *      This function shuts down a device interface and removes it
8031 *      from the kernel tables.
8032 *      If head not NULL, device is queued to be unregistered later.
8033 *
8034 *      Callers must hold the rtnl semaphore.  You may want
8035 *      unregister_netdev() instead of this.
8036 */
8037
8038void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8039{
8040        ASSERT_RTNL();
8041
8042        if (head) {
8043                list_move_tail(&dev->unreg_list, head);
8044        } else {
8045                rollback_registered(dev);
8046                /* Finish processing unregister after unlock */
8047                net_set_todo(dev);
8048        }
8049}
8050EXPORT_SYMBOL(unregister_netdevice_queue);
8051
8052/**
8053 *      unregister_netdevice_many - unregister many devices
8054 *      @head: list of devices
8055 *
8056 *  Note: As most callers use a stack allocated list_head,
8057 *  we force a list_del() to make sure stack wont be corrupted later.
8058 */
8059void unregister_netdevice_many(struct list_head *head)
8060{
8061        struct net_device *dev;
8062
8063        if (!list_empty(head)) {
8064                rollback_registered_many(head);
8065                list_for_each_entry(dev, head, unreg_list)
8066                        net_set_todo(dev);
8067                list_del(head);
8068        }
8069}
8070EXPORT_SYMBOL(unregister_netdevice_many);
8071
8072/**
8073 *      unregister_netdev - remove device from the kernel
8074 *      @dev: device
8075 *
8076 *      This function shuts down a device interface and removes it
8077 *      from the kernel tables.
8078 *
8079 *      This is just a wrapper for unregister_netdevice that takes
8080 *      the rtnl semaphore.  In general you want to use this and not
8081 *      unregister_netdevice.
8082 */
8083void unregister_netdev(struct net_device *dev)
8084{
8085        rtnl_lock();
8086        unregister_netdevice(dev);
8087        rtnl_unlock();
8088}
8089EXPORT_SYMBOL(unregister_netdev);
8090
8091/**
8092 *      dev_change_net_namespace - move device to different nethost namespace
8093 *      @dev: device
8094 *      @net: network namespace
8095 *      @pat: If not NULL name pattern to try if the current device name
8096 *            is already taken in the destination network namespace.
8097 *
8098 *      This function shuts down a device interface and moves it
8099 *      to a new network namespace. On success 0 is returned, on
8100 *      a failure a netagive errno code is returned.
8101 *
8102 *      Callers must hold the rtnl semaphore.
8103 */
8104
8105int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8106{
8107        int err;
8108
8109        ASSERT_RTNL();
8110
8111        /* Don't allow namespace local devices to be moved. */
8112        err = -EINVAL;
8113        if (dev->features & NETIF_F_NETNS_LOCAL)
8114                goto out;
8115
8116        /* Ensure the device has been registrered */
8117        if (dev->reg_state != NETREG_REGISTERED)
8118                goto out;
8119
8120        /* Get out if there is nothing todo */
8121        err = 0;
8122        if (net_eq(dev_net(dev), net))
8123                goto out;
8124
8125        /* Pick the destination device name, and ensure
8126         * we can use it in the destination network namespace.
8127         */
8128        err = -EEXIST;
8129        if (__dev_get_by_name(net, dev->name)) {
8130                /* We get here if we can't use the current device name */
8131                if (!pat)
8132                        goto out;
8133                if (dev_get_valid_name(net, dev, pat) < 0)
8134                        goto out;
8135        }
8136
8137        /*
8138         * And now a mini version of register_netdevice unregister_netdevice.
8139         */
8140
8141        /* If device is running close it first. */
8142        dev_close(dev);
8143
8144        /* And unlink it from device chain */
8145        err = -ENODEV;
8146        unlist_netdevice(dev);
8147
8148        synchronize_net();
8149
8150        /* Shutdown queueing discipline. */
8151        dev_shutdown(dev);
8152
8153        /* Notify protocols, that we are about to destroy
8154         * this device. They should clean all the things.
8155         *
8156         * Note that dev->reg_state stays at NETREG_REGISTERED.
8157         * This is wanted because this way 8021q and macvlan know
8158         * the device is just moving and can keep their slaves up.
8159         */
8160        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8161        rcu_barrier();
8162        call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8163        rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8164
8165        /*
8166         *      Flush the unicast and multicast chains
8167         */
8168        dev_uc_flush(dev);
8169        dev_mc_flush(dev);
8170
8171        /* Send a netdev-removed uevent to the old namespace */
8172        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8173        netdev_adjacent_del_links(dev);
8174
8175        /* Actually switch the network namespace */
8176        dev_net_set(dev, net);
8177
8178        /* If there is an ifindex conflict assign a new one */
8179        if (__dev_get_by_index(net, dev->ifindex))
8180                dev->ifindex = dev_new_index(net);
8181
8182        /* Send a netdev-add uevent to the new namespace */
8183        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8184        netdev_adjacent_add_links(dev);
8185
8186        /* Fixup kobjects */
8187        err = device_rename(&dev->dev, dev->name);
8188        WARN_ON(err);
8189
8190        /* Add the device back in the hashes */
8191        list_netdevice(dev);
8192
8193        /* Notify protocols, that a new device appeared. */
8194        call_netdevice_notifiers(NETDEV_REGISTER, dev);
8195
8196        /*
8197         *      Prevent userspace races by waiting until the network
8198         *      device is fully setup before sending notifications.
8199         */
8200        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8201
8202        synchronize_net();
8203        err = 0;
8204out:
8205        return err;
8206}
8207EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8208
8209static int dev_cpu_dead(unsigned int oldcpu)
8210{
8211        struct sk_buff **list_skb;
8212        struct sk_buff *skb;
8213        unsigned int cpu;
8214        struct softnet_data *sd, *oldsd, *remsd = NULL;
8215
8216        local_irq_disable();
8217        cpu = smp_processor_id();
8218        sd = &per_cpu(softnet_data, cpu);
8219        oldsd = &per_cpu(softnet_data, oldcpu);
8220
8221        /* Find end of our completion_queue. */
8222        list_skb = &sd->completion_queue;
8223        while (*list_skb)
8224                list_skb = &(*list_skb)->next;
8225        /* Append completion queue from offline CPU. */
8226        *list_skb = oldsd->completion_queue;
8227        oldsd->completion_queue = NULL;
8228
8229        /* Append output queue from offline CPU. */
8230        if (oldsd->output_queue) {
8231                *sd->output_queue_tailp = oldsd->output_queue;
8232                sd->output_queue_tailp = oldsd->output_queue_tailp;
8233                oldsd->output_queue = NULL;
8234                oldsd->output_queue_tailp = &oldsd->output_queue;
8235        }
8236        /* Append NAPI poll list from offline CPU, with one exception :
8237         * process_backlog() must be called by cpu owning percpu backlog.
8238         * We properly handle process_queue & input_pkt_queue later.
8239         */
8240        while (!list_empty(&oldsd->poll_list)) {
8241                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8242                                                            struct napi_struct,
8243                                                            poll_list);
8244
8245                list_del_init(&napi->poll_list);
8246                if (napi->poll == process_backlog)
8247                        napi->state = 0;
8248                else
8249                        ____napi_schedule(sd, napi);
8250        }
8251
8252        raise_softirq_irqoff(NET_TX_SOFTIRQ);
8253        local_irq_enable();
8254
8255#ifdef CONFIG_RPS
8256        remsd = oldsd->rps_ipi_list;
8257        oldsd->rps_ipi_list = NULL;
8258#endif
8259        /* send out pending IPI's on offline CPU */
8260        net_rps_send_ipi(remsd);
8261
8262        /* Process offline CPU's input_pkt_queue */
8263        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8264                netif_rx_ni(skb);
8265                input_queue_head_incr(oldsd);
8266        }
8267        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8268                netif_rx_ni(skb);
8269                input_queue_head_incr(oldsd);
8270        }
8271
8272        return 0;
8273}
8274
8275/**
8276 *      netdev_increment_features - increment feature set by one
8277 *      @all: current feature set
8278 *      @one: new feature set
8279 *      @mask: mask feature set
8280 *
8281 *      Computes a new feature set after adding a device with feature set
8282 *      @one to the master device with current feature set @all.  Will not
8283 *      enable anything that is off in @mask. Returns the new feature set.
8284 */
8285netdev_features_t netdev_increment_features(netdev_features_t all,
8286        netdev_features_t one, netdev_features_t mask)
8287{
8288        if (mask & NETIF_F_HW_CSUM)
8289                mask |= NETIF_F_CSUM_MASK;
8290        mask |= NETIF_F_VLAN_CHALLENGED;
8291
8292        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8293        all &= one | ~NETIF_F_ALL_FOR_ALL;
8294
8295        /* If one device supports hw checksumming, set for all. */
8296        if (all & NETIF_F_HW_CSUM)
8297                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8298
8299        return all;
8300}
8301EXPORT_SYMBOL(netdev_increment_features);
8302
8303static struct hlist_head * __net_init netdev_create_hash(void)
8304{
8305        int i;
8306        struct hlist_head *hash;
8307
8308        hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8309        if (hash != NULL)
8310                for (i = 0; i < NETDEV_HASHENTRIES; i++)
8311                        INIT_HLIST_HEAD(&hash[i]);
8312
8313        return hash;
8314}
8315
8316/* Initialize per network namespace state */
8317static int __net_init netdev_init(struct net *net)
8318{
8319        if (net != &init_net)
8320                INIT_LIST_HEAD(&net->dev_base_head);
8321
8322        net->dev_name_head = netdev_create_hash();
8323        if (net->dev_name_head == NULL)
8324                goto err_name;
8325
8326        net->dev_index_head = netdev_create_hash();
8327        if (net->dev_index_head == NULL)
8328                goto err_idx;
8329
8330        return 0;
8331
8332err_idx:
8333        kfree(net->dev_name_head);
8334err_name:
8335        return -ENOMEM;
8336}
8337
8338/**
8339 *      netdev_drivername - network driver for the device
8340 *      @dev: network device
8341 *
8342 *      Determine network driver for device.
8343 */
8344const char *netdev_drivername(const struct net_device *dev)
8345{
8346        const struct device_driver *driver;
8347        const struct device *parent;
8348        const char *empty = "";
8349
8350        parent = dev->dev.parent;
8351        if (!parent)
8352                return empty;
8353
8354        driver = parent->driver;
8355        if (driver && driver->name)
8356                return driver->name;
8357        return empty;
8358}
8359
8360static void __netdev_printk(const char *level, const struct net_device *dev,
8361                            struct va_format *vaf)
8362{
8363        if (dev && dev->dev.parent) {
8364                dev_printk_emit(level[1] - '0',
8365                                dev->dev.parent,
8366                                "%s %s %s%s: %pV",
8367                                dev_driver_string(dev->dev.parent),
8368                                dev_name(dev->dev.parent),
8369                                netdev_name(dev), netdev_reg_state(dev),
8370                                vaf);
8371        } else if (dev) {
8372                printk("%s%s%s: %pV",
8373                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8374        } else {
8375                printk("%s(NULL net_device): %pV", level, vaf);
8376        }
8377}
8378
8379void netdev_printk(const char *level, const struct net_device *dev,
8380                   const char *format, ...)
8381{
8382        struct va_format vaf;
8383        va_list args;
8384
8385        va_start(args, format);
8386
8387        vaf.fmt = format;
8388        vaf.va = &args;
8389
8390        __netdev_printk(level, dev, &vaf);
8391
8392        va_end(args);
8393}
8394EXPORT_SYMBOL(netdev_printk);
8395
8396#define define_netdev_printk_level(func, level)                 \
8397void func(const struct net_device *dev, const char *fmt, ...)   \
8398{                                                               \
8399        struct va_format vaf;                                   \
8400        va_list args;                                           \
8401                                                                \
8402        va_start(args, fmt);                                    \
8403                                                                \
8404        vaf.fmt = fmt;                                          \
8405        vaf.va = &args;                                         \
8406                                                                \
8407        __netdev_printk(level, dev, &vaf);                      \
8408                                                                \
8409        va_end(args);                                           \
8410}                                                               \
8411EXPORT_SYMBOL(func);
8412
8413define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8414define_netdev_printk_level(netdev_alert, KERN_ALERT);
8415define_netdev_printk_level(netdev_crit, KERN_CRIT);
8416define_netdev_printk_level(netdev_err, KERN_ERR);
8417define_netdev_printk_level(netdev_warn, KERN_WARNING);
8418define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8419define_netdev_printk_level(netdev_info, KERN_INFO);
8420
8421static void __net_exit netdev_exit(struct net *net)
8422{
8423        kfree(net->dev_name_head);
8424        kfree(net->dev_index_head);
8425}
8426
8427static struct pernet_operations __net_initdata netdev_net_ops = {
8428        .init = netdev_init,
8429        .exit = netdev_exit,
8430};
8431
8432static void __net_exit default_device_exit(struct net *net)
8433{
8434        struct net_device *dev, *aux;
8435        /*
8436         * Push all migratable network devices back to the
8437         * initial network namespace
8438         */
8439        rtnl_lock();
8440        for_each_netdev_safe(net, dev, aux) {
8441                int err;
8442                char fb_name[IFNAMSIZ];
8443
8444                /* Ignore unmoveable devices (i.e. loopback) */
8445                if (dev->features & NETIF_F_NETNS_LOCAL)
8446                        continue;
8447
8448                /* Leave virtual devices for the generic cleanup */
8449                if (dev->rtnl_link_ops)
8450                        continue;
8451
8452                /* Push remaining network devices to init_net */
8453                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8454                err = dev_change_net_namespace(dev, &init_net, fb_name);
8455                if (err) {
8456                        pr_emerg("%s: failed to move %s to init_net: %d\n",
8457                                 __func__, dev->name, err);
8458                        BUG();
8459                }
8460        }
8461        rtnl_unlock();
8462}
8463
8464static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8465{
8466        /* Return with the rtnl_lock held when there are no network
8467         * devices unregistering in any network namespace in net_list.
8468         */
8469        struct net *net;
8470        bool unregistering;
8471        DEFINE_WAIT_FUNC(wait, woken_wake_function);
8472
8473        add_wait_queue(&netdev_unregistering_wq, &wait);
8474        for (;;) {
8475                unregistering = false;
8476                rtnl_lock();
8477                list_for_each_entry(net, net_list, exit_list) {
8478                        if (net->dev_unreg_count > 0) {
8479                                unregistering = true;
8480                                break;
8481                        }
8482                }
8483                if (!unregistering)
8484                        break;
8485                __rtnl_unlock();
8486
8487                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8488        }
8489        remove_wait_queue(&netdev_unregistering_wq, &wait);
8490}
8491
8492static void __net_exit default_device_exit_batch(struct list_head *net_list)
8493{
8494        /* At exit all network devices most be removed from a network
8495         * namespace.  Do this in the reverse order of registration.
8496         * Do this across as many network namespaces as possible to
8497         * improve batching efficiency.
8498         */
8499        struct net_device *dev;
8500        struct net *net;
8501        LIST_HEAD(dev_kill_list);
8502
8503        /* To prevent network device cleanup code from dereferencing
8504         * loopback devices or network devices that have been freed
8505         * wait here for all pending unregistrations to complete,
8506         * before unregistring the loopback device and allowing the
8507         * network namespace be freed.
8508         *
8509         * The netdev todo list containing all network devices
8510         * unregistrations that happen in default_device_exit_batch
8511         * will run in the rtnl_unlock() at the end of
8512         * default_device_exit_batch.
8513         */
8514        rtnl_lock_unregistering(net_list);
8515        list_for_each_entry(net, net_list, exit_list) {
8516                for_each_netdev_reverse(net, dev) {
8517                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8518                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8519                        else
8520                                unregister_netdevice_queue(dev, &dev_kill_list);
8521                }
8522        }
8523        unregister_netdevice_many(&dev_kill_list);
8524        rtnl_unlock();
8525}
8526
8527static struct pernet_operations __net_initdata default_device_ops = {
8528        .exit = default_device_exit,
8529        .exit_batch = default_device_exit_batch,
8530};
8531
8532/*
8533 *      Initialize the DEV module. At boot time this walks the device list and
8534 *      unhooks any devices that fail to initialise (normally hardware not
8535 *      present) and leaves us with a valid list of present and active devices.
8536 *
8537 */
8538
8539/*
8540 *       This is called single threaded during boot, so no need
8541 *       to take the rtnl semaphore.
8542 */
8543static int __init net_dev_init(void)
8544{
8545        int i, rc = -ENOMEM;
8546
8547        BUG_ON(!dev_boot_phase);
8548
8549        if (dev_proc_init())
8550                goto out;
8551
8552        if (netdev_kobject_init())
8553                goto out;
8554
8555        INIT_LIST_HEAD(&ptype_all);
8556        for (i = 0; i < PTYPE_HASH_SIZE; i++)
8557                INIT_LIST_HEAD(&ptype_base[i]);
8558
8559        INIT_LIST_HEAD(&offload_base);
8560
8561        if (register_pernet_subsys(&netdev_net_ops))
8562                goto out;
8563
8564        /*
8565         *      Initialise the packet receive queues.
8566         */
8567
8568        for_each_possible_cpu(i) {
8569                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8570                struct softnet_data *sd = &per_cpu(softnet_data, i);
8571
8572                INIT_WORK(flush, flush_backlog);
8573
8574                skb_queue_head_init(&sd->input_pkt_queue);
8575                skb_queue_head_init(&sd->process_queue);
8576                INIT_LIST_HEAD(&sd->poll_list);
8577                sd->output_queue_tailp = &sd->output_queue;
8578#ifdef CONFIG_RPS
8579                sd->csd.func = rps_trigger_softirq;
8580                sd->csd.info = sd;
8581                sd->cpu = i;
8582#endif
8583
8584                sd->backlog.poll = process_backlog;
8585                sd->backlog.weight = weight_p;
8586        }
8587
8588        dev_boot_phase = 0;
8589
8590        /* The loopback device is special if any other network devices
8591         * is present in a network namespace the loopback device must
8592         * be present. Since we now dynamically allocate and free the
8593         * loopback device ensure this invariant is maintained by
8594         * keeping the loopback device as the first device on the
8595         * list of network devices.  Ensuring the loopback devices
8596         * is the first device that appears and the last network device
8597         * that disappears.
8598         */
8599        if (register_pernet_device(&loopback_net_ops))
8600                goto out;
8601
8602        if (register_pernet_device(&default_device_ops))
8603                goto out;
8604
8605        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8606        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8607
8608        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8609                                       NULL, dev_cpu_dead);
8610        WARN_ON(rc < 0);
8611        dst_subsys_init();
8612        rc = 0;
8613out:
8614        return rc;
8615}
8616
8617subsys_initcall(net_dev_init);
8618