linux/arch/s390/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright IBM Corp. 2002, 2006
  19 *
  20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  21 */
  22
  23#include <linux/kprobes.h>
  24#include <linux/ptrace.h>
  25#include <linux/preempt.h>
  26#include <linux/stop_machine.h>
  27#include <linux/kdebug.h>
  28#include <linux/uaccess.h>
  29#include <linux/extable.h>
  30#include <linux/module.h>
  31#include <linux/slab.h>
  32#include <linux/hardirq.h>
  33#include <linux/ftrace.h>
  34#include <asm/set_memory.h>
  35#include <asm/sections.h>
  36#include <linux/uaccess.h>
  37#include <asm/dis.h>
  38
  39DEFINE_PER_CPU(struct kprobe *, current_kprobe);
  40DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  41
  42struct kretprobe_blackpoint kretprobe_blacklist[] = { };
  43
  44DEFINE_INSN_CACHE_OPS(dmainsn);
  45
  46static void *alloc_dmainsn_page(void)
  47{
  48        void *page;
  49
  50        page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
  51        if (page)
  52                set_memory_x((unsigned long) page, 1);
  53        return page;
  54}
  55
  56static void free_dmainsn_page(void *page)
  57{
  58        set_memory_nx((unsigned long) page, 1);
  59        free_page((unsigned long)page);
  60}
  61
  62struct kprobe_insn_cache kprobe_dmainsn_slots = {
  63        .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
  64        .alloc = alloc_dmainsn_page,
  65        .free = free_dmainsn_page,
  66        .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
  67        .insn_size = MAX_INSN_SIZE,
  68};
  69
  70static void copy_instruction(struct kprobe *p)
  71{
  72        unsigned long ip = (unsigned long) p->addr;
  73        s64 disp, new_disp;
  74        u64 addr, new_addr;
  75
  76        if (ftrace_location(ip) == ip) {
  77                /*
  78                 * If kprobes patches the instruction that is morphed by
  79                 * ftrace make sure that kprobes always sees the branch
  80                 * "jg .+24" that skips the mcount block or the "brcl 0,0"
  81                 * in case of hotpatch.
  82                 */
  83                ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
  84                p->ainsn.is_ftrace_insn = 1;
  85        } else
  86                memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
  87        p->opcode = p->ainsn.insn[0];
  88        if (!probe_is_insn_relative_long(p->ainsn.insn))
  89                return;
  90        /*
  91         * For pc-relative instructions in RIL-b or RIL-c format patch the
  92         * RI2 displacement field. We have already made sure that the insn
  93         * slot for the patched instruction is within the same 2GB area
  94         * as the original instruction (either kernel image or module area).
  95         * Therefore the new displacement will always fit.
  96         */
  97        disp = *(s32 *)&p->ainsn.insn[1];
  98        addr = (u64)(unsigned long)p->addr;
  99        new_addr = (u64)(unsigned long)p->ainsn.insn;
 100        new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 101        *(s32 *)&p->ainsn.insn[1] = new_disp;
 102}
 103NOKPROBE_SYMBOL(copy_instruction);
 104
 105static inline int is_kernel_addr(void *addr)
 106{
 107        return addr < (void *)_end;
 108}
 109
 110static int s390_get_insn_slot(struct kprobe *p)
 111{
 112        /*
 113         * Get an insn slot that is within the same 2GB area like the original
 114         * instruction. That way instructions with a 32bit signed displacement
 115         * field can be patched and executed within the insn slot.
 116         */
 117        p->ainsn.insn = NULL;
 118        if (is_kernel_addr(p->addr))
 119                p->ainsn.insn = get_dmainsn_slot();
 120        else if (is_module_addr(p->addr))
 121                p->ainsn.insn = get_insn_slot();
 122        return p->ainsn.insn ? 0 : -ENOMEM;
 123}
 124NOKPROBE_SYMBOL(s390_get_insn_slot);
 125
 126static void s390_free_insn_slot(struct kprobe *p)
 127{
 128        if (!p->ainsn.insn)
 129                return;
 130        if (is_kernel_addr(p->addr))
 131                free_dmainsn_slot(p->ainsn.insn, 0);
 132        else
 133                free_insn_slot(p->ainsn.insn, 0);
 134        p->ainsn.insn = NULL;
 135}
 136NOKPROBE_SYMBOL(s390_free_insn_slot);
 137
 138int arch_prepare_kprobe(struct kprobe *p)
 139{
 140        if ((unsigned long) p->addr & 0x01)
 141                return -EINVAL;
 142        /* Make sure the probe isn't going on a difficult instruction */
 143        if (probe_is_prohibited_opcode(p->addr))
 144                return -EINVAL;
 145        if (s390_get_insn_slot(p))
 146                return -ENOMEM;
 147        copy_instruction(p);
 148        return 0;
 149}
 150NOKPROBE_SYMBOL(arch_prepare_kprobe);
 151
 152int arch_check_ftrace_location(struct kprobe *p)
 153{
 154        return 0;
 155}
 156
 157struct swap_insn_args {
 158        struct kprobe *p;
 159        unsigned int arm_kprobe : 1;
 160};
 161
 162static int swap_instruction(void *data)
 163{
 164        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 165        unsigned long status = kcb->kprobe_status;
 166        struct swap_insn_args *args = data;
 167        struct ftrace_insn new_insn, *insn;
 168        struct kprobe *p = args->p;
 169        size_t len;
 170
 171        new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
 172        len = sizeof(new_insn.opc);
 173        if (!p->ainsn.is_ftrace_insn)
 174                goto skip_ftrace;
 175        len = sizeof(new_insn);
 176        insn = (struct ftrace_insn *) p->addr;
 177        if (args->arm_kprobe) {
 178                if (is_ftrace_nop(insn))
 179                        new_insn.disp = KPROBE_ON_FTRACE_NOP;
 180                else
 181                        new_insn.disp = KPROBE_ON_FTRACE_CALL;
 182        } else {
 183                ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
 184                if (insn->disp == KPROBE_ON_FTRACE_NOP)
 185                        ftrace_generate_nop_insn(&new_insn);
 186        }
 187skip_ftrace:
 188        kcb->kprobe_status = KPROBE_SWAP_INST;
 189        s390_kernel_write(p->addr, &new_insn, len);
 190        kcb->kprobe_status = status;
 191        return 0;
 192}
 193NOKPROBE_SYMBOL(swap_instruction);
 194
 195void arch_arm_kprobe(struct kprobe *p)
 196{
 197        struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
 198
 199        stop_machine_cpuslocked(swap_instruction, &args, NULL);
 200}
 201NOKPROBE_SYMBOL(arch_arm_kprobe);
 202
 203void arch_disarm_kprobe(struct kprobe *p)
 204{
 205        struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
 206
 207        stop_machine_cpuslocked(swap_instruction, &args, NULL);
 208}
 209NOKPROBE_SYMBOL(arch_disarm_kprobe);
 210
 211void arch_remove_kprobe(struct kprobe *p)
 212{
 213        s390_free_insn_slot(p);
 214}
 215NOKPROBE_SYMBOL(arch_remove_kprobe);
 216
 217static void enable_singlestep(struct kprobe_ctlblk *kcb,
 218                              struct pt_regs *regs,
 219                              unsigned long ip)
 220{
 221        struct per_regs per_kprobe;
 222
 223        /* Set up the PER control registers %cr9-%cr11 */
 224        per_kprobe.control = PER_EVENT_IFETCH;
 225        per_kprobe.start = ip;
 226        per_kprobe.end = ip;
 227
 228        /* Save control regs and psw mask */
 229        __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 230        kcb->kprobe_saved_imask = regs->psw.mask &
 231                (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
 232
 233        /* Set PER control regs, turns on single step for the given address */
 234        __ctl_load(per_kprobe, 9, 11);
 235        regs->psw.mask |= PSW_MASK_PER;
 236        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 237        regs->psw.addr = ip;
 238}
 239NOKPROBE_SYMBOL(enable_singlestep);
 240
 241static void disable_singlestep(struct kprobe_ctlblk *kcb,
 242                               struct pt_regs *regs,
 243                               unsigned long ip)
 244{
 245        /* Restore control regs and psw mask, set new psw address */
 246        __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 247        regs->psw.mask &= ~PSW_MASK_PER;
 248        regs->psw.mask |= kcb->kprobe_saved_imask;
 249        regs->psw.addr = ip;
 250}
 251NOKPROBE_SYMBOL(disable_singlestep);
 252
 253/*
 254 * Activate a kprobe by storing its pointer to current_kprobe. The
 255 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
 256 * two kprobes can be active, see KPROBE_REENTER.
 257 */
 258static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
 259{
 260        kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
 261        kcb->prev_kprobe.status = kcb->kprobe_status;
 262        __this_cpu_write(current_kprobe, p);
 263}
 264NOKPROBE_SYMBOL(push_kprobe);
 265
 266/*
 267 * Deactivate a kprobe by backing up to the previous state. If the
 268 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
 269 * for any other state prev_kprobe.kp will be NULL.
 270 */
 271static void pop_kprobe(struct kprobe_ctlblk *kcb)
 272{
 273        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 274        kcb->kprobe_status = kcb->prev_kprobe.status;
 275}
 276NOKPROBE_SYMBOL(pop_kprobe);
 277
 278void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 279{
 280        ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 281
 282        /* Replace the return addr with trampoline addr */
 283        regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
 284}
 285NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 286
 287static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 288{
 289        switch (kcb->kprobe_status) {
 290        case KPROBE_HIT_SSDONE:
 291        case KPROBE_HIT_ACTIVE:
 292                kprobes_inc_nmissed_count(p);
 293                break;
 294        case KPROBE_HIT_SS:
 295        case KPROBE_REENTER:
 296        default:
 297                /*
 298                 * A kprobe on the code path to single step an instruction
 299                 * is a BUG. The code path resides in the .kprobes.text
 300                 * section and is executed with interrupts disabled.
 301                 */
 302                printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
 303                dump_kprobe(p);
 304                BUG();
 305        }
 306}
 307NOKPROBE_SYMBOL(kprobe_reenter_check);
 308
 309static int kprobe_handler(struct pt_regs *regs)
 310{
 311        struct kprobe_ctlblk *kcb;
 312        struct kprobe *p;
 313
 314        /*
 315         * We want to disable preemption for the entire duration of kprobe
 316         * processing. That includes the calls to the pre/post handlers
 317         * and single stepping the kprobe instruction.
 318         */
 319        preempt_disable();
 320        kcb = get_kprobe_ctlblk();
 321        p = get_kprobe((void *)(regs->psw.addr - 2));
 322
 323        if (p) {
 324                if (kprobe_running()) {
 325                        /*
 326                         * We have hit a kprobe while another is still
 327                         * active. This can happen in the pre and post
 328                         * handler. Single step the instruction of the
 329                         * new probe but do not call any handler function
 330                         * of this secondary kprobe.
 331                         * push_kprobe and pop_kprobe saves and restores
 332                         * the currently active kprobe.
 333                         */
 334                        kprobe_reenter_check(kcb, p);
 335                        push_kprobe(kcb, p);
 336                        kcb->kprobe_status = KPROBE_REENTER;
 337                } else {
 338                        /*
 339                         * If we have no pre-handler or it returned 0, we
 340                         * continue with single stepping. If we have a
 341                         * pre-handler and it returned non-zero, it prepped
 342                         * for calling the break_handler below on re-entry
 343                         * for jprobe processing, so get out doing nothing
 344                         * more here.
 345                         */
 346                        push_kprobe(kcb, p);
 347                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 348                        if (p->pre_handler && p->pre_handler(p, regs))
 349                                return 1;
 350                        kcb->kprobe_status = KPROBE_HIT_SS;
 351                }
 352                enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
 353                return 1;
 354        } else if (kprobe_running()) {
 355                p = __this_cpu_read(current_kprobe);
 356                if (p->break_handler && p->break_handler(p, regs)) {
 357                        /*
 358                         * Continuation after the jprobe completed and
 359                         * caused the jprobe_return trap. The jprobe
 360                         * break_handler "returns" to the original
 361                         * function that still has the kprobe breakpoint
 362                         * installed. We continue with single stepping.
 363                         */
 364                        kcb->kprobe_status = KPROBE_HIT_SS;
 365                        enable_singlestep(kcb, regs,
 366                                          (unsigned long) p->ainsn.insn);
 367                        return 1;
 368                } /* else:
 369                   * No kprobe at this address and the current kprobe
 370                   * has no break handler (no jprobe!). The kernel just
 371                   * exploded, let the standard trap handler pick up the
 372                   * pieces.
 373                   */
 374        } /* else:
 375           * No kprobe at this address and no active kprobe. The trap has
 376           * not been caused by a kprobe breakpoint. The race of breakpoint
 377           * vs. kprobe remove does not exist because on s390 as we use
 378           * stop_machine to arm/disarm the breakpoints.
 379           */
 380        preempt_enable_no_resched();
 381        return 0;
 382}
 383NOKPROBE_SYMBOL(kprobe_handler);
 384
 385/*
 386 * Function return probe trampoline:
 387 *      - init_kprobes() establishes a probepoint here
 388 *      - When the probed function returns, this probe
 389 *              causes the handlers to fire
 390 */
 391static void __used kretprobe_trampoline_holder(void)
 392{
 393        asm volatile(".global kretprobe_trampoline\n"
 394                     "kretprobe_trampoline: bcr 0,0\n");
 395}
 396
 397/*
 398 * Called when the probe at kretprobe trampoline is hit
 399 */
 400static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 401{
 402        struct kretprobe_instance *ri;
 403        struct hlist_head *head, empty_rp;
 404        struct hlist_node *tmp;
 405        unsigned long flags, orig_ret_address;
 406        unsigned long trampoline_address;
 407        kprobe_opcode_t *correct_ret_addr;
 408
 409        INIT_HLIST_HEAD(&empty_rp);
 410        kretprobe_hash_lock(current, &head, &flags);
 411
 412        /*
 413         * It is possible to have multiple instances associated with a given
 414         * task either because an multiple functions in the call path
 415         * have a return probe installed on them, and/or more than one return
 416         * return probe was registered for a target function.
 417         *
 418         * We can handle this because:
 419         *     - instances are always inserted at the head of the list
 420         *     - when multiple return probes are registered for the same
 421         *       function, the first instance's ret_addr will point to the
 422         *       real return address, and all the rest will point to
 423         *       kretprobe_trampoline
 424         */
 425        ri = NULL;
 426        orig_ret_address = 0;
 427        correct_ret_addr = NULL;
 428        trampoline_address = (unsigned long) &kretprobe_trampoline;
 429        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 430                if (ri->task != current)
 431                        /* another task is sharing our hash bucket */
 432                        continue;
 433
 434                orig_ret_address = (unsigned long) ri->ret_addr;
 435
 436                if (orig_ret_address != trampoline_address)
 437                        /*
 438                         * This is the real return address. Any other
 439                         * instances associated with this task are for
 440                         * other calls deeper on the call stack
 441                         */
 442                        break;
 443        }
 444
 445        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 446
 447        correct_ret_addr = ri->ret_addr;
 448        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 449                if (ri->task != current)
 450                        /* another task is sharing our hash bucket */
 451                        continue;
 452
 453                orig_ret_address = (unsigned long) ri->ret_addr;
 454
 455                if (ri->rp && ri->rp->handler) {
 456                        ri->ret_addr = correct_ret_addr;
 457                        ri->rp->handler(ri, regs);
 458                }
 459
 460                recycle_rp_inst(ri, &empty_rp);
 461
 462                if (orig_ret_address != trampoline_address)
 463                        /*
 464                         * This is the real return address. Any other
 465                         * instances associated with this task are for
 466                         * other calls deeper on the call stack
 467                         */
 468                        break;
 469        }
 470
 471        regs->psw.addr = orig_ret_address;
 472
 473        pop_kprobe(get_kprobe_ctlblk());
 474        kretprobe_hash_unlock(current, &flags);
 475        preempt_enable_no_resched();
 476
 477        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 478                hlist_del(&ri->hlist);
 479                kfree(ri);
 480        }
 481        /*
 482         * By returning a non-zero value, we are telling
 483         * kprobe_handler() that we don't want the post_handler
 484         * to run (and have re-enabled preemption)
 485         */
 486        return 1;
 487}
 488NOKPROBE_SYMBOL(trampoline_probe_handler);
 489
 490/*
 491 * Called after single-stepping.  p->addr is the address of the
 492 * instruction whose first byte has been replaced by the "breakpoint"
 493 * instruction.  To avoid the SMP problems that can occur when we
 494 * temporarily put back the original opcode to single-step, we
 495 * single-stepped a copy of the instruction.  The address of this
 496 * copy is p->ainsn.insn.
 497 */
 498static void resume_execution(struct kprobe *p, struct pt_regs *regs)
 499{
 500        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 501        unsigned long ip = regs->psw.addr;
 502        int fixup = probe_get_fixup_type(p->ainsn.insn);
 503
 504        /* Check if the kprobes location is an enabled ftrace caller */
 505        if (p->ainsn.is_ftrace_insn) {
 506                struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
 507                struct ftrace_insn call_insn;
 508
 509                ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
 510                /*
 511                 * A kprobe on an enabled ftrace call site actually single
 512                 * stepped an unconditional branch (ftrace nop equivalent).
 513                 * Now we need to fixup things and pretend that a brasl r0,...
 514                 * was executed instead.
 515                 */
 516                if (insn->disp == KPROBE_ON_FTRACE_CALL) {
 517                        ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
 518                        regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
 519                }
 520        }
 521
 522        if (fixup & FIXUP_PSW_NORMAL)
 523                ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
 524
 525        if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
 526                int ilen = insn_length(p->ainsn.insn[0] >> 8);
 527                if (ip - (unsigned long) p->ainsn.insn == ilen)
 528                        ip = (unsigned long) p->addr + ilen;
 529        }
 530
 531        if (fixup & FIXUP_RETURN_REGISTER) {
 532                int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
 533                regs->gprs[reg] += (unsigned long) p->addr -
 534                                   (unsigned long) p->ainsn.insn;
 535        }
 536
 537        disable_singlestep(kcb, regs, ip);
 538}
 539NOKPROBE_SYMBOL(resume_execution);
 540
 541static int post_kprobe_handler(struct pt_regs *regs)
 542{
 543        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 544        struct kprobe *p = kprobe_running();
 545
 546        if (!p)
 547                return 0;
 548
 549        if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
 550                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 551                p->post_handler(p, regs, 0);
 552        }
 553
 554        resume_execution(p, regs);
 555        pop_kprobe(kcb);
 556        preempt_enable_no_resched();
 557
 558        /*
 559         * if somebody else is singlestepping across a probe point, psw mask
 560         * will have PER set, in which case, continue the remaining processing
 561         * of do_single_step, as if this is not a probe hit.
 562         */
 563        if (regs->psw.mask & PSW_MASK_PER)
 564                return 0;
 565
 566        return 1;
 567}
 568NOKPROBE_SYMBOL(post_kprobe_handler);
 569
 570static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
 571{
 572        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 573        struct kprobe *p = kprobe_running();
 574        const struct exception_table_entry *entry;
 575
 576        switch(kcb->kprobe_status) {
 577        case KPROBE_SWAP_INST:
 578                /* We are here because the instruction replacement failed */
 579                return 0;
 580        case KPROBE_HIT_SS:
 581        case KPROBE_REENTER:
 582                /*
 583                 * We are here because the instruction being single
 584                 * stepped caused a page fault. We reset the current
 585                 * kprobe and the nip points back to the probe address
 586                 * and allow the page fault handler to continue as a
 587                 * normal page fault.
 588                 */
 589                disable_singlestep(kcb, regs, (unsigned long) p->addr);
 590                pop_kprobe(kcb);
 591                preempt_enable_no_resched();
 592                break;
 593        case KPROBE_HIT_ACTIVE:
 594        case KPROBE_HIT_SSDONE:
 595                /*
 596                 * We increment the nmissed count for accounting,
 597                 * we can also use npre/npostfault count for accounting
 598                 * these specific fault cases.
 599                 */
 600                kprobes_inc_nmissed_count(p);
 601
 602                /*
 603                 * We come here because instructions in the pre/post
 604                 * handler caused the page_fault, this could happen
 605                 * if handler tries to access user space by
 606                 * copy_from_user(), get_user() etc. Let the
 607                 * user-specified handler try to fix it first.
 608                 */
 609                if (p->fault_handler && p->fault_handler(p, regs, trapnr))
 610                        return 1;
 611
 612                /*
 613                 * In case the user-specified fault handler returned
 614                 * zero, try to fix up.
 615                 */
 616                entry = search_exception_tables(regs->psw.addr);
 617                if (entry) {
 618                        regs->psw.addr = extable_fixup(entry);
 619                        return 1;
 620                }
 621
 622                /*
 623                 * fixup_exception() could not handle it,
 624                 * Let do_page_fault() fix it.
 625                 */
 626                break;
 627        default:
 628                break;
 629        }
 630        return 0;
 631}
 632NOKPROBE_SYMBOL(kprobe_trap_handler);
 633
 634int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 635{
 636        int ret;
 637
 638        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 639                local_irq_disable();
 640        ret = kprobe_trap_handler(regs, trapnr);
 641        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 642                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 643        return ret;
 644}
 645NOKPROBE_SYMBOL(kprobe_fault_handler);
 646
 647/*
 648 * Wrapper routine to for handling exceptions.
 649 */
 650int kprobe_exceptions_notify(struct notifier_block *self,
 651                             unsigned long val, void *data)
 652{
 653        struct die_args *args = (struct die_args *) data;
 654        struct pt_regs *regs = args->regs;
 655        int ret = NOTIFY_DONE;
 656
 657        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 658                local_irq_disable();
 659
 660        switch (val) {
 661        case DIE_BPT:
 662                if (kprobe_handler(regs))
 663                        ret = NOTIFY_STOP;
 664                break;
 665        case DIE_SSTEP:
 666                if (post_kprobe_handler(regs))
 667                        ret = NOTIFY_STOP;
 668                break;
 669        case DIE_TRAP:
 670                if (!preemptible() && kprobe_running() &&
 671                    kprobe_trap_handler(regs, args->trapnr))
 672                        ret = NOTIFY_STOP;
 673                break;
 674        default:
 675                break;
 676        }
 677
 678        if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
 679                local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
 680
 681        return ret;
 682}
 683NOKPROBE_SYMBOL(kprobe_exceptions_notify);
 684
 685int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 686{
 687        struct jprobe *jp = container_of(p, struct jprobe, kp);
 688        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 689        unsigned long stack;
 690
 691        memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 692
 693        /* setup return addr to the jprobe handler routine */
 694        regs->psw.addr = (unsigned long) jp->entry;
 695        regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
 696
 697        /* r15 is the stack pointer */
 698        stack = (unsigned long) regs->gprs[15];
 699
 700        memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
 701
 702        /*
 703         * jprobes use jprobe_return() which skips the normal return
 704         * path of the function, and this messes up the accounting of the
 705         * function graph tracer to get messed up.
 706         *
 707         * Pause function graph tracing while performing the jprobe function.
 708         */
 709        pause_graph_tracing();
 710        return 1;
 711}
 712NOKPROBE_SYMBOL(setjmp_pre_handler);
 713
 714void jprobe_return(void)
 715{
 716        asm volatile(".word 0x0002");
 717}
 718NOKPROBE_SYMBOL(jprobe_return);
 719
 720int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 721{
 722        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 723        unsigned long stack;
 724
 725        /* It's OK to start function graph tracing again */
 726        unpause_graph_tracing();
 727
 728        stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
 729
 730        /* Put the regs back */
 731        memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 732        /* put the stack back */
 733        memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
 734        preempt_enable_no_resched();
 735        return 1;
 736}
 737NOKPROBE_SYMBOL(longjmp_break_handler);
 738
 739static struct kprobe trampoline = {
 740        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 741        .pre_handler = trampoline_probe_handler
 742};
 743
 744int __init arch_init_kprobes(void)
 745{
 746        return register_kprobe(&trampoline);
 747}
 748
 749int arch_trampoline_kprobe(struct kprobe *p)
 750{
 751        return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
 752}
 753NOKPROBE_SYMBOL(arch_trampoline_kprobe);
 754