linux/arch/ia64/kernel/efi.c
<<
>>
Prefs
   1/*
   2 * Extensible Firmware Interface
   3 *
   4 * Based on Extensible Firmware Interface Specification version 0.9
   5 * April 30, 1999
   6 *
   7 * Copyright (C) 1999 VA Linux Systems
   8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  10 *      David Mosberger-Tang <davidm@hpl.hp.com>
  11 *      Stephane Eranian <eranian@hpl.hp.com>
  12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  13 *      Bjorn Helgaas <bjorn.helgaas@hp.com>
  14 *
  15 * All EFI Runtime Services are not implemented yet as EFI only
  16 * supports physical mode addressing on SoftSDV. This is to be fixed
  17 * in a future version.  --drummond 1999-07-20
  18 *
  19 * Implemented EFI runtime services and virtual mode calls.  --davidm
  20 *
  21 * Goutham Rao: <goutham.rao@intel.com>
  22 *      Skip non-WB memory and ignore empty memory ranges.
  23 */
  24#include <linux/module.h>
  25#include <linux/bootmem.h>
  26#include <linux/crash_dump.h>
  27#include <linux/kernel.h>
  28#include <linux/init.h>
  29#include <linux/types.h>
  30#include <linux/slab.h>
  31#include <linux/time.h>
  32#include <linux/efi.h>
  33#include <linux/kexec.h>
  34#include <linux/mm.h>
  35
  36#include <asm/io.h>
  37#include <asm/kregs.h>
  38#include <asm/meminit.h>
  39#include <asm/pgtable.h>
  40#include <asm/processor.h>
  41#include <asm/mca.h>
  42#include <asm/setup.h>
  43#include <asm/tlbflush.h>
  44
  45#define EFI_DEBUG       0
  46
  47static __initdata unsigned long palo_phys;
  48
  49static __initdata efi_config_table_type_t arch_tables[] = {
  50        {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
  51        {NULL_GUID, NULL, 0},
  52};
  53
  54extern efi_status_t efi_call_phys (void *, ...);
  55
  56static efi_runtime_services_t *runtime;
  57static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  58
  59#define efi_call_virt(f, args...)       (*(f))(args)
  60
  61#define STUB_GET_TIME(prefix, adjust_arg)                                      \
  62static efi_status_t                                                            \
  63prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
  64{                                                                              \
  65        struct ia64_fpreg fr[6];                                               \
  66        efi_time_cap_t *atc = NULL;                                            \
  67        efi_status_t ret;                                                      \
  68                                                                               \
  69        if (tc)                                                                \
  70                atc = adjust_arg(tc);                                          \
  71        ia64_save_scratch_fpregs(fr);                                          \
  72        ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  73                                adjust_arg(tm), atc);                          \
  74        ia64_load_scratch_fpregs(fr);                                          \
  75        return ret;                                                            \
  76}
  77
  78#define STUB_SET_TIME(prefix, adjust_arg)                                      \
  79static efi_status_t                                                            \
  80prefix##_set_time (efi_time_t *tm)                                             \
  81{                                                                              \
  82        struct ia64_fpreg fr[6];                                               \
  83        efi_status_t ret;                                                      \
  84                                                                               \
  85        ia64_save_scratch_fpregs(fr);                                          \
  86        ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
  87                                adjust_arg(tm));                               \
  88        ia64_load_scratch_fpregs(fr);                                          \
  89        return ret;                                                            \
  90}
  91
  92#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
  93static efi_status_t                                                            \
  94prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
  95                          efi_time_t *tm)                                      \
  96{                                                                              \
  97        struct ia64_fpreg fr[6];                                               \
  98        efi_status_t ret;                                                      \
  99                                                                               \
 100        ia64_save_scratch_fpregs(fr);                                          \
 101        ret = efi_call_##prefix(                                               \
 102                (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 103                adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 104        ia64_load_scratch_fpregs(fr);                                          \
 105        return ret;                                                            \
 106}
 107
 108#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
 109static efi_status_t                                                            \
 110prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
 111{                                                                              \
 112        struct ia64_fpreg fr[6];                                               \
 113        efi_time_t *atm = NULL;                                                \
 114        efi_status_t ret;                                                      \
 115                                                                               \
 116        if (tm)                                                                \
 117                atm = adjust_arg(tm);                                          \
 118        ia64_save_scratch_fpregs(fr);                                          \
 119        ret = efi_call_##prefix(                                               \
 120                (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 121                enabled, atm);                                                 \
 122        ia64_load_scratch_fpregs(fr);                                          \
 123        return ret;                                                            \
 124}
 125
 126#define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
 127static efi_status_t                                                            \
 128prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 129                       unsigned long *data_size, void *data)                   \
 130{                                                                              \
 131        struct ia64_fpreg fr[6];                                               \
 132        u32 *aattr = NULL;                                                     \
 133        efi_status_t ret;                                                      \
 134                                                                               \
 135        if (attr)                                                              \
 136                aattr = adjust_arg(attr);                                      \
 137        ia64_save_scratch_fpregs(fr);                                          \
 138        ret = efi_call_##prefix(                                               \
 139                (efi_get_variable_t *) __va(runtime->get_variable),            \
 140                adjust_arg(name), adjust_arg(vendor), aattr,                   \
 141                adjust_arg(data_size), adjust_arg(data));                      \
 142        ia64_load_scratch_fpregs(fr);                                          \
 143        return ret;                                                            \
 144}
 145
 146#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
 147static efi_status_t                                                            \
 148prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 149                            efi_guid_t *vendor)                                \
 150{                                                                              \
 151        struct ia64_fpreg fr[6];                                               \
 152        efi_status_t ret;                                                      \
 153                                                                               \
 154        ia64_save_scratch_fpregs(fr);                                          \
 155        ret = efi_call_##prefix(                                               \
 156                (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 157                adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 158        ia64_load_scratch_fpregs(fr);                                          \
 159        return ret;                                                            \
 160}
 161
 162#define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
 163static efi_status_t                                                            \
 164prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
 165                       u32 attr, unsigned long data_size,                      \
 166                       void *data)                                             \
 167{                                                                              \
 168        struct ia64_fpreg fr[6];                                               \
 169        efi_status_t ret;                                                      \
 170                                                                               \
 171        ia64_save_scratch_fpregs(fr);                                          \
 172        ret = efi_call_##prefix(                                               \
 173                (efi_set_variable_t *) __va(runtime->set_variable),            \
 174                adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
 175                adjust_arg(data));                                             \
 176        ia64_load_scratch_fpregs(fr);                                          \
 177        return ret;                                                            \
 178}
 179
 180#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
 181static efi_status_t                                                            \
 182prefix##_get_next_high_mono_count (u32 *count)                                 \
 183{                                                                              \
 184        struct ia64_fpreg fr[6];                                               \
 185        efi_status_t ret;                                                      \
 186                                                                               \
 187        ia64_save_scratch_fpregs(fr);                                          \
 188        ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
 189                                __va(runtime->get_next_high_mono_count),       \
 190                                adjust_arg(count));                            \
 191        ia64_load_scratch_fpregs(fr);                                          \
 192        return ret;                                                            \
 193}
 194
 195#define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
 196static void                                                                    \
 197prefix##_reset_system (int reset_type, efi_status_t status,                    \
 198                       unsigned long data_size, efi_char16_t *data)            \
 199{                                                                              \
 200        struct ia64_fpreg fr[6];                                               \
 201        efi_char16_t *adata = NULL;                                            \
 202                                                                               \
 203        if (data)                                                              \
 204                adata = adjust_arg(data);                                      \
 205                                                                               \
 206        ia64_save_scratch_fpregs(fr);                                          \
 207        efi_call_##prefix(                                                     \
 208                (efi_reset_system_t *) __va(runtime->reset_system),            \
 209                reset_type, status, data_size, adata);                         \
 210        /* should not return, but just in case... */                           \
 211        ia64_load_scratch_fpregs(fr);                                          \
 212}
 213
 214#define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
 215
 216STUB_GET_TIME(phys, phys_ptr)
 217STUB_SET_TIME(phys, phys_ptr)
 218STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 219STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 220STUB_GET_VARIABLE(phys, phys_ptr)
 221STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 222STUB_SET_VARIABLE(phys, phys_ptr)
 223STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 224STUB_RESET_SYSTEM(phys, phys_ptr)
 225
 226#define id(arg) arg
 227
 228STUB_GET_TIME(virt, id)
 229STUB_SET_TIME(virt, id)
 230STUB_GET_WAKEUP_TIME(virt, id)
 231STUB_SET_WAKEUP_TIME(virt, id)
 232STUB_GET_VARIABLE(virt, id)
 233STUB_GET_NEXT_VARIABLE(virt, id)
 234STUB_SET_VARIABLE(virt, id)
 235STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 236STUB_RESET_SYSTEM(virt, id)
 237
 238void
 239efi_gettimeofday (struct timespec64 *ts)
 240{
 241        efi_time_t tm;
 242
 243        if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 244                memset(ts, 0, sizeof(*ts));
 245                return;
 246        }
 247
 248        ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 249                            tm.hour, tm.minute, tm.second);
 250        ts->tv_nsec = tm.nanosecond;
 251}
 252
 253static int
 254is_memory_available (efi_memory_desc_t *md)
 255{
 256        if (!(md->attribute & EFI_MEMORY_WB))
 257                return 0;
 258
 259        switch (md->type) {
 260              case EFI_LOADER_CODE:
 261              case EFI_LOADER_DATA:
 262              case EFI_BOOT_SERVICES_CODE:
 263              case EFI_BOOT_SERVICES_DATA:
 264              case EFI_CONVENTIONAL_MEMORY:
 265                return 1;
 266        }
 267        return 0;
 268}
 269
 270typedef struct kern_memdesc {
 271        u64 attribute;
 272        u64 start;
 273        u64 num_pages;
 274} kern_memdesc_t;
 275
 276static kern_memdesc_t *kern_memmap;
 277
 278#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
 279
 280static inline u64
 281kmd_end(kern_memdesc_t *kmd)
 282{
 283        return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 284}
 285
 286static inline u64
 287efi_md_end(efi_memory_desc_t *md)
 288{
 289        return (md->phys_addr + efi_md_size(md));
 290}
 291
 292static inline int
 293efi_wb(efi_memory_desc_t *md)
 294{
 295        return (md->attribute & EFI_MEMORY_WB);
 296}
 297
 298static inline int
 299efi_uc(efi_memory_desc_t *md)
 300{
 301        return (md->attribute & EFI_MEMORY_UC);
 302}
 303
 304static void
 305walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 306{
 307        kern_memdesc_t *k;
 308        u64 start, end, voff;
 309
 310        voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 311        for (k = kern_memmap; k->start != ~0UL; k++) {
 312                if (k->attribute != attr)
 313                        continue;
 314                start = PAGE_ALIGN(k->start);
 315                end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 316                if (start < end)
 317                        if ((*callback)(start + voff, end + voff, arg) < 0)
 318                                return;
 319        }
 320}
 321
 322/*
 323 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 324 * descriptor that has memory that is available for OS use.
 325 */
 326void
 327efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 328{
 329        walk(callback, arg, EFI_MEMORY_WB);
 330}
 331
 332/*
 333 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 334 * descriptor that has memory that is available for uncached allocator.
 335 */
 336void
 337efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 338{
 339        walk(callback, arg, EFI_MEMORY_UC);
 340}
 341
 342/*
 343 * Look for the PAL_CODE region reported by EFI and map it using an
 344 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 345 * Abstraction Layer chapter 11 in ADAG
 346 */
 347void *
 348efi_get_pal_addr (void)
 349{
 350        void *efi_map_start, *efi_map_end, *p;
 351        efi_memory_desc_t *md;
 352        u64 efi_desc_size;
 353        int pal_code_count = 0;
 354        u64 vaddr, mask;
 355
 356        efi_map_start = __va(ia64_boot_param->efi_memmap);
 357        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 358        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 359
 360        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 361                md = p;
 362                if (md->type != EFI_PAL_CODE)
 363                        continue;
 364
 365                if (++pal_code_count > 1) {
 366                        printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 367                               "dropped @ %llx\n", md->phys_addr);
 368                        continue;
 369                }
 370                /*
 371                 * The only ITLB entry in region 7 that is used is the one
 372                 * installed by __start().  That entry covers a 64MB range.
 373                 */
 374                mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 375                vaddr = PAGE_OFFSET + md->phys_addr;
 376
 377                /*
 378                 * We must check that the PAL mapping won't overlap with the
 379                 * kernel mapping.
 380                 *
 381                 * PAL code is guaranteed to be aligned on a power of 2 between
 382                 * 4k and 256KB and that only one ITR is needed to map it. This
 383                 * implies that the PAL code is always aligned on its size,
 384                 * i.e., the closest matching page size supported by the TLB.
 385                 * Therefore PAL code is guaranteed never to cross a 64MB unless
 386                 * it is bigger than 64MB (very unlikely!).  So for now the
 387                 * following test is enough to determine whether or not we need
 388                 * a dedicated ITR for the PAL code.
 389                 */
 390                if ((vaddr & mask) == (KERNEL_START & mask)) {
 391                        printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 392                               __func__);
 393                        continue;
 394                }
 395
 396                if (efi_md_size(md) > IA64_GRANULE_SIZE)
 397                        panic("Whoa!  PAL code size bigger than a granule!");
 398
 399#if EFI_DEBUG
 400                mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 401
 402                printk(KERN_INFO "CPU %d: mapping PAL code "
 403                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 404                       smp_processor_id(), md->phys_addr,
 405                       md->phys_addr + efi_md_size(md),
 406                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 407#endif
 408                return __va(md->phys_addr);
 409        }
 410        printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 411               __func__);
 412        return NULL;
 413}
 414
 415
 416static u8 __init palo_checksum(u8 *buffer, u32 length)
 417{
 418        u8 sum = 0;
 419        u8 *end = buffer + length;
 420
 421        while (buffer < end)
 422                sum = (u8) (sum + *(buffer++));
 423
 424        return sum;
 425}
 426
 427/*
 428 * Parse and handle PALO table which is published at:
 429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 430 */
 431static void __init handle_palo(unsigned long phys_addr)
 432{
 433        struct palo_table *palo = __va(phys_addr);
 434        u8  checksum;
 435
 436        if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 437                printk(KERN_INFO "PALO signature incorrect.\n");
 438                return;
 439        }
 440
 441        checksum = palo_checksum((u8 *)palo, palo->length);
 442        if (checksum) {
 443                printk(KERN_INFO "PALO checksum incorrect.\n");
 444                return;
 445        }
 446
 447        setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 448}
 449
 450void
 451efi_map_pal_code (void)
 452{
 453        void *pal_vaddr = efi_get_pal_addr ();
 454        u64 psr;
 455
 456        if (!pal_vaddr)
 457                return;
 458
 459        /*
 460         * Cannot write to CRx with PSR.ic=1
 461         */
 462        psr = ia64_clear_ic();
 463        ia64_itr(0x1, IA64_TR_PALCODE,
 464                 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 465                 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 466                 IA64_GRANULE_SHIFT);
 467        ia64_set_psr(psr);              /* restore psr */
 468}
 469
 470void __init
 471efi_init (void)
 472{
 473        void *efi_map_start, *efi_map_end;
 474        efi_char16_t *c16;
 475        u64 efi_desc_size;
 476        char *cp, vendor[100] = "unknown";
 477        int i;
 478
 479        set_bit(EFI_BOOT, &efi.flags);
 480        set_bit(EFI_64BIT, &efi.flags);
 481
 482        /*
 483         * It's too early to be able to use the standard kernel command line
 484         * support...
 485         */
 486        for (cp = boot_command_line; *cp; ) {
 487                if (memcmp(cp, "mem=", 4) == 0) {
 488                        mem_limit = memparse(cp + 4, &cp);
 489                } else if (memcmp(cp, "max_addr=", 9) == 0) {
 490                        max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 491                } else if (memcmp(cp, "min_addr=", 9) == 0) {
 492                        min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 493                } else {
 494                        while (*cp != ' ' && *cp)
 495                                ++cp;
 496                        while (*cp == ' ')
 497                                ++cp;
 498                }
 499        }
 500        if (min_addr != 0UL)
 501                printk(KERN_INFO "Ignoring memory below %lluMB\n",
 502                       min_addr >> 20);
 503        if (max_addr != ~0UL)
 504                printk(KERN_INFO "Ignoring memory above %lluMB\n",
 505                       max_addr >> 20);
 506
 507        efi.systab = __va(ia64_boot_param->efi_systab);
 508
 509        /*
 510         * Verify the EFI Table
 511         */
 512        if (efi.systab == NULL)
 513                panic("Whoa! Can't find EFI system table.\n");
 514        if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 515                panic("Whoa! EFI system table signature incorrect\n");
 516        if ((efi.systab->hdr.revision >> 16) == 0)
 517                printk(KERN_WARNING "Warning: EFI system table version "
 518                       "%d.%02d, expected 1.00 or greater\n",
 519                       efi.systab->hdr.revision >> 16,
 520                       efi.systab->hdr.revision & 0xffff);
 521
 522        /* Show what we know for posterity */
 523        c16 = __va(efi.systab->fw_vendor);
 524        if (c16) {
 525                for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 526                        vendor[i] = *c16++;
 527                vendor[i] = '\0';
 528        }
 529
 530        printk(KERN_INFO "EFI v%u.%.02u by %s:",
 531               efi.systab->hdr.revision >> 16,
 532               efi.systab->hdr.revision & 0xffff, vendor);
 533
 534        palo_phys      = EFI_INVALID_TABLE_ADDR;
 535
 536        if (efi_config_init(arch_tables) != 0)
 537                return;
 538
 539        if (palo_phys != EFI_INVALID_TABLE_ADDR)
 540                handle_palo(palo_phys);
 541
 542        runtime = __va(efi.systab->runtime);
 543        efi.get_time = phys_get_time;
 544        efi.set_time = phys_set_time;
 545        efi.get_wakeup_time = phys_get_wakeup_time;
 546        efi.set_wakeup_time = phys_set_wakeup_time;
 547        efi.get_variable = phys_get_variable;
 548        efi.get_next_variable = phys_get_next_variable;
 549        efi.set_variable = phys_set_variable;
 550        efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 551        efi.reset_system = phys_reset_system;
 552
 553        efi_map_start = __va(ia64_boot_param->efi_memmap);
 554        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 555        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 556
 557#if EFI_DEBUG
 558        /* print EFI memory map: */
 559        {
 560                efi_memory_desc_t *md;
 561                void *p;
 562
 563                for (i = 0, p = efi_map_start; p < efi_map_end;
 564                     ++i, p += efi_desc_size)
 565                {
 566                        const char *unit;
 567                        unsigned long size;
 568                        char buf[64];
 569
 570                        md = p;
 571                        size = md->num_pages << EFI_PAGE_SHIFT;
 572
 573                        if ((size >> 40) > 0) {
 574                                size >>= 40;
 575                                unit = "TB";
 576                        } else if ((size >> 30) > 0) {
 577                                size >>= 30;
 578                                unit = "GB";
 579                        } else if ((size >> 20) > 0) {
 580                                size >>= 20;
 581                                unit = "MB";
 582                        } else {
 583                                size >>= 10;
 584                                unit = "KB";
 585                        }
 586
 587                        printk("mem%02d: %s "
 588                               "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 589                               i, efi_md_typeattr_format(buf, sizeof(buf), md),
 590                               md->phys_addr,
 591                               md->phys_addr + efi_md_size(md), size, unit);
 592                }
 593        }
 594#endif
 595
 596        efi_map_pal_code();
 597        efi_enter_virtual_mode();
 598}
 599
 600void
 601efi_enter_virtual_mode (void)
 602{
 603        void *efi_map_start, *efi_map_end, *p;
 604        efi_memory_desc_t *md;
 605        efi_status_t status;
 606        u64 efi_desc_size;
 607
 608        efi_map_start = __va(ia64_boot_param->efi_memmap);
 609        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 610        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 611
 612        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 613                md = p;
 614                if (md->attribute & EFI_MEMORY_RUNTIME) {
 615                        /*
 616                         * Some descriptors have multiple bits set, so the
 617                         * order of the tests is relevant.
 618                         */
 619                        if (md->attribute & EFI_MEMORY_WB) {
 620                                md->virt_addr = (u64) __va(md->phys_addr);
 621                        } else if (md->attribute & EFI_MEMORY_UC) {
 622                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 623                        } else if (md->attribute & EFI_MEMORY_WC) {
 624#if 0
 625                                md->virt_addr = ia64_remap(md->phys_addr,
 626                                                           (_PAGE_A |
 627                                                            _PAGE_P |
 628                                                            _PAGE_D |
 629                                                            _PAGE_MA_WC |
 630                                                            _PAGE_PL_0 |
 631                                                            _PAGE_AR_RW));
 632#else
 633                                printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 634                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 635#endif
 636                        } else if (md->attribute & EFI_MEMORY_WT) {
 637#if 0
 638                                md->virt_addr = ia64_remap(md->phys_addr,
 639                                                           (_PAGE_A |
 640                                                            _PAGE_P |
 641                                                            _PAGE_D |
 642                                                            _PAGE_MA_WT |
 643                                                            _PAGE_PL_0 |
 644                                                            _PAGE_AR_RW));
 645#else
 646                                printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 647                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 648#endif
 649                        }
 650                }
 651        }
 652
 653        status = efi_call_phys(__va(runtime->set_virtual_address_map),
 654                               ia64_boot_param->efi_memmap_size,
 655                               efi_desc_size,
 656                               ia64_boot_param->efi_memdesc_version,
 657                               ia64_boot_param->efi_memmap);
 658        if (status != EFI_SUCCESS) {
 659                printk(KERN_WARNING "warning: unable to switch EFI into "
 660                       "virtual mode (status=%lu)\n", status);
 661                return;
 662        }
 663
 664        set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 665
 666        /*
 667         * Now that EFI is in virtual mode, we call the EFI functions more
 668         * efficiently:
 669         */
 670        efi.get_time = virt_get_time;
 671        efi.set_time = virt_set_time;
 672        efi.get_wakeup_time = virt_get_wakeup_time;
 673        efi.set_wakeup_time = virt_set_wakeup_time;
 674        efi.get_variable = virt_get_variable;
 675        efi.get_next_variable = virt_get_next_variable;
 676        efi.set_variable = virt_set_variable;
 677        efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 678        efi.reset_system = virt_reset_system;
 679}
 680
 681/*
 682 * Walk the EFI memory map looking for the I/O port range.  There can only be
 683 * one entry of this type, other I/O port ranges should be described via ACPI.
 684 */
 685u64
 686efi_get_iobase (void)
 687{
 688        void *efi_map_start, *efi_map_end, *p;
 689        efi_memory_desc_t *md;
 690        u64 efi_desc_size;
 691
 692        efi_map_start = __va(ia64_boot_param->efi_memmap);
 693        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 694        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 695
 696        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 697                md = p;
 698                if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 699                        if (md->attribute & EFI_MEMORY_UC)
 700                                return md->phys_addr;
 701                }
 702        }
 703        return 0;
 704}
 705
 706static struct kern_memdesc *
 707kern_memory_descriptor (unsigned long phys_addr)
 708{
 709        struct kern_memdesc *md;
 710
 711        for (md = kern_memmap; md->start != ~0UL; md++) {
 712                if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 713                         return md;
 714        }
 715        return NULL;
 716}
 717
 718static efi_memory_desc_t *
 719efi_memory_descriptor (unsigned long phys_addr)
 720{
 721        void *efi_map_start, *efi_map_end, *p;
 722        efi_memory_desc_t *md;
 723        u64 efi_desc_size;
 724
 725        efi_map_start = __va(ia64_boot_param->efi_memmap);
 726        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 727        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 728
 729        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 730                md = p;
 731
 732                if (phys_addr - md->phys_addr < efi_md_size(md))
 733                         return md;
 734        }
 735        return NULL;
 736}
 737
 738static int
 739efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 740{
 741        void *efi_map_start, *efi_map_end, *p;
 742        efi_memory_desc_t *md;
 743        u64 efi_desc_size;
 744        unsigned long end;
 745
 746        efi_map_start = __va(ia64_boot_param->efi_memmap);
 747        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 748        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 749
 750        end = phys_addr + size;
 751
 752        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 753                md = p;
 754                if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 755                        return 1;
 756        }
 757        return 0;
 758}
 759
 760u32
 761efi_mem_type (unsigned long phys_addr)
 762{
 763        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 764
 765        if (md)
 766                return md->type;
 767        return 0;
 768}
 769
 770u64
 771efi_mem_attributes (unsigned long phys_addr)
 772{
 773        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 774
 775        if (md)
 776                return md->attribute;
 777        return 0;
 778}
 779EXPORT_SYMBOL(efi_mem_attributes);
 780
 781u64
 782efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 783{
 784        unsigned long end = phys_addr + size;
 785        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 786        u64 attr;
 787
 788        if (!md)
 789                return 0;
 790
 791        /*
 792         * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 793         * the kernel that firmware needs this region mapped.
 794         */
 795        attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 796        do {
 797                unsigned long md_end = efi_md_end(md);
 798
 799                if (end <= md_end)
 800                        return attr;
 801
 802                md = efi_memory_descriptor(md_end);
 803                if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 804                        return 0;
 805        } while (md);
 806        return 0;       /* never reached */
 807}
 808
 809u64
 810kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 811{
 812        unsigned long end = phys_addr + size;
 813        struct kern_memdesc *md;
 814        u64 attr;
 815
 816        /*
 817         * This is a hack for ioremap calls before we set up kern_memmap.
 818         * Maybe we should do efi_memmap_init() earlier instead.
 819         */
 820        if (!kern_memmap) {
 821                attr = efi_mem_attribute(phys_addr, size);
 822                if (attr & EFI_MEMORY_WB)
 823                        return EFI_MEMORY_WB;
 824                return 0;
 825        }
 826
 827        md = kern_memory_descriptor(phys_addr);
 828        if (!md)
 829                return 0;
 830
 831        attr = md->attribute;
 832        do {
 833                unsigned long md_end = kmd_end(md);
 834
 835                if (end <= md_end)
 836                        return attr;
 837
 838                md = kern_memory_descriptor(md_end);
 839                if (!md || md->attribute != attr)
 840                        return 0;
 841        } while (md);
 842        return 0;       /* never reached */
 843}
 844EXPORT_SYMBOL(kern_mem_attribute);
 845
 846int
 847valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 848{
 849        u64 attr;
 850
 851        /*
 852         * /dev/mem reads and writes use copy_to_user(), which implicitly
 853         * uses a granule-sized kernel identity mapping.  It's really
 854         * only safe to do this for regions in kern_memmap.  For more
 855         * details, see Documentation/ia64/aliasing.txt.
 856         */
 857        attr = kern_mem_attribute(phys_addr, size);
 858        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 859                return 1;
 860        return 0;
 861}
 862
 863int
 864valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 865{
 866        unsigned long phys_addr = pfn << PAGE_SHIFT;
 867        u64 attr;
 868
 869        attr = efi_mem_attribute(phys_addr, size);
 870
 871        /*
 872         * /dev/mem mmap uses normal user pages, so we don't need the entire
 873         * granule, but the entire region we're mapping must support the same
 874         * attribute.
 875         */
 876        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 877                return 1;
 878
 879        /*
 880         * Intel firmware doesn't tell us about all the MMIO regions, so
 881         * in general we have to allow mmap requests.  But if EFI *does*
 882         * tell us about anything inside this region, we should deny it.
 883         * The user can always map a smaller region to avoid the overlap.
 884         */
 885        if (efi_memmap_intersects(phys_addr, size))
 886                return 0;
 887
 888        return 1;
 889}
 890
 891pgprot_t
 892phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 893                     pgprot_t vma_prot)
 894{
 895        unsigned long phys_addr = pfn << PAGE_SHIFT;
 896        u64 attr;
 897
 898        /*
 899         * For /dev/mem mmap, we use user mappings, but if the region is
 900         * in kern_memmap (and hence may be covered by a kernel mapping),
 901         * we must use the same attribute as the kernel mapping.
 902         */
 903        attr = kern_mem_attribute(phys_addr, size);
 904        if (attr & EFI_MEMORY_WB)
 905                return pgprot_cacheable(vma_prot);
 906        else if (attr & EFI_MEMORY_UC)
 907                return pgprot_noncached(vma_prot);
 908
 909        /*
 910         * Some chipsets don't support UC access to memory.  If
 911         * WB is supported, we prefer that.
 912         */
 913        if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 914                return pgprot_cacheable(vma_prot);
 915
 916        return pgprot_noncached(vma_prot);
 917}
 918
 919int __init
 920efi_uart_console_only(void)
 921{
 922        efi_status_t status;
 923        char *s, name[] = "ConOut";
 924        efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 925        efi_char16_t *utf16, name_utf16[32];
 926        unsigned char data[1024];
 927        unsigned long size = sizeof(data);
 928        struct efi_generic_dev_path *hdr, *end_addr;
 929        int uart = 0;
 930
 931        /* Convert to UTF-16 */
 932        utf16 = name_utf16;
 933        s = name;
 934        while (*s)
 935                *utf16++ = *s++ & 0x7f;
 936        *utf16 = 0;
 937
 938        status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 939        if (status != EFI_SUCCESS) {
 940                printk(KERN_ERR "No EFI %s variable?\n", name);
 941                return 0;
 942        }
 943
 944        hdr = (struct efi_generic_dev_path *) data;
 945        end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 946        while (hdr < end_addr) {
 947                if (hdr->type == EFI_DEV_MSG &&
 948                    hdr->sub_type == EFI_DEV_MSG_UART)
 949                        uart = 1;
 950                else if (hdr->type == EFI_DEV_END_PATH ||
 951                          hdr->type == EFI_DEV_END_PATH2) {
 952                        if (!uart)
 953                                return 0;
 954                        if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 955                                return 1;
 956                        uart = 0;
 957                }
 958                hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 959        }
 960        printk(KERN_ERR "Malformed %s value\n", name);
 961        return 0;
 962}
 963
 964/*
 965 * Look for the first granule aligned memory descriptor memory
 966 * that is big enough to hold EFI memory map. Make sure this
 967 * descriptor is at least granule sized so it does not get trimmed
 968 */
 969struct kern_memdesc *
 970find_memmap_space (void)
 971{
 972        u64     contig_low=0, contig_high=0;
 973        u64     as = 0, ae;
 974        void *efi_map_start, *efi_map_end, *p, *q;
 975        efi_memory_desc_t *md, *pmd = NULL, *check_md;
 976        u64     space_needed, efi_desc_size;
 977        unsigned long total_mem = 0;
 978
 979        efi_map_start = __va(ia64_boot_param->efi_memmap);
 980        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 981        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 982
 983        /*
 984         * Worst case: we need 3 kernel descriptors for each efi descriptor
 985         * (if every entry has a WB part in the middle, and UC head and tail),
 986         * plus one for the end marker.
 987         */
 988        space_needed = sizeof(kern_memdesc_t) *
 989                (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 990
 991        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 992                md = p;
 993                if (!efi_wb(md)) {
 994                        continue;
 995                }
 996                if (pmd == NULL || !efi_wb(pmd) ||
 997                    efi_md_end(pmd) != md->phys_addr) {
 998                        contig_low = GRANULEROUNDUP(md->phys_addr);
 999                        contig_high = efi_md_end(md);
1000                        for (q = p + efi_desc_size; q < efi_map_end;
1001                             q += efi_desc_size) {
1002                                check_md = q;
1003                                if (!efi_wb(check_md))
1004                                        break;
1005                                if (contig_high != check_md->phys_addr)
1006                                        break;
1007                                contig_high = efi_md_end(check_md);
1008                        }
1009                        contig_high = GRANULEROUNDDOWN(contig_high);
1010                }
1011                if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1012                        continue;
1013
1014                /* Round ends inward to granule boundaries */
1015                as = max(contig_low, md->phys_addr);
1016                ae = min(contig_high, efi_md_end(md));
1017
1018                /* keep within max_addr= and min_addr= command line arg */
1019                as = max(as, min_addr);
1020                ae = min(ae, max_addr);
1021                if (ae <= as)
1022                        continue;
1023
1024                /* avoid going over mem= command line arg */
1025                if (total_mem + (ae - as) > mem_limit)
1026                        ae -= total_mem + (ae - as) - mem_limit;
1027
1028                if (ae <= as)
1029                        continue;
1030
1031                if (ae - as > space_needed)
1032                        break;
1033        }
1034        if (p >= efi_map_end)
1035                panic("Can't allocate space for kernel memory descriptors");
1036
1037        return __va(as);
1038}
1039
1040/*
1041 * Walk the EFI memory map and gather all memory available for kernel
1042 * to use.  We can allocate partial granules only if the unavailable
1043 * parts exist, and are WB.
1044 */
1045unsigned long
1046efi_memmap_init(u64 *s, u64 *e)
1047{
1048        struct kern_memdesc *k, *prev = NULL;
1049        u64     contig_low=0, contig_high=0;
1050        u64     as, ae, lim;
1051        void *efi_map_start, *efi_map_end, *p, *q;
1052        efi_memory_desc_t *md, *pmd = NULL, *check_md;
1053        u64     efi_desc_size;
1054        unsigned long total_mem = 0;
1055
1056        k = kern_memmap = find_memmap_space();
1057
1058        efi_map_start = __va(ia64_boot_param->efi_memmap);
1059        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1060        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1061
1062        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1063                md = p;
1064                if (!efi_wb(md)) {
1065                        if (efi_uc(md) &&
1066                            (md->type == EFI_CONVENTIONAL_MEMORY ||
1067                             md->type == EFI_BOOT_SERVICES_DATA)) {
1068                                k->attribute = EFI_MEMORY_UC;
1069                                k->start = md->phys_addr;
1070                                k->num_pages = md->num_pages;
1071                                k++;
1072                        }
1073                        continue;
1074                }
1075                if (pmd == NULL || !efi_wb(pmd) ||
1076                    efi_md_end(pmd) != md->phys_addr) {
1077                        contig_low = GRANULEROUNDUP(md->phys_addr);
1078                        contig_high = efi_md_end(md);
1079                        for (q = p + efi_desc_size; q < efi_map_end;
1080                             q += efi_desc_size) {
1081                                check_md = q;
1082                                if (!efi_wb(check_md))
1083                                        break;
1084                                if (contig_high != check_md->phys_addr)
1085                                        break;
1086                                contig_high = efi_md_end(check_md);
1087                        }
1088                        contig_high = GRANULEROUNDDOWN(contig_high);
1089                }
1090                if (!is_memory_available(md))
1091                        continue;
1092
1093                /*
1094                 * Round ends inward to granule boundaries
1095                 * Give trimmings to uncached allocator
1096                 */
1097                if (md->phys_addr < contig_low) {
1098                        lim = min(efi_md_end(md), contig_low);
1099                        if (efi_uc(md)) {
1100                                if (k > kern_memmap &&
1101                                    (k-1)->attribute == EFI_MEMORY_UC &&
1102                                    kmd_end(k-1) == md->phys_addr) {
1103                                        (k-1)->num_pages +=
1104                                                (lim - md->phys_addr)
1105                                                >> EFI_PAGE_SHIFT;
1106                                } else {
1107                                        k->attribute = EFI_MEMORY_UC;
1108                                        k->start = md->phys_addr;
1109                                        k->num_pages = (lim - md->phys_addr)
1110                                                >> EFI_PAGE_SHIFT;
1111                                        k++;
1112                                }
1113                        }
1114                        as = contig_low;
1115                } else
1116                        as = md->phys_addr;
1117
1118                if (efi_md_end(md) > contig_high) {
1119                        lim = max(md->phys_addr, contig_high);
1120                        if (efi_uc(md)) {
1121                                if (lim == md->phys_addr && k > kern_memmap &&
1122                                    (k-1)->attribute == EFI_MEMORY_UC &&
1123                                    kmd_end(k-1) == md->phys_addr) {
1124                                        (k-1)->num_pages += md->num_pages;
1125                                } else {
1126                                        k->attribute = EFI_MEMORY_UC;
1127                                        k->start = lim;
1128                                        k->num_pages = (efi_md_end(md) - lim)
1129                                                >> EFI_PAGE_SHIFT;
1130                                        k++;
1131                                }
1132                        }
1133                        ae = contig_high;
1134                } else
1135                        ae = efi_md_end(md);
1136
1137                /* keep within max_addr= and min_addr= command line arg */
1138                as = max(as, min_addr);
1139                ae = min(ae, max_addr);
1140                if (ae <= as)
1141                        continue;
1142
1143                /* avoid going over mem= command line arg */
1144                if (total_mem + (ae - as) > mem_limit)
1145                        ae -= total_mem + (ae - as) - mem_limit;
1146
1147                if (ae <= as)
1148                        continue;
1149                if (prev && kmd_end(prev) == md->phys_addr) {
1150                        prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1151                        total_mem += ae - as;
1152                        continue;
1153                }
1154                k->attribute = EFI_MEMORY_WB;
1155                k->start = as;
1156                k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1157                total_mem += ae - as;
1158                prev = k++;
1159        }
1160        k->start = ~0L; /* end-marker */
1161
1162        /* reserve the memory we are using for kern_memmap */
1163        *s = (u64)kern_memmap;
1164        *e = (u64)++k;
1165
1166        return total_mem;
1167}
1168
1169void
1170efi_initialize_iomem_resources(struct resource *code_resource,
1171                               struct resource *data_resource,
1172                               struct resource *bss_resource)
1173{
1174        struct resource *res;
1175        void *efi_map_start, *efi_map_end, *p;
1176        efi_memory_desc_t *md;
1177        u64 efi_desc_size;
1178        char *name;
1179        unsigned long flags, desc;
1180
1181        efi_map_start = __va(ia64_boot_param->efi_memmap);
1182        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1183        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1184
1185        res = NULL;
1186
1187        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1188                md = p;
1189
1190                if (md->num_pages == 0) /* should not happen */
1191                        continue;
1192
1193                flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1194                desc = IORES_DESC_NONE;
1195
1196                switch (md->type) {
1197
1198                        case EFI_MEMORY_MAPPED_IO:
1199                        case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1200                                continue;
1201
1202                        case EFI_LOADER_CODE:
1203                        case EFI_LOADER_DATA:
1204                        case EFI_BOOT_SERVICES_DATA:
1205                        case EFI_BOOT_SERVICES_CODE:
1206                        case EFI_CONVENTIONAL_MEMORY:
1207                                if (md->attribute & EFI_MEMORY_WP) {
1208                                        name = "System ROM";
1209                                        flags |= IORESOURCE_READONLY;
1210                                } else if (md->attribute == EFI_MEMORY_UC) {
1211                                        name = "Uncached RAM";
1212                                } else {
1213                                        name = "System RAM";
1214                                        flags |= IORESOURCE_SYSRAM;
1215                                }
1216                                break;
1217
1218                        case EFI_ACPI_MEMORY_NVS:
1219                                name = "ACPI Non-volatile Storage";
1220                                desc = IORES_DESC_ACPI_NV_STORAGE;
1221                                break;
1222
1223                        case EFI_UNUSABLE_MEMORY:
1224                                name = "reserved";
1225                                flags |= IORESOURCE_DISABLED;
1226                                break;
1227
1228                        case EFI_PERSISTENT_MEMORY:
1229                                name = "Persistent Memory";
1230                                desc = IORES_DESC_PERSISTENT_MEMORY;
1231                                break;
1232
1233                        case EFI_RESERVED_TYPE:
1234                        case EFI_RUNTIME_SERVICES_CODE:
1235                        case EFI_RUNTIME_SERVICES_DATA:
1236                        case EFI_ACPI_RECLAIM_MEMORY:
1237                        default:
1238                                name = "reserved";
1239                                break;
1240                }
1241
1242                if ((res = kzalloc(sizeof(struct resource),
1243                                   GFP_KERNEL)) == NULL) {
1244                        printk(KERN_ERR
1245                               "failed to allocate resource for iomem\n");
1246                        return;
1247                }
1248
1249                res->name = name;
1250                res->start = md->phys_addr;
1251                res->end = md->phys_addr + efi_md_size(md) - 1;
1252                res->flags = flags;
1253                res->desc = desc;
1254
1255                if (insert_resource(&iomem_resource, res) < 0)
1256                        kfree(res);
1257                else {
1258                        /*
1259                         * We don't know which region contains
1260                         * kernel data so we try it repeatedly and
1261                         * let the resource manager test it.
1262                         */
1263                        insert_resource(res, code_resource);
1264                        insert_resource(res, data_resource);
1265                        insert_resource(res, bss_resource);
1266#ifdef CONFIG_KEXEC
1267                        insert_resource(res, &efi_memmap_res);
1268                        insert_resource(res, &boot_param_res);
1269                        if (crashk_res.end > crashk_res.start)
1270                                insert_resource(res, &crashk_res);
1271#endif
1272                }
1273        }
1274}
1275
1276#ifdef CONFIG_KEXEC
1277/* find a block of memory aligned to 64M exclude reserved regions
1278   rsvd_regions are sorted
1279 */
1280unsigned long __init
1281kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1282{
1283        int i;
1284        u64 start, end;
1285        u64 alignment = 1UL << _PAGE_SIZE_64M;
1286        void *efi_map_start, *efi_map_end, *p;
1287        efi_memory_desc_t *md;
1288        u64 efi_desc_size;
1289
1290        efi_map_start = __va(ia64_boot_param->efi_memmap);
1291        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1292        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1293
1294        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1295                md = p;
1296                if (!efi_wb(md))
1297                        continue;
1298                start = ALIGN(md->phys_addr, alignment);
1299                end = efi_md_end(md);
1300                for (i = 0; i < n; i++) {
1301                        if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1302                                if (__pa(r[i].start) > start + size)
1303                                        return start;
1304                                start = ALIGN(__pa(r[i].end), alignment);
1305                                if (i < n-1 &&
1306                                    __pa(r[i+1].start) < start + size)
1307                                        continue;
1308                                else
1309                                        break;
1310                        }
1311                }
1312                if (end > start + size)
1313                        return start;
1314        }
1315
1316        printk(KERN_WARNING
1317               "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1318        return ~0UL;
1319}
1320#endif
1321
1322#ifdef CONFIG_CRASH_DUMP
1323/* locate the size find a the descriptor at a certain address */
1324unsigned long __init
1325vmcore_find_descriptor_size (unsigned long address)
1326{
1327        void *efi_map_start, *efi_map_end, *p;
1328        efi_memory_desc_t *md;
1329        u64 efi_desc_size;
1330        unsigned long ret = 0;
1331
1332        efi_map_start = __va(ia64_boot_param->efi_memmap);
1333        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1334        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1335
1336        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1337                md = p;
1338                if (efi_wb(md) && md->type == EFI_LOADER_DATA
1339                    && md->phys_addr == address) {
1340                        ret = efi_md_size(md);
1341                        break;
1342                }
1343        }
1344
1345        if (ret == 0)
1346                printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1347
1348        return ret;
1349}
1350#endif
1351