linux/arch/arm/vfp/vfpmodule.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/vfp/vfpmodule.c
   3 *
   4 *  Copyright (C) 2004 ARM Limited.
   5 *  Written by Deep Blue Solutions Limited.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/types.h>
  12#include <linux/cpu.h>
  13#include <linux/cpu_pm.h>
  14#include <linux/hardirq.h>
  15#include <linux/kernel.h>
  16#include <linux/notifier.h>
  17#include <linux/signal.h>
  18#include <linux/sched/signal.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/uaccess.h>
  22#include <linux/user.h>
  23#include <linux/export.h>
  24
  25#include <asm/cp15.h>
  26#include <asm/cputype.h>
  27#include <asm/system_info.h>
  28#include <asm/thread_notify.h>
  29#include <asm/vfp.h>
  30
  31#include "vfpinstr.h"
  32#include "vfp.h"
  33
  34/*
  35 * Our undef handlers (in entry.S)
  36 */
  37asmlinkage void vfp_testing_entry(void);
  38asmlinkage void vfp_support_entry(void);
  39asmlinkage void vfp_null_entry(void);
  40
  41asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
  42
  43/*
  44 * Dual-use variable.
  45 * Used in startup: set to non-zero if VFP checks fail
  46 * After startup, holds VFP architecture
  47 */
  48unsigned int VFP_arch;
  49
  50/*
  51 * The pointer to the vfpstate structure of the thread which currently
  52 * owns the context held in the VFP hardware, or NULL if the hardware
  53 * context is invalid.
  54 *
  55 * For UP, this is sufficient to tell which thread owns the VFP context.
  56 * However, for SMP, we also need to check the CPU number stored in the
  57 * saved state too to catch migrations.
  58 */
  59union vfp_state *vfp_current_hw_state[NR_CPUS];
  60
  61/*
  62 * Is 'thread's most up to date state stored in this CPUs hardware?
  63 * Must be called from non-preemptible context.
  64 */
  65static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
  66{
  67#ifdef CONFIG_SMP
  68        if (thread->vfpstate.hard.cpu != cpu)
  69                return false;
  70#endif
  71        return vfp_current_hw_state[cpu] == &thread->vfpstate;
  72}
  73
  74/*
  75 * Force a reload of the VFP context from the thread structure.  We do
  76 * this by ensuring that access to the VFP hardware is disabled, and
  77 * clear vfp_current_hw_state.  Must be called from non-preemptible context.
  78 */
  79static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
  80{
  81        if (vfp_state_in_hw(cpu, thread)) {
  82                fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
  83                vfp_current_hw_state[cpu] = NULL;
  84        }
  85#ifdef CONFIG_SMP
  86        thread->vfpstate.hard.cpu = NR_CPUS;
  87#endif
  88}
  89
  90/*
  91 * Per-thread VFP initialization.
  92 */
  93static void vfp_thread_flush(struct thread_info *thread)
  94{
  95        union vfp_state *vfp = &thread->vfpstate;
  96        unsigned int cpu;
  97
  98        /*
  99         * Disable VFP to ensure we initialize it first.  We must ensure
 100         * that the modification of vfp_current_hw_state[] and hardware
 101         * disable are done for the same CPU and without preemption.
 102         *
 103         * Do this first to ensure that preemption won't overwrite our
 104         * state saving should access to the VFP be enabled at this point.
 105         */
 106        cpu = get_cpu();
 107        if (vfp_current_hw_state[cpu] == vfp)
 108                vfp_current_hw_state[cpu] = NULL;
 109        fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 110        put_cpu();
 111
 112        memset(vfp, 0, sizeof(union vfp_state));
 113
 114        vfp->hard.fpexc = FPEXC_EN;
 115        vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
 116#ifdef CONFIG_SMP
 117        vfp->hard.cpu = NR_CPUS;
 118#endif
 119}
 120
 121static void vfp_thread_exit(struct thread_info *thread)
 122{
 123        /* release case: Per-thread VFP cleanup. */
 124        union vfp_state *vfp = &thread->vfpstate;
 125        unsigned int cpu = get_cpu();
 126
 127        if (vfp_current_hw_state[cpu] == vfp)
 128                vfp_current_hw_state[cpu] = NULL;
 129        put_cpu();
 130}
 131
 132static void vfp_thread_copy(struct thread_info *thread)
 133{
 134        struct thread_info *parent = current_thread_info();
 135
 136        vfp_sync_hwstate(parent);
 137        thread->vfpstate = parent->vfpstate;
 138#ifdef CONFIG_SMP
 139        thread->vfpstate.hard.cpu = NR_CPUS;
 140#endif
 141}
 142
 143/*
 144 * When this function is called with the following 'cmd's, the following
 145 * is true while this function is being run:
 146 *  THREAD_NOFTIFY_SWTICH:
 147 *   - the previously running thread will not be scheduled onto another CPU.
 148 *   - the next thread to be run (v) will not be running on another CPU.
 149 *   - thread->cpu is the local CPU number
 150 *   - not preemptible as we're called in the middle of a thread switch
 151 *  THREAD_NOTIFY_FLUSH:
 152 *   - the thread (v) will be running on the local CPU, so
 153 *      v === current_thread_info()
 154 *   - thread->cpu is the local CPU number at the time it is accessed,
 155 *      but may change at any time.
 156 *   - we could be preempted if tree preempt rcu is enabled, so
 157 *      it is unsafe to use thread->cpu.
 158 *  THREAD_NOTIFY_EXIT
 159 *   - we could be preempted if tree preempt rcu is enabled, so
 160 *      it is unsafe to use thread->cpu.
 161 */
 162static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
 163{
 164        struct thread_info *thread = v;
 165        u32 fpexc;
 166#ifdef CONFIG_SMP
 167        unsigned int cpu;
 168#endif
 169
 170        switch (cmd) {
 171        case THREAD_NOTIFY_SWITCH:
 172                fpexc = fmrx(FPEXC);
 173
 174#ifdef CONFIG_SMP
 175                cpu = thread->cpu;
 176
 177                /*
 178                 * On SMP, if VFP is enabled, save the old state in
 179                 * case the thread migrates to a different CPU. The
 180                 * restoring is done lazily.
 181                 */
 182                if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
 183                        vfp_save_state(vfp_current_hw_state[cpu], fpexc);
 184#endif
 185
 186                /*
 187                 * Always disable VFP so we can lazily save/restore the
 188                 * old state.
 189                 */
 190                fmxr(FPEXC, fpexc & ~FPEXC_EN);
 191                break;
 192
 193        case THREAD_NOTIFY_FLUSH:
 194                vfp_thread_flush(thread);
 195                break;
 196
 197        case THREAD_NOTIFY_EXIT:
 198                vfp_thread_exit(thread);
 199                break;
 200
 201        case THREAD_NOTIFY_COPY:
 202                vfp_thread_copy(thread);
 203                break;
 204        }
 205
 206        return NOTIFY_DONE;
 207}
 208
 209static struct notifier_block vfp_notifier_block = {
 210        .notifier_call  = vfp_notifier,
 211};
 212
 213/*
 214 * Raise a SIGFPE for the current process.
 215 * sicode describes the signal being raised.
 216 */
 217static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
 218{
 219        siginfo_t info;
 220
 221        memset(&info, 0, sizeof(info));
 222
 223        info.si_signo = SIGFPE;
 224        info.si_code = sicode;
 225        info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
 226
 227        /*
 228         * This is the same as NWFPE, because it's not clear what
 229         * this is used for
 230         */
 231        current->thread.error_code = 0;
 232        current->thread.trap_no = 6;
 233
 234        send_sig_info(SIGFPE, &info, current);
 235}
 236
 237static void vfp_panic(char *reason, u32 inst)
 238{
 239        int i;
 240
 241        pr_err("VFP: Error: %s\n", reason);
 242        pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
 243                fmrx(FPEXC), fmrx(FPSCR), inst);
 244        for (i = 0; i < 32; i += 2)
 245                pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
 246                       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
 247}
 248
 249/*
 250 * Process bitmask of exception conditions.
 251 */
 252static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
 253{
 254        int si_code = 0;
 255
 256        pr_debug("VFP: raising exceptions %08x\n", exceptions);
 257
 258        if (exceptions == VFP_EXCEPTION_ERROR) {
 259                vfp_panic("unhandled bounce", inst);
 260                vfp_raise_sigfpe(0, regs);
 261                return;
 262        }
 263
 264        /*
 265         * If any of the status flags are set, update the FPSCR.
 266         * Comparison instructions always return at least one of
 267         * these flags set.
 268         */
 269        if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
 270                fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
 271
 272        fpscr |= exceptions;
 273
 274        fmxr(FPSCR, fpscr);
 275
 276#define RAISE(stat,en,sig)                              \
 277        if (exceptions & stat && fpscr & en)            \
 278                si_code = sig;
 279
 280        /*
 281         * These are arranged in priority order, least to highest.
 282         */
 283        RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
 284        RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
 285        RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
 286        RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
 287        RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
 288
 289        if (si_code)
 290                vfp_raise_sigfpe(si_code, regs);
 291}
 292
 293/*
 294 * Emulate a VFP instruction.
 295 */
 296static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
 297{
 298        u32 exceptions = VFP_EXCEPTION_ERROR;
 299
 300        pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
 301
 302        if (INST_CPRTDO(inst)) {
 303                if (!INST_CPRT(inst)) {
 304                        /*
 305                         * CPDO
 306                         */
 307                        if (vfp_single(inst)) {
 308                                exceptions = vfp_single_cpdo(inst, fpscr);
 309                        } else {
 310                                exceptions = vfp_double_cpdo(inst, fpscr);
 311                        }
 312                } else {
 313                        /*
 314                         * A CPRT instruction can not appear in FPINST2, nor
 315                         * can it cause an exception.  Therefore, we do not
 316                         * have to emulate it.
 317                         */
 318                }
 319        } else {
 320                /*
 321                 * A CPDT instruction can not appear in FPINST2, nor can
 322                 * it cause an exception.  Therefore, we do not have to
 323                 * emulate it.
 324                 */
 325        }
 326        return exceptions & ~VFP_NAN_FLAG;
 327}
 328
 329/*
 330 * Package up a bounce condition.
 331 */
 332void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
 333{
 334        u32 fpscr, orig_fpscr, fpsid, exceptions;
 335
 336        pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
 337
 338        /*
 339         * At this point, FPEXC can have the following configuration:
 340         *
 341         *  EX DEX IXE
 342         *  0   1   x   - synchronous exception
 343         *  1   x   0   - asynchronous exception
 344         *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
 345         *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
 346         *                implementation), undefined otherwise
 347         *
 348         * Clear various bits and enable access to the VFP so we can
 349         * handle the bounce.
 350         */
 351        fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
 352
 353        fpsid = fmrx(FPSID);
 354        orig_fpscr = fpscr = fmrx(FPSCR);
 355
 356        /*
 357         * Check for the special VFP subarch 1 and FPSCR.IXE bit case
 358         */
 359        if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
 360            && (fpscr & FPSCR_IXE)) {
 361                /*
 362                 * Synchronous exception, emulate the trigger instruction
 363                 */
 364                goto emulate;
 365        }
 366
 367        if (fpexc & FPEXC_EX) {
 368#ifndef CONFIG_CPU_FEROCEON
 369                /*
 370                 * Asynchronous exception. The instruction is read from FPINST
 371                 * and the interrupted instruction has to be restarted.
 372                 */
 373                trigger = fmrx(FPINST);
 374                regs->ARM_pc -= 4;
 375#endif
 376        } else if (!(fpexc & FPEXC_DEX)) {
 377                /*
 378                 * Illegal combination of bits. It can be caused by an
 379                 * unallocated VFP instruction but with FPSCR.IXE set and not
 380                 * on VFP subarch 1.
 381                 */
 382                 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
 383                goto exit;
 384        }
 385
 386        /*
 387         * Modify fpscr to indicate the number of iterations remaining.
 388         * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
 389         * whether FPEXC.VECITR or FPSCR.LEN is used.
 390         */
 391        if (fpexc & (FPEXC_EX | FPEXC_VV)) {
 392                u32 len;
 393
 394                len = fpexc + (1 << FPEXC_LENGTH_BIT);
 395
 396                fpscr &= ~FPSCR_LENGTH_MASK;
 397                fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
 398        }
 399
 400        /*
 401         * Handle the first FP instruction.  We used to take note of the
 402         * FPEXC bounce reason, but this appears to be unreliable.
 403         * Emulate the bounced instruction instead.
 404         */
 405        exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
 406        if (exceptions)
 407                vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 408
 409        /*
 410         * If there isn't a second FP instruction, exit now. Note that
 411         * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
 412         */
 413        if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
 414                goto exit;
 415
 416        /*
 417         * The barrier() here prevents fpinst2 being read
 418         * before the condition above.
 419         */
 420        barrier();
 421        trigger = fmrx(FPINST2);
 422
 423 emulate:
 424        exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
 425        if (exceptions)
 426                vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 427 exit:
 428        preempt_enable();
 429}
 430
 431static void vfp_enable(void *unused)
 432{
 433        u32 access;
 434
 435        BUG_ON(preemptible());
 436        access = get_copro_access();
 437
 438        /*
 439         * Enable full access to VFP (cp10 and cp11)
 440         */
 441        set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
 442}
 443
 444/* Called by platforms on which we want to disable VFP because it may not be
 445 * present on all CPUs within a SMP complex. Needs to be called prior to
 446 * vfp_init().
 447 */
 448void vfp_disable(void)
 449{
 450        if (VFP_arch) {
 451                pr_debug("%s: should be called prior to vfp_init\n", __func__);
 452                return;
 453        }
 454        VFP_arch = 1;
 455}
 456
 457#ifdef CONFIG_CPU_PM
 458static int vfp_pm_suspend(void)
 459{
 460        struct thread_info *ti = current_thread_info();
 461        u32 fpexc = fmrx(FPEXC);
 462
 463        /* if vfp is on, then save state for resumption */
 464        if (fpexc & FPEXC_EN) {
 465                pr_debug("%s: saving vfp state\n", __func__);
 466                vfp_save_state(&ti->vfpstate, fpexc);
 467
 468                /* disable, just in case */
 469                fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 470        } else if (vfp_current_hw_state[ti->cpu]) {
 471#ifndef CONFIG_SMP
 472                fmxr(FPEXC, fpexc | FPEXC_EN);
 473                vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
 474                fmxr(FPEXC, fpexc);
 475#endif
 476        }
 477
 478        /* clear any information we had about last context state */
 479        vfp_current_hw_state[ti->cpu] = NULL;
 480
 481        return 0;
 482}
 483
 484static void vfp_pm_resume(void)
 485{
 486        /* ensure we have access to the vfp */
 487        vfp_enable(NULL);
 488
 489        /* and disable it to ensure the next usage restores the state */
 490        fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 491}
 492
 493static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
 494        void *v)
 495{
 496        switch (cmd) {
 497        case CPU_PM_ENTER:
 498                vfp_pm_suspend();
 499                break;
 500        case CPU_PM_ENTER_FAILED:
 501        case CPU_PM_EXIT:
 502                vfp_pm_resume();
 503                break;
 504        }
 505        return NOTIFY_OK;
 506}
 507
 508static struct notifier_block vfp_cpu_pm_notifier_block = {
 509        .notifier_call = vfp_cpu_pm_notifier,
 510};
 511
 512static void vfp_pm_init(void)
 513{
 514        cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
 515}
 516
 517#else
 518static inline void vfp_pm_init(void) { }
 519#endif /* CONFIG_CPU_PM */
 520
 521/*
 522 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
 523 * with the hardware state.
 524 */
 525void vfp_sync_hwstate(struct thread_info *thread)
 526{
 527        unsigned int cpu = get_cpu();
 528
 529        if (vfp_state_in_hw(cpu, thread)) {
 530                u32 fpexc = fmrx(FPEXC);
 531
 532                /*
 533                 * Save the last VFP state on this CPU.
 534                 */
 535                fmxr(FPEXC, fpexc | FPEXC_EN);
 536                vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
 537                fmxr(FPEXC, fpexc);
 538        }
 539
 540        put_cpu();
 541}
 542
 543/* Ensure that the thread reloads the hardware VFP state on the next use. */
 544void vfp_flush_hwstate(struct thread_info *thread)
 545{
 546        unsigned int cpu = get_cpu();
 547
 548        vfp_force_reload(cpu, thread);
 549
 550        put_cpu();
 551}
 552
 553/*
 554 * Save the current VFP state into the provided structures and prepare
 555 * for entry into a new function (signal handler).
 556 */
 557int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
 558                                    struct user_vfp_exc __user *ufp_exc)
 559{
 560        struct thread_info *thread = current_thread_info();
 561        struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
 562        int err = 0;
 563
 564        /* Ensure that the saved hwstate is up-to-date. */
 565        vfp_sync_hwstate(thread);
 566
 567        /*
 568         * Copy the floating point registers. There can be unused
 569         * registers see asm/hwcap.h for details.
 570         */
 571        err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
 572                              sizeof(hwstate->fpregs));
 573        /*
 574         * Copy the status and control register.
 575         */
 576        __put_user_error(hwstate->fpscr, &ufp->fpscr, err);
 577
 578        /*
 579         * Copy the exception registers.
 580         */
 581        __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
 582        __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
 583        __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
 584
 585        if (err)
 586                return -EFAULT;
 587
 588        /* Ensure that VFP is disabled. */
 589        vfp_flush_hwstate(thread);
 590
 591        /*
 592         * As per the PCS, clear the length and stride bits for function
 593         * entry.
 594         */
 595        hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
 596        return 0;
 597}
 598
 599/* Sanitise and restore the current VFP state from the provided structures. */
 600int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
 601                             struct user_vfp_exc __user *ufp_exc)
 602{
 603        struct thread_info *thread = current_thread_info();
 604        struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
 605        unsigned long fpexc;
 606        int err = 0;
 607
 608        /* Disable VFP to avoid corrupting the new thread state. */
 609        vfp_flush_hwstate(thread);
 610
 611        /*
 612         * Copy the floating point registers. There can be unused
 613         * registers see asm/hwcap.h for details.
 614         */
 615        err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
 616                                sizeof(hwstate->fpregs));
 617        /*
 618         * Copy the status and control register.
 619         */
 620        __get_user_error(hwstate->fpscr, &ufp->fpscr, err);
 621
 622        /*
 623         * Sanitise and restore the exception registers.
 624         */
 625        __get_user_error(fpexc, &ufp_exc->fpexc, err);
 626
 627        /* Ensure the VFP is enabled. */
 628        fpexc |= FPEXC_EN;
 629
 630        /* Ensure FPINST2 is invalid and the exception flag is cleared. */
 631        fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
 632        hwstate->fpexc = fpexc;
 633
 634        __get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
 635        __get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
 636
 637        return err ? -EFAULT : 0;
 638}
 639
 640/*
 641 * VFP hardware can lose all context when a CPU goes offline.
 642 * As we will be running in SMP mode with CPU hotplug, we will save the
 643 * hardware state at every thread switch.  We clear our held state when
 644 * a CPU has been killed, indicating that the VFP hardware doesn't contain
 645 * a threads VFP state.  When a CPU starts up, we re-enable access to the
 646 * VFP hardware. The callbacks below are called on the CPU which
 647 * is being offlined/onlined.
 648 */
 649static int vfp_dying_cpu(unsigned int cpu)
 650{
 651        vfp_force_reload(cpu, current_thread_info());
 652        return 0;
 653}
 654
 655static int vfp_starting_cpu(unsigned int unused)
 656{
 657        vfp_enable(NULL);
 658        return 0;
 659}
 660
 661void vfp_kmode_exception(void)
 662{
 663        /*
 664         * If we reach this point, a floating point exception has been raised
 665         * while running in kernel mode. If the NEON/VFP unit was enabled at the
 666         * time, it means a VFP instruction has been issued that requires
 667         * software assistance to complete, something which is not currently
 668         * supported in kernel mode.
 669         * If the NEON/VFP unit was disabled, and the location pointed to below
 670         * is properly preceded by a call to kernel_neon_begin(), something has
 671         * caused the task to be scheduled out and back in again. In this case,
 672         * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
 673         * be helpful in localizing the problem.
 674         */
 675        if (fmrx(FPEXC) & FPEXC_EN)
 676                pr_crit("BUG: unsupported FP instruction in kernel mode\n");
 677        else
 678                pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
 679}
 680
 681#ifdef CONFIG_KERNEL_MODE_NEON
 682
 683/*
 684 * Kernel-side NEON support functions
 685 */
 686void kernel_neon_begin(void)
 687{
 688        struct thread_info *thread = current_thread_info();
 689        unsigned int cpu;
 690        u32 fpexc;
 691
 692        /*
 693         * Kernel mode NEON is only allowed outside of interrupt context
 694         * with preemption disabled. This will make sure that the kernel
 695         * mode NEON register contents never need to be preserved.
 696         */
 697        BUG_ON(in_interrupt());
 698        cpu = get_cpu();
 699
 700        fpexc = fmrx(FPEXC) | FPEXC_EN;
 701        fmxr(FPEXC, fpexc);
 702
 703        /*
 704         * Save the userland NEON/VFP state. Under UP,
 705         * the owner could be a task other than 'current'
 706         */
 707        if (vfp_state_in_hw(cpu, thread))
 708                vfp_save_state(&thread->vfpstate, fpexc);
 709#ifndef CONFIG_SMP
 710        else if (vfp_current_hw_state[cpu] != NULL)
 711                vfp_save_state(vfp_current_hw_state[cpu], fpexc);
 712#endif
 713        vfp_current_hw_state[cpu] = NULL;
 714}
 715EXPORT_SYMBOL(kernel_neon_begin);
 716
 717void kernel_neon_end(void)
 718{
 719        /* Disable the NEON/VFP unit. */
 720        fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 721        put_cpu();
 722}
 723EXPORT_SYMBOL(kernel_neon_end);
 724
 725#endif /* CONFIG_KERNEL_MODE_NEON */
 726
 727/*
 728 * VFP support code initialisation.
 729 */
 730static int __init vfp_init(void)
 731{
 732        unsigned int vfpsid;
 733        unsigned int cpu_arch = cpu_architecture();
 734
 735        /*
 736         * Enable the access to the VFP on all online CPUs so the
 737         * following test on FPSID will succeed.
 738         */
 739        if (cpu_arch >= CPU_ARCH_ARMv6)
 740                on_each_cpu(vfp_enable, NULL, 1);
 741
 742        /*
 743         * First check that there is a VFP that we can use.
 744         * The handler is already setup to just log calls, so
 745         * we just need to read the VFPSID register.
 746         */
 747        vfp_vector = vfp_testing_entry;
 748        barrier();
 749        vfpsid = fmrx(FPSID);
 750        barrier();
 751        vfp_vector = vfp_null_entry;
 752
 753        pr_info("VFP support v0.3: ");
 754        if (VFP_arch) {
 755                pr_cont("not present\n");
 756                return 0;
 757        /* Extract the architecture on CPUID scheme */
 758        } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 759                VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
 760                VFP_arch >>= FPSID_ARCH_BIT;
 761                /*
 762                 * Check for the presence of the Advanced SIMD
 763                 * load/store instructions, integer and single
 764                 * precision floating point operations. Only check
 765                 * for NEON if the hardware has the MVFR registers.
 766                 */
 767                if (IS_ENABLED(CONFIG_NEON) &&
 768                   (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
 769                        elf_hwcap |= HWCAP_NEON;
 770
 771                if (IS_ENABLED(CONFIG_VFPv3)) {
 772                        u32 mvfr0 = fmrx(MVFR0);
 773                        if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
 774                            ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
 775                                elf_hwcap |= HWCAP_VFPv3;
 776                                /*
 777                                 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
 778                                 * this configuration only have 16 x 64bit
 779                                 * registers.
 780                                 */
 781                                if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
 782                                        /* also v4-D16 */
 783                                        elf_hwcap |= HWCAP_VFPv3D16;
 784                                else
 785                                        elf_hwcap |= HWCAP_VFPD32;
 786                        }
 787
 788                        if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
 789                                elf_hwcap |= HWCAP_VFPv4;
 790                }
 791        /* Extract the architecture version on pre-cpuid scheme */
 792        } else {
 793                if (vfpsid & FPSID_NODOUBLE) {
 794                        pr_cont("no double precision support\n");
 795                        return 0;
 796                }
 797
 798                VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
 799        }
 800
 801        cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
 802                                  "arm/vfp:starting", vfp_starting_cpu,
 803                                  vfp_dying_cpu);
 804
 805        vfp_vector = vfp_support_entry;
 806
 807        thread_register_notifier(&vfp_notifier_block);
 808        vfp_pm_init();
 809
 810        /*
 811         * We detected VFP, and the support code is
 812         * in place; report VFP support to userspace.
 813         */
 814        elf_hwcap |= HWCAP_VFP;
 815
 816        pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
 817                (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
 818                VFP_arch,
 819                (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
 820                (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
 821                (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
 822
 823        return 0;
 824}
 825
 826core_initcall(vfp_init);
 827