linux/arch/mips/kernel/smp-bmips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
   7 *
   8 * SMP support for BMIPS
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/sched.h>
  13#include <linux/sched/hotplug.h>
  14#include <linux/sched/task_stack.h>
  15#include <linux/mm.h>
  16#include <linux/delay.h>
  17#include <linux/smp.h>
  18#include <linux/interrupt.h>
  19#include <linux/spinlock.h>
  20#include <linux/cpu.h>
  21#include <linux/cpumask.h>
  22#include <linux/reboot.h>
  23#include <linux/io.h>
  24#include <linux/compiler.h>
  25#include <linux/linkage.h>
  26#include <linux/bug.h>
  27#include <linux/kernel.h>
  28
  29#include <asm/time.h>
  30#include <asm/pgtable.h>
  31#include <asm/processor.h>
  32#include <asm/bootinfo.h>
  33#include <asm/pmon.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mipsregs.h>
  37#include <asm/bmips.h>
  38#include <asm/traps.h>
  39#include <asm/barrier.h>
  40#include <asm/cpu-features.h>
  41
  42static int __maybe_unused max_cpus = 1;
  43
  44/* these may be configured by the platform code */
  45int bmips_smp_enabled = 1;
  46int bmips_cpu_offset;
  47cpumask_t bmips_booted_mask;
  48unsigned long bmips_tp1_irqs = IE_IRQ1;
  49
  50#define RESET_FROM_KSEG0                0x80080800
  51#define RESET_FROM_KSEG1                0xa0080800
  52
  53static void bmips_set_reset_vec(int cpu, u32 val);
  54
  55#ifdef CONFIG_SMP
  56
  57/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  58unsigned long bmips_smp_boot_sp;
  59unsigned long bmips_smp_boot_gp;
  60
  61static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  62static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  63static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  64static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  65
  66/* SW interrupts 0,1 are used for interprocessor signaling */
  67#define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
  68#define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
  69
  70#define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
  71#define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  72#define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  73#define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
  74
  75static void __init bmips_smp_setup(void)
  76{
  77        int i, cpu = 1, boot_cpu = 0;
  78        int cpu_hw_intr;
  79
  80        switch (current_cpu_type()) {
  81        case CPU_BMIPS4350:
  82        case CPU_BMIPS4380:
  83                /* arbitration priority */
  84                clear_c0_brcm_cmt_ctrl(0x30);
  85
  86                /* NBK and weak order flags */
  87                set_c0_brcm_config_0(0x30000);
  88
  89                /* Find out if we are running on TP0 or TP1 */
  90                boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  91
  92                /*
  93                 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  94                 * thread
  95                 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  96                 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  97                 */
  98                if (boot_cpu == 0)
  99                        cpu_hw_intr = 0x02;
 100                else
 101                        cpu_hw_intr = 0x1d;
 102
 103                change_c0_brcm_cmt_intr(0xf8018000,
 104                                        (cpu_hw_intr << 27) | (0x03 << 15));
 105
 106                /* single core, 2 threads (2 pipelines) */
 107                max_cpus = 2;
 108
 109                break;
 110        case CPU_BMIPS5000:
 111                /* enable raceless SW interrupts */
 112                set_c0_brcm_config(0x03 << 22);
 113
 114                /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
 115                change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
 116
 117                /* N cores, 2 threads per core */
 118                max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
 119
 120                /* clear any pending SW interrupts */
 121                for (i = 0; i < max_cpus; i++) {
 122                        write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
 123                        write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
 124                }
 125
 126                break;
 127        default:
 128                max_cpus = 1;
 129        }
 130
 131        if (!bmips_smp_enabled)
 132                max_cpus = 1;
 133
 134        /* this can be overridden by the BSP */
 135        if (!board_ebase_setup)
 136                board_ebase_setup = &bmips_ebase_setup;
 137
 138        __cpu_number_map[boot_cpu] = 0;
 139        __cpu_logical_map[0] = boot_cpu;
 140
 141        for (i = 0; i < max_cpus; i++) {
 142                if (i != boot_cpu) {
 143                        __cpu_number_map[i] = cpu;
 144                        __cpu_logical_map[cpu] = i;
 145                        cpu++;
 146                }
 147                set_cpu_possible(i, 1);
 148                set_cpu_present(i, 1);
 149        }
 150}
 151
 152/*
 153 * IPI IRQ setup - runs on CPU0
 154 */
 155static void bmips_prepare_cpus(unsigned int max_cpus)
 156{
 157        irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
 158
 159        switch (current_cpu_type()) {
 160        case CPU_BMIPS4350:
 161        case CPU_BMIPS4380:
 162                bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
 163                break;
 164        case CPU_BMIPS5000:
 165                bmips_ipi_interrupt = bmips5000_ipi_interrupt;
 166                break;
 167        default:
 168                return;
 169        }
 170
 171        if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
 172                        "smp_ipi0", NULL))
 173                panic("Can't request IPI0 interrupt");
 174        if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
 175                        "smp_ipi1", NULL))
 176                panic("Can't request IPI1 interrupt");
 177}
 178
 179/*
 180 * Tell the hardware to boot CPUx - runs on CPU0
 181 */
 182static void bmips_boot_secondary(int cpu, struct task_struct *idle)
 183{
 184        bmips_smp_boot_sp = __KSTK_TOS(idle);
 185        bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
 186        mb();
 187
 188        /*
 189         * Initial boot sequence for secondary CPU:
 190         *   bmips_reset_nmi_vec @ a000_0000 ->
 191         *   bmips_smp_entry ->
 192         *   plat_wired_tlb_setup (cached function call; optional) ->
 193         *   start_secondary (cached jump)
 194         *
 195         * Warm restart sequence:
 196         *   play_dead WAIT loop ->
 197         *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
 198         *   eret to play_dead ->
 199         *   bmips_secondary_reentry ->
 200         *   start_secondary
 201         */
 202
 203        pr_info("SMP: Booting CPU%d...\n", cpu);
 204
 205        if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
 206                /* kseg1 might not exist if this CPU enabled XKS01 */
 207                bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
 208
 209                switch (current_cpu_type()) {
 210                case CPU_BMIPS4350:
 211                case CPU_BMIPS4380:
 212                        bmips43xx_send_ipi_single(cpu, 0);
 213                        break;
 214                case CPU_BMIPS5000:
 215                        bmips5000_send_ipi_single(cpu, 0);
 216                        break;
 217                }
 218        } else {
 219                bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
 220
 221                switch (current_cpu_type()) {
 222                case CPU_BMIPS4350:
 223                case CPU_BMIPS4380:
 224                        /* Reset slave TP1 if booting from TP0 */
 225                        if (cpu_logical_map(cpu) == 1)
 226                                set_c0_brcm_cmt_ctrl(0x01);
 227                        break;
 228                case CPU_BMIPS5000:
 229                        write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
 230                        break;
 231                }
 232                cpumask_set_cpu(cpu, &bmips_booted_mask);
 233        }
 234}
 235
 236/*
 237 * Early setup - runs on secondary CPU after cache probe
 238 */
 239static void bmips_init_secondary(void)
 240{
 241        switch (current_cpu_type()) {
 242        case CPU_BMIPS4350:
 243        case CPU_BMIPS4380:
 244                clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
 245                break;
 246        case CPU_BMIPS5000:
 247                write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
 248                current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
 249                break;
 250        }
 251}
 252
 253/*
 254 * Late setup - runs on secondary CPU before entering the idle loop
 255 */
 256static void bmips_smp_finish(void)
 257{
 258        pr_info("SMP: CPU%d is running\n", smp_processor_id());
 259
 260        /* make sure there won't be a timer interrupt for a little while */
 261        write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
 262
 263        irq_enable_hazard();
 264        set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
 265        irq_enable_hazard();
 266}
 267
 268/*
 269 * BMIPS5000 raceless IPIs
 270 *
 271 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
 272 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
 273 * IPI1 is used for SMP_CALL_FUNCTION
 274 */
 275
 276static void bmips5000_send_ipi_single(int cpu, unsigned int action)
 277{
 278        write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
 279}
 280
 281static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
 282{
 283        int action = irq - IPI0_IRQ;
 284
 285        write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
 286
 287        if (action == 0)
 288                scheduler_ipi();
 289        else
 290                generic_smp_call_function_interrupt();
 291
 292        return IRQ_HANDLED;
 293}
 294
 295static void bmips5000_send_ipi_mask(const struct cpumask *mask,
 296        unsigned int action)
 297{
 298        unsigned int i;
 299
 300        for_each_cpu(i, mask)
 301                bmips5000_send_ipi_single(i, action);
 302}
 303
 304/*
 305 * BMIPS43xx racey IPIs
 306 *
 307 * We use one inbound SW IRQ for each CPU.
 308 *
 309 * A spinlock must be held in order to keep CPUx from accidentally clearing
 310 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
 311 * same spinlock is used to protect the action masks.
 312 */
 313
 314static DEFINE_SPINLOCK(ipi_lock);
 315static DEFINE_PER_CPU(int, ipi_action_mask);
 316
 317static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
 318{
 319        unsigned long flags;
 320
 321        spin_lock_irqsave(&ipi_lock, flags);
 322        set_c0_cause(cpu ? C_SW1 : C_SW0);
 323        per_cpu(ipi_action_mask, cpu) |= action;
 324        irq_enable_hazard();
 325        spin_unlock_irqrestore(&ipi_lock, flags);
 326}
 327
 328static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
 329{
 330        unsigned long flags;
 331        int action, cpu = irq - IPI0_IRQ;
 332
 333        spin_lock_irqsave(&ipi_lock, flags);
 334        action = __this_cpu_read(ipi_action_mask);
 335        per_cpu(ipi_action_mask, cpu) = 0;
 336        clear_c0_cause(cpu ? C_SW1 : C_SW0);
 337        spin_unlock_irqrestore(&ipi_lock, flags);
 338
 339        if (action & SMP_RESCHEDULE_YOURSELF)
 340                scheduler_ipi();
 341        if (action & SMP_CALL_FUNCTION)
 342                generic_smp_call_function_interrupt();
 343
 344        return IRQ_HANDLED;
 345}
 346
 347static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
 348        unsigned int action)
 349{
 350        unsigned int i;
 351
 352        for_each_cpu(i, mask)
 353                bmips43xx_send_ipi_single(i, action);
 354}
 355
 356#ifdef CONFIG_HOTPLUG_CPU
 357
 358static int bmips_cpu_disable(void)
 359{
 360        unsigned int cpu = smp_processor_id();
 361
 362        if (cpu == 0)
 363                return -EBUSY;
 364
 365        pr_info("SMP: CPU%d is offline\n", cpu);
 366
 367        set_cpu_online(cpu, false);
 368        calculate_cpu_foreign_map();
 369        irq_cpu_offline();
 370        clear_c0_status(IE_IRQ5);
 371
 372        local_flush_tlb_all();
 373        local_flush_icache_range(0, ~0);
 374
 375        return 0;
 376}
 377
 378static void bmips_cpu_die(unsigned int cpu)
 379{
 380}
 381
 382void __ref play_dead(void)
 383{
 384        idle_task_exit();
 385
 386        /* flush data cache */
 387        _dma_cache_wback_inv(0, ~0);
 388
 389        /*
 390         * Wakeup is on SW0 or SW1; disable everything else
 391         * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
 392         * IRQ handlers; this clears ST0_IE and returns immediately.
 393         */
 394        clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
 395        change_c0_status(
 396                IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 397                IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
 398        irq_disable_hazard();
 399
 400        /*
 401         * wait for SW interrupt from bmips_boot_secondary(), then jump
 402         * back to start_secondary()
 403         */
 404        __asm__ __volatile__(
 405        "       wait\n"
 406        "       j       bmips_secondary_reentry\n"
 407        : : : "memory");
 408}
 409
 410#endif /* CONFIG_HOTPLUG_CPU */
 411
 412struct plat_smp_ops bmips43xx_smp_ops = {
 413        .smp_setup              = bmips_smp_setup,
 414        .prepare_cpus           = bmips_prepare_cpus,
 415        .boot_secondary         = bmips_boot_secondary,
 416        .smp_finish             = bmips_smp_finish,
 417        .init_secondary         = bmips_init_secondary,
 418        .send_ipi_single        = bmips43xx_send_ipi_single,
 419        .send_ipi_mask          = bmips43xx_send_ipi_mask,
 420#ifdef CONFIG_HOTPLUG_CPU
 421        .cpu_disable            = bmips_cpu_disable,
 422        .cpu_die                = bmips_cpu_die,
 423#endif
 424};
 425
 426struct plat_smp_ops bmips5000_smp_ops = {
 427        .smp_setup              = bmips_smp_setup,
 428        .prepare_cpus           = bmips_prepare_cpus,
 429        .boot_secondary         = bmips_boot_secondary,
 430        .smp_finish             = bmips_smp_finish,
 431        .init_secondary         = bmips_init_secondary,
 432        .send_ipi_single        = bmips5000_send_ipi_single,
 433        .send_ipi_mask          = bmips5000_send_ipi_mask,
 434#ifdef CONFIG_HOTPLUG_CPU
 435        .cpu_disable            = bmips_cpu_disable,
 436        .cpu_die                = bmips_cpu_die,
 437#endif
 438};
 439
 440#endif /* CONFIG_SMP */
 441
 442/***********************************************************************
 443 * BMIPS vector relocation
 444 * This is primarily used for SMP boot, but it is applicable to some
 445 * UP BMIPS systems as well.
 446 ***********************************************************************/
 447
 448static void bmips_wr_vec(unsigned long dst, char *start, char *end)
 449{
 450        memcpy((void *)dst, start, end - start);
 451        dma_cache_wback(dst, end - start);
 452        local_flush_icache_range(dst, dst + (end - start));
 453        instruction_hazard();
 454}
 455
 456static inline void bmips_nmi_handler_setup(void)
 457{
 458        bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
 459                &bmips_reset_nmi_vec_end);
 460        bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
 461                &bmips_smp_int_vec_end);
 462}
 463
 464struct reset_vec_info {
 465        int cpu;
 466        u32 val;
 467};
 468
 469static void bmips_set_reset_vec_remote(void *vinfo)
 470{
 471        struct reset_vec_info *info = vinfo;
 472        int shift = info->cpu & 0x01 ? 16 : 0;
 473        u32 mask = ~(0xffff << shift), val = info->val >> 16;
 474
 475        preempt_disable();
 476        if (smp_processor_id() > 0) {
 477                smp_call_function_single(0, &bmips_set_reset_vec_remote,
 478                                         info, 1);
 479        } else {
 480                if (info->cpu & 0x02) {
 481                        /* BMIPS5200 "should" use mask/shift, but it's buggy */
 482                        bmips_write_zscm_reg(0xa0, (val << 16) | val);
 483                        bmips_read_zscm_reg(0xa0);
 484                } else {
 485                        write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
 486                                              (val << shift));
 487                }
 488        }
 489        preempt_enable();
 490}
 491
 492static void bmips_set_reset_vec(int cpu, u32 val)
 493{
 494        struct reset_vec_info info;
 495
 496        if (current_cpu_type() == CPU_BMIPS5000) {
 497                /* this needs to run from CPU0 (which is always online) */
 498                info.cpu = cpu;
 499                info.val = val;
 500                bmips_set_reset_vec_remote(&info);
 501        } else {
 502                void __iomem *cbr = BMIPS_GET_CBR();
 503
 504                if (cpu == 0)
 505                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
 506                else {
 507                        if (current_cpu_type() != CPU_BMIPS4380)
 508                                return;
 509                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
 510                }
 511        }
 512        __sync();
 513        back_to_back_c0_hazard();
 514}
 515
 516void bmips_ebase_setup(void)
 517{
 518        unsigned long new_ebase = ebase;
 519
 520        BUG_ON(ebase != CKSEG0);
 521
 522        switch (current_cpu_type()) {
 523        case CPU_BMIPS4350:
 524                /*
 525                 * BMIPS4350 cannot relocate the normal vectors, but it
 526                 * can relocate the BEV=1 vectors.  So CPU1 starts up at
 527                 * the relocated BEV=1, IV=0 general exception vector @
 528                 * 0xa000_0380.
 529                 *
 530                 * set_uncached_handler() is used here because:
 531                 *  - CPU1 will run this from uncached space
 532                 *  - None of the cacheflush functions are set up yet
 533                 */
 534                set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
 535                        &bmips_smp_int_vec, 0x80);
 536                __sync();
 537                return;
 538        case CPU_BMIPS3300:
 539        case CPU_BMIPS4380:
 540                /*
 541                 * 0x8000_0000: reset/NMI (initially in kseg1)
 542                 * 0x8000_0400: normal vectors
 543                 */
 544                new_ebase = 0x80000400;
 545                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 546                break;
 547        case CPU_BMIPS5000:
 548                /*
 549                 * 0x8000_0000: reset/NMI (initially in kseg1)
 550                 * 0x8000_1000: normal vectors
 551                 */
 552                new_ebase = 0x80001000;
 553                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 554                write_c0_ebase(new_ebase);
 555                break;
 556        default:
 557                return;
 558        }
 559
 560        board_nmi_handler_setup = &bmips_nmi_handler_setup;
 561        ebase = new_ebase;
 562}
 563
 564asmlinkage void __weak plat_wired_tlb_setup(void)
 565{
 566        /*
 567         * Called when starting/restarting a secondary CPU.
 568         * Kernel stacks and other important data might only be accessible
 569         * once the wired entries are present.
 570         */
 571}
 572
 573void __init bmips_cpu_setup(void)
 574{
 575        void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
 576        u32 __maybe_unused cfg;
 577
 578        switch (current_cpu_type()) {
 579        case CPU_BMIPS3300:
 580                /* Set BIU to async mode */
 581                set_c0_brcm_bus_pll(BIT(22));
 582                __sync();
 583
 584                /* put the BIU back in sync mode */
 585                clear_c0_brcm_bus_pll(BIT(22));
 586
 587                /* clear BHTD to enable branch history table */
 588                clear_c0_brcm_reset(BIT(16));
 589
 590                /* Flush and enable RAC */
 591                cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
 592                __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
 593                __raw_readl(cbr + BMIPS_RAC_CONFIG);
 594
 595                cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
 596                __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
 597                __raw_readl(cbr + BMIPS_RAC_CONFIG);
 598
 599                cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
 600                __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
 601                __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
 602                break;
 603
 604        case CPU_BMIPS4380:
 605                /* CBG workaround for early BMIPS4380 CPUs */
 606                switch (read_c0_prid()) {
 607                case 0x2a040:
 608                case 0x2a042:
 609                case 0x2a044:
 610                case 0x2a060:
 611                        cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
 612                        __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
 613                        __raw_readl(cbr + BMIPS_L2_CONFIG);
 614                }
 615
 616                /* clear BHTD to enable branch history table */
 617                clear_c0_brcm_config_0(BIT(21));
 618
 619                /* XI/ROTR enable */
 620                set_c0_brcm_config_0(BIT(23));
 621                set_c0_brcm_cmt_ctrl(BIT(15));
 622                break;
 623
 624        case CPU_BMIPS5000:
 625                /* enable RDHWR, BRDHWR */
 626                set_c0_brcm_config(BIT(17) | BIT(21));
 627
 628                /* Disable JTB */
 629                __asm__ __volatile__(
 630                "       .set    noreorder\n"
 631                "       li      $8, 0x5a455048\n"
 632                "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
 633                "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
 634                "       li      $9, 0x00008000\n"
 635                "       or      $8, $8, $9\n"
 636                "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
 637                "       sync\n"
 638                "       li      $8, 0x0\n"
 639                "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
 640                "       .set    reorder\n"
 641                : : : "$8", "$9");
 642
 643                /* XI enable */
 644                set_c0_brcm_config(BIT(27));
 645
 646                /* enable MIPS32R2 ROR instruction for XI TLB handlers */
 647                __asm__ __volatile__(
 648                "       li      $8, 0x5a455048\n"
 649                "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
 650                "       nop; nop; nop\n"
 651                "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
 652                "       lui     $9, 0x0100\n"
 653                "       or      $8, $9\n"
 654                "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
 655                : : : "$8", "$9");
 656                break;
 657        }
 658}
 659