linux/net/openvswitch/actions.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2007-2017 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/skbuff.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/openvswitch.h>
  25#include <linux/netfilter_ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/in6.h>
  30#include <linux/if_arp.h>
  31#include <linux/if_vlan.h>
  32
  33#include <net/dst.h>
  34#include <net/ip.h>
  35#include <net/ipv6.h>
  36#include <net/ip6_fib.h>
  37#include <net/checksum.h>
  38#include <net/dsfield.h>
  39#include <net/mpls.h>
  40#include <net/sctp/checksum.h>
  41
  42#include "datapath.h"
  43#include "flow.h"
  44#include "conntrack.h"
  45#include "vport.h"
  46
  47struct deferred_action {
  48        struct sk_buff *skb;
  49        const struct nlattr *actions;
  50        int actions_len;
  51
  52        /* Store pkt_key clone when creating deferred action. */
  53        struct sw_flow_key pkt_key;
  54};
  55
  56#define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  57struct ovs_frag_data {
  58        unsigned long dst;
  59        struct vport *vport;
  60        struct ovs_skb_cb cb;
  61        __be16 inner_protocol;
  62        u16 network_offset;     /* valid only for MPLS */
  63        u16 vlan_tci;
  64        __be16 vlan_proto;
  65        unsigned int l2_len;
  66        u8 mac_proto;
  67        u8 l2_data[MAX_L2_LEN];
  68};
  69
  70static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  71
  72#define DEFERRED_ACTION_FIFO_SIZE 10
  73#define OVS_RECURSION_LIMIT 5
  74#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  75struct action_fifo {
  76        int head;
  77        int tail;
  78        /* Deferred action fifo queue storage. */
  79        struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  80};
  81
  82struct action_flow_keys {
  83        struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  84};
  85
  86static struct action_fifo __percpu *action_fifos;
  87static struct action_flow_keys __percpu *flow_keys;
  88static DEFINE_PER_CPU(int, exec_actions_level);
  89
  90/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  91 * space. Return NULL if out of key spaces.
  92 */
  93static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  94{
  95        struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  96        int level = this_cpu_read(exec_actions_level);
  97        struct sw_flow_key *key = NULL;
  98
  99        if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
 100                key = &keys->key[level - 1];
 101                *key = *key_;
 102        }
 103
 104        return key;
 105}
 106
 107static void action_fifo_init(struct action_fifo *fifo)
 108{
 109        fifo->head = 0;
 110        fifo->tail = 0;
 111}
 112
 113static bool action_fifo_is_empty(const struct action_fifo *fifo)
 114{
 115        return (fifo->head == fifo->tail);
 116}
 117
 118static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 119{
 120        if (action_fifo_is_empty(fifo))
 121                return NULL;
 122
 123        return &fifo->fifo[fifo->tail++];
 124}
 125
 126static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 127{
 128        if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 129                return NULL;
 130
 131        return &fifo->fifo[fifo->head++];
 132}
 133
 134/* Return true if fifo is not full */
 135static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 136                                    const struct sw_flow_key *key,
 137                                    const struct nlattr *actions,
 138                                    const int actions_len)
 139{
 140        struct action_fifo *fifo;
 141        struct deferred_action *da;
 142
 143        fifo = this_cpu_ptr(action_fifos);
 144        da = action_fifo_put(fifo);
 145        if (da) {
 146                da->skb = skb;
 147                da->actions = actions;
 148                da->actions_len = actions_len;
 149                da->pkt_key = *key;
 150        }
 151
 152        return da;
 153}
 154
 155static void invalidate_flow_key(struct sw_flow_key *key)
 156{
 157        key->mac_proto |= SW_FLOW_KEY_INVALID;
 158}
 159
 160static bool is_flow_key_valid(const struct sw_flow_key *key)
 161{
 162        return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 163}
 164
 165static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 166                         struct sw_flow_key *key,
 167                         u32 recirc_id,
 168                         const struct nlattr *actions, int len,
 169                         bool last, bool clone_flow_key);
 170
 171static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
 172                             __be16 ethertype)
 173{
 174        if (skb->ip_summed == CHECKSUM_COMPLETE) {
 175                __be16 diff[] = { ~(hdr->h_proto), ethertype };
 176
 177                skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 178                                        ~skb->csum);
 179        }
 180
 181        hdr->h_proto = ethertype;
 182}
 183
 184static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 185                     const struct ovs_action_push_mpls *mpls)
 186{
 187        struct mpls_shim_hdr *new_mpls_lse;
 188
 189        /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
 190        if (skb->encapsulation)
 191                return -ENOTSUPP;
 192
 193        if (skb_cow_head(skb, MPLS_HLEN) < 0)
 194                return -ENOMEM;
 195
 196        if (!skb->inner_protocol) {
 197                skb_set_inner_network_header(skb, skb->mac_len);
 198                skb_set_inner_protocol(skb, skb->protocol);
 199        }
 200
 201        skb_push(skb, MPLS_HLEN);
 202        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
 203                skb->mac_len);
 204        skb_reset_mac_header(skb);
 205        skb_set_network_header(skb, skb->mac_len);
 206
 207        new_mpls_lse = mpls_hdr(skb);
 208        new_mpls_lse->label_stack_entry = mpls->mpls_lse;
 209
 210        skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
 211
 212        if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
 213                update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
 214        skb->protocol = mpls->mpls_ethertype;
 215
 216        invalidate_flow_key(key);
 217        return 0;
 218}
 219
 220static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 221                    const __be16 ethertype)
 222{
 223        int err;
 224
 225        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 226        if (unlikely(err))
 227                return err;
 228
 229        skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
 230
 231        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
 232                skb->mac_len);
 233
 234        __skb_pull(skb, MPLS_HLEN);
 235        skb_reset_mac_header(skb);
 236        skb_set_network_header(skb, skb->mac_len);
 237
 238        if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
 239                struct ethhdr *hdr;
 240
 241                /* mpls_hdr() is used to locate the ethertype field correctly in the
 242                 * presence of VLAN tags.
 243                 */
 244                hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
 245                update_ethertype(skb, hdr, ethertype);
 246        }
 247        if (eth_p_mpls(skb->protocol))
 248                skb->protocol = ethertype;
 249
 250        invalidate_flow_key(key);
 251        return 0;
 252}
 253
 254static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 255                    const __be32 *mpls_lse, const __be32 *mask)
 256{
 257        struct mpls_shim_hdr *stack;
 258        __be32 lse;
 259        int err;
 260
 261        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 262        if (unlikely(err))
 263                return err;
 264
 265        stack = mpls_hdr(skb);
 266        lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 267        if (skb->ip_summed == CHECKSUM_COMPLETE) {
 268                __be32 diff[] = { ~(stack->label_stack_entry), lse };
 269
 270                skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 271                                          ~skb->csum);
 272        }
 273
 274        stack->label_stack_entry = lse;
 275        flow_key->mpls.top_lse = lse;
 276        return 0;
 277}
 278
 279static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 280{
 281        int err;
 282
 283        err = skb_vlan_pop(skb);
 284        if (skb_vlan_tag_present(skb)) {
 285                invalidate_flow_key(key);
 286        } else {
 287                key->eth.vlan.tci = 0;
 288                key->eth.vlan.tpid = 0;
 289        }
 290        return err;
 291}
 292
 293static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 294                     const struct ovs_action_push_vlan *vlan)
 295{
 296        if (skb_vlan_tag_present(skb)) {
 297                invalidate_flow_key(key);
 298        } else {
 299                key->eth.vlan.tci = vlan->vlan_tci;
 300                key->eth.vlan.tpid = vlan->vlan_tpid;
 301        }
 302        return skb_vlan_push(skb, vlan->vlan_tpid,
 303                             ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
 304}
 305
 306/* 'src' is already properly masked. */
 307static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 308{
 309        u16 *dst = (u16 *)dst_;
 310        const u16 *src = (const u16 *)src_;
 311        const u16 *mask = (const u16 *)mask_;
 312
 313        OVS_SET_MASKED(dst[0], src[0], mask[0]);
 314        OVS_SET_MASKED(dst[1], src[1], mask[1]);
 315        OVS_SET_MASKED(dst[2], src[2], mask[2]);
 316}
 317
 318static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 319                        const struct ovs_key_ethernet *key,
 320                        const struct ovs_key_ethernet *mask)
 321{
 322        int err;
 323
 324        err = skb_ensure_writable(skb, ETH_HLEN);
 325        if (unlikely(err))
 326                return err;
 327
 328        skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 329
 330        ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 331                               mask->eth_src);
 332        ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 333                               mask->eth_dst);
 334
 335        skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 336
 337        ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 338        ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 339        return 0;
 340}
 341
 342/* pop_eth does not support VLAN packets as this action is never called
 343 * for them.
 344 */
 345static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 346{
 347        skb_pull_rcsum(skb, ETH_HLEN);
 348        skb_reset_mac_header(skb);
 349        skb_reset_mac_len(skb);
 350
 351        /* safe right before invalidate_flow_key */
 352        key->mac_proto = MAC_PROTO_NONE;
 353        invalidate_flow_key(key);
 354        return 0;
 355}
 356
 357static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 358                    const struct ovs_action_push_eth *ethh)
 359{
 360        struct ethhdr *hdr;
 361
 362        /* Add the new Ethernet header */
 363        if (skb_cow_head(skb, ETH_HLEN) < 0)
 364                return -ENOMEM;
 365
 366        skb_push(skb, ETH_HLEN);
 367        skb_reset_mac_header(skb);
 368        skb_reset_mac_len(skb);
 369
 370        hdr = eth_hdr(skb);
 371        ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
 372        ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
 373        hdr->h_proto = skb->protocol;
 374
 375        skb_postpush_rcsum(skb, hdr, ETH_HLEN);
 376
 377        /* safe right before invalidate_flow_key */
 378        key->mac_proto = MAC_PROTO_ETHERNET;
 379        invalidate_flow_key(key);
 380        return 0;
 381}
 382
 383static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 384                                  __be32 addr, __be32 new_addr)
 385{
 386        int transport_len = skb->len - skb_transport_offset(skb);
 387
 388        if (nh->frag_off & htons(IP_OFFSET))
 389                return;
 390
 391        if (nh->protocol == IPPROTO_TCP) {
 392                if (likely(transport_len >= sizeof(struct tcphdr)))
 393                        inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 394                                                 addr, new_addr, true);
 395        } else if (nh->protocol == IPPROTO_UDP) {
 396                if (likely(transport_len >= sizeof(struct udphdr))) {
 397                        struct udphdr *uh = udp_hdr(skb);
 398
 399                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 400                                inet_proto_csum_replace4(&uh->check, skb,
 401                                                         addr, new_addr, true);
 402                                if (!uh->check)
 403                                        uh->check = CSUM_MANGLED_0;
 404                        }
 405                }
 406        }
 407}
 408
 409static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 410                        __be32 *addr, __be32 new_addr)
 411{
 412        update_ip_l4_checksum(skb, nh, *addr, new_addr);
 413        csum_replace4(&nh->check, *addr, new_addr);
 414        skb_clear_hash(skb);
 415        *addr = new_addr;
 416}
 417
 418static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 419                                 __be32 addr[4], const __be32 new_addr[4])
 420{
 421        int transport_len = skb->len - skb_transport_offset(skb);
 422
 423        if (l4_proto == NEXTHDR_TCP) {
 424                if (likely(transport_len >= sizeof(struct tcphdr)))
 425                        inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 426                                                  addr, new_addr, true);
 427        } else if (l4_proto == NEXTHDR_UDP) {
 428                if (likely(transport_len >= sizeof(struct udphdr))) {
 429                        struct udphdr *uh = udp_hdr(skb);
 430
 431                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 432                                inet_proto_csum_replace16(&uh->check, skb,
 433                                                          addr, new_addr, true);
 434                                if (!uh->check)
 435                                        uh->check = CSUM_MANGLED_0;
 436                        }
 437                }
 438        } else if (l4_proto == NEXTHDR_ICMP) {
 439                if (likely(transport_len >= sizeof(struct icmp6hdr)))
 440                        inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 441                                                  skb, addr, new_addr, true);
 442        }
 443}
 444
 445static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 446                           const __be32 mask[4], __be32 masked[4])
 447{
 448        masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 449        masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 450        masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 451        masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 452}
 453
 454static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 455                          __be32 addr[4], const __be32 new_addr[4],
 456                          bool recalculate_csum)
 457{
 458        if (recalculate_csum)
 459                update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 460
 461        skb_clear_hash(skb);
 462        memcpy(addr, new_addr, sizeof(__be32[4]));
 463}
 464
 465static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 466{
 467        /* Bits 21-24 are always unmasked, so this retains their values. */
 468        OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 469        OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 470        OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 471}
 472
 473static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 474                       u8 mask)
 475{
 476        new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 477
 478        csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 479        nh->ttl = new_ttl;
 480}
 481
 482static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 483                    const struct ovs_key_ipv4 *key,
 484                    const struct ovs_key_ipv4 *mask)
 485{
 486        struct iphdr *nh;
 487        __be32 new_addr;
 488        int err;
 489
 490        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 491                                  sizeof(struct iphdr));
 492        if (unlikely(err))
 493                return err;
 494
 495        nh = ip_hdr(skb);
 496
 497        /* Setting an IP addresses is typically only a side effect of
 498         * matching on them in the current userspace implementation, so it
 499         * makes sense to check if the value actually changed.
 500         */
 501        if (mask->ipv4_src) {
 502                new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 503
 504                if (unlikely(new_addr != nh->saddr)) {
 505                        set_ip_addr(skb, nh, &nh->saddr, new_addr);
 506                        flow_key->ipv4.addr.src = new_addr;
 507                }
 508        }
 509        if (mask->ipv4_dst) {
 510                new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 511
 512                if (unlikely(new_addr != nh->daddr)) {
 513                        set_ip_addr(skb, nh, &nh->daddr, new_addr);
 514                        flow_key->ipv4.addr.dst = new_addr;
 515                }
 516        }
 517        if (mask->ipv4_tos) {
 518                ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 519                flow_key->ip.tos = nh->tos;
 520        }
 521        if (mask->ipv4_ttl) {
 522                set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 523                flow_key->ip.ttl = nh->ttl;
 524        }
 525
 526        return 0;
 527}
 528
 529static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 530{
 531        return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 532}
 533
 534static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 535                    const struct ovs_key_ipv6 *key,
 536                    const struct ovs_key_ipv6 *mask)
 537{
 538        struct ipv6hdr *nh;
 539        int err;
 540
 541        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 542                                  sizeof(struct ipv6hdr));
 543        if (unlikely(err))
 544                return err;
 545
 546        nh = ipv6_hdr(skb);
 547
 548        /* Setting an IP addresses is typically only a side effect of
 549         * matching on them in the current userspace implementation, so it
 550         * makes sense to check if the value actually changed.
 551         */
 552        if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 553                __be32 *saddr = (__be32 *)&nh->saddr;
 554                __be32 masked[4];
 555
 556                mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 557
 558                if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 559                        set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 560                                      true);
 561                        memcpy(&flow_key->ipv6.addr.src, masked,
 562                               sizeof(flow_key->ipv6.addr.src));
 563                }
 564        }
 565        if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 566                unsigned int offset = 0;
 567                int flags = IP6_FH_F_SKIP_RH;
 568                bool recalc_csum = true;
 569                __be32 *daddr = (__be32 *)&nh->daddr;
 570                __be32 masked[4];
 571
 572                mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 573
 574                if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 575                        if (ipv6_ext_hdr(nh->nexthdr))
 576                                recalc_csum = (ipv6_find_hdr(skb, &offset,
 577                                                             NEXTHDR_ROUTING,
 578                                                             NULL, &flags)
 579                                               != NEXTHDR_ROUTING);
 580
 581                        set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 582                                      recalc_csum);
 583                        memcpy(&flow_key->ipv6.addr.dst, masked,
 584                               sizeof(flow_key->ipv6.addr.dst));
 585                }
 586        }
 587        if (mask->ipv6_tclass) {
 588                ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 589                flow_key->ip.tos = ipv6_get_dsfield(nh);
 590        }
 591        if (mask->ipv6_label) {
 592                set_ipv6_fl(nh, ntohl(key->ipv6_label),
 593                            ntohl(mask->ipv6_label));
 594                flow_key->ipv6.label =
 595                    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 596        }
 597        if (mask->ipv6_hlimit) {
 598                OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 599                               mask->ipv6_hlimit);
 600                flow_key->ip.ttl = nh->hop_limit;
 601        }
 602        return 0;
 603}
 604
 605/* Must follow skb_ensure_writable() since that can move the skb data. */
 606static void set_tp_port(struct sk_buff *skb, __be16 *port,
 607                        __be16 new_port, __sum16 *check)
 608{
 609        inet_proto_csum_replace2(check, skb, *port, new_port, false);
 610        *port = new_port;
 611}
 612
 613static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 614                   const struct ovs_key_udp *key,
 615                   const struct ovs_key_udp *mask)
 616{
 617        struct udphdr *uh;
 618        __be16 src, dst;
 619        int err;
 620
 621        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 622                                  sizeof(struct udphdr));
 623        if (unlikely(err))
 624                return err;
 625
 626        uh = udp_hdr(skb);
 627        /* Either of the masks is non-zero, so do not bother checking them. */
 628        src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 629        dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 630
 631        if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 632                if (likely(src != uh->source)) {
 633                        set_tp_port(skb, &uh->source, src, &uh->check);
 634                        flow_key->tp.src = src;
 635                }
 636                if (likely(dst != uh->dest)) {
 637                        set_tp_port(skb, &uh->dest, dst, &uh->check);
 638                        flow_key->tp.dst = dst;
 639                }
 640
 641                if (unlikely(!uh->check))
 642                        uh->check = CSUM_MANGLED_0;
 643        } else {
 644                uh->source = src;
 645                uh->dest = dst;
 646                flow_key->tp.src = src;
 647                flow_key->tp.dst = dst;
 648        }
 649
 650        skb_clear_hash(skb);
 651
 652        return 0;
 653}
 654
 655static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 656                   const struct ovs_key_tcp *key,
 657                   const struct ovs_key_tcp *mask)
 658{
 659        struct tcphdr *th;
 660        __be16 src, dst;
 661        int err;
 662
 663        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 664                                  sizeof(struct tcphdr));
 665        if (unlikely(err))
 666                return err;
 667
 668        th = tcp_hdr(skb);
 669        src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 670        if (likely(src != th->source)) {
 671                set_tp_port(skb, &th->source, src, &th->check);
 672                flow_key->tp.src = src;
 673        }
 674        dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 675        if (likely(dst != th->dest)) {
 676                set_tp_port(skb, &th->dest, dst, &th->check);
 677                flow_key->tp.dst = dst;
 678        }
 679        skb_clear_hash(skb);
 680
 681        return 0;
 682}
 683
 684static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 685                    const struct ovs_key_sctp *key,
 686                    const struct ovs_key_sctp *mask)
 687{
 688        unsigned int sctphoff = skb_transport_offset(skb);
 689        struct sctphdr *sh;
 690        __le32 old_correct_csum, new_csum, old_csum;
 691        int err;
 692
 693        err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 694        if (unlikely(err))
 695                return err;
 696
 697        sh = sctp_hdr(skb);
 698        old_csum = sh->checksum;
 699        old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 700
 701        sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 702        sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 703
 704        new_csum = sctp_compute_cksum(skb, sctphoff);
 705
 706        /* Carry any checksum errors through. */
 707        sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 708
 709        skb_clear_hash(skb);
 710        flow_key->tp.src = sh->source;
 711        flow_key->tp.dst = sh->dest;
 712
 713        return 0;
 714}
 715
 716static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 717{
 718        struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 719        struct vport *vport = data->vport;
 720
 721        if (skb_cow_head(skb, data->l2_len) < 0) {
 722                kfree_skb(skb);
 723                return -ENOMEM;
 724        }
 725
 726        __skb_dst_copy(skb, data->dst);
 727        *OVS_CB(skb) = data->cb;
 728        skb->inner_protocol = data->inner_protocol;
 729        skb->vlan_tci = data->vlan_tci;
 730        skb->vlan_proto = data->vlan_proto;
 731
 732        /* Reconstruct the MAC header.  */
 733        skb_push(skb, data->l2_len);
 734        memcpy(skb->data, &data->l2_data, data->l2_len);
 735        skb_postpush_rcsum(skb, skb->data, data->l2_len);
 736        skb_reset_mac_header(skb);
 737
 738        if (eth_p_mpls(skb->protocol)) {
 739                skb->inner_network_header = skb->network_header;
 740                skb_set_network_header(skb, data->network_offset);
 741                skb_reset_mac_len(skb);
 742        }
 743
 744        ovs_vport_send(vport, skb, data->mac_proto);
 745        return 0;
 746}
 747
 748static unsigned int
 749ovs_dst_get_mtu(const struct dst_entry *dst)
 750{
 751        return dst->dev->mtu;
 752}
 753
 754static struct dst_ops ovs_dst_ops = {
 755        .family = AF_UNSPEC,
 756        .mtu = ovs_dst_get_mtu,
 757};
 758
 759/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 760 * ovs_vport_output(), which is called once per fragmented packet.
 761 */
 762static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 763                         u16 orig_network_offset, u8 mac_proto)
 764{
 765        unsigned int hlen = skb_network_offset(skb);
 766        struct ovs_frag_data *data;
 767
 768        data = this_cpu_ptr(&ovs_frag_data_storage);
 769        data->dst = skb->_skb_refdst;
 770        data->vport = vport;
 771        data->cb = *OVS_CB(skb);
 772        data->inner_protocol = skb->inner_protocol;
 773        data->network_offset = orig_network_offset;
 774        data->vlan_tci = skb->vlan_tci;
 775        data->vlan_proto = skb->vlan_proto;
 776        data->mac_proto = mac_proto;
 777        data->l2_len = hlen;
 778        memcpy(&data->l2_data, skb->data, hlen);
 779
 780        memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 781        skb_pull(skb, hlen);
 782}
 783
 784static void ovs_fragment(struct net *net, struct vport *vport,
 785                         struct sk_buff *skb, u16 mru,
 786                         struct sw_flow_key *key)
 787{
 788        u16 orig_network_offset = 0;
 789
 790        if (eth_p_mpls(skb->protocol)) {
 791                orig_network_offset = skb_network_offset(skb);
 792                skb->network_header = skb->inner_network_header;
 793        }
 794
 795        if (skb_network_offset(skb) > MAX_L2_LEN) {
 796                OVS_NLERR(1, "L2 header too long to fragment");
 797                goto err;
 798        }
 799
 800        if (key->eth.type == htons(ETH_P_IP)) {
 801                struct dst_entry ovs_dst;
 802                unsigned long orig_dst;
 803
 804                prepare_frag(vport, skb, orig_network_offset,
 805                             ovs_key_mac_proto(key));
 806                dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 807                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 808                ovs_dst.dev = vport->dev;
 809
 810                orig_dst = skb->_skb_refdst;
 811                skb_dst_set_noref(skb, &ovs_dst);
 812                IPCB(skb)->frag_max_size = mru;
 813
 814                ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 815                refdst_drop(orig_dst);
 816        } else if (key->eth.type == htons(ETH_P_IPV6)) {
 817                const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 818                unsigned long orig_dst;
 819                struct rt6_info ovs_rt;
 820
 821                if (!v6ops)
 822                        goto err;
 823
 824                prepare_frag(vport, skb, orig_network_offset,
 825                             ovs_key_mac_proto(key));
 826                memset(&ovs_rt, 0, sizeof(ovs_rt));
 827                dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 828                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 829                ovs_rt.dst.dev = vport->dev;
 830
 831                orig_dst = skb->_skb_refdst;
 832                skb_dst_set_noref(skb, &ovs_rt.dst);
 833                IP6CB(skb)->frag_max_size = mru;
 834
 835                v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 836                refdst_drop(orig_dst);
 837        } else {
 838                WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 839                          ovs_vport_name(vport), ntohs(key->eth.type), mru,
 840                          vport->dev->mtu);
 841                goto err;
 842        }
 843
 844        return;
 845err:
 846        kfree_skb(skb);
 847}
 848
 849static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 850                      struct sw_flow_key *key)
 851{
 852        struct vport *vport = ovs_vport_rcu(dp, out_port);
 853
 854        if (likely(vport)) {
 855                u16 mru = OVS_CB(skb)->mru;
 856                u32 cutlen = OVS_CB(skb)->cutlen;
 857
 858                if (unlikely(cutlen > 0)) {
 859                        if (skb->len - cutlen > ovs_mac_header_len(key))
 860                                pskb_trim(skb, skb->len - cutlen);
 861                        else
 862                                pskb_trim(skb, ovs_mac_header_len(key));
 863                }
 864
 865                if (likely(!mru ||
 866                           (skb->len <= mru + vport->dev->hard_header_len))) {
 867                        ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 868                } else if (mru <= vport->dev->mtu) {
 869                        struct net *net = read_pnet(&dp->net);
 870
 871                        ovs_fragment(net, vport, skb, mru, key);
 872                } else {
 873                        kfree_skb(skb);
 874                }
 875        } else {
 876                kfree_skb(skb);
 877        }
 878}
 879
 880static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 881                            struct sw_flow_key *key, const struct nlattr *attr,
 882                            const struct nlattr *actions, int actions_len,
 883                            uint32_t cutlen)
 884{
 885        struct dp_upcall_info upcall;
 886        const struct nlattr *a;
 887        int rem;
 888
 889        memset(&upcall, 0, sizeof(upcall));
 890        upcall.cmd = OVS_PACKET_CMD_ACTION;
 891        upcall.mru = OVS_CB(skb)->mru;
 892
 893        for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 894                 a = nla_next(a, &rem)) {
 895                switch (nla_type(a)) {
 896                case OVS_USERSPACE_ATTR_USERDATA:
 897                        upcall.userdata = a;
 898                        break;
 899
 900                case OVS_USERSPACE_ATTR_PID:
 901                        upcall.portid = nla_get_u32(a);
 902                        break;
 903
 904                case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 905                        /* Get out tunnel info. */
 906                        struct vport *vport;
 907
 908                        vport = ovs_vport_rcu(dp, nla_get_u32(a));
 909                        if (vport) {
 910                                int err;
 911
 912                                err = dev_fill_metadata_dst(vport->dev, skb);
 913                                if (!err)
 914                                        upcall.egress_tun_info = skb_tunnel_info(skb);
 915                        }
 916
 917                        break;
 918                }
 919
 920                case OVS_USERSPACE_ATTR_ACTIONS: {
 921                        /* Include actions. */
 922                        upcall.actions = actions;
 923                        upcall.actions_len = actions_len;
 924                        break;
 925                }
 926
 927                } /* End of switch. */
 928        }
 929
 930        return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 931}
 932
 933/* When 'last' is true, sample() should always consume the 'skb'.
 934 * Otherwise, sample() should keep 'skb' intact regardless what
 935 * actions are executed within sample().
 936 */
 937static int sample(struct datapath *dp, struct sk_buff *skb,
 938                  struct sw_flow_key *key, const struct nlattr *attr,
 939                  bool last)
 940{
 941        struct nlattr *actions;
 942        struct nlattr *sample_arg;
 943        int rem = nla_len(attr);
 944        const struct sample_arg *arg;
 945        bool clone_flow_key;
 946
 947        /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
 948        sample_arg = nla_data(attr);
 949        arg = nla_data(sample_arg);
 950        actions = nla_next(sample_arg, &rem);
 951
 952        if ((arg->probability != U32_MAX) &&
 953            (!arg->probability || prandom_u32() > arg->probability)) {
 954                if (last)
 955                        consume_skb(skb);
 956                return 0;
 957        }
 958
 959        clone_flow_key = !arg->exec;
 960        return clone_execute(dp, skb, key, 0, actions, rem, last,
 961                             clone_flow_key);
 962}
 963
 964static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
 965                         const struct nlattr *attr)
 966{
 967        struct ovs_action_hash *hash_act = nla_data(attr);
 968        u32 hash = 0;
 969
 970        /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
 971        hash = skb_get_hash(skb);
 972        hash = jhash_1word(hash, hash_act->hash_basis);
 973        if (!hash)
 974                hash = 0x1;
 975
 976        key->ovs_flow_hash = hash;
 977}
 978
 979static int execute_set_action(struct sk_buff *skb,
 980                              struct sw_flow_key *flow_key,
 981                              const struct nlattr *a)
 982{
 983        /* Only tunnel set execution is supported without a mask. */
 984        if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
 985                struct ovs_tunnel_info *tun = nla_data(a);
 986
 987                skb_dst_drop(skb);
 988                dst_hold((struct dst_entry *)tun->tun_dst);
 989                skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
 990                return 0;
 991        }
 992
 993        return -EINVAL;
 994}
 995
 996/* Mask is at the midpoint of the data. */
 997#define get_mask(a, type) ((const type)nla_data(a) + 1)
 998
 999static int execute_masked_set_action(struct sk_buff *skb,
1000                                     struct sw_flow_key *flow_key,
1001                                     const struct nlattr *a)
1002{
1003        int err = 0;
1004
1005        switch (nla_type(a)) {
1006        case OVS_KEY_ATTR_PRIORITY:
1007                OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1008                               *get_mask(a, u32 *));
1009                flow_key->phy.priority = skb->priority;
1010                break;
1011
1012        case OVS_KEY_ATTR_SKB_MARK:
1013                OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1014                flow_key->phy.skb_mark = skb->mark;
1015                break;
1016
1017        case OVS_KEY_ATTR_TUNNEL_INFO:
1018                /* Masked data not supported for tunnel. */
1019                err = -EINVAL;
1020                break;
1021
1022        case OVS_KEY_ATTR_ETHERNET:
1023                err = set_eth_addr(skb, flow_key, nla_data(a),
1024                                   get_mask(a, struct ovs_key_ethernet *));
1025                break;
1026
1027        case OVS_KEY_ATTR_IPV4:
1028                err = set_ipv4(skb, flow_key, nla_data(a),
1029                               get_mask(a, struct ovs_key_ipv4 *));
1030                break;
1031
1032        case OVS_KEY_ATTR_IPV6:
1033                err = set_ipv6(skb, flow_key, nla_data(a),
1034                               get_mask(a, struct ovs_key_ipv6 *));
1035                break;
1036
1037        case OVS_KEY_ATTR_TCP:
1038                err = set_tcp(skb, flow_key, nla_data(a),
1039                              get_mask(a, struct ovs_key_tcp *));
1040                break;
1041
1042        case OVS_KEY_ATTR_UDP:
1043                err = set_udp(skb, flow_key, nla_data(a),
1044                              get_mask(a, struct ovs_key_udp *));
1045                break;
1046
1047        case OVS_KEY_ATTR_SCTP:
1048                err = set_sctp(skb, flow_key, nla_data(a),
1049                               get_mask(a, struct ovs_key_sctp *));
1050                break;
1051
1052        case OVS_KEY_ATTR_MPLS:
1053                err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1054                                                                    __be32 *));
1055                break;
1056
1057        case OVS_KEY_ATTR_CT_STATE:
1058        case OVS_KEY_ATTR_CT_ZONE:
1059        case OVS_KEY_ATTR_CT_MARK:
1060        case OVS_KEY_ATTR_CT_LABELS:
1061        case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1062        case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1063                err = -EINVAL;
1064                break;
1065        }
1066
1067        return err;
1068}
1069
1070static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1071                          struct sw_flow_key *key,
1072                          const struct nlattr *a, bool last)
1073{
1074        u32 recirc_id;
1075
1076        if (!is_flow_key_valid(key)) {
1077                int err;
1078
1079                err = ovs_flow_key_update(skb, key);
1080                if (err)
1081                        return err;
1082        }
1083        BUG_ON(!is_flow_key_valid(key));
1084
1085        recirc_id = nla_get_u32(a);
1086        return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1087}
1088
1089/* Execute a list of actions against 'skb'. */
1090static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1091                              struct sw_flow_key *key,
1092                              const struct nlattr *attr, int len)
1093{
1094        const struct nlattr *a;
1095        int rem;
1096
1097        for (a = attr, rem = len; rem > 0;
1098             a = nla_next(a, &rem)) {
1099                int err = 0;
1100
1101                switch (nla_type(a)) {
1102                case OVS_ACTION_ATTR_OUTPUT: {
1103                        int port = nla_get_u32(a);
1104                        struct sk_buff *clone;
1105
1106                        /* Every output action needs a separate clone
1107                         * of 'skb', In case the output action is the
1108                         * last action, cloning can be avoided.
1109                         */
1110                        if (nla_is_last(a, rem)) {
1111                                do_output(dp, skb, port, key);
1112                                /* 'skb' has been used for output.
1113                                 */
1114                                return 0;
1115                        }
1116
1117                        clone = skb_clone(skb, GFP_ATOMIC);
1118                        if (clone)
1119                                do_output(dp, clone, port, key);
1120                        OVS_CB(skb)->cutlen = 0;
1121                        break;
1122                }
1123
1124                case OVS_ACTION_ATTR_TRUNC: {
1125                        struct ovs_action_trunc *trunc = nla_data(a);
1126
1127                        if (skb->len > trunc->max_len)
1128                                OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1129                        break;
1130                }
1131
1132                case OVS_ACTION_ATTR_USERSPACE:
1133                        output_userspace(dp, skb, key, a, attr,
1134                                                     len, OVS_CB(skb)->cutlen);
1135                        OVS_CB(skb)->cutlen = 0;
1136                        break;
1137
1138                case OVS_ACTION_ATTR_HASH:
1139                        execute_hash(skb, key, a);
1140                        break;
1141
1142                case OVS_ACTION_ATTR_PUSH_MPLS:
1143                        err = push_mpls(skb, key, nla_data(a));
1144                        break;
1145
1146                case OVS_ACTION_ATTR_POP_MPLS:
1147                        err = pop_mpls(skb, key, nla_get_be16(a));
1148                        break;
1149
1150                case OVS_ACTION_ATTR_PUSH_VLAN:
1151                        err = push_vlan(skb, key, nla_data(a));
1152                        break;
1153
1154                case OVS_ACTION_ATTR_POP_VLAN:
1155                        err = pop_vlan(skb, key);
1156                        break;
1157
1158                case OVS_ACTION_ATTR_RECIRC: {
1159                        bool last = nla_is_last(a, rem);
1160
1161                        err = execute_recirc(dp, skb, key, a, last);
1162                        if (last) {
1163                                /* If this is the last action, the skb has
1164                                 * been consumed or freed.
1165                                 * Return immediately.
1166                                 */
1167                                return err;
1168                        }
1169                        break;
1170                }
1171
1172                case OVS_ACTION_ATTR_SET:
1173                        err = execute_set_action(skb, key, nla_data(a));
1174                        break;
1175
1176                case OVS_ACTION_ATTR_SET_MASKED:
1177                case OVS_ACTION_ATTR_SET_TO_MASKED:
1178                        err = execute_masked_set_action(skb, key, nla_data(a));
1179                        break;
1180
1181                case OVS_ACTION_ATTR_SAMPLE: {
1182                        bool last = nla_is_last(a, rem);
1183
1184                        err = sample(dp, skb, key, a, last);
1185                        if (last)
1186                                return err;
1187
1188                        break;
1189                }
1190
1191                case OVS_ACTION_ATTR_CT:
1192                        if (!is_flow_key_valid(key)) {
1193                                err = ovs_flow_key_update(skb, key);
1194                                if (err)
1195                                        return err;
1196                        }
1197
1198                        err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1199                                             nla_data(a));
1200
1201                        /* Hide stolen IP fragments from user space. */
1202                        if (err)
1203                                return err == -EINPROGRESS ? 0 : err;
1204                        break;
1205
1206                case OVS_ACTION_ATTR_PUSH_ETH:
1207                        err = push_eth(skb, key, nla_data(a));
1208                        break;
1209
1210                case OVS_ACTION_ATTR_POP_ETH:
1211                        err = pop_eth(skb, key);
1212                        break;
1213                }
1214
1215                if (unlikely(err)) {
1216                        kfree_skb(skb);
1217                        return err;
1218                }
1219        }
1220
1221        consume_skb(skb);
1222        return 0;
1223}
1224
1225/* Execute the actions on the clone of the packet. The effect of the
1226 * execution does not affect the original 'skb' nor the original 'key'.
1227 *
1228 * The execution may be deferred in case the actions can not be executed
1229 * immediately.
1230 */
1231static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1232                         struct sw_flow_key *key, u32 recirc_id,
1233                         const struct nlattr *actions, int len,
1234                         bool last, bool clone_flow_key)
1235{
1236        struct deferred_action *da;
1237        struct sw_flow_key *clone;
1238
1239        skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1240        if (!skb) {
1241                /* Out of memory, skip this action.
1242                 */
1243                return 0;
1244        }
1245
1246        /* When clone_flow_key is false, the 'key' will not be change
1247         * by the actions, then the 'key' can be used directly.
1248         * Otherwise, try to clone key from the next recursion level of
1249         * 'flow_keys'. If clone is successful, execute the actions
1250         * without deferring.
1251         */
1252        clone = clone_flow_key ? clone_key(key) : key;
1253        if (clone) {
1254                int err = 0;
1255
1256                if (actions) { /* Sample action */
1257                        if (clone_flow_key)
1258                                __this_cpu_inc(exec_actions_level);
1259
1260                        err = do_execute_actions(dp, skb, clone,
1261                                                 actions, len);
1262
1263                        if (clone_flow_key)
1264                                __this_cpu_dec(exec_actions_level);
1265                } else { /* Recirc action */
1266                        clone->recirc_id = recirc_id;
1267                        ovs_dp_process_packet(skb, clone);
1268                }
1269                return err;
1270        }
1271
1272        /* Out of 'flow_keys' space. Defer actions */
1273        da = add_deferred_actions(skb, key, actions, len);
1274        if (da) {
1275                if (!actions) { /* Recirc action */
1276                        key = &da->pkt_key;
1277                        key->recirc_id = recirc_id;
1278                }
1279        } else {
1280                /* Out of per CPU action FIFO space. Drop the 'skb' and
1281                 * log an error.
1282                 */
1283                kfree_skb(skb);
1284
1285                if (net_ratelimit()) {
1286                        if (actions) { /* Sample action */
1287                                pr_warn("%s: deferred action limit reached, drop sample action\n",
1288                                        ovs_dp_name(dp));
1289                        } else {  /* Recirc action */
1290                                pr_warn("%s: deferred action limit reached, drop recirc action\n",
1291                                        ovs_dp_name(dp));
1292                        }
1293                }
1294        }
1295        return 0;
1296}
1297
1298static void process_deferred_actions(struct datapath *dp)
1299{
1300        struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1301
1302        /* Do not touch the FIFO in case there is no deferred actions. */
1303        if (action_fifo_is_empty(fifo))
1304                return;
1305
1306        /* Finishing executing all deferred actions. */
1307        do {
1308                struct deferred_action *da = action_fifo_get(fifo);
1309                struct sk_buff *skb = da->skb;
1310                struct sw_flow_key *key = &da->pkt_key;
1311                const struct nlattr *actions = da->actions;
1312                int actions_len = da->actions_len;
1313
1314                if (actions)
1315                        do_execute_actions(dp, skb, key, actions, actions_len);
1316                else
1317                        ovs_dp_process_packet(skb, key);
1318        } while (!action_fifo_is_empty(fifo));
1319
1320        /* Reset FIFO for the next packet.  */
1321        action_fifo_init(fifo);
1322}
1323
1324/* Execute a list of actions against 'skb'. */
1325int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1326                        const struct sw_flow_actions *acts,
1327                        struct sw_flow_key *key)
1328{
1329        int err, level;
1330
1331        level = __this_cpu_inc_return(exec_actions_level);
1332        if (unlikely(level > OVS_RECURSION_LIMIT)) {
1333                net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1334                                     ovs_dp_name(dp));
1335                kfree_skb(skb);
1336                err = -ENETDOWN;
1337                goto out;
1338        }
1339
1340        err = do_execute_actions(dp, skb, key,
1341                                 acts->actions, acts->actions_len);
1342
1343        if (level == 1)
1344                process_deferred_actions(dp);
1345
1346out:
1347        __this_cpu_dec(exec_actions_level);
1348        return err;
1349}
1350
1351int action_fifos_init(void)
1352{
1353        action_fifos = alloc_percpu(struct action_fifo);
1354        if (!action_fifos)
1355                return -ENOMEM;
1356
1357        flow_keys = alloc_percpu(struct action_flow_keys);
1358        if (!flow_keys) {
1359                free_percpu(action_fifos);
1360                return -ENOMEM;
1361        }
1362
1363        return 0;
1364}
1365
1366void action_fifos_exit(void)
1367{
1368        free_percpu(action_fifos);
1369        free_percpu(flow_keys);
1370}
1371