linux/arch/arm/probes/decode.h
<<
>>
Prefs
   1/*
   2 * arch/arm/probes/decode.h
   3 *
   4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   5 *
   6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
   7 * Copyright (C) 2006, 2007 Motorola Inc.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 */
  18
  19#ifndef _ARM_KERNEL_PROBES_H
  20#define  _ARM_KERNEL_PROBES_H
  21
  22#include <linux/types.h>
  23#include <linux/stddef.h>
  24#include <asm/probes.h>
  25#include <asm/kprobes.h>
  26
  27void __init arm_probes_decode_init(void);
  28
  29extern probes_check_cc * const probes_condition_checks[16];
  30
  31#if __LINUX_ARM_ARCH__ >= 7
  32
  33/* str_pc_offset is architecturally defined from ARMv7 onwards */
  34#define str_pc_offset 8
  35#define find_str_pc_offset()
  36
  37#else /* __LINUX_ARM_ARCH__ < 7 */
  38
  39/* We need a run-time check to determine str_pc_offset */
  40extern int str_pc_offset;
  41void __init find_str_pc_offset(void);
  42
  43#endif
  44
  45
  46/*
  47 * Update ITSTATE after normal execution of an IT block instruction.
  48 *
  49 * The 8 IT state bits are split into two parts in CPSR:
  50 *      ITSTATE<1:0> are in CPSR<26:25>
  51 *      ITSTATE<7:2> are in CPSR<15:10>
  52 */
  53static inline unsigned long it_advance(unsigned long cpsr)
  54        {
  55        if ((cpsr & 0x06000400) == 0) {
  56                /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
  57                cpsr &= ~PSR_IT_MASK;
  58        } else {
  59                /* We need to shift left ITSTATE<4:0> */
  60                const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
  61                unsigned long it = cpsr & mask;
  62                it <<= 1;
  63                it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
  64                it &= mask;
  65                cpsr &= ~mask;
  66                cpsr |= it;
  67        }
  68        return cpsr;
  69}
  70
  71static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
  72{
  73        long cpsr = regs->ARM_cpsr;
  74        if (pcv & 0x1) {
  75                cpsr |= PSR_T_BIT;
  76                pcv &= ~0x1;
  77        } else {
  78                cpsr &= ~PSR_T_BIT;
  79                pcv &= ~0x2;    /* Avoid UNPREDICTABLE address allignment */
  80        }
  81        regs->ARM_cpsr = cpsr;
  82        regs->ARM_pc = pcv;
  83}
  84
  85
  86#if __LINUX_ARM_ARCH__ >= 6
  87
  88/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
  89#define load_write_pc_interworks true
  90#define test_load_write_pc_interworking()
  91
  92#else /* __LINUX_ARM_ARCH__ < 6 */
  93
  94/* We need run-time testing to determine if load_write_pc() should interwork. */
  95extern bool load_write_pc_interworks;
  96void __init test_load_write_pc_interworking(void);
  97
  98#endif
  99
 100static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
 101{
 102        if (load_write_pc_interworks)
 103                bx_write_pc(pcv, regs);
 104        else
 105                regs->ARM_pc = pcv;
 106}
 107
 108
 109#if __LINUX_ARM_ARCH__ >= 7
 110
 111#define alu_write_pc_interworks true
 112#define test_alu_write_pc_interworking()
 113
 114#elif __LINUX_ARM_ARCH__ <= 5
 115
 116/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
 117#define alu_write_pc_interworks false
 118#define test_alu_write_pc_interworking()
 119
 120#else /* __LINUX_ARM_ARCH__ == 6 */
 121
 122/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
 123extern bool alu_write_pc_interworks;
 124void __init test_alu_write_pc_interworking(void);
 125
 126#endif /* __LINUX_ARM_ARCH__ == 6 */
 127
 128static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
 129{
 130        if (alu_write_pc_interworks)
 131                bx_write_pc(pcv, regs);
 132        else
 133                regs->ARM_pc = pcv;
 134}
 135
 136
 137/*
 138 * Test if load/store instructions writeback the address register.
 139 * if P (bit 24) == 0 or W (bit 21) == 1
 140 */
 141#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
 142
 143/*
 144 * The following definitions and macros are used to build instruction
 145 * decoding tables for use by probes_decode_insn.
 146 *
 147 * These tables are a concatenation of entries each of which consist of one of
 148 * the decode_* structs. All of the fields in every type of decode structure
 149 * are of the union type decode_item, therefore the entire decode table can be
 150 * viewed as an array of these and declared like:
 151 *
 152 *      static const union decode_item table_name[] = {};
 153 *
 154 * In order to construct each entry in the table, macros are used to
 155 * initialise a number of sequential decode_item values in a layout which
 156 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
 157 * decode_simulate by initialising four decode_item objects like this...
 158 *
 159 *      {.bits = _type},
 160 *      {.bits = _mask},
 161 *      {.bits = _value},
 162 *      {.action = _handler},
 163 *
 164 * Initialising a specified member of the union means that the compiler
 165 * will produce a warning if the argument is of an incorrect type.
 166 *
 167 * Below is a list of each of the macros used to initialise entries and a
 168 * description of the action performed when that entry is matched to an
 169 * instruction. A match is found when (instruction & mask) == value.
 170 *
 171 * DECODE_TABLE(mask, value, table)
 172 *      Instruction decoding jumps to parsing the new sub-table 'table'.
 173 *
 174 * DECODE_CUSTOM(mask, value, decoder)
 175 *      The value of 'decoder' is used as an index into the array of
 176 *      action functions, and the retrieved decoder function is invoked
 177 *      to complete decoding of the instruction.
 178 *
 179 * DECODE_SIMULATE(mask, value, handler)
 180 *      The probes instruction handler is set to the value found by
 181 *      indexing into the action array using the value of 'handler'. This
 182 *      will be used to simulate the instruction when the probe is hit.
 183 *      Decoding returns with INSN_GOOD_NO_SLOT.
 184 *
 185 * DECODE_EMULATE(mask, value, handler)
 186 *      The probes instruction handler is set to the value found by
 187 *      indexing into the action array using the value of 'handler'. This
 188 *      will be used to emulate the instruction when the probe is hit. The
 189 *      modified instruction (see below) is placed in the probes instruction
 190 *      slot so it may be called by the emulation code. Decoding returns
 191 *      with INSN_GOOD.
 192 *
 193 * DECODE_REJECT(mask, value)
 194 *      Instruction decoding fails with INSN_REJECTED
 195 *
 196 * DECODE_OR(mask, value)
 197 *      This allows the mask/value test of multiple table entries to be
 198 *      logically ORed. Once an 'or' entry is matched the decoding action to
 199 *      be performed is that of the next entry which isn't an 'or'. E.g.
 200 *
 201 *              DECODE_OR       (mask1, value1)
 202 *              DECODE_OR       (mask2, value2)
 203 *              DECODE_SIMULATE (mask3, value3, simulation_handler)
 204 *
 205 *      This means that if any of the three mask/value pairs match the
 206 *      instruction being decoded, then 'simulation_handler' will be used
 207 *      for it.
 208 *
 209 * Both the SIMULATE and EMULATE macros have a second form which take an
 210 * additional 'regs' argument.
 211 *
 212 *      DECODE_SIMULATEX(mask, value, handler, regs)
 213 *      DECODE_EMULATEX (mask, value, handler, regs)
 214 *
 215 * These are used to specify what kind of CPU register is encoded in each of the
 216 * least significant 5 nibbles of the instruction being decoded. The regs value
 217 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
 218 * from enum decode_reg_type as arguments; only the '*' part of the name is
 219 * given. E.g.
 220 *
 221 *      REGS(0, ANY, NOPC, 0, ANY)
 222 *
 223 * This indicates an instruction is encoded like:
 224 *
 225 *      bits 19..16     ignore
 226 *      bits 15..12     any register allowed here
 227 *      bits 11.. 8     any register except PC allowed here
 228 *      bits  7.. 4     ignore
 229 *      bits  3.. 0     any register allowed here
 230 *
 231 * This register specification is checked after a decode table entry is found to
 232 * match an instruction (through the mask/value test). Any invalid register then
 233 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
 234 * the above example this would happen if bits 11..8 of the instruction were
 235 * 1111, indicating R15 or PC.
 236 *
 237 * As well as checking for legal combinations of registers, this data is also
 238 * used to modify the registers encoded in the instructions so that an
 239 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
 240 *
 241 * Here is a real example which matches ARM instructions of the form
 242 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
 243 *
 244 *      DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
 245 *                                               REGS(ANY, ANY, NOPC, 0, ANY)),
 246 *                                                    ^    ^    ^        ^
 247 *                                                    Rn   Rd   Rs       Rm
 248 *
 249 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
 250 * Rs == R15
 251 *
 252 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
 253 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
 254 * the kprobes instruction slot. This can then be called later by the handler
 255 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
 256 * the indicated slot in the action array), in order to simulate the instruction.
 257 */
 258
 259enum decode_type {
 260        DECODE_TYPE_END,
 261        DECODE_TYPE_TABLE,
 262        DECODE_TYPE_CUSTOM,
 263        DECODE_TYPE_SIMULATE,
 264        DECODE_TYPE_EMULATE,
 265        DECODE_TYPE_OR,
 266        DECODE_TYPE_REJECT,
 267        NUM_DECODE_TYPES /* Must be last enum */
 268};
 269
 270#define DECODE_TYPE_BITS        4
 271#define DECODE_TYPE_MASK        ((1 << DECODE_TYPE_BITS) - 1)
 272
 273enum decode_reg_type {
 274        REG_TYPE_NONE = 0, /* Not a register, ignore */
 275        REG_TYPE_ANY,      /* Any register allowed */
 276        REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
 277        REG_TYPE_SP,       /* Register must be SP */
 278        REG_TYPE_PC,       /* Register must be PC */
 279        REG_TYPE_NOSP,     /* Register must not be SP */
 280        REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
 281        REG_TYPE_NOPC,     /* Register must not be PC */
 282        REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
 283
 284        /* The following types are used when the encoding for PC indicates
 285         * another instruction form. This distiction only matters for test
 286         * case coverage checks.
 287         */
 288        REG_TYPE_NOPCX,    /* Register must not be PC */
 289        REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
 290
 291        /* Alias to allow '0' arg to be used in REGS macro. */
 292        REG_TYPE_0 = REG_TYPE_NONE
 293};
 294
 295#define REGS(r16, r12, r8, r4, r0)      \
 296        (((REG_TYPE_##r16) << 16) +     \
 297        ((REG_TYPE_##r12) << 12) +      \
 298        ((REG_TYPE_##r8) << 8) +        \
 299        ((REG_TYPE_##r4) << 4) +        \
 300        (REG_TYPE_##r0))
 301
 302union decode_item {
 303        u32                     bits;
 304        const union decode_item *table;
 305        int                     action;
 306};
 307
 308struct decode_header;
 309typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
 310                                                  struct arch_probes_insn *,
 311                                                  const struct decode_header *);
 312
 313union decode_action {
 314        probes_insn_handler_t   *handler;
 315        probes_custom_decode_t  *decoder;
 316};
 317
 318typedef enum probes_insn (probes_check_t)(probes_opcode_t,
 319                                           struct arch_probes_insn *,
 320                                           const struct decode_header *);
 321
 322struct decode_checker {
 323        probes_check_t  *checker;
 324};
 325
 326#define DECODE_END                      \
 327        {.bits = DECODE_TYPE_END}
 328
 329
 330struct decode_header {
 331        union decode_item       type_regs;
 332        union decode_item       mask;
 333        union decode_item       value;
 334};
 335
 336#define DECODE_HEADER(_type, _mask, _value, _regs)              \
 337        {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},      \
 338        {.bits = (_mask)},                                      \
 339        {.bits = (_value)}
 340
 341
 342struct decode_table {
 343        struct decode_header    header;
 344        union decode_item       table;
 345};
 346
 347#define DECODE_TABLE(_mask, _value, _table)                     \
 348        DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),     \
 349        {.table = (_table)}
 350
 351
 352struct decode_custom {
 353        struct decode_header    header;
 354        union decode_item       decoder;
 355};
 356
 357#define DECODE_CUSTOM(_mask, _value, _decoder)                  \
 358        DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),    \
 359        {.action = (_decoder)}
 360
 361
 362struct decode_simulate {
 363        struct decode_header    header;
 364        union decode_item       handler;
 365};
 366
 367#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)                \
 368        DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),      \
 369        {.action = (_handler)}
 370
 371#define DECODE_SIMULATE(_mask, _value, _handler)        \
 372        DECODE_SIMULATEX(_mask, _value, _handler, 0)
 373
 374
 375struct decode_emulate {
 376        struct decode_header    header;
 377        union decode_item       handler;
 378};
 379
 380#define DECODE_EMULATEX(_mask, _value, _handler, _regs)                 \
 381        DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),       \
 382        {.action = (_handler)}
 383
 384#define DECODE_EMULATE(_mask, _value, _handler)         \
 385        DECODE_EMULATEX(_mask, _value, _handler, 0)
 386
 387
 388struct decode_or {
 389        struct decode_header    header;
 390};
 391
 392#define DECODE_OR(_mask, _value)                                \
 393        DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
 394
 395enum probes_insn {
 396        INSN_REJECTED,
 397        INSN_GOOD,
 398        INSN_GOOD_NO_SLOT
 399};
 400
 401struct decode_reject {
 402        struct decode_header    header;
 403};
 404
 405#define DECODE_REJECT(_mask, _value)                            \
 406        DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
 407
 408probes_insn_handler_t probes_simulate_nop;
 409probes_insn_handler_t probes_emulate_none;
 410
 411int __kprobes
 412probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
 413                const union decode_item *table, bool thumb, bool emulate,
 414                const union decode_action *actions,
 415                const struct decode_checker **checkers);
 416
 417#endif
 418