linux/arch/blackfin/kernel/ipipe.c
<<
>>
Prefs
   1/* -*- linux-c -*-
   2 * linux/arch/blackfin/kernel/ipipe.c
   3 *
   4 * Copyright (C) 2005-2007 Philippe Gerum.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139,
   9 * USA; either version 2 of the License, or (at your option) any later
  10 * version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20 *
  21 * Architecture-dependent I-pipe support for the Blackfin.
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/sched.h>
  26#include <linux/module.h>
  27#include <linux/interrupt.h>
  28#include <linux/percpu.h>
  29#include <linux/bitops.h>
  30#include <linux/errno.h>
  31#include <linux/kthread.h>
  32#include <linux/unistd.h>
  33#include <linux/io.h>
  34#include <linux/atomic.h>
  35#include <asm/irq_handler.h>
  36
  37DEFINE_PER_CPU(struct pt_regs, __ipipe_tick_regs);
  38
  39asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs);
  40
  41static void __ipipe_no_irqtail(void);
  42
  43unsigned long __ipipe_irq_tail_hook = (unsigned long)&__ipipe_no_irqtail;
  44EXPORT_SYMBOL(__ipipe_irq_tail_hook);
  45
  46unsigned long __ipipe_core_clock;
  47EXPORT_SYMBOL(__ipipe_core_clock);
  48
  49unsigned long __ipipe_freq_scale;
  50EXPORT_SYMBOL(__ipipe_freq_scale);
  51
  52atomic_t __ipipe_irq_lvdepth[IVG15 + 1];
  53
  54unsigned long __ipipe_irq_lvmask = bfin_no_irqs;
  55EXPORT_SYMBOL(__ipipe_irq_lvmask);
  56
  57static void __ipipe_ack_irq(unsigned irq, struct irq_desc *desc)
  58{
  59        desc->ipipe_ack(irq, desc);
  60}
  61
  62/*
  63 * __ipipe_enable_pipeline() -- We are running on the boot CPU, hw
  64 * interrupts are off, and secondary CPUs are still lost in space.
  65 */
  66void __ipipe_enable_pipeline(void)
  67{
  68        unsigned irq;
  69
  70        __ipipe_core_clock = get_cclk(); /* Fetch this once. */
  71        __ipipe_freq_scale = 1000000000UL / __ipipe_core_clock;
  72
  73        for (irq = 0; irq < NR_IRQS; ++irq)
  74                ipipe_virtualize_irq(ipipe_root_domain,
  75                                     irq,
  76                                     (ipipe_irq_handler_t)&asm_do_IRQ,
  77                                     NULL,
  78                                     &__ipipe_ack_irq,
  79                                     IPIPE_HANDLE_MASK | IPIPE_PASS_MASK);
  80}
  81
  82/*
  83 * __ipipe_handle_irq() -- IPIPE's generic IRQ handler. An optimistic
  84 * interrupt protection log is maintained here for each domain. Hw
  85 * interrupts are masked on entry.
  86 */
  87void __ipipe_handle_irq(unsigned irq, struct pt_regs *regs)
  88{
  89        struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
  90        struct ipipe_domain *this_domain, *next_domain;
  91        struct list_head *head, *pos;
  92        struct ipipe_irqdesc *idesc;
  93        int m_ack, s = -1;
  94
  95        /*
  96         * Software-triggered IRQs do not need any ack.  The contents
  97         * of the register frame should only be used when processing
  98         * the timer interrupt, but not for handling any other
  99         * interrupt.
 100         */
 101        m_ack = (regs == NULL || irq == IRQ_SYSTMR || irq == IRQ_CORETMR);
 102        this_domain = __ipipe_current_domain;
 103        idesc = &this_domain->irqs[irq];
 104
 105        if (unlikely(test_bit(IPIPE_STICKY_FLAG, &idesc->control)))
 106                head = &this_domain->p_link;
 107        else {
 108                head = __ipipe_pipeline.next;
 109                next_domain = list_entry(head, struct ipipe_domain, p_link);
 110                idesc = &next_domain->irqs[irq];
 111                if (likely(test_bit(IPIPE_WIRED_FLAG, &idesc->control))) {
 112                        if (!m_ack && idesc->acknowledge != NULL)
 113                                idesc->acknowledge(irq, irq_to_desc(irq));
 114                        if (test_bit(IPIPE_SYNCDEFER_FLAG, &p->status))
 115                                s = __test_and_set_bit(IPIPE_STALL_FLAG,
 116                                                       &p->status);
 117                        __ipipe_dispatch_wired(next_domain, irq);
 118                        goto out;
 119                }
 120        }
 121
 122        /* Ack the interrupt. */
 123
 124        pos = head;
 125        while (pos != &__ipipe_pipeline) {
 126                next_domain = list_entry(pos, struct ipipe_domain, p_link);
 127                idesc = &next_domain->irqs[irq];
 128                if (test_bit(IPIPE_HANDLE_FLAG, &idesc->control)) {
 129                        __ipipe_set_irq_pending(next_domain, irq);
 130                        if (!m_ack && idesc->acknowledge != NULL) {
 131                                idesc->acknowledge(irq, irq_to_desc(irq));
 132                                m_ack = 1;
 133                        }
 134                }
 135                if (!test_bit(IPIPE_PASS_FLAG, &idesc->control))
 136                        break;
 137                pos = next_domain->p_link.next;
 138        }
 139
 140        /*
 141         * Now walk the pipeline, yielding control to the highest
 142         * priority domain that has pending interrupt(s) or
 143         * immediately to the current domain if the interrupt has been
 144         * marked as 'sticky'. This search does not go beyond the
 145         * current domain in the pipeline. We also enforce the
 146         * additional root stage lock (blackfin-specific).
 147         */
 148        if (test_bit(IPIPE_SYNCDEFER_FLAG, &p->status))
 149                s = __test_and_set_bit(IPIPE_STALL_FLAG, &p->status);
 150
 151        /*
 152         * If the interrupt preempted the head domain, then do not
 153         * even try to walk the pipeline, unless an interrupt is
 154         * pending for it.
 155         */
 156        if (test_bit(IPIPE_AHEAD_FLAG, &this_domain->flags) &&
 157            !__ipipe_ipending_p(ipipe_head_cpudom_ptr()))
 158                goto out;
 159
 160        __ipipe_walk_pipeline(head);
 161out:
 162        if (!s)
 163                __clear_bit(IPIPE_STALL_FLAG, &p->status);
 164}
 165
 166void __ipipe_enable_irqdesc(struct ipipe_domain *ipd, unsigned irq)
 167{
 168        struct irq_desc *desc = irq_to_desc(irq);
 169        int prio = __ipipe_get_irq_priority(irq);
 170
 171        desc->depth = 0;
 172        if (ipd != &ipipe_root &&
 173            atomic_inc_return(&__ipipe_irq_lvdepth[prio]) == 1)
 174                __set_bit(prio, &__ipipe_irq_lvmask);
 175}
 176EXPORT_SYMBOL(__ipipe_enable_irqdesc);
 177
 178void __ipipe_disable_irqdesc(struct ipipe_domain *ipd, unsigned irq)
 179{
 180        int prio = __ipipe_get_irq_priority(irq);
 181
 182        if (ipd != &ipipe_root &&
 183            atomic_dec_and_test(&__ipipe_irq_lvdepth[prio]))
 184                __clear_bit(prio, &__ipipe_irq_lvmask);
 185}
 186EXPORT_SYMBOL(__ipipe_disable_irqdesc);
 187
 188asmlinkage int __ipipe_syscall_root(struct pt_regs *regs)
 189{
 190        struct ipipe_percpu_domain_data *p;
 191        void (*hook)(void);
 192        int ret;
 193
 194        WARN_ON_ONCE(irqs_disabled_hw());
 195
 196        /*
 197         * We need to run the IRQ tail hook each time we intercept a
 198         * syscall, because we know that important operations might be
 199         * pending there (e.g. Xenomai deferred rescheduling).
 200         */
 201        hook = (__typeof__(hook))__ipipe_irq_tail_hook;
 202        hook();
 203
 204        /*
 205         * This routine either returns:
 206         * 0 -- if the syscall is to be passed to Linux;
 207         * >0 -- if the syscall should not be passed to Linux, and no
 208         * tail work should be performed;
 209         * <0 -- if the syscall should not be passed to Linux but the
 210         * tail work has to be performed (for handling signals etc).
 211         */
 212
 213        if (!__ipipe_syscall_watched_p(current, regs->orig_p0) ||
 214            !__ipipe_event_monitored_p(IPIPE_EVENT_SYSCALL))
 215                return 0;
 216
 217        ret = __ipipe_dispatch_event(IPIPE_EVENT_SYSCALL, regs);
 218
 219        hard_local_irq_disable();
 220
 221        /*
 222         * This is the end of the syscall path, so we may
 223         * safely assume a valid Linux task stack here.
 224         */
 225        if (current->ipipe_flags & PF_EVTRET) {
 226                current->ipipe_flags &= ~PF_EVTRET;
 227                __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
 228        }
 229
 230        if (!__ipipe_root_domain_p)
 231                ret = -1;
 232        else {
 233                p = ipipe_root_cpudom_ptr();
 234                if (__ipipe_ipending_p(p))
 235                        __ipipe_sync_pipeline();
 236        }
 237
 238        hard_local_irq_enable();
 239
 240        return -ret;
 241}
 242
 243static void __ipipe_no_irqtail(void)
 244{
 245}
 246
 247int ipipe_get_sysinfo(struct ipipe_sysinfo *info)
 248{
 249        info->sys_nr_cpus = num_online_cpus();
 250        info->sys_cpu_freq = ipipe_cpu_freq();
 251        info->sys_hrtimer_irq = IPIPE_TIMER_IRQ;
 252        info->sys_hrtimer_freq = __ipipe_core_clock;
 253        info->sys_hrclock_freq = __ipipe_core_clock;
 254
 255        return 0;
 256}
 257
 258/*
 259 * ipipe_trigger_irq() -- Push the interrupt at front of the pipeline
 260 * just like if it has been actually received from a hw source. Also
 261 * works for virtual interrupts.
 262 */
 263int ipipe_trigger_irq(unsigned irq)
 264{
 265        unsigned long flags;
 266
 267#ifdef CONFIG_IPIPE_DEBUG
 268        if (irq >= IPIPE_NR_IRQS ||
 269            (ipipe_virtual_irq_p(irq)
 270             && !test_bit(irq - IPIPE_VIRQ_BASE, &__ipipe_virtual_irq_map)))
 271                return -EINVAL;
 272#endif
 273
 274        flags = hard_local_irq_save();
 275        __ipipe_handle_irq(irq, NULL);
 276        hard_local_irq_restore(flags);
 277
 278        return 1;
 279}
 280
 281asmlinkage void __ipipe_sync_root(void)
 282{
 283        void (*irq_tail_hook)(void) = (void (*)(void))__ipipe_irq_tail_hook;
 284        struct ipipe_percpu_domain_data *p;
 285        unsigned long flags;
 286
 287        BUG_ON(irqs_disabled());
 288
 289        flags = hard_local_irq_save();
 290
 291        if (irq_tail_hook)
 292                irq_tail_hook();
 293
 294        clear_thread_flag(TIF_IRQ_SYNC);
 295
 296        p = ipipe_root_cpudom_ptr();
 297        if (__ipipe_ipending_p(p))
 298                __ipipe_sync_pipeline();
 299
 300        hard_local_irq_restore(flags);
 301}
 302
 303void ___ipipe_sync_pipeline(void)
 304{
 305        if (__ipipe_root_domain_p &&
 306            test_bit(IPIPE_SYNCDEFER_FLAG, &ipipe_root_cpudom_var(status)))
 307                return;
 308
 309        __ipipe_sync_stage();
 310}
 311
 312void __ipipe_disable_root_irqs_hw(void)
 313{
 314        /*
 315         * This code is called by the ins{bwl} routines (see
 316         * arch/blackfin/lib/ins.S), which are heavily used by the
 317         * network stack. It masks all interrupts but those handled by
 318         * non-root domains, so that we keep decent network transfer
 319         * rates for Linux without inducing pathological jitter for
 320         * the real-time domain.
 321         */
 322        bfin_sti(__ipipe_irq_lvmask);
 323        __set_bit(IPIPE_STALL_FLAG, &ipipe_root_cpudom_var(status));
 324}
 325
 326void __ipipe_enable_root_irqs_hw(void)
 327{
 328        __clear_bit(IPIPE_STALL_FLAG, &ipipe_root_cpudom_var(status));
 329        bfin_sti(bfin_irq_flags);
 330}
 331
 332/*
 333 * We could use standard atomic bitops in the following root status
 334 * manipulation routines, but let's prepare for SMP support in the
 335 * same move, preventing CPU migration as required.
 336 */
 337void __ipipe_stall_root(void)
 338{
 339        unsigned long *p, flags;
 340
 341        flags = hard_local_irq_save();
 342        p = &__ipipe_root_status;
 343        __set_bit(IPIPE_STALL_FLAG, p);
 344        hard_local_irq_restore(flags);
 345}
 346EXPORT_SYMBOL(__ipipe_stall_root);
 347
 348unsigned long __ipipe_test_and_stall_root(void)
 349{
 350        unsigned long *p, flags;
 351        int x;
 352
 353        flags = hard_local_irq_save();
 354        p = &__ipipe_root_status;
 355        x = __test_and_set_bit(IPIPE_STALL_FLAG, p);
 356        hard_local_irq_restore(flags);
 357
 358        return x;
 359}
 360EXPORT_SYMBOL(__ipipe_test_and_stall_root);
 361
 362unsigned long __ipipe_test_root(void)
 363{
 364        const unsigned long *p;
 365        unsigned long flags;
 366        int x;
 367
 368        flags = hard_local_irq_save_smp();
 369        p = &__ipipe_root_status;
 370        x = test_bit(IPIPE_STALL_FLAG, p);
 371        hard_local_irq_restore_smp(flags);
 372
 373        return x;
 374}
 375EXPORT_SYMBOL(__ipipe_test_root);
 376
 377void __ipipe_lock_root(void)
 378{
 379        unsigned long *p, flags;
 380
 381        flags = hard_local_irq_save();
 382        p = &__ipipe_root_status;
 383        __set_bit(IPIPE_SYNCDEFER_FLAG, p);
 384        hard_local_irq_restore(flags);
 385}
 386EXPORT_SYMBOL(__ipipe_lock_root);
 387
 388void __ipipe_unlock_root(void)
 389{
 390        unsigned long *p, flags;
 391
 392        flags = hard_local_irq_save();
 393        p = &__ipipe_root_status;
 394        __clear_bit(IPIPE_SYNCDEFER_FLAG, p);
 395        hard_local_irq_restore(flags);
 396}
 397EXPORT_SYMBOL(__ipipe_unlock_root);
 398