linux/arch/x86/kernel/crash.c
<<
>>
Prefs
   1/*
   2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
   3 *
   4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
   5 *
   6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
   7 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
   8 * Authors:
   9 *      Vivek Goyal <vgoyal@redhat.com>
  10 *
  11 */
  12
  13#define pr_fmt(fmt)     "kexec: " fmt
  14
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/smp.h>
  18#include <linux/reboot.h>
  19#include <linux/kexec.h>
  20#include <linux/delay.h>
  21#include <linux/elf.h>
  22#include <linux/elfcore.h>
  23#include <linux/export.h>
  24#include <linux/slab.h>
  25#include <linux/vmalloc.h>
  26
  27#include <asm/processor.h>
  28#include <asm/hardirq.h>
  29#include <asm/nmi.h>
  30#include <asm/hw_irq.h>
  31#include <asm/apic.h>
  32#include <asm/e820/types.h>
  33#include <asm/io_apic.h>
  34#include <asm/hpet.h>
  35#include <linux/kdebug.h>
  36#include <asm/cpu.h>
  37#include <asm/reboot.h>
  38#include <asm/virtext.h>
  39#include <asm/intel_pt.h>
  40
  41/* Alignment required for elf header segment */
  42#define ELF_CORE_HEADER_ALIGN   4096
  43
  44/* This primarily represents number of split ranges due to exclusion */
  45#define CRASH_MAX_RANGES        16
  46
  47struct crash_mem_range {
  48        u64 start, end;
  49};
  50
  51struct crash_mem {
  52        unsigned int nr_ranges;
  53        struct crash_mem_range ranges[CRASH_MAX_RANGES];
  54};
  55
  56/* Misc data about ram ranges needed to prepare elf headers */
  57struct crash_elf_data {
  58        struct kimage *image;
  59        /*
  60         * Total number of ram ranges we have after various adjustments for
  61         * crash reserved region, etc.
  62         */
  63        unsigned int max_nr_ranges;
  64
  65        /* Pointer to elf header */
  66        void *ehdr;
  67        /* Pointer to next phdr */
  68        void *bufp;
  69        struct crash_mem mem;
  70};
  71
  72/* Used while preparing memory map entries for second kernel */
  73struct crash_memmap_data {
  74        struct boot_params *params;
  75        /* Type of memory */
  76        unsigned int type;
  77};
  78
  79/*
  80 * This is used to VMCLEAR all VMCSs loaded on the
  81 * processor. And when loading kvm_intel module, the
  82 * callback function pointer will be assigned.
  83 *
  84 * protected by rcu.
  85 */
  86crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
  87EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
  88unsigned long crash_zero_bytes;
  89
  90static inline void cpu_crash_vmclear_loaded_vmcss(void)
  91{
  92        crash_vmclear_fn *do_vmclear_operation = NULL;
  93
  94        rcu_read_lock();
  95        do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
  96        if (do_vmclear_operation)
  97                do_vmclear_operation();
  98        rcu_read_unlock();
  99}
 100
 101#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
 102
 103static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
 104{
 105#ifdef CONFIG_X86_32
 106        struct pt_regs fixed_regs;
 107
 108        if (!user_mode(regs)) {
 109                crash_fixup_ss_esp(&fixed_regs, regs);
 110                regs = &fixed_regs;
 111        }
 112#endif
 113        crash_save_cpu(regs, cpu);
 114
 115        /*
 116         * VMCLEAR VMCSs loaded on all cpus if needed.
 117         */
 118        cpu_crash_vmclear_loaded_vmcss();
 119
 120        /* Disable VMX or SVM if needed.
 121         *
 122         * We need to disable virtualization on all CPUs.
 123         * Having VMX or SVM enabled on any CPU may break rebooting
 124         * after the kdump kernel has finished its task.
 125         */
 126        cpu_emergency_vmxoff();
 127        cpu_emergency_svm_disable();
 128
 129        /*
 130         * Disable Intel PT to stop its logging
 131         */
 132        cpu_emergency_stop_pt();
 133
 134        disable_local_APIC();
 135}
 136
 137void kdump_nmi_shootdown_cpus(void)
 138{
 139        nmi_shootdown_cpus(kdump_nmi_callback);
 140
 141        disable_local_APIC();
 142}
 143
 144/* Override the weak function in kernel/panic.c */
 145void crash_smp_send_stop(void)
 146{
 147        static int cpus_stopped;
 148
 149        if (cpus_stopped)
 150                return;
 151
 152        if (smp_ops.crash_stop_other_cpus)
 153                smp_ops.crash_stop_other_cpus();
 154        else
 155                smp_send_stop();
 156
 157        cpus_stopped = 1;
 158}
 159
 160#else
 161void crash_smp_send_stop(void)
 162{
 163        /* There are no cpus to shootdown */
 164}
 165#endif
 166
 167void native_machine_crash_shutdown(struct pt_regs *regs)
 168{
 169        /* This function is only called after the system
 170         * has panicked or is otherwise in a critical state.
 171         * The minimum amount of code to allow a kexec'd kernel
 172         * to run successfully needs to happen here.
 173         *
 174         * In practice this means shooting down the other cpus in
 175         * an SMP system.
 176         */
 177        /* The kernel is broken so disable interrupts */
 178        local_irq_disable();
 179
 180        crash_smp_send_stop();
 181
 182        /*
 183         * VMCLEAR VMCSs loaded on this cpu if needed.
 184         */
 185        cpu_crash_vmclear_loaded_vmcss();
 186
 187        /* Booting kdump kernel with VMX or SVM enabled won't work,
 188         * because (among other limitations) we can't disable paging
 189         * with the virt flags.
 190         */
 191        cpu_emergency_vmxoff();
 192        cpu_emergency_svm_disable();
 193
 194        /*
 195         * Disable Intel PT to stop its logging
 196         */
 197        cpu_emergency_stop_pt();
 198
 199#ifdef CONFIG_X86_IO_APIC
 200        /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
 201        ioapic_zap_locks();
 202        disable_IO_APIC();
 203#endif
 204        lapic_shutdown();
 205#ifdef CONFIG_HPET_TIMER
 206        hpet_disable();
 207#endif
 208        crash_save_cpu(regs, safe_smp_processor_id());
 209}
 210
 211#ifdef CONFIG_KEXEC_FILE
 212static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
 213{
 214        unsigned int *nr_ranges = arg;
 215
 216        (*nr_ranges)++;
 217        return 0;
 218}
 219
 220
 221/* Gather all the required information to prepare elf headers for ram regions */
 222static void fill_up_crash_elf_data(struct crash_elf_data *ced,
 223                                   struct kimage *image)
 224{
 225        unsigned int nr_ranges = 0;
 226
 227        ced->image = image;
 228
 229        walk_system_ram_res(0, -1, &nr_ranges,
 230                                get_nr_ram_ranges_callback);
 231
 232        ced->max_nr_ranges = nr_ranges;
 233
 234        /* Exclusion of crash region could split memory ranges */
 235        ced->max_nr_ranges++;
 236
 237        /* If crashk_low_res is not 0, another range split possible */
 238        if (crashk_low_res.end)
 239                ced->max_nr_ranges++;
 240}
 241
 242static int exclude_mem_range(struct crash_mem *mem,
 243                unsigned long long mstart, unsigned long long mend)
 244{
 245        int i, j;
 246        unsigned long long start, end;
 247        struct crash_mem_range temp_range = {0, 0};
 248
 249        for (i = 0; i < mem->nr_ranges; i++) {
 250                start = mem->ranges[i].start;
 251                end = mem->ranges[i].end;
 252
 253                if (mstart > end || mend < start)
 254                        continue;
 255
 256                /* Truncate any area outside of range */
 257                if (mstart < start)
 258                        mstart = start;
 259                if (mend > end)
 260                        mend = end;
 261
 262                /* Found completely overlapping range */
 263                if (mstart == start && mend == end) {
 264                        mem->ranges[i].start = 0;
 265                        mem->ranges[i].end = 0;
 266                        if (i < mem->nr_ranges - 1) {
 267                                /* Shift rest of the ranges to left */
 268                                for (j = i; j < mem->nr_ranges - 1; j++) {
 269                                        mem->ranges[j].start =
 270                                                mem->ranges[j+1].start;
 271                                        mem->ranges[j].end =
 272                                                        mem->ranges[j+1].end;
 273                                }
 274                        }
 275                        mem->nr_ranges--;
 276                        return 0;
 277                }
 278
 279                if (mstart > start && mend < end) {
 280                        /* Split original range */
 281                        mem->ranges[i].end = mstart - 1;
 282                        temp_range.start = mend + 1;
 283                        temp_range.end = end;
 284                } else if (mstart != start)
 285                        mem->ranges[i].end = mstart - 1;
 286                else
 287                        mem->ranges[i].start = mend + 1;
 288                break;
 289        }
 290
 291        /* If a split happend, add the split to array */
 292        if (!temp_range.end)
 293                return 0;
 294
 295        /* Split happened */
 296        if (i == CRASH_MAX_RANGES - 1) {
 297                pr_err("Too many crash ranges after split\n");
 298                return -ENOMEM;
 299        }
 300
 301        /* Location where new range should go */
 302        j = i + 1;
 303        if (j < mem->nr_ranges) {
 304                /* Move over all ranges one slot towards the end */
 305                for (i = mem->nr_ranges - 1; i >= j; i--)
 306                        mem->ranges[i + 1] = mem->ranges[i];
 307        }
 308
 309        mem->ranges[j].start = temp_range.start;
 310        mem->ranges[j].end = temp_range.end;
 311        mem->nr_ranges++;
 312        return 0;
 313}
 314
 315/*
 316 * Look for any unwanted ranges between mstart, mend and remove them. This
 317 * might lead to split and split ranges are put in ced->mem.ranges[] array
 318 */
 319static int elf_header_exclude_ranges(struct crash_elf_data *ced,
 320                unsigned long long mstart, unsigned long long mend)
 321{
 322        struct crash_mem *cmem = &ced->mem;
 323        int ret = 0;
 324
 325        memset(cmem->ranges, 0, sizeof(cmem->ranges));
 326
 327        cmem->ranges[0].start = mstart;
 328        cmem->ranges[0].end = mend;
 329        cmem->nr_ranges = 1;
 330
 331        /* Exclude crashkernel region */
 332        ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
 333        if (ret)
 334                return ret;
 335
 336        if (crashk_low_res.end) {
 337                ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
 338                if (ret)
 339                        return ret;
 340        }
 341
 342        return ret;
 343}
 344
 345static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
 346{
 347        struct crash_elf_data *ced = arg;
 348        Elf64_Ehdr *ehdr;
 349        Elf64_Phdr *phdr;
 350        unsigned long mstart, mend;
 351        struct kimage *image = ced->image;
 352        struct crash_mem *cmem;
 353        int ret, i;
 354
 355        ehdr = ced->ehdr;
 356
 357        /* Exclude unwanted mem ranges */
 358        ret = elf_header_exclude_ranges(ced, start, end);
 359        if (ret)
 360                return ret;
 361
 362        /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
 363        cmem = &ced->mem;
 364
 365        for (i = 0; i < cmem->nr_ranges; i++) {
 366                mstart = cmem->ranges[i].start;
 367                mend = cmem->ranges[i].end;
 368
 369                phdr = ced->bufp;
 370                ced->bufp += sizeof(Elf64_Phdr);
 371
 372                phdr->p_type = PT_LOAD;
 373                phdr->p_flags = PF_R|PF_W|PF_X;
 374                phdr->p_offset  = mstart;
 375
 376                /*
 377                 * If a range matches backup region, adjust offset to backup
 378                 * segment.
 379                 */
 380                if (mstart == image->arch.backup_src_start &&
 381                    (mend - mstart + 1) == image->arch.backup_src_sz)
 382                        phdr->p_offset = image->arch.backup_load_addr;
 383
 384                phdr->p_paddr = mstart;
 385                phdr->p_vaddr = (unsigned long long) __va(mstart);
 386                phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
 387                phdr->p_align = 0;
 388                ehdr->e_phnum++;
 389                pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
 390                        phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
 391                        ehdr->e_phnum, phdr->p_offset);
 392        }
 393
 394        return ret;
 395}
 396
 397static int prepare_elf64_headers(struct crash_elf_data *ced,
 398                void **addr, unsigned long *sz)
 399{
 400        Elf64_Ehdr *ehdr;
 401        Elf64_Phdr *phdr;
 402        unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
 403        unsigned char *buf, *bufp;
 404        unsigned int cpu;
 405        unsigned long long notes_addr;
 406        int ret;
 407
 408        /* extra phdr for vmcoreinfo elf note */
 409        nr_phdr = nr_cpus + 1;
 410        nr_phdr += ced->max_nr_ranges;
 411
 412        /*
 413         * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
 414         * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
 415         * I think this is required by tools like gdb. So same physical
 416         * memory will be mapped in two elf headers. One will contain kernel
 417         * text virtual addresses and other will have __va(physical) addresses.
 418         */
 419
 420        nr_phdr++;
 421        elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
 422        elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
 423
 424        buf = vzalloc(elf_sz);
 425        if (!buf)
 426                return -ENOMEM;
 427
 428        bufp = buf;
 429        ehdr = (Elf64_Ehdr *)bufp;
 430        bufp += sizeof(Elf64_Ehdr);
 431        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
 432        ehdr->e_ident[EI_CLASS] = ELFCLASS64;
 433        ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
 434        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 435        ehdr->e_ident[EI_OSABI] = ELF_OSABI;
 436        memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
 437        ehdr->e_type = ET_CORE;
 438        ehdr->e_machine = ELF_ARCH;
 439        ehdr->e_version = EV_CURRENT;
 440        ehdr->e_phoff = sizeof(Elf64_Ehdr);
 441        ehdr->e_ehsize = sizeof(Elf64_Ehdr);
 442        ehdr->e_phentsize = sizeof(Elf64_Phdr);
 443
 444        /* Prepare one phdr of type PT_NOTE for each present cpu */
 445        for_each_present_cpu(cpu) {
 446                phdr = (Elf64_Phdr *)bufp;
 447                bufp += sizeof(Elf64_Phdr);
 448                phdr->p_type = PT_NOTE;
 449                notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
 450                phdr->p_offset = phdr->p_paddr = notes_addr;
 451                phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
 452                (ehdr->e_phnum)++;
 453        }
 454
 455        /* Prepare one PT_NOTE header for vmcoreinfo */
 456        phdr = (Elf64_Phdr *)bufp;
 457        bufp += sizeof(Elf64_Phdr);
 458        phdr->p_type = PT_NOTE;
 459        phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
 460        phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
 461        (ehdr->e_phnum)++;
 462
 463#ifdef CONFIG_X86_64
 464        /* Prepare PT_LOAD type program header for kernel text region */
 465        phdr = (Elf64_Phdr *)bufp;
 466        bufp += sizeof(Elf64_Phdr);
 467        phdr->p_type = PT_LOAD;
 468        phdr->p_flags = PF_R|PF_W|PF_X;
 469        phdr->p_vaddr = (Elf64_Addr)_text;
 470        phdr->p_filesz = phdr->p_memsz = _end - _text;
 471        phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
 472        (ehdr->e_phnum)++;
 473#endif
 474
 475        /* Prepare PT_LOAD headers for system ram chunks. */
 476        ced->ehdr = ehdr;
 477        ced->bufp = bufp;
 478        ret = walk_system_ram_res(0, -1, ced,
 479                        prepare_elf64_ram_headers_callback);
 480        if (ret < 0)
 481                return ret;
 482
 483        *addr = buf;
 484        *sz = elf_sz;
 485        return 0;
 486}
 487
 488/* Prepare elf headers. Return addr and size */
 489static int prepare_elf_headers(struct kimage *image, void **addr,
 490                                        unsigned long *sz)
 491{
 492        struct crash_elf_data *ced;
 493        int ret;
 494
 495        ced = kzalloc(sizeof(*ced), GFP_KERNEL);
 496        if (!ced)
 497                return -ENOMEM;
 498
 499        fill_up_crash_elf_data(ced, image);
 500
 501        /* By default prepare 64bit headers */
 502        ret =  prepare_elf64_headers(ced, addr, sz);
 503        kfree(ced);
 504        return ret;
 505}
 506
 507static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
 508{
 509        unsigned int nr_e820_entries;
 510
 511        nr_e820_entries = params->e820_entries;
 512        if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
 513                return 1;
 514
 515        memcpy(&params->e820_table[nr_e820_entries], entry,
 516                        sizeof(struct e820_entry));
 517        params->e820_entries++;
 518        return 0;
 519}
 520
 521static int memmap_entry_callback(u64 start, u64 end, void *arg)
 522{
 523        struct crash_memmap_data *cmd = arg;
 524        struct boot_params *params = cmd->params;
 525        struct e820_entry ei;
 526
 527        ei.addr = start;
 528        ei.size = end - start + 1;
 529        ei.type = cmd->type;
 530        add_e820_entry(params, &ei);
 531
 532        return 0;
 533}
 534
 535static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
 536                                 unsigned long long mstart,
 537                                 unsigned long long mend)
 538{
 539        unsigned long start, end;
 540        int ret = 0;
 541
 542        cmem->ranges[0].start = mstart;
 543        cmem->ranges[0].end = mend;
 544        cmem->nr_ranges = 1;
 545
 546        /* Exclude Backup region */
 547        start = image->arch.backup_load_addr;
 548        end = start + image->arch.backup_src_sz - 1;
 549        ret = exclude_mem_range(cmem, start, end);
 550        if (ret)
 551                return ret;
 552
 553        /* Exclude elf header region */
 554        start = image->arch.elf_load_addr;
 555        end = start + image->arch.elf_headers_sz - 1;
 556        return exclude_mem_range(cmem, start, end);
 557}
 558
 559/* Prepare memory map for crash dump kernel */
 560int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
 561{
 562        int i, ret = 0;
 563        unsigned long flags;
 564        struct e820_entry ei;
 565        struct crash_memmap_data cmd;
 566        struct crash_mem *cmem;
 567
 568        cmem = vzalloc(sizeof(struct crash_mem));
 569        if (!cmem)
 570                return -ENOMEM;
 571
 572        memset(&cmd, 0, sizeof(struct crash_memmap_data));
 573        cmd.params = params;
 574
 575        /* Add first 640K segment */
 576        ei.addr = image->arch.backup_src_start;
 577        ei.size = image->arch.backup_src_sz;
 578        ei.type = E820_TYPE_RAM;
 579        add_e820_entry(params, &ei);
 580
 581        /* Add ACPI tables */
 582        cmd.type = E820_TYPE_ACPI;
 583        flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 584        walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
 585                       memmap_entry_callback);
 586
 587        /* Add ACPI Non-volatile Storage */
 588        cmd.type = E820_TYPE_NVS;
 589        walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
 590                        memmap_entry_callback);
 591
 592        /* Add crashk_low_res region */
 593        if (crashk_low_res.end) {
 594                ei.addr = crashk_low_res.start;
 595                ei.size = crashk_low_res.end - crashk_low_res.start + 1;
 596                ei.type = E820_TYPE_RAM;
 597                add_e820_entry(params, &ei);
 598        }
 599
 600        /* Exclude some ranges from crashk_res and add rest to memmap */
 601        ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
 602                                                crashk_res.end);
 603        if (ret)
 604                goto out;
 605
 606        for (i = 0; i < cmem->nr_ranges; i++) {
 607                ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
 608
 609                /* If entry is less than a page, skip it */
 610                if (ei.size < PAGE_SIZE)
 611                        continue;
 612                ei.addr = cmem->ranges[i].start;
 613                ei.type = E820_TYPE_RAM;
 614                add_e820_entry(params, &ei);
 615        }
 616
 617out:
 618        vfree(cmem);
 619        return ret;
 620}
 621
 622static int determine_backup_region(u64 start, u64 end, void *arg)
 623{
 624        struct kimage *image = arg;
 625
 626        image->arch.backup_src_start = start;
 627        image->arch.backup_src_sz = end - start + 1;
 628
 629        /* Expecting only one range for backup region */
 630        return 1;
 631}
 632
 633int crash_load_segments(struct kimage *image)
 634{
 635        int ret;
 636        struct kexec_buf kbuf = { .image = image, .buf_min = 0,
 637                                  .buf_max = ULONG_MAX, .top_down = false };
 638
 639        /*
 640         * Determine and load a segment for backup area. First 640K RAM
 641         * region is backup source
 642         */
 643
 644        ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
 645                                image, determine_backup_region);
 646
 647        /* Zero or postive return values are ok */
 648        if (ret < 0)
 649                return ret;
 650
 651        /* Add backup segment. */
 652        if (image->arch.backup_src_sz) {
 653                kbuf.buffer = &crash_zero_bytes;
 654                kbuf.bufsz = sizeof(crash_zero_bytes);
 655                kbuf.memsz = image->arch.backup_src_sz;
 656                kbuf.buf_align = PAGE_SIZE;
 657                /*
 658                 * Ideally there is no source for backup segment. This is
 659                 * copied in purgatory after crash. Just add a zero filled
 660                 * segment for now to make sure checksum logic works fine.
 661                 */
 662                ret = kexec_add_buffer(&kbuf);
 663                if (ret)
 664                        return ret;
 665                image->arch.backup_load_addr = kbuf.mem;
 666                pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
 667                         image->arch.backup_load_addr,
 668                         image->arch.backup_src_start, kbuf.memsz);
 669        }
 670
 671        /* Prepare elf headers and add a segment */
 672        ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
 673        if (ret)
 674                return ret;
 675
 676        image->arch.elf_headers = kbuf.buffer;
 677        image->arch.elf_headers_sz = kbuf.bufsz;
 678
 679        kbuf.memsz = kbuf.bufsz;
 680        kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
 681        ret = kexec_add_buffer(&kbuf);
 682        if (ret) {
 683                vfree((void *)image->arch.elf_headers);
 684                return ret;
 685        }
 686        image->arch.elf_load_addr = kbuf.mem;
 687        pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
 688                 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
 689
 690        return ret;
 691}
 692#endif /* CONFIG_KEXEC_FILE */
 693