linux/arch/x86/entry/entry_64.S
<<
>>
Prefs
   1/*
   2 *  linux/arch/x86_64/entry.S
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
   6 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
   7 *
   8 * entry.S contains the system-call and fault low-level handling routines.
   9 *
  10 * Some of this is documented in Documentation/x86/entry_64.txt
  11 *
  12 * A note on terminology:
  13 * - iret frame:        Architecture defined interrupt frame from SS to RIP
  14 *                      at the top of the kernel process stack.
  15 *
  16 * Some macro usage:
  17 * - ENTRY/END:         Define functions in the symbol table.
  18 * - TRACE_IRQ_*:       Trace hardirq state for lock debugging.
  19 * - idtentry:          Define exception entry points.
  20 */
  21#include <linux/linkage.h>
  22#include <asm/segment.h>
  23#include <asm/cache.h>
  24#include <asm/errno.h>
  25#include "calling.h"
  26#include <asm/asm-offsets.h>
  27#include <asm/msr.h>
  28#include <asm/unistd.h>
  29#include <asm/thread_info.h>
  30#include <asm/hw_irq.h>
  31#include <asm/page_types.h>
  32#include <asm/irqflags.h>
  33#include <asm/paravirt.h>
  34#include <asm/percpu.h>
  35#include <asm/asm.h>
  36#include <asm/smap.h>
  37#include <asm/pgtable_types.h>
  38#include <asm/export.h>
  39#include <linux/err.h>
  40
  41.code64
  42.section .entry.text, "ax"
  43
  44#ifdef CONFIG_PARAVIRT
  45ENTRY(native_usergs_sysret64)
  46        swapgs
  47        sysretq
  48ENDPROC(native_usergs_sysret64)
  49#endif /* CONFIG_PARAVIRT */
  50
  51.macro TRACE_IRQS_IRETQ
  52#ifdef CONFIG_TRACE_IRQFLAGS
  53        bt      $9, EFLAGS(%rsp)                /* interrupts off? */
  54        jnc     1f
  55        TRACE_IRQS_ON
  561:
  57#endif
  58.endm
  59
  60/*
  61 * When dynamic function tracer is enabled it will add a breakpoint
  62 * to all locations that it is about to modify, sync CPUs, update
  63 * all the code, sync CPUs, then remove the breakpoints. In this time
  64 * if lockdep is enabled, it might jump back into the debug handler
  65 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
  66 *
  67 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
  68 * make sure the stack pointer does not get reset back to the top
  69 * of the debug stack, and instead just reuses the current stack.
  70 */
  71#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
  72
  73.macro TRACE_IRQS_OFF_DEBUG
  74        call    debug_stack_set_zero
  75        TRACE_IRQS_OFF
  76        call    debug_stack_reset
  77.endm
  78
  79.macro TRACE_IRQS_ON_DEBUG
  80        call    debug_stack_set_zero
  81        TRACE_IRQS_ON
  82        call    debug_stack_reset
  83.endm
  84
  85.macro TRACE_IRQS_IRETQ_DEBUG
  86        bt      $9, EFLAGS(%rsp)                /* interrupts off? */
  87        jnc     1f
  88        TRACE_IRQS_ON_DEBUG
  891:
  90.endm
  91
  92#else
  93# define TRACE_IRQS_OFF_DEBUG                   TRACE_IRQS_OFF
  94# define TRACE_IRQS_ON_DEBUG                    TRACE_IRQS_ON
  95# define TRACE_IRQS_IRETQ_DEBUG                 TRACE_IRQS_IRETQ
  96#endif
  97
  98/*
  99 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
 100 *
 101 * This is the only entry point used for 64-bit system calls.  The
 102 * hardware interface is reasonably well designed and the register to
 103 * argument mapping Linux uses fits well with the registers that are
 104 * available when SYSCALL is used.
 105 *
 106 * SYSCALL instructions can be found inlined in libc implementations as
 107 * well as some other programs and libraries.  There are also a handful
 108 * of SYSCALL instructions in the vDSO used, for example, as a
 109 * clock_gettimeofday fallback.
 110 *
 111 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
 112 * then loads new ss, cs, and rip from previously programmed MSRs.
 113 * rflags gets masked by a value from another MSR (so CLD and CLAC
 114 * are not needed). SYSCALL does not save anything on the stack
 115 * and does not change rsp.
 116 *
 117 * Registers on entry:
 118 * rax  system call number
 119 * rcx  return address
 120 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
 121 * rdi  arg0
 122 * rsi  arg1
 123 * rdx  arg2
 124 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
 125 * r8   arg4
 126 * r9   arg5
 127 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
 128 *
 129 * Only called from user space.
 130 *
 131 * When user can change pt_regs->foo always force IRET. That is because
 132 * it deals with uncanonical addresses better. SYSRET has trouble
 133 * with them due to bugs in both AMD and Intel CPUs.
 134 */
 135
 136ENTRY(entry_SYSCALL_64)
 137        /*
 138         * Interrupts are off on entry.
 139         * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
 140         * it is too small to ever cause noticeable irq latency.
 141         */
 142        SWAPGS_UNSAFE_STACK
 143        /*
 144         * A hypervisor implementation might want to use a label
 145         * after the swapgs, so that it can do the swapgs
 146         * for the guest and jump here on syscall.
 147         */
 148GLOBAL(entry_SYSCALL_64_after_swapgs)
 149
 150        movq    %rsp, PER_CPU_VAR(rsp_scratch)
 151        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
 152
 153        TRACE_IRQS_OFF
 154
 155        /* Construct struct pt_regs on stack */
 156        pushq   $__USER_DS                      /* pt_regs->ss */
 157        pushq   PER_CPU_VAR(rsp_scratch)        /* pt_regs->sp */
 158        pushq   %r11                            /* pt_regs->flags */
 159        pushq   $__USER_CS                      /* pt_regs->cs */
 160        pushq   %rcx                            /* pt_regs->ip */
 161        pushq   %rax                            /* pt_regs->orig_ax */
 162        pushq   %rdi                            /* pt_regs->di */
 163        pushq   %rsi                            /* pt_regs->si */
 164        pushq   %rdx                            /* pt_regs->dx */
 165        pushq   %rcx                            /* pt_regs->cx */
 166        pushq   $-ENOSYS                        /* pt_regs->ax */
 167        pushq   %r8                             /* pt_regs->r8 */
 168        pushq   %r9                             /* pt_regs->r9 */
 169        pushq   %r10                            /* pt_regs->r10 */
 170        pushq   %r11                            /* pt_regs->r11 */
 171        sub     $(6*8), %rsp                    /* pt_regs->bp, bx, r12-15 not saved */
 172
 173        /*
 174         * If we need to do entry work or if we guess we'll need to do
 175         * exit work, go straight to the slow path.
 176         */
 177        movq    PER_CPU_VAR(current_task), %r11
 178        testl   $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
 179        jnz     entry_SYSCALL64_slow_path
 180
 181entry_SYSCALL_64_fastpath:
 182        /*
 183         * Easy case: enable interrupts and issue the syscall.  If the syscall
 184         * needs pt_regs, we'll call a stub that disables interrupts again
 185         * and jumps to the slow path.
 186         */
 187        TRACE_IRQS_ON
 188        ENABLE_INTERRUPTS(CLBR_NONE)
 189#if __SYSCALL_MASK == ~0
 190        cmpq    $__NR_syscall_max, %rax
 191#else
 192        andl    $__SYSCALL_MASK, %eax
 193        cmpl    $__NR_syscall_max, %eax
 194#endif
 195        ja      1f                              /* return -ENOSYS (already in pt_regs->ax) */
 196        movq    %r10, %rcx
 197
 198        /*
 199         * This call instruction is handled specially in stub_ptregs_64.
 200         * It might end up jumping to the slow path.  If it jumps, RAX
 201         * and all argument registers are clobbered.
 202         */
 203        call    *sys_call_table(, %rax, 8)
 204.Lentry_SYSCALL_64_after_fastpath_call:
 205
 206        movq    %rax, RAX(%rsp)
 2071:
 208
 209        /*
 210         * If we get here, then we know that pt_regs is clean for SYSRET64.
 211         * If we see that no exit work is required (which we are required
 212         * to check with IRQs off), then we can go straight to SYSRET64.
 213         */
 214        DISABLE_INTERRUPTS(CLBR_ANY)
 215        TRACE_IRQS_OFF
 216        movq    PER_CPU_VAR(current_task), %r11
 217        testl   $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
 218        jnz     1f
 219
 220        LOCKDEP_SYS_EXIT
 221        TRACE_IRQS_ON           /* user mode is traced as IRQs on */
 222        movq    RIP(%rsp), %rcx
 223        movq    EFLAGS(%rsp), %r11
 224        RESTORE_C_REGS_EXCEPT_RCX_R11
 225        movq    RSP(%rsp), %rsp
 226        USERGS_SYSRET64
 227
 2281:
 229        /*
 230         * The fast path looked good when we started, but something changed
 231         * along the way and we need to switch to the slow path.  Calling
 232         * raise(3) will trigger this, for example.  IRQs are off.
 233         */
 234        TRACE_IRQS_ON
 235        ENABLE_INTERRUPTS(CLBR_ANY)
 236        SAVE_EXTRA_REGS
 237        movq    %rsp, %rdi
 238        call    syscall_return_slowpath /* returns with IRQs disabled */
 239        jmp     return_from_SYSCALL_64
 240
 241entry_SYSCALL64_slow_path:
 242        /* IRQs are off. */
 243        SAVE_EXTRA_REGS
 244        movq    %rsp, %rdi
 245        call    do_syscall_64           /* returns with IRQs disabled */
 246
 247return_from_SYSCALL_64:
 248        RESTORE_EXTRA_REGS
 249        TRACE_IRQS_IRETQ                /* we're about to change IF */
 250
 251        /*
 252         * Try to use SYSRET instead of IRET if we're returning to
 253         * a completely clean 64-bit userspace context.
 254         */
 255        movq    RCX(%rsp), %rcx
 256        movq    RIP(%rsp), %r11
 257        cmpq    %rcx, %r11                      /* RCX == RIP */
 258        jne     opportunistic_sysret_failed
 259
 260        /*
 261         * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
 262         * in kernel space.  This essentially lets the user take over
 263         * the kernel, since userspace controls RSP.
 264         *
 265         * If width of "canonical tail" ever becomes variable, this will need
 266         * to be updated to remain correct on both old and new CPUs.
 267         *
 268         * Change top bits to match most significant bit (47th or 56th bit
 269         * depending on paging mode) in the address.
 270         */
 271        shl     $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 272        sar     $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 273
 274        /* If this changed %rcx, it was not canonical */
 275        cmpq    %rcx, %r11
 276        jne     opportunistic_sysret_failed
 277
 278        cmpq    $__USER_CS, CS(%rsp)            /* CS must match SYSRET */
 279        jne     opportunistic_sysret_failed
 280
 281        movq    R11(%rsp), %r11
 282        cmpq    %r11, EFLAGS(%rsp)              /* R11 == RFLAGS */
 283        jne     opportunistic_sysret_failed
 284
 285        /*
 286         * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
 287         * restore RF properly. If the slowpath sets it for whatever reason, we
 288         * need to restore it correctly.
 289         *
 290         * SYSRET can restore TF, but unlike IRET, restoring TF results in a
 291         * trap from userspace immediately after SYSRET.  This would cause an
 292         * infinite loop whenever #DB happens with register state that satisfies
 293         * the opportunistic SYSRET conditions.  For example, single-stepping
 294         * this user code:
 295         *
 296         *           movq       $stuck_here, %rcx
 297         *           pushfq
 298         *           popq %r11
 299         *   stuck_here:
 300         *
 301         * would never get past 'stuck_here'.
 302         */
 303        testq   $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
 304        jnz     opportunistic_sysret_failed
 305
 306        /* nothing to check for RSP */
 307
 308        cmpq    $__USER_DS, SS(%rsp)            /* SS must match SYSRET */
 309        jne     opportunistic_sysret_failed
 310
 311        /*
 312         * We win! This label is here just for ease of understanding
 313         * perf profiles. Nothing jumps here.
 314         */
 315syscall_return_via_sysret:
 316        /* rcx and r11 are already restored (see code above) */
 317        RESTORE_C_REGS_EXCEPT_RCX_R11
 318        movq    RSP(%rsp), %rsp
 319        USERGS_SYSRET64
 320
 321opportunistic_sysret_failed:
 322        SWAPGS
 323        jmp     restore_c_regs_and_iret
 324END(entry_SYSCALL_64)
 325
 326ENTRY(stub_ptregs_64)
 327        /*
 328         * Syscalls marked as needing ptregs land here.
 329         * If we are on the fast path, we need to save the extra regs,
 330         * which we achieve by trying again on the slow path.  If we are on
 331         * the slow path, the extra regs are already saved.
 332         *
 333         * RAX stores a pointer to the C function implementing the syscall.
 334         * IRQs are on.
 335         */
 336        cmpq    $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
 337        jne     1f
 338
 339        /*
 340         * Called from fast path -- disable IRQs again, pop return address
 341         * and jump to slow path
 342         */
 343        DISABLE_INTERRUPTS(CLBR_ANY)
 344        TRACE_IRQS_OFF
 345        popq    %rax
 346        jmp     entry_SYSCALL64_slow_path
 347
 3481:
 349        jmp     *%rax                           /* Called from C */
 350END(stub_ptregs_64)
 351
 352.macro ptregs_stub func
 353ENTRY(ptregs_\func)
 354        leaq    \func(%rip), %rax
 355        jmp     stub_ptregs_64
 356END(ptregs_\func)
 357.endm
 358
 359/* Instantiate ptregs_stub for each ptregs-using syscall */
 360#define __SYSCALL_64_QUAL_(sym)
 361#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
 362#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
 363#include <asm/syscalls_64.h>
 364
 365/*
 366 * %rdi: prev task
 367 * %rsi: next task
 368 */
 369ENTRY(__switch_to_asm)
 370        /*
 371         * Save callee-saved registers
 372         * This must match the order in inactive_task_frame
 373         */
 374        pushq   %rbp
 375        pushq   %rbx
 376        pushq   %r12
 377        pushq   %r13
 378        pushq   %r14
 379        pushq   %r15
 380
 381        /* switch stack */
 382        movq    %rsp, TASK_threadsp(%rdi)
 383        movq    TASK_threadsp(%rsi), %rsp
 384
 385#ifdef CONFIG_CC_STACKPROTECTOR
 386        movq    TASK_stack_canary(%rsi), %rbx
 387        movq    %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
 388#endif
 389
 390        /* restore callee-saved registers */
 391        popq    %r15
 392        popq    %r14
 393        popq    %r13
 394        popq    %r12
 395        popq    %rbx
 396        popq    %rbp
 397
 398        jmp     __switch_to
 399END(__switch_to_asm)
 400
 401/*
 402 * A newly forked process directly context switches into this address.
 403 *
 404 * rax: prev task we switched from
 405 * rbx: kernel thread func (NULL for user thread)
 406 * r12: kernel thread arg
 407 */
 408ENTRY(ret_from_fork)
 409        movq    %rax, %rdi
 410        call    schedule_tail                   /* rdi: 'prev' task parameter */
 411
 412        testq   %rbx, %rbx                      /* from kernel_thread? */
 413        jnz     1f                              /* kernel threads are uncommon */
 414
 4152:
 416        movq    %rsp, %rdi
 417        call    syscall_return_slowpath /* returns with IRQs disabled */
 418        TRACE_IRQS_ON                   /* user mode is traced as IRQS on */
 419        SWAPGS
 420        jmp     restore_regs_and_iret
 421
 4221:
 423        /* kernel thread */
 424        movq    %r12, %rdi
 425        call    *%rbx
 426        /*
 427         * A kernel thread is allowed to return here after successfully
 428         * calling do_execve().  Exit to userspace to complete the execve()
 429         * syscall.
 430         */
 431        movq    $0, RAX(%rsp)
 432        jmp     2b
 433END(ret_from_fork)
 434
 435/*
 436 * Build the entry stubs with some assembler magic.
 437 * We pack 1 stub into every 8-byte block.
 438 */
 439        .align 8
 440ENTRY(irq_entries_start)
 441    vector=FIRST_EXTERNAL_VECTOR
 442    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
 443        pushq   $(~vector+0x80)                 /* Note: always in signed byte range */
 444    vector=vector+1
 445        jmp     common_interrupt
 446        .align  8
 447    .endr
 448END(irq_entries_start)
 449
 450/*
 451 * Interrupt entry/exit.
 452 *
 453 * Interrupt entry points save only callee clobbered registers in fast path.
 454 *
 455 * Entry runs with interrupts off.
 456 */
 457
 458/* 0(%rsp): ~(interrupt number) */
 459        .macro interrupt func
 460        cld
 461        ALLOC_PT_GPREGS_ON_STACK
 462        SAVE_C_REGS
 463        SAVE_EXTRA_REGS
 464        ENCODE_FRAME_POINTER
 465
 466        testb   $3, CS(%rsp)
 467        jz      1f
 468
 469        /*
 470         * IRQ from user mode.  Switch to kernel gsbase and inform context
 471         * tracking that we're in kernel mode.
 472         */
 473        SWAPGS
 474
 475        /*
 476         * We need to tell lockdep that IRQs are off.  We can't do this until
 477         * we fix gsbase, and we should do it before enter_from_user_mode
 478         * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
 479         * the simplest way to handle it is to just call it twice if
 480         * we enter from user mode.  There's no reason to optimize this since
 481         * TRACE_IRQS_OFF is a no-op if lockdep is off.
 482         */
 483        TRACE_IRQS_OFF
 484
 485        CALL_enter_from_user_mode
 486
 4871:
 488        /*
 489         * Save previous stack pointer, optionally switch to interrupt stack.
 490         * irq_count is used to check if a CPU is already on an interrupt stack
 491         * or not. While this is essentially redundant with preempt_count it is
 492         * a little cheaper to use a separate counter in the PDA (short of
 493         * moving irq_enter into assembly, which would be too much work)
 494         */
 495        movq    %rsp, %rdi
 496        incl    PER_CPU_VAR(irq_count)
 497        cmovzq  PER_CPU_VAR(irq_stack_ptr), %rsp
 498        pushq   %rdi
 499        /* We entered an interrupt context - irqs are off: */
 500        TRACE_IRQS_OFF
 501
 502        call    \func   /* rdi points to pt_regs */
 503        .endm
 504
 505        /*
 506         * The interrupt stubs push (~vector+0x80) onto the stack and
 507         * then jump to common_interrupt.
 508         */
 509        .p2align CONFIG_X86_L1_CACHE_SHIFT
 510common_interrupt:
 511        ASM_CLAC
 512        addq    $-0x80, (%rsp)                  /* Adjust vector to [-256, -1] range */
 513        interrupt do_IRQ
 514        /* 0(%rsp): old RSP */
 515ret_from_intr:
 516        DISABLE_INTERRUPTS(CLBR_ANY)
 517        TRACE_IRQS_OFF
 518        decl    PER_CPU_VAR(irq_count)
 519
 520        /* Restore saved previous stack */
 521        popq    %rsp
 522
 523        testb   $3, CS(%rsp)
 524        jz      retint_kernel
 525
 526        /* Interrupt came from user space */
 527GLOBAL(retint_user)
 528        mov     %rsp,%rdi
 529        call    prepare_exit_to_usermode
 530        TRACE_IRQS_IRETQ
 531        SWAPGS
 532        jmp     restore_regs_and_iret
 533
 534/* Returning to kernel space */
 535retint_kernel:
 536#ifdef CONFIG_PREEMPT
 537        /* Interrupts are off */
 538        /* Check if we need preemption */
 539        bt      $9, EFLAGS(%rsp)                /* were interrupts off? */
 540        jnc     1f
 5410:      cmpl    $0, PER_CPU_VAR(__preempt_count)
 542        jnz     1f
 543        call    preempt_schedule_irq
 544        jmp     0b
 5451:
 546#endif
 547        /*
 548         * The iretq could re-enable interrupts:
 549         */
 550        TRACE_IRQS_IRETQ
 551
 552/*
 553 * At this label, code paths which return to kernel and to user,
 554 * which come from interrupts/exception and from syscalls, merge.
 555 */
 556GLOBAL(restore_regs_and_iret)
 557        RESTORE_EXTRA_REGS
 558restore_c_regs_and_iret:
 559        RESTORE_C_REGS
 560        REMOVE_PT_GPREGS_FROM_STACK 8
 561        INTERRUPT_RETURN
 562
 563ENTRY(native_iret)
 564        /*
 565         * Are we returning to a stack segment from the LDT?  Note: in
 566         * 64-bit mode SS:RSP on the exception stack is always valid.
 567         */
 568#ifdef CONFIG_X86_ESPFIX64
 569        testb   $4, (SS-RIP)(%rsp)
 570        jnz     native_irq_return_ldt
 571#endif
 572
 573.global native_irq_return_iret
 574native_irq_return_iret:
 575        /*
 576         * This may fault.  Non-paranoid faults on return to userspace are
 577         * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
 578         * Double-faults due to espfix64 are handled in do_double_fault.
 579         * Other faults here are fatal.
 580         */
 581        iretq
 582
 583#ifdef CONFIG_X86_ESPFIX64
 584native_irq_return_ldt:
 585        /*
 586         * We are running with user GSBASE.  All GPRs contain their user
 587         * values.  We have a percpu ESPFIX stack that is eight slots
 588         * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
 589         * of the ESPFIX stack.
 590         *
 591         * We clobber RAX and RDI in this code.  We stash RDI on the
 592         * normal stack and RAX on the ESPFIX stack.
 593         *
 594         * The ESPFIX stack layout we set up looks like this:
 595         *
 596         * --- top of ESPFIX stack ---
 597         * SS
 598         * RSP
 599         * RFLAGS
 600         * CS
 601         * RIP  <-- RSP points here when we're done
 602         * RAX  <-- espfix_waddr points here
 603         * --- bottom of ESPFIX stack ---
 604         */
 605
 606        pushq   %rdi                            /* Stash user RDI */
 607        SWAPGS
 608        movq    PER_CPU_VAR(espfix_waddr), %rdi
 609        movq    %rax, (0*8)(%rdi)               /* user RAX */
 610        movq    (1*8)(%rsp), %rax               /* user RIP */
 611        movq    %rax, (1*8)(%rdi)
 612        movq    (2*8)(%rsp), %rax               /* user CS */
 613        movq    %rax, (2*8)(%rdi)
 614        movq    (3*8)(%rsp), %rax               /* user RFLAGS */
 615        movq    %rax, (3*8)(%rdi)
 616        movq    (5*8)(%rsp), %rax               /* user SS */
 617        movq    %rax, (5*8)(%rdi)
 618        movq    (4*8)(%rsp), %rax               /* user RSP */
 619        movq    %rax, (4*8)(%rdi)
 620        /* Now RAX == RSP. */
 621
 622        andl    $0xffff0000, %eax               /* RAX = (RSP & 0xffff0000) */
 623        popq    %rdi                            /* Restore user RDI */
 624
 625        /*
 626         * espfix_stack[31:16] == 0.  The page tables are set up such that
 627         * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
 628         * espfix_waddr for any X.  That is, there are 65536 RO aliases of
 629         * the same page.  Set up RSP so that RSP[31:16] contains the
 630         * respective 16 bits of the /userspace/ RSP and RSP nonetheless
 631         * still points to an RO alias of the ESPFIX stack.
 632         */
 633        orq     PER_CPU_VAR(espfix_stack), %rax
 634        SWAPGS
 635        movq    %rax, %rsp
 636
 637        /*
 638         * At this point, we cannot write to the stack any more, but we can
 639         * still read.
 640         */
 641        popq    %rax                            /* Restore user RAX */
 642
 643        /*
 644         * RSP now points to an ordinary IRET frame, except that the page
 645         * is read-only and RSP[31:16] are preloaded with the userspace
 646         * values.  We can now IRET back to userspace.
 647         */
 648        jmp     native_irq_return_iret
 649#endif
 650END(common_interrupt)
 651
 652/*
 653 * APIC interrupts.
 654 */
 655.macro apicinterrupt3 num sym do_sym
 656ENTRY(\sym)
 657        ASM_CLAC
 658        pushq   $~(\num)
 659.Lcommon_\sym:
 660        interrupt \do_sym
 661        jmp     ret_from_intr
 662END(\sym)
 663.endm
 664
 665#ifdef CONFIG_TRACING
 666#define trace(sym) trace_##sym
 667#define smp_trace(sym) smp_trace_##sym
 668
 669.macro trace_apicinterrupt num sym
 670apicinterrupt3 \num trace(\sym) smp_trace(\sym)
 671.endm
 672#else
 673.macro trace_apicinterrupt num sym do_sym
 674.endm
 675#endif
 676
 677/* Make sure APIC interrupt handlers end up in the irqentry section: */
 678#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
 679# define PUSH_SECTION_IRQENTRY  .pushsection .irqentry.text, "ax"
 680# define POP_SECTION_IRQENTRY   .popsection
 681#else
 682# define PUSH_SECTION_IRQENTRY
 683# define POP_SECTION_IRQENTRY
 684#endif
 685
 686.macro apicinterrupt num sym do_sym
 687PUSH_SECTION_IRQENTRY
 688apicinterrupt3 \num \sym \do_sym
 689trace_apicinterrupt \num \sym
 690POP_SECTION_IRQENTRY
 691.endm
 692
 693#ifdef CONFIG_SMP
 694apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR          irq_move_cleanup_interrupt      smp_irq_move_cleanup_interrupt
 695apicinterrupt3 REBOOT_VECTOR                    reboot_interrupt                smp_reboot_interrupt
 696#endif
 697
 698#ifdef CONFIG_X86_UV
 699apicinterrupt3 UV_BAU_MESSAGE                   uv_bau_message_intr1            uv_bau_message_interrupt
 700#endif
 701
 702apicinterrupt LOCAL_TIMER_VECTOR                apic_timer_interrupt            smp_apic_timer_interrupt
 703apicinterrupt X86_PLATFORM_IPI_VECTOR           x86_platform_ipi                smp_x86_platform_ipi
 704
 705#ifdef CONFIG_HAVE_KVM
 706apicinterrupt3 POSTED_INTR_VECTOR               kvm_posted_intr_ipi             smp_kvm_posted_intr_ipi
 707apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR        kvm_posted_intr_wakeup_ipi      smp_kvm_posted_intr_wakeup_ipi
 708apicinterrupt3 POSTED_INTR_NESTED_VECTOR        kvm_posted_intr_nested_ipi      smp_kvm_posted_intr_nested_ipi
 709#endif
 710
 711#ifdef CONFIG_X86_MCE_THRESHOLD
 712apicinterrupt THRESHOLD_APIC_VECTOR             threshold_interrupt             smp_threshold_interrupt
 713#endif
 714
 715#ifdef CONFIG_X86_MCE_AMD
 716apicinterrupt DEFERRED_ERROR_VECTOR             deferred_error_interrupt        smp_deferred_error_interrupt
 717#endif
 718
 719#ifdef CONFIG_X86_THERMAL_VECTOR
 720apicinterrupt THERMAL_APIC_VECTOR               thermal_interrupt               smp_thermal_interrupt
 721#endif
 722
 723#ifdef CONFIG_SMP
 724apicinterrupt CALL_FUNCTION_SINGLE_VECTOR       call_function_single_interrupt  smp_call_function_single_interrupt
 725apicinterrupt CALL_FUNCTION_VECTOR              call_function_interrupt         smp_call_function_interrupt
 726apicinterrupt RESCHEDULE_VECTOR                 reschedule_interrupt            smp_reschedule_interrupt
 727#endif
 728
 729apicinterrupt ERROR_APIC_VECTOR                 error_interrupt                 smp_error_interrupt
 730apicinterrupt SPURIOUS_APIC_VECTOR              spurious_interrupt              smp_spurious_interrupt
 731
 732#ifdef CONFIG_IRQ_WORK
 733apicinterrupt IRQ_WORK_VECTOR                   irq_work_interrupt              smp_irq_work_interrupt
 734#endif
 735
 736/*
 737 * Exception entry points.
 738 */
 739#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
 740
 741.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
 742ENTRY(\sym)
 743        /* Sanity check */
 744        .if \shift_ist != -1 && \paranoid == 0
 745        .error "using shift_ist requires paranoid=1"
 746        .endif
 747
 748        ASM_CLAC
 749        PARAVIRT_ADJUST_EXCEPTION_FRAME
 750
 751        .ifeq \has_error_code
 752        pushq   $-1                             /* ORIG_RAX: no syscall to restart */
 753        .endif
 754
 755        ALLOC_PT_GPREGS_ON_STACK
 756
 757        .if \paranoid
 758        .if \paranoid == 1
 759        testb   $3, CS(%rsp)                    /* If coming from userspace, switch stacks */
 760        jnz     1f
 761        .endif
 762        call    paranoid_entry
 763        .else
 764        call    error_entry
 765        .endif
 766        /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
 767
 768        .if \paranoid
 769        .if \shift_ist != -1
 770        TRACE_IRQS_OFF_DEBUG                    /* reload IDT in case of recursion */
 771        .else
 772        TRACE_IRQS_OFF
 773        .endif
 774        .endif
 775
 776        movq    %rsp, %rdi                      /* pt_regs pointer */
 777
 778        .if \has_error_code
 779        movq    ORIG_RAX(%rsp), %rsi            /* get error code */
 780        movq    $-1, ORIG_RAX(%rsp)             /* no syscall to restart */
 781        .else
 782        xorl    %esi, %esi                      /* no error code */
 783        .endif
 784
 785        .if \shift_ist != -1
 786        subq    $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
 787        .endif
 788
 789        call    \do_sym
 790
 791        .if \shift_ist != -1
 792        addq    $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
 793        .endif
 794
 795        /* these procedures expect "no swapgs" flag in ebx */
 796        .if \paranoid
 797        jmp     paranoid_exit
 798        .else
 799        jmp     error_exit
 800        .endif
 801
 802        .if \paranoid == 1
 803        /*
 804         * Paranoid entry from userspace.  Switch stacks and treat it
 805         * as a normal entry.  This means that paranoid handlers
 806         * run in real process context if user_mode(regs).
 807         */
 8081:
 809        call    error_entry
 810
 811
 812        movq    %rsp, %rdi                      /* pt_regs pointer */
 813        call    sync_regs
 814        movq    %rax, %rsp                      /* switch stack */
 815
 816        movq    %rsp, %rdi                      /* pt_regs pointer */
 817
 818        .if \has_error_code
 819        movq    ORIG_RAX(%rsp), %rsi            /* get error code */
 820        movq    $-1, ORIG_RAX(%rsp)             /* no syscall to restart */
 821        .else
 822        xorl    %esi, %esi                      /* no error code */
 823        .endif
 824
 825        call    \do_sym
 826
 827        jmp     error_exit                      /* %ebx: no swapgs flag */
 828        .endif
 829END(\sym)
 830.endm
 831
 832#ifdef CONFIG_TRACING
 833.macro trace_idtentry sym do_sym has_error_code:req
 834idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
 835idtentry \sym \do_sym has_error_code=\has_error_code
 836.endm
 837#else
 838.macro trace_idtentry sym do_sym has_error_code:req
 839idtentry \sym \do_sym has_error_code=\has_error_code
 840.endm
 841#endif
 842
 843idtentry divide_error                   do_divide_error                 has_error_code=0
 844idtentry overflow                       do_overflow                     has_error_code=0
 845idtentry bounds                         do_bounds                       has_error_code=0
 846idtentry invalid_op                     do_invalid_op                   has_error_code=0
 847idtentry device_not_available           do_device_not_available         has_error_code=0
 848idtentry double_fault                   do_double_fault                 has_error_code=1 paranoid=2
 849idtentry coprocessor_segment_overrun    do_coprocessor_segment_overrun  has_error_code=0
 850idtentry invalid_TSS                    do_invalid_TSS                  has_error_code=1
 851idtentry segment_not_present            do_segment_not_present          has_error_code=1
 852idtentry spurious_interrupt_bug         do_spurious_interrupt_bug       has_error_code=0
 853idtentry coprocessor_error              do_coprocessor_error            has_error_code=0
 854idtentry alignment_check                do_alignment_check              has_error_code=1
 855idtentry simd_coprocessor_error         do_simd_coprocessor_error       has_error_code=0
 856
 857
 858        /*
 859         * Reload gs selector with exception handling
 860         * edi:  new selector
 861         */
 862ENTRY(native_load_gs_index)
 863        pushfq
 864        DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
 865        SWAPGS
 866.Lgs_change:
 867        movl    %edi, %gs
 8682:      ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
 869        SWAPGS
 870        popfq
 871        ret
 872END(native_load_gs_index)
 873EXPORT_SYMBOL(native_load_gs_index)
 874
 875        _ASM_EXTABLE(.Lgs_change, bad_gs)
 876        .section .fixup, "ax"
 877        /* running with kernelgs */
 878bad_gs:
 879        SWAPGS                                  /* switch back to user gs */
 880.macro ZAP_GS
 881        /* This can't be a string because the preprocessor needs to see it. */
 882        movl $__USER_DS, %eax
 883        movl %eax, %gs
 884.endm
 885        ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
 886        xorl    %eax, %eax
 887        movl    %eax, %gs
 888        jmp     2b
 889        .previous
 890
 891/* Call softirq on interrupt stack. Interrupts are off. */
 892ENTRY(do_softirq_own_stack)
 893        pushq   %rbp
 894        mov     %rsp, %rbp
 895        incl    PER_CPU_VAR(irq_count)
 896        cmove   PER_CPU_VAR(irq_stack_ptr), %rsp
 897        push    %rbp                            /* frame pointer backlink */
 898        call    __do_softirq
 899        leaveq
 900        decl    PER_CPU_VAR(irq_count)
 901        ret
 902END(do_softirq_own_stack)
 903
 904#ifdef CONFIG_XEN
 905idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
 906
 907/*
 908 * A note on the "critical region" in our callback handler.
 909 * We want to avoid stacking callback handlers due to events occurring
 910 * during handling of the last event. To do this, we keep events disabled
 911 * until we've done all processing. HOWEVER, we must enable events before
 912 * popping the stack frame (can't be done atomically) and so it would still
 913 * be possible to get enough handler activations to overflow the stack.
 914 * Although unlikely, bugs of that kind are hard to track down, so we'd
 915 * like to avoid the possibility.
 916 * So, on entry to the handler we detect whether we interrupted an
 917 * existing activation in its critical region -- if so, we pop the current
 918 * activation and restart the handler using the previous one.
 919 */
 920ENTRY(xen_do_hypervisor_callback)               /* do_hypervisor_callback(struct *pt_regs) */
 921
 922/*
 923 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 924 * see the correct pointer to the pt_regs
 925 */
 926        movq    %rdi, %rsp                      /* we don't return, adjust the stack frame */
 92711:     incl    PER_CPU_VAR(irq_count)
 928        movq    %rsp, %rbp
 929        cmovzq  PER_CPU_VAR(irq_stack_ptr), %rsp
 930        pushq   %rbp                            /* frame pointer backlink */
 931        call    xen_evtchn_do_upcall
 932        popq    %rsp
 933        decl    PER_CPU_VAR(irq_count)
 934#ifndef CONFIG_PREEMPT
 935        call    xen_maybe_preempt_hcall
 936#endif
 937        jmp     error_exit
 938END(xen_do_hypervisor_callback)
 939
 940/*
 941 * Hypervisor uses this for application faults while it executes.
 942 * We get here for two reasons:
 943 *  1. Fault while reloading DS, ES, FS or GS
 944 *  2. Fault while executing IRET
 945 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 946 * registers that could be reloaded and zeroed the others.
 947 * Category 2 we fix up by killing the current process. We cannot use the
 948 * normal Linux return path in this case because if we use the IRET hypercall
 949 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 950 * We distinguish between categories by comparing each saved segment register
 951 * with its current contents: any discrepancy means we in category 1.
 952 */
 953ENTRY(xen_failsafe_callback)
 954        movl    %ds, %ecx
 955        cmpw    %cx, 0x10(%rsp)
 956        jne     1f
 957        movl    %es, %ecx
 958        cmpw    %cx, 0x18(%rsp)
 959        jne     1f
 960        movl    %fs, %ecx
 961        cmpw    %cx, 0x20(%rsp)
 962        jne     1f
 963        movl    %gs, %ecx
 964        cmpw    %cx, 0x28(%rsp)
 965        jne     1f
 966        /* All segments match their saved values => Category 2 (Bad IRET). */
 967        movq    (%rsp), %rcx
 968        movq    8(%rsp), %r11
 969        addq    $0x30, %rsp
 970        pushq   $0                              /* RIP */
 971        pushq   %r11
 972        pushq   %rcx
 973        jmp     general_protection
 9741:      /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
 975        movq    (%rsp), %rcx
 976        movq    8(%rsp), %r11
 977        addq    $0x30, %rsp
 978        pushq   $-1 /* orig_ax = -1 => not a system call */
 979        ALLOC_PT_GPREGS_ON_STACK
 980        SAVE_C_REGS
 981        SAVE_EXTRA_REGS
 982        ENCODE_FRAME_POINTER
 983        jmp     error_exit
 984END(xen_failsafe_callback)
 985
 986apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
 987        xen_hvm_callback_vector xen_evtchn_do_upcall
 988
 989#endif /* CONFIG_XEN */
 990
 991#if IS_ENABLED(CONFIG_HYPERV)
 992apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
 993        hyperv_callback_vector hyperv_vector_handler
 994#endif /* CONFIG_HYPERV */
 995
 996idtentry debug                  do_debug                has_error_code=0        paranoid=1 shift_ist=DEBUG_STACK
 997idtentry int3                   do_int3                 has_error_code=0        paranoid=1 shift_ist=DEBUG_STACK
 998idtentry stack_segment          do_stack_segment        has_error_code=1
 999
1000#ifdef CONFIG_XEN
1001idtentry xen_debug              do_debug                has_error_code=0
1002idtentry xen_int3               do_int3                 has_error_code=0
1003idtentry xen_stack_segment      do_stack_segment        has_error_code=1
1004#endif
1005
1006idtentry general_protection     do_general_protection   has_error_code=1
1007trace_idtentry page_fault       do_page_fault           has_error_code=1
1008
1009#ifdef CONFIG_KVM_GUEST
1010idtentry async_page_fault       do_async_page_fault     has_error_code=1
1011#endif
1012
1013#ifdef CONFIG_X86_MCE
1014idtentry machine_check                                  has_error_code=0        paranoid=1 do_sym=*machine_check_vector(%rip)
1015#endif
1016
1017/*
1018 * Save all registers in pt_regs, and switch gs if needed.
1019 * Use slow, but surefire "are we in kernel?" check.
1020 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1021 */
1022ENTRY(paranoid_entry)
1023        cld
1024        SAVE_C_REGS 8
1025        SAVE_EXTRA_REGS 8
1026        ENCODE_FRAME_POINTER 8
1027        movl    $1, %ebx
1028        movl    $MSR_GS_BASE, %ecx
1029        rdmsr
1030        testl   %edx, %edx
1031        js      1f                              /* negative -> in kernel */
1032        SWAPGS
1033        xorl    %ebx, %ebx
10341:      ret
1035END(paranoid_entry)
1036
1037/*
1038 * "Paranoid" exit path from exception stack.  This is invoked
1039 * only on return from non-NMI IST interrupts that came
1040 * from kernel space.
1041 *
1042 * We may be returning to very strange contexts (e.g. very early
1043 * in syscall entry), so checking for preemption here would
1044 * be complicated.  Fortunately, we there's no good reason
1045 * to try to handle preemption here.
1046 *
1047 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1048 */
1049ENTRY(paranoid_exit)
1050        DISABLE_INTERRUPTS(CLBR_ANY)
1051        TRACE_IRQS_OFF_DEBUG
1052        testl   %ebx, %ebx                      /* swapgs needed? */
1053        jnz     paranoid_exit_no_swapgs
1054        TRACE_IRQS_IRETQ
1055        SWAPGS_UNSAFE_STACK
1056        jmp     paranoid_exit_restore
1057paranoid_exit_no_swapgs:
1058        TRACE_IRQS_IRETQ_DEBUG
1059paranoid_exit_restore:
1060        RESTORE_EXTRA_REGS
1061        RESTORE_C_REGS
1062        REMOVE_PT_GPREGS_FROM_STACK 8
1063        INTERRUPT_RETURN
1064END(paranoid_exit)
1065
1066/*
1067 * Save all registers in pt_regs, and switch gs if needed.
1068 * Return: EBX=0: came from user mode; EBX=1: otherwise
1069 */
1070ENTRY(error_entry)
1071        cld
1072        SAVE_C_REGS 8
1073        SAVE_EXTRA_REGS 8
1074        ENCODE_FRAME_POINTER 8
1075        xorl    %ebx, %ebx
1076        testb   $3, CS+8(%rsp)
1077        jz      .Lerror_kernelspace
1078
1079        /*
1080         * We entered from user mode or we're pretending to have entered
1081         * from user mode due to an IRET fault.
1082         */
1083        SWAPGS
1084
1085.Lerror_entry_from_usermode_after_swapgs:
1086        /*
1087         * We need to tell lockdep that IRQs are off.  We can't do this until
1088         * we fix gsbase, and we should do it before enter_from_user_mode
1089         * (which can take locks).
1090         */
1091        TRACE_IRQS_OFF
1092        CALL_enter_from_user_mode
1093        ret
1094
1095.Lerror_entry_done:
1096        TRACE_IRQS_OFF
1097        ret
1098
1099        /*
1100         * There are two places in the kernel that can potentially fault with
1101         * usergs. Handle them here.  B stepping K8s sometimes report a
1102         * truncated RIP for IRET exceptions returning to compat mode. Check
1103         * for these here too.
1104         */
1105.Lerror_kernelspace:
1106        incl    %ebx
1107        leaq    native_irq_return_iret(%rip), %rcx
1108        cmpq    %rcx, RIP+8(%rsp)
1109        je      .Lerror_bad_iret
1110        movl    %ecx, %eax                      /* zero extend */
1111        cmpq    %rax, RIP+8(%rsp)
1112        je      .Lbstep_iret
1113        cmpq    $.Lgs_change, RIP+8(%rsp)
1114        jne     .Lerror_entry_done
1115
1116        /*
1117         * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1118         * gsbase and proceed.  We'll fix up the exception and land in
1119         * .Lgs_change's error handler with kernel gsbase.
1120         */
1121        SWAPGS
1122        jmp .Lerror_entry_done
1123
1124.Lbstep_iret:
1125        /* Fix truncated RIP */
1126        movq    %rcx, RIP+8(%rsp)
1127        /* fall through */
1128
1129.Lerror_bad_iret:
1130        /*
1131         * We came from an IRET to user mode, so we have user gsbase.
1132         * Switch to kernel gsbase:
1133         */
1134        SWAPGS
1135
1136        /*
1137         * Pretend that the exception came from user mode: set up pt_regs
1138         * as if we faulted immediately after IRET and clear EBX so that
1139         * error_exit knows that we will be returning to user mode.
1140         */
1141        mov     %rsp, %rdi
1142        call    fixup_bad_iret
1143        mov     %rax, %rsp
1144        decl    %ebx
1145        jmp     .Lerror_entry_from_usermode_after_swapgs
1146END(error_entry)
1147
1148
1149/*
1150 * On entry, EBX is a "return to kernel mode" flag:
1151 *   1: already in kernel mode, don't need SWAPGS
1152 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1153 */
1154ENTRY(error_exit)
1155        DISABLE_INTERRUPTS(CLBR_ANY)
1156        TRACE_IRQS_OFF
1157        testl   %ebx, %ebx
1158        jnz     retint_kernel
1159        jmp     retint_user
1160END(error_exit)
1161
1162/* Runs on exception stack */
1163ENTRY(nmi)
1164        /*
1165         * Fix up the exception frame if we're on Xen.
1166         * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1167         * one value to the stack on native, so it may clobber the rdx
1168         * scratch slot, but it won't clobber any of the important
1169         * slots past it.
1170         *
1171         * Xen is a different story, because the Xen frame itself overlaps
1172         * the "NMI executing" variable.
1173         */
1174        PARAVIRT_ADJUST_EXCEPTION_FRAME
1175
1176        /*
1177         * We allow breakpoints in NMIs. If a breakpoint occurs, then
1178         * the iretq it performs will take us out of NMI context.
1179         * This means that we can have nested NMIs where the next
1180         * NMI is using the top of the stack of the previous NMI. We
1181         * can't let it execute because the nested NMI will corrupt the
1182         * stack of the previous NMI. NMI handlers are not re-entrant
1183         * anyway.
1184         *
1185         * To handle this case we do the following:
1186         *  Check the a special location on the stack that contains
1187         *  a variable that is set when NMIs are executing.
1188         *  The interrupted task's stack is also checked to see if it
1189         *  is an NMI stack.
1190         *  If the variable is not set and the stack is not the NMI
1191         *  stack then:
1192         *    o Set the special variable on the stack
1193         *    o Copy the interrupt frame into an "outermost" location on the
1194         *      stack
1195         *    o Copy the interrupt frame into an "iret" location on the stack
1196         *    o Continue processing the NMI
1197         *  If the variable is set or the previous stack is the NMI stack:
1198         *    o Modify the "iret" location to jump to the repeat_nmi
1199         *    o return back to the first NMI
1200         *
1201         * Now on exit of the first NMI, we first clear the stack variable
1202         * The NMI stack will tell any nested NMIs at that point that it is
1203         * nested. Then we pop the stack normally with iret, and if there was
1204         * a nested NMI that updated the copy interrupt stack frame, a
1205         * jump will be made to the repeat_nmi code that will handle the second
1206         * NMI.
1207         *
1208         * However, espfix prevents us from directly returning to userspace
1209         * with a single IRET instruction.  Similarly, IRET to user mode
1210         * can fault.  We therefore handle NMIs from user space like
1211         * other IST entries.
1212         */
1213
1214        ASM_CLAC
1215
1216        /* Use %rdx as our temp variable throughout */
1217        pushq   %rdx
1218
1219        testb   $3, CS-RIP+8(%rsp)
1220        jz      .Lnmi_from_kernel
1221
1222        /*
1223         * NMI from user mode.  We need to run on the thread stack, but we
1224         * can't go through the normal entry paths: NMIs are masked, and
1225         * we don't want to enable interrupts, because then we'll end
1226         * up in an awkward situation in which IRQs are on but NMIs
1227         * are off.
1228         *
1229         * We also must not push anything to the stack before switching
1230         * stacks lest we corrupt the "NMI executing" variable.
1231         */
1232
1233        SWAPGS_UNSAFE_STACK
1234        cld
1235        movq    %rsp, %rdx
1236        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1237        pushq   5*8(%rdx)       /* pt_regs->ss */
1238        pushq   4*8(%rdx)       /* pt_regs->rsp */
1239        pushq   3*8(%rdx)       /* pt_regs->flags */
1240        pushq   2*8(%rdx)       /* pt_regs->cs */
1241        pushq   1*8(%rdx)       /* pt_regs->rip */
1242        pushq   $-1             /* pt_regs->orig_ax */
1243        pushq   %rdi            /* pt_regs->di */
1244        pushq   %rsi            /* pt_regs->si */
1245        pushq   (%rdx)          /* pt_regs->dx */
1246        pushq   %rcx            /* pt_regs->cx */
1247        pushq   %rax            /* pt_regs->ax */
1248        pushq   %r8             /* pt_regs->r8 */
1249        pushq   %r9             /* pt_regs->r9 */
1250        pushq   %r10            /* pt_regs->r10 */
1251        pushq   %r11            /* pt_regs->r11 */
1252        pushq   %rbx            /* pt_regs->rbx */
1253        pushq   %rbp            /* pt_regs->rbp */
1254        pushq   %r12            /* pt_regs->r12 */
1255        pushq   %r13            /* pt_regs->r13 */
1256        pushq   %r14            /* pt_regs->r14 */
1257        pushq   %r15            /* pt_regs->r15 */
1258        ENCODE_FRAME_POINTER
1259
1260        /*
1261         * At this point we no longer need to worry about stack damage
1262         * due to nesting -- we're on the normal thread stack and we're
1263         * done with the NMI stack.
1264         */
1265
1266        movq    %rsp, %rdi
1267        movq    $-1, %rsi
1268        call    do_nmi
1269
1270        /*
1271         * Return back to user mode.  We must *not* do the normal exit
1272         * work, because we don't want to enable interrupts.
1273         */
1274        SWAPGS
1275        jmp     restore_regs_and_iret
1276
1277.Lnmi_from_kernel:
1278        /*
1279         * Here's what our stack frame will look like:
1280         * +---------------------------------------------------------+
1281         * | original SS                                             |
1282         * | original Return RSP                                     |
1283         * | original RFLAGS                                         |
1284         * | original CS                                             |
1285         * | original RIP                                            |
1286         * +---------------------------------------------------------+
1287         * | temp storage for rdx                                    |
1288         * +---------------------------------------------------------+
1289         * | "NMI executing" variable                                |
1290         * +---------------------------------------------------------+
1291         * | iret SS          } Copied from "outermost" frame        |
1292         * | iret Return RSP  } on each loop iteration; overwritten  |
1293         * | iret RFLAGS      } by a nested NMI to force another     |
1294         * | iret CS          } iteration if needed.                 |
1295         * | iret RIP         }                                      |
1296         * +---------------------------------------------------------+
1297         * | outermost SS          } initialized in first_nmi;       |
1298         * | outermost Return RSP  } will not be changed before      |
1299         * | outermost RFLAGS      } NMI processing is done.         |
1300         * | outermost CS          } Copied to "iret" frame on each  |
1301         * | outermost RIP         } iteration.                      |
1302         * +---------------------------------------------------------+
1303         * | pt_regs                                                 |
1304         * +---------------------------------------------------------+
1305         *
1306         * The "original" frame is used by hardware.  Before re-enabling
1307         * NMIs, we need to be done with it, and we need to leave enough
1308         * space for the asm code here.
1309         *
1310         * We return by executing IRET while RSP points to the "iret" frame.
1311         * That will either return for real or it will loop back into NMI
1312         * processing.
1313         *
1314         * The "outermost" frame is copied to the "iret" frame on each
1315         * iteration of the loop, so each iteration starts with the "iret"
1316         * frame pointing to the final return target.
1317         */
1318
1319        /*
1320         * Determine whether we're a nested NMI.
1321         *
1322         * If we interrupted kernel code between repeat_nmi and
1323         * end_repeat_nmi, then we are a nested NMI.  We must not
1324         * modify the "iret" frame because it's being written by
1325         * the outer NMI.  That's okay; the outer NMI handler is
1326         * about to about to call do_nmi anyway, so we can just
1327         * resume the outer NMI.
1328         */
1329
1330        movq    $repeat_nmi, %rdx
1331        cmpq    8(%rsp), %rdx
1332        ja      1f
1333        movq    $end_repeat_nmi, %rdx
1334        cmpq    8(%rsp), %rdx
1335        ja      nested_nmi_out
13361:
1337
1338        /*
1339         * Now check "NMI executing".  If it's set, then we're nested.
1340         * This will not detect if we interrupted an outer NMI just
1341         * before IRET.
1342         */
1343        cmpl    $1, -8(%rsp)
1344        je      nested_nmi
1345
1346        /*
1347         * Now test if the previous stack was an NMI stack.  This covers
1348         * the case where we interrupt an outer NMI after it clears
1349         * "NMI executing" but before IRET.  We need to be careful, though:
1350         * there is one case in which RSP could point to the NMI stack
1351         * despite there being no NMI active: naughty userspace controls
1352         * RSP at the very beginning of the SYSCALL targets.  We can
1353         * pull a fast one on naughty userspace, though: we program
1354         * SYSCALL to mask DF, so userspace cannot cause DF to be set
1355         * if it controls the kernel's RSP.  We set DF before we clear
1356         * "NMI executing".
1357         */
1358        lea     6*8(%rsp), %rdx
1359        /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1360        cmpq    %rdx, 4*8(%rsp)
1361        /* If the stack pointer is above the NMI stack, this is a normal NMI */
1362        ja      first_nmi
1363
1364        subq    $EXCEPTION_STKSZ, %rdx
1365        cmpq    %rdx, 4*8(%rsp)
1366        /* If it is below the NMI stack, it is a normal NMI */
1367        jb      first_nmi
1368
1369        /* Ah, it is within the NMI stack. */
1370
1371        testb   $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1372        jz      first_nmi       /* RSP was user controlled. */
1373
1374        /* This is a nested NMI. */
1375
1376nested_nmi:
1377        /*
1378         * Modify the "iret" frame to point to repeat_nmi, forcing another
1379         * iteration of NMI handling.
1380         */
1381        subq    $8, %rsp
1382        leaq    -10*8(%rsp), %rdx
1383        pushq   $__KERNEL_DS
1384        pushq   %rdx
1385        pushfq
1386        pushq   $__KERNEL_CS
1387        pushq   $repeat_nmi
1388
1389        /* Put stack back */
1390        addq    $(6*8), %rsp
1391
1392nested_nmi_out:
1393        popq    %rdx
1394
1395        /* We are returning to kernel mode, so this cannot result in a fault. */
1396        INTERRUPT_RETURN
1397
1398first_nmi:
1399        /* Restore rdx. */
1400        movq    (%rsp), %rdx
1401
1402        /* Make room for "NMI executing". */
1403        pushq   $0
1404
1405        /* Leave room for the "iret" frame */
1406        subq    $(5*8), %rsp
1407
1408        /* Copy the "original" frame to the "outermost" frame */
1409        .rept 5
1410        pushq   11*8(%rsp)
1411        .endr
1412
1413        /* Everything up to here is safe from nested NMIs */
1414
1415#ifdef CONFIG_DEBUG_ENTRY
1416        /*
1417         * For ease of testing, unmask NMIs right away.  Disabled by
1418         * default because IRET is very expensive.
1419         */
1420        pushq   $0              /* SS */
1421        pushq   %rsp            /* RSP (minus 8 because of the previous push) */
1422        addq    $8, (%rsp)      /* Fix up RSP */
1423        pushfq                  /* RFLAGS */
1424        pushq   $__KERNEL_CS    /* CS */
1425        pushq   $1f             /* RIP */
1426        INTERRUPT_RETURN        /* continues at repeat_nmi below */
14271:
1428#endif
1429
1430repeat_nmi:
1431        /*
1432         * If there was a nested NMI, the first NMI's iret will return
1433         * here. But NMIs are still enabled and we can take another
1434         * nested NMI. The nested NMI checks the interrupted RIP to see
1435         * if it is between repeat_nmi and end_repeat_nmi, and if so
1436         * it will just return, as we are about to repeat an NMI anyway.
1437         * This makes it safe to copy to the stack frame that a nested
1438         * NMI will update.
1439         *
1440         * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1441         * we're repeating an NMI, gsbase has the same value that it had on
1442         * the first iteration.  paranoid_entry will load the kernel
1443         * gsbase if needed before we call do_nmi.  "NMI executing"
1444         * is zero.
1445         */
1446        movq    $1, 10*8(%rsp)          /* Set "NMI executing". */
1447
1448        /*
1449         * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1450         * here must not modify the "iret" frame while we're writing to
1451         * it or it will end up containing garbage.
1452         */
1453        addq    $(10*8), %rsp
1454        .rept 5
1455        pushq   -6*8(%rsp)
1456        .endr
1457        subq    $(5*8), %rsp
1458end_repeat_nmi:
1459
1460        /*
1461         * Everything below this point can be preempted by a nested NMI.
1462         * If this happens, then the inner NMI will change the "iret"
1463         * frame to point back to repeat_nmi.
1464         */
1465        pushq   $-1                             /* ORIG_RAX: no syscall to restart */
1466        ALLOC_PT_GPREGS_ON_STACK
1467
1468        /*
1469         * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1470         * as we should not be calling schedule in NMI context.
1471         * Even with normal interrupts enabled. An NMI should not be
1472         * setting NEED_RESCHED or anything that normal interrupts and
1473         * exceptions might do.
1474         */
1475        call    paranoid_entry
1476
1477        /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1478        movq    %rsp, %rdi
1479        movq    $-1, %rsi
1480        call    do_nmi
1481
1482        testl   %ebx, %ebx                      /* swapgs needed? */
1483        jnz     nmi_restore
1484nmi_swapgs:
1485        SWAPGS_UNSAFE_STACK
1486nmi_restore:
1487        RESTORE_EXTRA_REGS
1488        RESTORE_C_REGS
1489
1490        /* Point RSP at the "iret" frame. */
1491        REMOVE_PT_GPREGS_FROM_STACK 6*8
1492
1493        /*
1494         * Clear "NMI executing".  Set DF first so that we can easily
1495         * distinguish the remaining code between here and IRET from
1496         * the SYSCALL entry and exit paths.  On a native kernel, we
1497         * could just inspect RIP, but, on paravirt kernels,
1498         * INTERRUPT_RETURN can translate into a jump into a
1499         * hypercall page.
1500         */
1501        std
1502        movq    $0, 5*8(%rsp)           /* clear "NMI executing" */
1503
1504        /*
1505         * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1506         * stack in a single instruction.  We are returning to kernel
1507         * mode, so this cannot result in a fault.
1508         */
1509        INTERRUPT_RETURN
1510END(nmi)
1511
1512ENTRY(ignore_sysret)
1513        mov     $-ENOSYS, %eax
1514        sysret
1515END(ignore_sysret)
1516
1517ENTRY(rewind_stack_do_exit)
1518        /* Prevent any naive code from trying to unwind to our caller. */
1519        xorl    %ebp, %ebp
1520
1521        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rax
1522        leaq    -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1523
1524        call    do_exit
15251:      jmp 1b
1526END(rewind_stack_do_exit)
1527