linux/arch/powerpc/kernel/nvram_64.c
<<
>>
Prefs
   1/*
   2 *  c 2001 PPC 64 Team, IBM Corp
   3 *
   4 *      This program is free software; you can redistribute it and/or
   5 *      modify it under the terms of the GNU General Public License
   6 *      as published by the Free Software Foundation; either version
   7 *      2 of the License, or (at your option) any later version.
   8 *
   9 * /dev/nvram driver for PPC64
  10 *
  11 * This perhaps should live in drivers/char
  12 *
  13 * TODO: Split the /dev/nvram part (that one can use
  14 *       drivers/char/generic_nvram.c) from the arch & partition
  15 *       parsing code.
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/errno.h>
  20#include <linux/fs.h>
  21#include <linux/miscdevice.h>
  22#include <linux/fcntl.h>
  23#include <linux/nvram.h>
  24#include <linux/init.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/kmsg_dump.h>
  28#include <linux/pagemap.h>
  29#include <linux/pstore.h>
  30#include <linux/zlib.h>
  31#include <linux/uaccess.h>
  32#include <asm/nvram.h>
  33#include <asm/rtas.h>
  34#include <asm/prom.h>
  35#include <asm/machdep.h>
  36
  37#undef DEBUG_NVRAM
  38
  39#define NVRAM_HEADER_LEN        sizeof(struct nvram_header)
  40#define NVRAM_BLOCK_LEN         NVRAM_HEADER_LEN
  41
  42/* If change this size, then change the size of NVNAME_LEN */
  43struct nvram_header {
  44        unsigned char signature;
  45        unsigned char checksum;
  46        unsigned short length;
  47        /* Terminating null required only for names < 12 chars. */
  48        char name[12];
  49};
  50
  51struct nvram_partition {
  52        struct list_head partition;
  53        struct nvram_header header;
  54        unsigned int index;
  55};
  56
  57static LIST_HEAD(nvram_partitions);
  58
  59#ifdef CONFIG_PPC_PSERIES
  60struct nvram_os_partition rtas_log_partition = {
  61        .name = "ibm,rtas-log",
  62        .req_size = 2079,
  63        .min_size = 1055,
  64        .index = -1,
  65        .os_partition = true
  66};
  67#endif
  68
  69struct nvram_os_partition oops_log_partition = {
  70        .name = "lnx,oops-log",
  71        .req_size = 4000,
  72        .min_size = 2000,
  73        .index = -1,
  74        .os_partition = true
  75};
  76
  77static const char *nvram_os_partitions[] = {
  78#ifdef CONFIG_PPC_PSERIES
  79        "ibm,rtas-log",
  80#endif
  81        "lnx,oops-log",
  82        NULL
  83};
  84
  85static void oops_to_nvram(struct kmsg_dumper *dumper,
  86                          enum kmsg_dump_reason reason);
  87
  88static struct kmsg_dumper nvram_kmsg_dumper = {
  89        .dump = oops_to_nvram
  90};
  91
  92/*
  93 * For capturing and compressing an oops or panic report...
  94
  95 * big_oops_buf[] holds the uncompressed text we're capturing.
  96 *
  97 * oops_buf[] holds the compressed text, preceded by a oops header.
  98 * oops header has u16 holding the version of oops header (to differentiate
  99 * between old and new format header) followed by u16 holding the length of
 100 * the compressed* text (*Or uncompressed, if compression fails.) and u64
 101 * holding the timestamp. oops_buf[] gets written to NVRAM.
 102 *
 103 * oops_log_info points to the header. oops_data points to the compressed text.
 104 *
 105 * +- oops_buf
 106 * |                                   +- oops_data
 107 * v                                   v
 108 * +-----------+-----------+-----------+------------------------+
 109 * | version   | length    | timestamp | text                   |
 110 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
 111 * +-----------+-----------+-----------+------------------------+
 112 * ^
 113 * +- oops_log_info
 114 *
 115 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
 116 */
 117static size_t big_oops_buf_sz;
 118static char *big_oops_buf, *oops_buf;
 119static char *oops_data;
 120static size_t oops_data_sz;
 121
 122/* Compression parameters */
 123#define COMPR_LEVEL 6
 124#define WINDOW_BITS 12
 125#define MEM_LEVEL 4
 126static struct z_stream_s stream;
 127
 128#ifdef CONFIG_PSTORE
 129#ifdef CONFIG_PPC_POWERNV
 130static struct nvram_os_partition skiboot_partition = {
 131        .name = "ibm,skiboot",
 132        .index = -1,
 133        .os_partition = false
 134};
 135#endif
 136
 137#ifdef CONFIG_PPC_PSERIES
 138static struct nvram_os_partition of_config_partition = {
 139        .name = "of-config",
 140        .index = -1,
 141        .os_partition = false
 142};
 143#endif
 144
 145static struct nvram_os_partition common_partition = {
 146        .name = "common",
 147        .index = -1,
 148        .os_partition = false
 149};
 150
 151static enum pstore_type_id nvram_type_ids[] = {
 152        PSTORE_TYPE_DMESG,
 153        PSTORE_TYPE_PPC_COMMON,
 154        -1,
 155        -1,
 156        -1
 157};
 158static int read_type;
 159#endif
 160
 161/* nvram_write_os_partition
 162 *
 163 * We need to buffer the error logs into nvram to ensure that we have
 164 * the failure information to decode.  If we have a severe error there
 165 * is no way to guarantee that the OS or the machine is in a state to
 166 * get back to user land and write the error to disk.  For example if
 167 * the SCSI device driver causes a Machine Check by writing to a bad
 168 * IO address, there is no way of guaranteeing that the device driver
 169 * is in any state that is would also be able to write the error data
 170 * captured to disk, thus we buffer it in NVRAM for analysis on the
 171 * next boot.
 172 *
 173 * In NVRAM the partition containing the error log buffer will looks like:
 174 * Header (in bytes):
 175 * +-----------+----------+--------+------------+------------------+
 176 * | signature | checksum | length | name       | data             |
 177 * |0          |1         |2      3|4         15|16        length-1|
 178 * +-----------+----------+--------+------------+------------------+
 179 *
 180 * The 'data' section would look like (in bytes):
 181 * +--------------+------------+-----------------------------------+
 182 * | event_logged | sequence # | error log                         |
 183 * |0            3|4          7|8                  error_log_size-1|
 184 * +--------------+------------+-----------------------------------+
 185 *
 186 * event_logged: 0 if event has not been logged to syslog, 1 if it has
 187 * sequence #: The unique sequence # for each event. (until it wraps)
 188 * error log: The error log from event_scan
 189 */
 190int nvram_write_os_partition(struct nvram_os_partition *part,
 191                             char *buff, int length,
 192                             unsigned int err_type,
 193                             unsigned int error_log_cnt)
 194{
 195        int rc;
 196        loff_t tmp_index;
 197        struct err_log_info info;
 198
 199        if (part->index == -1)
 200                return -ESPIPE;
 201
 202        if (length > part->size)
 203                length = part->size;
 204
 205        info.error_type = cpu_to_be32(err_type);
 206        info.seq_num = cpu_to_be32(error_log_cnt);
 207
 208        tmp_index = part->index;
 209
 210        rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
 211                                &tmp_index);
 212        if (rc <= 0) {
 213                pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
 214                return rc;
 215        }
 216
 217        rc = ppc_md.nvram_write(buff, length, &tmp_index);
 218        if (rc <= 0) {
 219                pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
 220                return rc;
 221        }
 222
 223        return 0;
 224}
 225
 226/* nvram_read_partition
 227 *
 228 * Reads nvram partition for at most 'length'
 229 */
 230int nvram_read_partition(struct nvram_os_partition *part, char *buff,
 231                         int length, unsigned int *err_type,
 232                         unsigned int *error_log_cnt)
 233{
 234        int rc;
 235        loff_t tmp_index;
 236        struct err_log_info info;
 237
 238        if (part->index == -1)
 239                return -1;
 240
 241        if (length > part->size)
 242                length = part->size;
 243
 244        tmp_index = part->index;
 245
 246        if (part->os_partition) {
 247                rc = ppc_md.nvram_read((char *)&info,
 248                                        sizeof(struct err_log_info),
 249                                        &tmp_index);
 250                if (rc <= 0) {
 251                        pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
 252                        return rc;
 253                }
 254        }
 255
 256        rc = ppc_md.nvram_read(buff, length, &tmp_index);
 257        if (rc <= 0) {
 258                pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
 259                return rc;
 260        }
 261
 262        if (part->os_partition) {
 263                *error_log_cnt = be32_to_cpu(info.seq_num);
 264                *err_type = be32_to_cpu(info.error_type);
 265        }
 266
 267        return 0;
 268}
 269
 270/* nvram_init_os_partition
 271 *
 272 * This sets up a partition with an "OS" signature.
 273 *
 274 * The general strategy is the following:
 275 * 1.) If a partition with the indicated name already exists...
 276 *      - If it's large enough, use it.
 277 *      - Otherwise, recycle it and keep going.
 278 * 2.) Search for a free partition that is large enough.
 279 * 3.) If there's not a free partition large enough, recycle any obsolete
 280 * OS partitions and try again.
 281 * 4.) Will first try getting a chunk that will satisfy the requested size.
 282 * 5.) If a chunk of the requested size cannot be allocated, then try finding
 283 * a chunk that will satisfy the minum needed.
 284 *
 285 * Returns 0 on success, else -1.
 286 */
 287int __init nvram_init_os_partition(struct nvram_os_partition *part)
 288{
 289        loff_t p;
 290        int size;
 291
 292        /* Look for ours */
 293        p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
 294
 295        /* Found one but too small, remove it */
 296        if (p && size < part->min_size) {
 297                pr_info("nvram: Found too small %s partition,"
 298                                        " removing it...\n", part->name);
 299                nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
 300                p = 0;
 301        }
 302
 303        /* Create one if we didn't find */
 304        if (!p) {
 305                p = nvram_create_partition(part->name, NVRAM_SIG_OS,
 306                                        part->req_size, part->min_size);
 307                if (p == -ENOSPC) {
 308                        pr_info("nvram: No room to create %s partition, "
 309                                "deleting any obsolete OS partitions...\n",
 310                                part->name);
 311                        nvram_remove_partition(NULL, NVRAM_SIG_OS,
 312                                        nvram_os_partitions);
 313                        p = nvram_create_partition(part->name, NVRAM_SIG_OS,
 314                                        part->req_size, part->min_size);
 315                }
 316        }
 317
 318        if (p <= 0) {
 319                pr_err("nvram: Failed to find or create %s"
 320                       " partition, err %d\n", part->name, (int)p);
 321                return -1;
 322        }
 323
 324        part->index = p;
 325        part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
 326
 327        return 0;
 328}
 329
 330/* Derived from logfs_compress() */
 331static int nvram_compress(const void *in, void *out, size_t inlen,
 332                                                        size_t outlen)
 333{
 334        int err, ret;
 335
 336        ret = -EIO;
 337        err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
 338                                                MEM_LEVEL, Z_DEFAULT_STRATEGY);
 339        if (err != Z_OK)
 340                goto error;
 341
 342        stream.next_in = in;
 343        stream.avail_in = inlen;
 344        stream.total_in = 0;
 345        stream.next_out = out;
 346        stream.avail_out = outlen;
 347        stream.total_out = 0;
 348
 349        err = zlib_deflate(&stream, Z_FINISH);
 350        if (err != Z_STREAM_END)
 351                goto error;
 352
 353        err = zlib_deflateEnd(&stream);
 354        if (err != Z_OK)
 355                goto error;
 356
 357        if (stream.total_out >= stream.total_in)
 358                goto error;
 359
 360        ret = stream.total_out;
 361error:
 362        return ret;
 363}
 364
 365/* Compress the text from big_oops_buf into oops_buf. */
 366static int zip_oops(size_t text_len)
 367{
 368        struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
 369        int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
 370                                                                oops_data_sz);
 371        if (zipped_len < 0) {
 372                pr_err("nvram: compression failed; returned %d\n", zipped_len);
 373                pr_err("nvram: logging uncompressed oops/panic report\n");
 374                return -1;
 375        }
 376        oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 377        oops_hdr->report_length = cpu_to_be16(zipped_len);
 378        oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
 379        return 0;
 380}
 381
 382#ifdef CONFIG_PSTORE
 383static int nvram_pstore_open(struct pstore_info *psi)
 384{
 385        /* Reset the iterator to start reading partitions again */
 386        read_type = -1;
 387        return 0;
 388}
 389
 390/**
 391 * nvram_pstore_write - pstore write callback for nvram
 392 * @record:             pstore record to write, with @id to be set
 393 *
 394 * Called by pstore_dump() when an oops or panic report is logged in the
 395 * printk buffer.
 396 * Returns 0 on successful write.
 397 */
 398static int nvram_pstore_write(struct pstore_record *record)
 399{
 400        int rc;
 401        unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
 402        struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
 403
 404        /* part 1 has the recent messages from printk buffer */
 405        if (record->part > 1 || (record->type != PSTORE_TYPE_DMESG))
 406                return -1;
 407
 408        if (clobbering_unread_rtas_event())
 409                return -1;
 410
 411        oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 412        oops_hdr->report_length = cpu_to_be16(record->size);
 413        oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
 414
 415        if (record->compressed)
 416                err_type = ERR_TYPE_KERNEL_PANIC_GZ;
 417
 418        rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
 419                (int) (sizeof(*oops_hdr) + record->size), err_type,
 420                record->count);
 421
 422        if (rc != 0)
 423                return rc;
 424
 425        record->id = record->part;
 426        return 0;
 427}
 428
 429/*
 430 * Reads the oops/panic report, rtas, of-config and common partition.
 431 * Returns the length of the data we read from each partition.
 432 * Returns 0 if we've been called before.
 433 */
 434static ssize_t nvram_pstore_read(struct pstore_record *record)
 435{
 436        struct oops_log_info *oops_hdr;
 437        unsigned int err_type, id_no, size = 0;
 438        struct nvram_os_partition *part = NULL;
 439        char *buff = NULL;
 440        int sig = 0;
 441        loff_t p;
 442
 443        read_type++;
 444
 445        switch (nvram_type_ids[read_type]) {
 446        case PSTORE_TYPE_DMESG:
 447                part = &oops_log_partition;
 448                record->type = PSTORE_TYPE_DMESG;
 449                break;
 450        case PSTORE_TYPE_PPC_COMMON:
 451                sig = NVRAM_SIG_SYS;
 452                part = &common_partition;
 453                record->type = PSTORE_TYPE_PPC_COMMON;
 454                record->id = PSTORE_TYPE_PPC_COMMON;
 455                record->time.tv_sec = 0;
 456                record->time.tv_nsec = 0;
 457                break;
 458#ifdef CONFIG_PPC_PSERIES
 459        case PSTORE_TYPE_PPC_RTAS:
 460                part = &rtas_log_partition;
 461                record->type = PSTORE_TYPE_PPC_RTAS;
 462                record->time.tv_sec = last_rtas_event;
 463                record->time.tv_nsec = 0;
 464                break;
 465        case PSTORE_TYPE_PPC_OF:
 466                sig = NVRAM_SIG_OF;
 467                part = &of_config_partition;
 468                record->type = PSTORE_TYPE_PPC_OF;
 469                record->id = PSTORE_TYPE_PPC_OF;
 470                record->time.tv_sec = 0;
 471                record->time.tv_nsec = 0;
 472                break;
 473#endif
 474#ifdef CONFIG_PPC_POWERNV
 475        case PSTORE_TYPE_PPC_OPAL:
 476                sig = NVRAM_SIG_FW;
 477                part = &skiboot_partition;
 478                record->type = PSTORE_TYPE_PPC_OPAL;
 479                record->id = PSTORE_TYPE_PPC_OPAL;
 480                record->time.tv_sec = 0;
 481                record->time.tv_nsec = 0;
 482                break;
 483#endif
 484        default:
 485                return 0;
 486        }
 487
 488        if (!part->os_partition) {
 489                p = nvram_find_partition(part->name, sig, &size);
 490                if (p <= 0) {
 491                        pr_err("nvram: Failed to find partition %s, "
 492                                "err %d\n", part->name, (int)p);
 493                        return 0;
 494                }
 495                part->index = p;
 496                part->size = size;
 497        }
 498
 499        buff = kmalloc(part->size, GFP_KERNEL);
 500
 501        if (!buff)
 502                return -ENOMEM;
 503
 504        if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
 505                kfree(buff);
 506                return 0;
 507        }
 508
 509        record->count = 0;
 510
 511        if (part->os_partition)
 512                record->id = id_no;
 513
 514        if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
 515                size_t length, hdr_size;
 516
 517                oops_hdr = (struct oops_log_info *)buff;
 518                if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
 519                        /* Old format oops header had 2-byte record size */
 520                        hdr_size = sizeof(u16);
 521                        length = be16_to_cpu(oops_hdr->version);
 522                        record->time.tv_sec = 0;
 523                        record->time.tv_nsec = 0;
 524                } else {
 525                        hdr_size = sizeof(*oops_hdr);
 526                        length = be16_to_cpu(oops_hdr->report_length);
 527                        record->time.tv_sec = be64_to_cpu(oops_hdr->timestamp);
 528                        record->time.tv_nsec = 0;
 529                }
 530                record->buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
 531                kfree(buff);
 532                if (record->buf == NULL)
 533                        return -ENOMEM;
 534
 535                record->ecc_notice_size = 0;
 536                if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
 537                        record->compressed = true;
 538                else
 539                        record->compressed = false;
 540                return length;
 541        }
 542
 543        record->buf = buff;
 544        return part->size;
 545}
 546
 547static struct pstore_info nvram_pstore_info = {
 548        .owner = THIS_MODULE,
 549        .name = "nvram",
 550        .flags = PSTORE_FLAGS_DMESG,
 551        .open = nvram_pstore_open,
 552        .read = nvram_pstore_read,
 553        .write = nvram_pstore_write,
 554};
 555
 556static int nvram_pstore_init(void)
 557{
 558        int rc = 0;
 559
 560        if (machine_is(pseries)) {
 561                nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
 562                nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
 563        } else
 564                nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
 565
 566        nvram_pstore_info.buf = oops_data;
 567        nvram_pstore_info.bufsize = oops_data_sz;
 568
 569        spin_lock_init(&nvram_pstore_info.buf_lock);
 570
 571        rc = pstore_register(&nvram_pstore_info);
 572        if (rc && (rc != -EPERM))
 573                /* Print error only when pstore.backend == nvram */
 574                pr_err("nvram: pstore_register() failed, returned %d. "
 575                                "Defaults to kmsg_dump\n", rc);
 576
 577        return rc;
 578}
 579#else
 580static int nvram_pstore_init(void)
 581{
 582        return -1;
 583}
 584#endif
 585
 586void __init nvram_init_oops_partition(int rtas_partition_exists)
 587{
 588        int rc;
 589
 590        rc = nvram_init_os_partition(&oops_log_partition);
 591        if (rc != 0) {
 592#ifdef CONFIG_PPC_PSERIES
 593                if (!rtas_partition_exists) {
 594                        pr_err("nvram: Failed to initialize oops partition!");
 595                        return;
 596                }
 597                pr_notice("nvram: Using %s partition to log both"
 598                        " RTAS errors and oops/panic reports\n",
 599                        rtas_log_partition.name);
 600                memcpy(&oops_log_partition, &rtas_log_partition,
 601                                                sizeof(rtas_log_partition));
 602#else
 603                pr_err("nvram: Failed to initialize oops partition!");
 604                return;
 605#endif
 606        }
 607        oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
 608        if (!oops_buf) {
 609                pr_err("nvram: No memory for %s partition\n",
 610                                                oops_log_partition.name);
 611                return;
 612        }
 613        oops_data = oops_buf + sizeof(struct oops_log_info);
 614        oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
 615
 616        rc = nvram_pstore_init();
 617
 618        if (!rc)
 619                return;
 620
 621        /*
 622         * Figure compression (preceded by elimination of each line's <n>
 623         * severity prefix) will reduce the oops/panic report to at most
 624         * 45% of its original size.
 625         */
 626        big_oops_buf_sz = (oops_data_sz * 100) / 45;
 627        big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
 628        if (big_oops_buf) {
 629                stream.workspace =  kmalloc(zlib_deflate_workspacesize(
 630                                        WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
 631                if (!stream.workspace) {
 632                        pr_err("nvram: No memory for compression workspace; "
 633                                "skipping compression of %s partition data\n",
 634                                oops_log_partition.name);
 635                        kfree(big_oops_buf);
 636                        big_oops_buf = NULL;
 637                }
 638        } else {
 639                pr_err("No memory for uncompressed %s data; "
 640                        "skipping compression\n", oops_log_partition.name);
 641                stream.workspace = NULL;
 642        }
 643
 644        rc = kmsg_dump_register(&nvram_kmsg_dumper);
 645        if (rc != 0) {
 646                pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
 647                kfree(oops_buf);
 648                kfree(big_oops_buf);
 649                kfree(stream.workspace);
 650        }
 651}
 652
 653/*
 654 * This is our kmsg_dump callback, called after an oops or panic report
 655 * has been written to the printk buffer.  We want to capture as much
 656 * of the printk buffer as possible.  First, capture as much as we can
 657 * that we think will compress sufficiently to fit in the lnx,oops-log
 658 * partition.  If that's too much, go back and capture uncompressed text.
 659 */
 660static void oops_to_nvram(struct kmsg_dumper *dumper,
 661                          enum kmsg_dump_reason reason)
 662{
 663        struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
 664        static unsigned int oops_count = 0;
 665        static bool panicking = false;
 666        static DEFINE_SPINLOCK(lock);
 667        unsigned long flags;
 668        size_t text_len;
 669        unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
 670        int rc = -1;
 671
 672        switch (reason) {
 673        case KMSG_DUMP_RESTART:
 674        case KMSG_DUMP_HALT:
 675        case KMSG_DUMP_POWEROFF:
 676                /* These are almost always orderly shutdowns. */
 677                return;
 678        case KMSG_DUMP_OOPS:
 679                break;
 680        case KMSG_DUMP_PANIC:
 681                panicking = true;
 682                break;
 683        case KMSG_DUMP_EMERG:
 684                if (panicking)
 685                        /* Panic report already captured. */
 686                        return;
 687                break;
 688        default:
 689                pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
 690                       __func__, (int) reason);
 691                return;
 692        }
 693
 694        if (clobbering_unread_rtas_event())
 695                return;
 696
 697        if (!spin_trylock_irqsave(&lock, flags))
 698                return;
 699
 700        if (big_oops_buf) {
 701                kmsg_dump_get_buffer(dumper, false,
 702                                     big_oops_buf, big_oops_buf_sz, &text_len);
 703                rc = zip_oops(text_len);
 704        }
 705        if (rc != 0) {
 706                kmsg_dump_rewind(dumper);
 707                kmsg_dump_get_buffer(dumper, false,
 708                                     oops_data, oops_data_sz, &text_len);
 709                err_type = ERR_TYPE_KERNEL_PANIC;
 710                oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 711                oops_hdr->report_length = cpu_to_be16(text_len);
 712                oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
 713        }
 714
 715        (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
 716                (int) (sizeof(*oops_hdr) + text_len), err_type,
 717                ++oops_count);
 718
 719        spin_unlock_irqrestore(&lock, flags);
 720}
 721
 722static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
 723{
 724        if (ppc_md.nvram_size == NULL)
 725                return -ENODEV;
 726        return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE,
 727                                        ppc_md.nvram_size());
 728}
 729
 730
 731static ssize_t dev_nvram_read(struct file *file, char __user *buf,
 732                          size_t count, loff_t *ppos)
 733{
 734        ssize_t ret;
 735        char *tmp = NULL;
 736        ssize_t size;
 737
 738        if (!ppc_md.nvram_size) {
 739                ret = -ENODEV;
 740                goto out;
 741        }
 742
 743        size = ppc_md.nvram_size();
 744        if (size < 0) {
 745                ret = size;
 746                goto out;
 747        }
 748
 749        if (*ppos >= size) {
 750                ret = 0;
 751                goto out;
 752        }
 753
 754        count = min_t(size_t, count, size - *ppos);
 755        count = min(count, PAGE_SIZE);
 756
 757        tmp = kmalloc(count, GFP_KERNEL);
 758        if (!tmp) {
 759                ret = -ENOMEM;
 760                goto out;
 761        }
 762
 763        ret = ppc_md.nvram_read(tmp, count, ppos);
 764        if (ret <= 0)
 765                goto out;
 766
 767        if (copy_to_user(buf, tmp, ret))
 768                ret = -EFAULT;
 769
 770out:
 771        kfree(tmp);
 772        return ret;
 773
 774}
 775
 776static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
 777                          size_t count, loff_t *ppos)
 778{
 779        ssize_t ret;
 780        char *tmp = NULL;
 781        ssize_t size;
 782
 783        ret = -ENODEV;
 784        if (!ppc_md.nvram_size)
 785                goto out;
 786
 787        ret = 0;
 788        size = ppc_md.nvram_size();
 789        if (*ppos >= size || size < 0)
 790                goto out;
 791
 792        count = min_t(size_t, count, size - *ppos);
 793        count = min(count, PAGE_SIZE);
 794
 795        tmp = memdup_user(buf, count);
 796        if (IS_ERR(tmp)) {
 797                ret = PTR_ERR(tmp);
 798                goto out;
 799        }
 800
 801        ret = ppc_md.nvram_write(tmp, count, ppos);
 802
 803        kfree(tmp);
 804out:
 805        return ret;
 806}
 807
 808static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
 809                            unsigned long arg)
 810{
 811        switch(cmd) {
 812#ifdef CONFIG_PPC_PMAC
 813        case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
 814                printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
 815        case IOC_NVRAM_GET_OFFSET: {
 816                int part, offset;
 817
 818                if (!machine_is(powermac))
 819                        return -EINVAL;
 820                if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
 821                        return -EFAULT;
 822                if (part < pmac_nvram_OF || part > pmac_nvram_NR)
 823                        return -EINVAL;
 824                offset = pmac_get_partition(part);
 825                if (offset < 0)
 826                        return offset;
 827                if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
 828                        return -EFAULT;
 829                return 0;
 830        }
 831#endif /* CONFIG_PPC_PMAC */
 832        default:
 833                return -EINVAL;
 834        }
 835}
 836
 837static const struct file_operations nvram_fops = {
 838        .owner          = THIS_MODULE,
 839        .llseek         = dev_nvram_llseek,
 840        .read           = dev_nvram_read,
 841        .write          = dev_nvram_write,
 842        .unlocked_ioctl = dev_nvram_ioctl,
 843};
 844
 845static struct miscdevice nvram_dev = {
 846        NVRAM_MINOR,
 847        "nvram",
 848        &nvram_fops
 849};
 850
 851
 852#ifdef DEBUG_NVRAM
 853static void __init nvram_print_partitions(char * label)
 854{
 855        struct nvram_partition * tmp_part;
 856        
 857        printk(KERN_WARNING "--------%s---------\n", label);
 858        printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
 859        list_for_each_entry(tmp_part, &nvram_partitions, partition) {
 860                printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%12.12s\n",
 861                       tmp_part->index, tmp_part->header.signature,
 862                       tmp_part->header.checksum, tmp_part->header.length,
 863                       tmp_part->header.name);
 864        }
 865}
 866#endif
 867
 868
 869static int __init nvram_write_header(struct nvram_partition * part)
 870{
 871        loff_t tmp_index;
 872        int rc;
 873        struct nvram_header phead;
 874
 875        memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
 876        phead.length = cpu_to_be16(phead.length);
 877
 878        tmp_index = part->index;
 879        rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
 880
 881        return rc;
 882}
 883
 884
 885static unsigned char __init nvram_checksum(struct nvram_header *p)
 886{
 887        unsigned int c_sum, c_sum2;
 888        unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
 889        c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
 890
 891        /* The sum may have spilled into the 3rd byte.  Fold it back. */
 892        c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
 893        /* The sum cannot exceed 2 bytes.  Fold it into a checksum */
 894        c_sum2 = (c_sum >> 8) + (c_sum << 8);
 895        c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
 896        return c_sum;
 897}
 898
 899/*
 900 * Per the criteria passed via nvram_remove_partition(), should this
 901 * partition be removed?  1=remove, 0=keep
 902 */
 903static int nvram_can_remove_partition(struct nvram_partition *part,
 904                const char *name, int sig, const char *exceptions[])
 905{
 906        if (part->header.signature != sig)
 907                return 0;
 908        if (name) {
 909                if (strncmp(name, part->header.name, 12))
 910                        return 0;
 911        } else if (exceptions) {
 912                const char **except;
 913                for (except = exceptions; *except; except++) {
 914                        if (!strncmp(*except, part->header.name, 12))
 915                                return 0;
 916                }
 917        }
 918        return 1;
 919}
 920
 921/**
 922 * nvram_remove_partition - Remove one or more partitions in nvram
 923 * @name: name of the partition to remove, or NULL for a
 924 *        signature only match
 925 * @sig: signature of the partition(s) to remove
 926 * @exceptions: When removing all partitions with a matching signature,
 927 *        leave these alone.
 928 */
 929
 930int __init nvram_remove_partition(const char *name, int sig,
 931                                                const char *exceptions[])
 932{
 933        struct nvram_partition *part, *prev, *tmp;
 934        int rc;
 935
 936        list_for_each_entry(part, &nvram_partitions, partition) {
 937                if (!nvram_can_remove_partition(part, name, sig, exceptions))
 938                        continue;
 939
 940                /* Make partition a free partition */
 941                part->header.signature = NVRAM_SIG_FREE;
 942                memset(part->header.name, 'w', 12);
 943                part->header.checksum = nvram_checksum(&part->header);
 944                rc = nvram_write_header(part);
 945                if (rc <= 0) {
 946                        printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
 947                        return rc;
 948                }
 949        }
 950
 951        /* Merge contiguous ones */
 952        prev = NULL;
 953        list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
 954                if (part->header.signature != NVRAM_SIG_FREE) {
 955                        prev = NULL;
 956                        continue;
 957                }
 958                if (prev) {
 959                        prev->header.length += part->header.length;
 960                        prev->header.checksum = nvram_checksum(&prev->header);
 961                        rc = nvram_write_header(prev);
 962                        if (rc <= 0) {
 963                                printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
 964                                return rc;
 965                        }
 966                        list_del(&part->partition);
 967                        kfree(part);
 968                } else
 969                        prev = part;
 970        }
 971        
 972        return 0;
 973}
 974
 975/**
 976 * nvram_create_partition - Create a partition in nvram
 977 * @name: name of the partition to create
 978 * @sig: signature of the partition to create
 979 * @req_size: size of data to allocate in bytes
 980 * @min_size: minimum acceptable size (0 means req_size)
 981 *
 982 * Returns a negative error code or a positive nvram index
 983 * of the beginning of the data area of the newly created
 984 * partition. If you provided a min_size smaller than req_size
 985 * you need to query for the actual size yourself after the
 986 * call using nvram_partition_get_size().
 987 */
 988loff_t __init nvram_create_partition(const char *name, int sig,
 989                                     int req_size, int min_size)
 990{
 991        struct nvram_partition *part;
 992        struct nvram_partition *new_part;
 993        struct nvram_partition *free_part = NULL;
 994        static char nv_init_vals[16];
 995        loff_t tmp_index;
 996        long size = 0;
 997        int rc;
 998
 999        /* Convert sizes from bytes to blocks */
1000        req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1001        min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1002
1003        /* If no minimum size specified, make it the same as the
1004         * requested size
1005         */
1006        if (min_size == 0)
1007                min_size = req_size;
1008        if (min_size > req_size)
1009                return -EINVAL;
1010
1011        /* Now add one block to each for the header */
1012        req_size += 1;
1013        min_size += 1;
1014
1015        /* Find a free partition that will give us the maximum needed size 
1016           If can't find one that will give us the minimum size needed */
1017        list_for_each_entry(part, &nvram_partitions, partition) {
1018                if (part->header.signature != NVRAM_SIG_FREE)
1019                        continue;
1020
1021                if (part->header.length >= req_size) {
1022                        size = req_size;
1023                        free_part = part;
1024                        break;
1025                }
1026                if (part->header.length > size &&
1027                    part->header.length >= min_size) {
1028                        size = part->header.length;
1029                        free_part = part;
1030                }
1031        }
1032        if (!size)
1033                return -ENOSPC;
1034        
1035        /* Create our OS partition */
1036        new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1037        if (!new_part) {
1038                pr_err("%s: kmalloc failed\n", __func__);
1039                return -ENOMEM;
1040        }
1041
1042        new_part->index = free_part->index;
1043        new_part->header.signature = sig;
1044        new_part->header.length = size;
1045        strncpy(new_part->header.name, name, 12);
1046        new_part->header.checksum = nvram_checksum(&new_part->header);
1047
1048        rc = nvram_write_header(new_part);
1049        if (rc <= 0) {
1050                pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
1051                kfree(new_part);
1052                return rc;
1053        }
1054        list_add_tail(&new_part->partition, &free_part->partition);
1055
1056        /* Adjust or remove the partition we stole the space from */
1057        if (free_part->header.length > size) {
1058                free_part->index += size * NVRAM_BLOCK_LEN;
1059                free_part->header.length -= size;
1060                free_part->header.checksum = nvram_checksum(&free_part->header);
1061                rc = nvram_write_header(free_part);
1062                if (rc <= 0) {
1063                        pr_err("%s: nvram_write_header failed (%d)\n",
1064                               __func__, rc);
1065                        return rc;
1066                }
1067        } else {
1068                list_del(&free_part->partition);
1069                kfree(free_part);
1070        } 
1071
1072        /* Clear the new partition */
1073        for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1074             tmp_index <  ((size - 1) * NVRAM_BLOCK_LEN);
1075             tmp_index += NVRAM_BLOCK_LEN) {
1076                rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1077                if (rc <= 0) {
1078                        pr_err("%s: nvram_write failed (%d)\n",
1079                               __func__, rc);
1080                        return rc;
1081                }
1082        }
1083
1084        return new_part->index + NVRAM_HEADER_LEN;
1085}
1086
1087/**
1088 * nvram_get_partition_size - Get the data size of an nvram partition
1089 * @data_index: This is the offset of the start of the data of
1090 *              the partition. The same value that is returned by
1091 *              nvram_create_partition().
1092 */
1093int nvram_get_partition_size(loff_t data_index)
1094{
1095        struct nvram_partition *part;
1096        
1097        list_for_each_entry(part, &nvram_partitions, partition) {
1098                if (part->index + NVRAM_HEADER_LEN == data_index)
1099                        return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1100        }
1101        return -1;
1102}
1103
1104
1105/**
1106 * nvram_find_partition - Find an nvram partition by signature and name
1107 * @name: Name of the partition or NULL for any name
1108 * @sig: Signature to test against
1109 * @out_size: if non-NULL, returns the size of the data part of the partition
1110 */
1111loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1112{
1113        struct nvram_partition *p;
1114
1115        list_for_each_entry(p, &nvram_partitions, partition) {
1116                if (p->header.signature == sig &&
1117                    (!name || !strncmp(p->header.name, name, 12))) {
1118                        if (out_size)
1119                                *out_size = (p->header.length - 1) *
1120                                        NVRAM_BLOCK_LEN;
1121                        return p->index + NVRAM_HEADER_LEN;
1122                }
1123        }
1124        return 0;
1125}
1126
1127int __init nvram_scan_partitions(void)
1128{
1129        loff_t cur_index = 0;
1130        struct nvram_header phead;
1131        struct nvram_partition * tmp_part;
1132        unsigned char c_sum;
1133        char * header;
1134        int total_size;
1135        int err;
1136
1137        if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1138                return -ENODEV;
1139        total_size = ppc_md.nvram_size();
1140        
1141        header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1142        if (!header) {
1143                printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1144                return -ENOMEM;
1145        }
1146
1147        while (cur_index < total_size) {
1148
1149                err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1150                if (err != NVRAM_HEADER_LEN) {
1151                        printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1152                               "nvram partitions\n");
1153                        goto out;
1154                }
1155
1156                cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1157
1158                memcpy(&phead, header, NVRAM_HEADER_LEN);
1159
1160                phead.length = be16_to_cpu(phead.length);
1161
1162                err = 0;
1163                c_sum = nvram_checksum(&phead);
1164                if (c_sum != phead.checksum) {
1165                        printk(KERN_WARNING "WARNING: nvram partition checksum"
1166                               " was %02x, should be %02x!\n",
1167                               phead.checksum, c_sum);
1168                        printk(KERN_WARNING "Terminating nvram partition scan\n");
1169                        goto out;
1170                }
1171                if (!phead.length) {
1172                        printk(KERN_WARNING "WARNING: nvram corruption "
1173                               "detected: 0-length partition\n");
1174                        goto out;
1175                }
1176                tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1177                err = -ENOMEM;
1178                if (!tmp_part) {
1179                        printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1180                        goto out;
1181                }
1182                
1183                memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1184                tmp_part->index = cur_index;
1185                list_add_tail(&tmp_part->partition, &nvram_partitions);
1186                
1187                cur_index += phead.length * NVRAM_BLOCK_LEN;
1188        }
1189        err = 0;
1190
1191#ifdef DEBUG_NVRAM
1192        nvram_print_partitions("NVRAM Partitions");
1193#endif
1194
1195 out:
1196        kfree(header);
1197        return err;
1198}
1199
1200static int __init nvram_init(void)
1201{
1202        int rc;
1203        
1204        BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1205
1206        if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1207                return  -ENODEV;
1208
1209        rc = misc_register(&nvram_dev);
1210        if (rc != 0) {
1211                printk(KERN_ERR "nvram_init: failed to register device\n");
1212                return rc;
1213        }
1214        
1215        return rc;
1216}
1217device_initcall(nvram_init);
1218