linux/arch/mips/mm/uasm-mips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * A small micro-assembler. It is intentionally kept simple, does only
   7 * support a subset of instructions, and does not try to hide pipeline
   8 * effects like branch delay slots.
   9 *
  10 * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
  11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
  13 * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18
  19#include <asm/inst.h>
  20#include <asm/elf.h>
  21#include <asm/bugs.h>
  22#define UASM_ISA        _UASM_ISA_CLASSIC
  23#include <asm/uasm.h>
  24
  25#define RS_MASK         0x1f
  26#define RS_SH           21
  27#define RT_MASK         0x1f
  28#define RT_SH           16
  29#define SCIMM_MASK      0xfffff
  30#define SCIMM_SH        6
  31
  32/* This macro sets the non-variable bits of an instruction. */
  33#define M(a, b, c, d, e, f)                                     \
  34        ((a) << OP_SH                                           \
  35         | (b) << RS_SH                                         \
  36         | (c) << RT_SH                                         \
  37         | (d) << RD_SH                                         \
  38         | (e) << RE_SH                                         \
  39         | (f) << FUNC_SH)
  40
  41/* This macro sets the non-variable bits of an R6 instruction. */
  42#define M6(a, b, c, d, e)                                       \
  43        ((a) << OP_SH                                           \
  44         | (b) << RS_SH                                         \
  45         | (c) << RT_SH                                         \
  46         | (d) << SIMM9_SH                                      \
  47         | (e) << FUNC_SH)
  48
  49#include "uasm.c"
  50
  51static const struct insn insn_table[insn_invalid] = {
  52        [insn_addiu]    = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
  53        [insn_addu]     = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
  54        [insn_and]      = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
  55        [insn_andi]     = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
  56        [insn_bbit0]    = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  57        [insn_bbit1]    = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  58        [insn_beq]      = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  59        [insn_beql]     = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  60        [insn_bgez]     = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
  61        [insn_bgezl]    = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
  62        [insn_bgtz]     = {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
  63        [insn_blez]     = {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
  64        [insn_bltz]     = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
  65        [insn_bltzl]    = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
  66        [insn_bne]      = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
  67        [insn_break]    = {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
  68#ifndef CONFIG_CPU_MIPSR6
  69        [insn_cache]    = {M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
  70#else
  71        [insn_cache]    = {M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9},
  72#endif
  73        [insn_cfc1]     = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
  74        [insn_cfcmsa]   = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
  75        [insn_ctc1]     = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
  76        [insn_ctcmsa]   = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
  77        [insn_daddiu]   = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
  78        [insn_daddu]    = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
  79        [insn_ddivu]    = {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
  80        [insn_di]       = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
  81        [insn_dins]     = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
  82        [insn_dinsm]    = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
  83        [insn_dinsu]    = {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
  84        [insn_divu]     = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
  85        [insn_dmfc0]    = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
  86        [insn_dmtc0]    = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
  87        [insn_dmultu]   = {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
  88        [insn_drotr]    = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
  89        [insn_drotr32]  = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
  90        [insn_dsbh]     = {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
  91        [insn_dshd]     = {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
  92        [insn_dsll]     = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
  93        [insn_dsll32]   = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
  94        [insn_dsllv]    = {M(spec_op, 0, 0, 0, 0, dsllv_op),  RS | RT | RD},
  95        [insn_dsra]     = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
  96        [insn_dsra32]   = {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
  97        [insn_dsrav]    = {M(spec_op, 0, 0, 0, 0, dsrav_op),  RS | RT | RD},
  98        [insn_dsrl]     = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
  99        [insn_dsrl32]   = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
 100        [insn_dsrlv]    = {M(spec_op, 0, 0, 0, 0, dsrlv_op),  RS | RT | RD},
 101        [insn_dsubu]    = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
 102        [insn_eret]     = {M(cop0_op, cop_op, 0, 0, 0, eret_op),  0},
 103        [insn_ext]      = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
 104        [insn_ins]      = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
 105        [insn_j]        = {M(j_op, 0, 0, 0, 0, 0),  JIMM},
 106        [insn_jal]      = {M(jal_op, 0, 0, 0, 0, 0),    JIMM},
 107        [insn_jalr]     = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
 108#ifndef CONFIG_CPU_MIPSR6
 109        [insn_jr]       = {M(spec_op, 0, 0, 0, 0, jr_op),  RS},
 110#else
 111        [insn_jr]       = {M(spec_op, 0, 0, 0, 0, jalr_op),  RS},
 112#endif
 113        [insn_lb]       = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 114        [insn_lbu]      = {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 115        [insn_ld]       = {M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 116        [insn_lddir]    = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
 117        [insn_ldpte]    = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
 118        [insn_ldx]      = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
 119        [insn_lh]       = {M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 120        [insn_lhu]      = {M(lhu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 121#ifndef CONFIG_CPU_MIPSR6
 122        [insn_ll]       = {M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 123        [insn_lld]      = {M(lld_op, 0, 0, 0, 0, 0),    RS | RT | SIMM},
 124#else
 125        [insn_ll]       = {M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9},
 126        [insn_lld]      = {M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9},
 127#endif
 128        [insn_lui]      = {M(lui_op, 0, 0, 0, 0, 0),    RT | SIMM},
 129        [insn_lw]       = {M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 130        [insn_lwu]      = {M(lwu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 131        [insn_lwx]      = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
 132        [insn_mfc0]     = {M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
 133        [insn_mfhc0]    = {M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
 134        [insn_mfhi]     = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
 135        [insn_mflo]     = {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
 136        [insn_movn]     = {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
 137        [insn_movz]     = {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
 138        [insn_mtc0]     = {M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
 139        [insn_mthc0]    = {M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
 140        [insn_mthi]     = {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
 141        [insn_mtlo]     = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
 142#ifndef CONFIG_CPU_MIPSR6
 143        [insn_mul]      = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
 144#else
 145        [insn_mul]      = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
 146#endif
 147        [insn_multu]    = {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
 148        [insn_nor]      = {M(spec_op, 0, 0, 0, 0, nor_op),  RS | RT | RD},
 149        [insn_or]       = {M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD},
 150        [insn_ori]      = {M(ori_op, 0, 0, 0, 0, 0),    RS | RT | UIMM},
 151#ifndef CONFIG_CPU_MIPSR6
 152        [insn_pref]     = {M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 153#else
 154        [insn_pref]     = {M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9},
 155#endif
 156        [insn_rfe]      = {M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0},
 157        [insn_rotr]     = {M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE},
 158        [insn_sb]       = {M(sb_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 159#ifndef CONFIG_CPU_MIPSR6
 160        [insn_sc]       = {M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 161        [insn_scd]      = {M(scd_op, 0, 0, 0, 0, 0),    RS | RT | SIMM},
 162#else
 163        [insn_sc]       = {M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9},
 164        [insn_scd]      = {M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9},
 165#endif
 166        [insn_sd]       = {M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 167        [insn_sh]       = {M(sh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 168        [insn_sll]      = {M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE},
 169        [insn_sllv]     = {M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD},
 170        [insn_slt]      = {M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD},
 171        [insn_slti]     = {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 172        [insn_sltiu]    = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
 173        [insn_sltu]     = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
 174        [insn_sra]      = {M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE},
 175        [insn_srl]      = {M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE},
 176        [insn_srlv]     = {M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD},
 177        [insn_subu]     = {M(spec_op, 0, 0, 0, 0, subu_op),     RS | RT | RD},
 178        [insn_sw]       = {M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
 179        [insn_sync]     = {M(spec_op, 0, 0, 0, 0, sync_op), RE},
 180        [insn_syscall]  = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
 181        [insn_tlbp]     = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0},
 182        [insn_tlbr]     = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0},
 183        [insn_tlbwi]    = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0},
 184        [insn_tlbwr]    = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0},
 185        [insn_wait]     = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
 186        [insn_wsbh]     = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
 187        [insn_xor]      = {M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD},
 188        [insn_xori]     = {M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM},
 189        [insn_yield]    = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
 190};
 191
 192#undef M
 193
 194static inline u32 build_bimm(s32 arg)
 195{
 196        WARN(arg > 0x1ffff || arg < -0x20000,
 197             KERN_WARNING "Micro-assembler field overflow\n");
 198
 199        WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
 200
 201        return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
 202}
 203
 204static inline u32 build_jimm(u32 arg)
 205{
 206        WARN(arg & ~(JIMM_MASK << 2),
 207             KERN_WARNING "Micro-assembler field overflow\n");
 208
 209        return (arg >> 2) & JIMM_MASK;
 210}
 211
 212/*
 213 * The order of opcode arguments is implicitly left to right,
 214 * starting with RS and ending with FUNC or IMM.
 215 */
 216static void build_insn(u32 **buf, enum opcode opc, ...)
 217{
 218        const struct insn *ip;
 219        va_list ap;
 220        u32 op;
 221
 222        if (opc < 0 || opc >= insn_invalid ||
 223            (opc == insn_daddiu && r4k_daddiu_bug()) ||
 224            (insn_table[opc].match == 0 && insn_table[opc].fields == 0))
 225                panic("Unsupported Micro-assembler instruction %d", opc);
 226
 227        ip = &insn_table[opc];
 228
 229        op = ip->match;
 230        va_start(ap, opc);
 231        if (ip->fields & RS)
 232                op |= build_rs(va_arg(ap, u32));
 233        if (ip->fields & RT)
 234                op |= build_rt(va_arg(ap, u32));
 235        if (ip->fields & RD)
 236                op |= build_rd(va_arg(ap, u32));
 237        if (ip->fields & RE)
 238                op |= build_re(va_arg(ap, u32));
 239        if (ip->fields & SIMM)
 240                op |= build_simm(va_arg(ap, s32));
 241        if (ip->fields & UIMM)
 242                op |= build_uimm(va_arg(ap, u32));
 243        if (ip->fields & BIMM)
 244                op |= build_bimm(va_arg(ap, s32));
 245        if (ip->fields & JIMM)
 246                op |= build_jimm(va_arg(ap, u32));
 247        if (ip->fields & FUNC)
 248                op |= build_func(va_arg(ap, u32));
 249        if (ip->fields & SET)
 250                op |= build_set(va_arg(ap, u32));
 251        if (ip->fields & SCIMM)
 252                op |= build_scimm(va_arg(ap, u32));
 253        if (ip->fields & SIMM9)
 254                op |= build_scimm9(va_arg(ap, u32));
 255        va_end(ap);
 256
 257        **buf = op;
 258        (*buf)++;
 259}
 260
 261static inline void
 262__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
 263{
 264        long laddr = (long)lab->addr;
 265        long raddr = (long)rel->addr;
 266
 267        switch (rel->type) {
 268        case R_MIPS_PC16:
 269                *rel->addr |= build_bimm(laddr - (raddr + 4));
 270                break;
 271
 272        default:
 273                panic("Unsupported Micro-assembler relocation %d",
 274                      rel->type);
 275        }
 276}
 277